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1 Introduction

The theory of optimization presented is derived from a few simple, intuitive,
geometric relations. The extension of these relations to infinite-dimensional
spaces is the motivation for the mathematics of functional analysis which, in
a sense, often enables us to extend our three-dimensional geometric insights
to complex infinite–dimensional problems. This is the conceptual utility of
functional analysis. On the other hand, these simple geometric relations
have great practical utility as well because a vast assortment of problems
can be analyzed from this point of view. We give a few examples.

The projection theorem. This theorem is one of the simplest results
of optimization theory. In ordinary three-dimensional Euclidean space, it
states that the shortest line from a point to a plane is the perpendicular from
the point to the plane. This theorem has direct extensions to the infinite-
dimensional Hilbert spaces and in the generalized form, this optimization
principle forms the basis of all least–squares approximations, control and
estimation procedures.

The Hahn–Banach Theorem. The theorem takes many forms and
is one of the main theorems on which most of the following theory is based
upon. One version of the theorem extends the projection theorem to prob-
lems having non–quadratic objectives. In this manner the simple geometric
interpretation is preserved. Another form states that a given sphere and a
point not in the sphere can be separated by a hyperplane.

Duality. There are several principles in optimization theory relying
on the fact that certain facts can be represented by vectors as well as
by hyperplanes (vectors in R1×n). Many duality relations are based on a
geometric relation illustrated below. Consider a linear subspace M, e.g.
{x ∈ R2 : x1 = 0} and a point x ∈ R2. Then, the shortest distance from x to
M in the Euclidean norm can also be expressed in the dual. Consider the
dual to M, which is the orthogonal complement MT := {x2 = 0}. Then, the
minimum distance from x to M coincides with the maximum of 〈x, x∗〉 taken
over all x∗ ∈ MT with ‖x∗‖ ≤ 1. In 2d this can be seen by the fact that
the scalar product can be expressed as cos θ‖x‖‖x∗‖ and its length is the
projection of x to MT if ‖x∗‖ = 1. In other words, minimizing the distance
over vectors is maximizing over hyperplanes. This holds also true when
considering minimizing the distance to a convex set which is equivalent to
maximizing the distance of hyperplanes (between the point and the set) to
this point.

Differentials. The most familiar optimization technique is setting the
derivative to zero. The geometric interpretation is obvious for a one–dimensional
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graph. At an extremum the tangent to the graph is horizontal. Similarly,
in higher dimensions the tangent hyperplane is horizontal.

2 Preliminary discussion

2.1 Intent

The theory of constrained optimization in finite dimensional spaces is well
known. The question which constraint qualifications to put, what the nec-
essary and sufficient condition are, and so forth are treated in all details.
An exhaustive reference is for example [13]. However, in most applications
we are forced to consider continuous problems. Those problems are given in
general infinite dimensional space. Naturally, one can ask the same question
as in the finite dimensional space. An introduction to this theory is given
in [10]. The intent of this lecture is to take something from both approaches
and focus mainly on constraint qualifications and problem definitions, that
can be translated in the infinite dimensional setting. Often the examples
are given in the finite dimensional space or are related to partial differential
equations. We given applications of the theorem and proof existence in the
case of linear quadratic optimal control problems with elliptic or parabolic
constraints. This follows closely[9]. We also consider abstract numerical
methods for the optimization problems.

Further we discuss optimal control problems. This class of problems is
very common in the applications and can be seen as optimization problems
with additional structure information. The underlying theory for both is
the same, but their are differences in the way of solving the problcems.

Further references are [14, 5, 11, 3].

2.2 Motivation

The theory of finite dimensional spaces can be extended to an infinite di-
mensional setting. First, we give a short formal calculation showing the
strong relation between both approaches.

Consider f : Rn → R and h : Rn → Rm

min
x∈Rn

f(x) subject to h(x) = 0 (2.1)

Assume sufficient constraint qualifications hold, e.g. ∇h(x) has full rank.
Then the Karush-Kuhn-Tucker system is necessary and we have
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∇f(x)−∇h(x)λ = 0 (2.2)

h(x) = 0 (2.3)

The Lagrange function is given by

L(x, λ) = f(x)− λTh(x) = f(x)− (λ, h(x))m (2.4)

If we read the equations carefully, we note that, h(x) = 0 is an equality
in the space Rm. Therefore, the following is true

h(x) = 0⇔ ∀φ ∈ Rm : (h(x), φ)m = (φ, h(x))m = 0 (2.5)

This looks similar to a weak formulation of a partial differential equation in
Hilbert spaces. Furthermore,

∇f(x)−∇h(x)λ = 0⇔ ∀ψ ∈ Rn : (∇f(x), ψ)n − (∇h(x)λ, ψ)n = 0 (2.6)

⇔ ∀ψ ∈ Rn : (∇f(x), ψ)n − (λ,Dh(x)ψ)m = 0 (2.7)

Reformulation of the last equation yields

∀ψ ∈ Rn : ∇xL(x, λ)[ψ] = 0 (2.8)

The equation (2.7) is the adjoint equation and (2.5) is the state equation.
Solving both for (λ, x) gives (under additional assumptions) a solution for
the optimization problem. Since all terms are scalar products in Rn or Rm
we might generalize the above to abritrary Hilbert spaces. Furthermore,
replacing the scalar product by a general duality product we can give a
meaning to the equations even in Banach spaces.

We give an example of the problems, which we have in mind.

min
u∈H1(Ω)

∫
Ω

(u− ud)2dx (2.9)

subject to −∆u+ u = 0 in Ω,∇u · n = 0 on ∂Ω (2.10)

We have to give a meaning to ∆u = 0 in H1(Ω) :

∀φ ∈ H1(Ω) : (∇u,∇φ)2 + (u, φ)2 = (u, φ)1 = 0 (2.11)

Now, compare the last equation with the state equation (2.5). At least
formally we introduce the Lagrange function

L(u, λ) = f(u)− (λ, u)1 =

∫
Ω

(u− ud)2dx−
∫
∇λ · ∇udx−

∫
λudx(2.12)
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The adjoint equation is given by ∇uL(u, λ)[ψ] = 0 :∫
Ω

2(u− ud)ψ −∇λ · ∇ψ − λψdx = 0 (2.13)

This is the weak form of

2(u− ud) = −∆λ+ λ in Ω, ∇λ · n = 0 on ∂Ω (2.14)

Naturally, the following questions arise.

1. What are the constraint qualifications?

2. Can we solve constrained optimization problems in general Banach
spaces?

3. · · ·

2.3 Control and state variables

Difference between optimization and optimal control problems.
Common problems in optimization theory consider a split of the op-

timization variables. Usually, a state and a control are given. First, we
illustrate this for a finite dimensional example. However, the motivation is
the infinite dimensional setting:

min
u,y

J(u, y) subject to −∆y = f + u, ∇y · n = 0 (2.1)

In the finite dimensional setting we consider the problem

min
y,u∈Rn

f(u, y) subject to Ay = u (2.2)

Of course, one can extend the following arguments to the case u ∈ Rm
with m < n. If we assume, that A ∈ Rn×n is invertible, then we can also
study the reduced (unconstrained) problem

min
u∈Rn

f̃(u) (2.3)

Herein, f̃(u) = f(u, y(u)) and y(u) = A−1u.
We reformulate the former problem for x = (u, y) with m = 2n

min
x∈Rm

f(x) subject to (−Id,A)x = 0 (2.4)
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Since Id has rank n, the KKT equations are necessary[
∇uf(u, y)
∇yf(u, y)

]
−

[
−Id
AT

]
λ = 0 (2.5)

(−Id,A)

[
u
y

]
= 0 (2.6)

Rewriting this system we obtain

state equation Ay = u (2.7)

adjoint equation ∇yf(u, y)−ATλ = 0 (2.8)

gradient equation ∇uf(u, y) + λ = 0 (2.9)

Compared to the names and notation of the previous section, there is a slight
abuse here. Before the gradient and adjoint equation could be separated.
We called both adjoint equation. But, the above notation seems to be
reasonable, if we consider the reduced functional. The minimization problem
is unconstrained and therefore the necessary condition is

∇uf̃(u) = 0 (2.10)

Evaluating the gradient gives

Duf̃(u) = Duf(u, y) +Dyf(u, y)Duy or (2.11)

∇uf̃(u) = ∇uf +A−T∇yf(u, y) (2.12)

In theory we can compute Duy and A−T by differentiating y = A−1u. How-
ever, there is a more clever way to do it. Solving the adjoint equation for λ
and insert this we see

∇uf̃(u) = ∇uf(u, y) + λ (2.13)

and the gradient equation coincides with the necessary condition for the
unconstrained optimization problem. So the optimality system coincides
and by the adjoint equation, it is not necessary to compute Duy. Similar
considerations hold in the nonlinear case.

Summarizing, in the control and state case can be reduced to the previous
discussion. Splitting of the equations yield three different equations closely
related to the reduced functional.
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2.4 Examples

Consider two domains Ωr,Ωs ⊂ R2 connected by the boundary Γ. We con-
sider the problemex01

∂tu = Dr∆u in Ωr (2.1a)

∂tu = Ds∆u in Ωs (2.1b)

u = 0 on (∂Ωr ∪ ∂Ωs) ∩ Γ (2.1c)

We measure the following quantity on Γ :

fΓ(x) := kr∂nu− ks∂nu ∀x ∈ Γ (2.2)

We assume that Γ is parametrized as follows

Γ := {(x, y) : y = γ(x)} (2.3)

for some function γ ∈ C1(R). Then we would like to find the boundary Γ (or
equivalently a parametrization γ), such that the functional J given below is
minimized.

J(γ, u) =

∫ T

0

∫
Γ
(fΓ − f̄)2dSdt+

∫ T

0

∫
Ω
u2dxdt (2.4)

subject to equations (2.1). we offer an interpretation for this problem. The
equations (2.1) are the heat equations with for two different materials. The
boundary Γ gives the structure of the final profile.

Example 2.1. The integration of p-dimensional manifolds in the Rn can be
computed as follows. Assume f : Rn → R and γ : Rp → Rn is a parametriza-
tion of the p-dimensional manifold M . Then we define the integral over M
as ∫

M
f(x)dS :=

∫
Rp
f(γ(y))

√
det(gij)ijdx (2.5)

wherein gij is the Gram matrix and is given by

gij = ∂jγ · ∂iγ (2.6)

The most important case is

M := {(x, y, z) : z = φ(x, y)}. (2.7)
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In this case γ : R2 → R3 is given by γ(x, y) = (x, y, φ(x, y)) and

(gij)ij =

[
1 + φ2

x φxφy
φyφx 1 + φ2

y

]
(2.8)

The transformation reads∫
M
f(x)dS =

∫
R2

f(x, y, φ(x, y))
√

1 + φ2
x + φ2

ydxdy (2.9)

2.5 The linear case - dual problems

Some remarks concerning linear optimization are included to show the close
relation between both topics. A linear program in standard form is given
by

min cTx subject to Ax− b = 0 (2.1)

Herein, slack variables may appear to reformulate the inequality constraints.
We do not focus on that but refer to [13]. The problem is known as pri-
mal problem. Assuming constraint qualifications on AT , the problem is a
convex optimization problem, e.g. the objective function is convex and the
constraints are affine linear. Therefore, the KKT system is necesary and
sufficient for optimality. We introduce the Lagrange function

L(x, λ) = cTx− λT (Ax− b) (2.2)

Let us rewrite the Lagrange function in the following way

L(x, λ) = (c−ATλ)Tx− bTλ (2.3)

In the latter formulation consider x as Lagrange multiplier and λ as opti-
mization variable. Requiring that A fulfills a constraint qualification, we
see, that the latter Lagrange function belongs to the following convex opti-
mization problem

min−bTλ subject to ATλ = c (2.4)

The problem (2.4) is also known as dual problem. If we rewrite the KKT
system for (2.1) we obtain

c−ATλ = 0 (2.5)

Ax− b = 0 (2.6)
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By our previous notation the first equation is refered to as adjoint equation.
The KKT system for (2.4) is given by

−b+Ax = 0 (2.7)

−ATλ+ c = 0 (2.8)

Assume that the A ∈ Rm×n. Let rank(AT ) = m < n, which implies that
the LICQ condition is satisfied. Hence we have a unique multiplier λ for
the primal KKT system. Obviously, LICQ is NOT satisfied for the dual
problem. We would need rank(A) = n but A has m < n rows. Since the
constraints are affine, the Abadie condition is satisfied. Therefore, there
exists a multiplier x, s.t. the KKT for the dual is necessary. The multiplier
might not be unique. No rank condition on ∇h is needed.

Conversly, if the problem is convex, i.e., f convex, h affin linear and the
KKT system holds at (x∗, λ∗), then x∗ is the global minimum.1 If LICQ
holds, then λ∗ is unique and hence (x∗, λ∗) is unique.

We see, that in the linear the case the KKT system coincide. This means,
that solving the dual problem is equivalent to solving the primal problem
(if LICQ holds).

There are more results on this topic avaible, especially when including
bound constraints. For sake of completness we state the main theorem of
linear optimization. A proof can be found in [13].

Theorem 2.2. Consider the problems

min cTx subject to Ax = b, x ≥ 0 (2.9)

and

min−bT y subject to AT y ≤ c (2.10)

If any of them has a finite minimum, then this holds also true for the other
one. The optimal values coincide, i.e., cTx = −bT y. If the objective of any
of both problem is unbounded, then the other is infeasible. If both problems
are feasible, then there exists a optimal solution.

1Thm. 6.6 in [13]
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3 Necessary and sufficient optimality conditions
for unconstrained problems in finite dimensional
spaces

n this section we are mainly concerned with the techniques for solving un-
constrained optimization problems. Although it can be argued that such
problems arise relatively infrequently in practice, the underlying ideas are
so important that it is best to understand them first in their simplest setting.

The following is the setting of an unconstrained minimization:
Problem Setting:

Given f : D ⊂ Rn → R; f ∈ C1(D), D open.
Aim: Find a (local) minimum x∗ of f , i.e. there exists δ > 0:
f(x∗) ≤ f(x) for all x with ‖x− x∗‖ < δ.

The existence of a solution can only be guaranteed under certain req-
uisite conditions (Counterexample: n = 1, f(x) = exp(x)). A sufficient
condition for the existence of at least one local minimum is the follow-
ing:
There exists x0 ∈ D : Lf (x0) = {x ∈ D : f(x) ≤ f(x0)} compact (bounded
and closed). i.e. the boundary of a region defined by a level surface is not
also the boundary of D. We will refer to such a set as a ”level sphere” with
respect to x0.

Theorem 3.1. If f is continuously differentiable in the neighborhood of x∗

and x∗ is a local minimum for f , then f ′(x∗) = 0. (Necessary first-order
condition)

Theorem 3.2. If f is 2k-times continuously differentiable in the neighbor-
hood of x∗ and the following applies:

f ′(x∗) = 0, . . . , f (2k−1)(x∗) = 0, f (2k)(x∗) > 0

then x∗ is a strict local minimum of f , i.e. f(x) > f(x∗) for all x 6= x∗ with
|x− x∗| sufficiently small.

Sketch of Proof: Apply Taylor Series in x∗ up to Order 1 with respect to
2k.

Theorem 3.3. Let f : D ⊂ Rn → R, f ∈ C1(D), D open, x∗ ∈ D.
Suppose x∗ is a local minimum of f , the following must necessarily hold

∇f(x∗) = 0 (necessary first-order condition)
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If f ∈ C2(D), then the following further holds:

∇2f(x∗) positive semi-definite (necessary second-order condition)

Sketch of Proof: Taylor Series expansion up to first- and second- derivative.
If∇f(x∗) 6= 0 then consider x∗−τ∇f(x∗) for small τ and in case∇f(x∗) = 0,
but ∇2f(x∗) is not positive semi-definite consider x∗ − τz, where z is a so
called direction of negative curvature, i.e. zT∇2f(x∗)z < 0 (for example,
with z an eigenvector with the smallest algebraic eigenvalue).

Theorem 3.4. Let f : D ⊂ Rn → R, f ∈ C2(D), D open, x∗ ∈ D. In
case

∇f(x∗) = 0, ∇2f(x∗) positive definite
(Sufficient second-order condition)

then x∗ is a strict local minimum of f .

Definition 3.5. A symmetric real matrix A is called positive definite, if

xTAx > 0 for all x 6= 0

and positive semi-definite, if

xTAx ≥ 0 for all x.

Remark 3.6. If B ∈ Rm×n and Rank(B) = n, i.e. Bx = 0 only for x = 0,
then A = BTB ∈ Rn×n is symmetric and positive definite.

We also need a practical algorithm that allows us to check positive defi-
niteness of a matrix.

A sufficient condition, with which a local minimum of f is also a global
minimum is the convexity of the function:

Definition 3.7. D ⊂ Rn is called convex, if x ∈ D, y ∈ D then [x, y] ⊂ D
also.

D3 Definition 3.8. f : D ⊂ Rn → R, D convex, is said to be convex on D,
if for x, y ∈ D

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) for λ ∈ [0, 1] (3.11) 1

and strict convex, if for 0 < λ < 1 only ”’>”’ is true in (3.11).
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S6 Theorem 3.9. If D 6= ∅ ⊂ Rn is convex and f is convex on D, then every
local minimum is also a global minimum.

Sketch of Proof: Let x∗ be a local minimum. Then there exists δ > 0 such
that

||y − x∗|| ≤ δ ⇒ f(x∗) ≤ f(y) .

Suppose x ∈ D arbitrary. Consider x∗ + t(x− x∗). From the hypothesis

f(x∗ + t(x− x∗)) ≤ (1− t)f(x∗) + tf(x)

and

||(x∗ + t(x− x∗))− x∗|| ≤ δ in case 0 < t < δ/(||x||+ ||x∗||) .

This gives

f(x∗) ≤ f(x∗ + t(x− x∗)) ≤ (1− t)f(x∗) + tf(x)

for such a t. A bit of manipulation and division by t > 0 gives the conclusion.

Theorem 3.10. (Convexity Criteria) Let D ⊂ Rn be convex, open (6= ∅).
If f ∈ C1(D), then

1. f is convex on D ⇔ f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ D.

If f ∈ C2(D), then in addition

2. f is convex on D ⇐⇒ ∇2f(x) positive semi-definite on D.

3. If ∇2f is positive definite on D, then f is strictly convex on D, i.e.

λf(x) + (1− λ)f(y) > f(λx+ (1− λ)y) for 0 < λ < 1

and x, y ∈ D are arbitrary.

Corollary 3.11. f ∈ C1(D), D is open convex, x∗ ∈ D, f is convex on
D, ∇f(x∗) = 0⇒ x∗ is a minimum.

From Theorem 3.3 and Theorem 3.10 the proof of the previous corollary
follows easily. In theorem 3.9 the existence of a local minimum is assumed.
The following criterion guarantees the existence and uniqueness of a
local and at the same time a global minimum.

15



S8 Theorem 3.12. Suppose f ∈ C2(D). Suppose D is open and convex ( 6= ∅).
If the following holds:

(i) There exists α0 ∈ R, such that Lf (α0) = {x ∈ D : f(x) ≤ α0} is
bounded and closed or D = Rn.

(ii) dT∇2f(x)d ≥ αdTd with α > 0 for all x ∈ D and d ∈ Rn,

then there exists exactly one strict local minimum of f on D, which is also
a global minimum.

The first case we conclude that a continuous function attains its max-
imum on a closed and bounded, i.e., compact, set. Therefore, existence is
guaranteed. In the second case we have that f is positive definite and uni-
formly convex. In the case D = Rn we note that strict convexity is not(!)
sufficient for f ti have a global minimum, see example 1 below.

Definition 3.13. (Extension of Definition 3.8) f is called uniformly
convex on the convex set D ∈ Rn, if there exists a γ > 0 with

tf(x) + (1− t)f(y) ≥ f(tx+ (1− t)y) + t(1− t)γ‖x− y‖2

for all t ∈ [0, 1] and x, y ∈ D. (This is the case in the assumption of the
theorem 3.12 above)

Example 3.14. 1. f(x) = exp(−x1) + exp(−x2) is strictly convex on

D = R2. There exists no local minimum. (But: ∇2f(x) =

(
exp(−x1) 0

0 exp(−x2)

)
is positive definite!)

2. f(x) = 3
2((x1)2 + (x2)2) + sinx1 · sinx2 + 3x1 − 4x2.

∇2f(x) =

(
3− sinx1 sinx2 cosx1 cosx2

cosx1 cosx2 3− sinx1 sinx2

)
α = 1 in (ii), theorem 3.12. D = R2. Also there exists exactly one
local critical point, which is the only local and at the same time the
global minimum.

3. f(x) = 1 + x1 lnx1 + x2 lnx2 + (x1)2 + (x2)2

D = {x : x1 > 0, x2 > 0}
x0 = (0.25, 0.25); f(x0) = 0.4318528194

Lf (f(x0)) is compact, since f → ∞ for x1 → ∞ or x2 → ∞ and on
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the boundary of D f ≥ 0.7148671412.
(That is the minimum value of 1 + z ln z + z2, z ≥ 0).

∇2f(x) =

(
2 + 1

x1
0

0 2 + 1
x2

)

indeed α = 2 in theorem 3.12.

4 Necessary and sufficient optimality conditions
for constrained problems in finite dimensional
spaces

We consider the general nonlinear constrained optimization problem.

minx∈S f(x)
S = {x ∈ Rn : g(x) ≥ 0, h(x) = 0} S “admissible set”

}
NLO

i.e. for example,

g : Rn → Rm; g(x) ≥ 0 implies gi(x) ≥ 0 ∀i = 1, . . . ,m

The problem will be studied under the following assumptions which are
assumed to be valid throughout the remaining chapter.

A1 S 6= ∅.
The problem should be formulated such that there is at least an ad-
missible point. This can be difficult to check in applications.

A2 f, g, h are defined on an open set D ⊂ Rn and S ⊂ D. Further, we
assume that S is a closed subset of Rn.
If S is closed, then S is described by g and h only. Since S ⊂ D we can
leave the admissible set without leaving the domain of definition for
f, g and h. This is important for algorithms based on penalty functions.
The requirement D allows to define the derivative f, g and h for all
points x ∈ D. In most cases we will consider D = Rn.

A3 f, g, h ∈ C1(D).

To derive sufficient conditions we sometimes require f, g, h ∈ C2(D).
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In the following discussion we set

f, g, h ∈ C1 (Rn), g : Rn → Rm, h : Rn → Rp

Some remarks are in order.

1. The previous notation implies to have m inequality and p equality
constraints.

Example 4.1. (a) S = {x ∈ Rn : ai ≤ xi ≤ bi, ∀i = 1, . . . , n}
fig:feasible_set

Figure 1: The feasible set.

(b) Linear Programme:

f(x) = cTx, H ∈ Rp×n

h(x) = Hx+ b0

g(x) = x.

(c) Quadratic Programme:

f(x) = xTAx− bTx;

h(x) = Hx+ h0

g(x) = Gx+ g0.

(d) Lagrangian Multiplier Theorem: g = 0, Dh(x) has full rank.

min
x
f(x)s.t. h(x) = 0

18



fig:lagrangemultiplierthm

x 1

x
2

h(x) = 0

Level Curve of f(x)

Figure 2: Constrained optimization using Lagrange Multiplier.

2. In the literature we also find the constraint

g(x) ≤ 0

which can be reformulated in the above context.

3. If gi is highly nonlinear it might be useful to reformulate the inequality
constraint gi(x) ≥ 0 as equality constraint using slack variables xi+1 :

gi(x) ≥ 0⇔ gi(x)− xi+1 = 0, xi+1 ≥ 0.

This should be done only if the number of inequalities is small and if
the equality constraint can be treated efficiently.

4. The following reformulations are not recommended since they effect
the constraint qualification properties.

hi(x) = 0 ⇔ hi(x) ≥ 0 and hi(x) ≤ 0 i = 1, . . . , p

gi(x) ≥ 0 ⇔ gi(x)− (xn+i)
2 = 0, i = 1, . . . ,m.

(∇hi(x) and −∇hi(x) are always linearly dependent, nonlinear con-
straints are harder to solve than linear ones.)

There are some difficulties when solving NLO numerically. Depending
on the constraints the problem becomes more difficult. We distinguish the
following cases.

a) Simplest case: S = {x ∈ Rn : a ≤ x ≤ b}, a < b ∈ Rn given
(“box constraints”)
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b) Similar and efficiently to compute is the following case: h, g affin lin-
ear. The admissible set is a polyhedron. There are further special and
important subcases:
f(x) = cTx 7→ linear programming
f(x) = 1

2x
TAx− bTx 7→ quadratic programming.

c) h nonlinear, but ∇h has full column rank and no inequalities. Then
we apply the implicit function theorem and consider an unconstrained
problem.

d) f convex, h affin linear, gi concave, i = 1, . . . ,m
7→ “convex optimization”

Before discussing the general theory we have the following remark on the
notation.

Remark 4.2. Let f : Rn → R be sufficiently smooth. We denote by

∇f(x) = (∂x1f(x), ∂x2f(x), . . . , ∂xnf(x))T

the gradient of f. This is a column vector. We denote by

(∇2f(x))ij = (∂xj∂xif)ij

the (symmetric) Hessian matrix of f.
Let g : Rn → Rm be sufficiently differentiable. We denote by ∇g the

transposed(!) Jacobi-matrix (Jg(x)) of g = (g1, . . . , gm)T , i.e.,

(∇g(x))ij = (∂xigj)i=1,...,n;j=1,...,m = (∇g1, . . . ,∇gm)

Hence, the derivative Dg(x) = ∇g(x)T .
We often require ∇h(x) to have full column rank for h : Rn → Rp. This is

equivalent to assume that ∇h(x) has p linearly independent columns. Note
that the jth column of ∇h(x) is ∇hj(x). If h is linear, then h = H with
H ∈ Rp×n and ∇h(x) = HT ∈ Rn×p

Example 4.3. Consider g(x) = Gx, G ∈ Rm×n. Then Jg(x) = G ∈ Rm×n,
and ∇g(x) = GT ∈ Rn×m

4.1 Necessary optimality conditions

We discuss the characterization of minima to NLO under the assumptions
(A1)− (A3) of the previous section. We achieve to obtain a similar charac-
terization as in the case of unconstrained optimization, i.e., necessary and
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sufficient conditions involving derivatives of f and the constraints h and g.
The most important result will be the Karush–Kuhn–Tucker necessary op-
timality conditions, see below. We do not discuss the existence of minimum
in details. The existence is granted under various conditions. E.g., suppose
that

Lf (f(x0)) ∩S

bounded for some x0 ∈ S.

Definition 4.4. x∗ ∈ S is a local solution (local minimum) to NLO, if
there exists a neighborhood Uδ(x

∗) such that for all y ∈ Uδ(x∗) ∩S we have
f(y) ≥ f(x∗).

Using this definition the most general necessary first–order conditions
are due to Fritz John (1948).

S28 Theorem 4.5. Let x∗ ∈ S be a local minimum of f on S.
Then there exists multipliers λ∗0, λ

∗
1, . . . , λ

∗
m ≥ 0 and µ∗1, . . . , µ

∗
p ∈ R such

that

λ∗0∇f(x∗)−
m∑
i=1

λ∗i∇gi(x∗)−
p∑
j=1

µ∗j∇hj(x∗) = 0

λ∗i gi(x
∗) = 0 i = 1, . . . ,m

and such that ‖λ∗0, λ∗1, . . . , λ∗m, µ∗1, . . . , µ∗p‖ 6= 0.

Note that the vector of multipliers is non–trivial due to the last condition.
The assertion of this theorem is typically of no use in applications since the
possibility λ∗0 = 0 is not excluded. If λ∗0 = 0, then the necessary condition
does not involve the function f !

Example 4.6. Example due to Kuhn–Tucker. Let n = 2, m = 2, p = 0

f(x) = −x1, g1(x) = x2, g2(x) = (1− x1)3 − x2

x∗ =
(

1
0

)
, λ∗0 = 0, λ∗1 = α ∈ R, λ∗2 = −α

The previous example shows that in general additional assumptions have
to be imposed to guarantee λ∗ > 0. These conditions are called constraint
qualifications. We start with some general remarks and notations before
proving the main theorem. The concept of cones is important for character-
ization of a local minimum. This is due to the following theorem, see also
figure 4.1
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co-thm1 Theorem 4.7. Let x∗ be a local minimum. Let xk ∈ Uδ(x∗)∩S be a conver-
gent sequence with limit x∗ and such that xk 6= x∗. Let z be any accumulation
point of the sequence

xk − x∗

‖xk − x∗‖
.

Then,
∇f(x∗)T z ≥ 0. (4.12) eqn:unconstrainednecessarycond

convergencexk

Figure 3: Illustration of theorem 4.7

Proof. We have αk = ‖xk − x∗‖ → 0 due to the assumptions and
xk = x∗+αzk for zk := (xk−x∗)/αk. Since z is an accumulation there exists
a convergent subsequence zk → z. Since f is continuously differentiable we
have f(xk) = f(x∗) + αk∇f(x∗)T zk + αkεk for εk with the property εk → 0
for k →∞. Since x∗ is a local minimum we have

f(x∗) ≤ f(xk) = f(x∗) + αk
(
∇f(x∗)T zk + εk

)
=⇒ ∇f(x∗)T zk + εk ≥ 0 ∀k

minx f(x) = x2 subject to 1 ≤ x ≤ 2. In this case the minimizer
x∗ = 0 and f ′(x∗) = 0. But in the interval given the minimizer is
x∗ = 1 (sketch graph of function). Can you prove that x∗ = 1 is
really the constrained minimizer? The theorem says f(x∗)z ≥ 0 for

z =
xk − x∗

‖xk − x∗‖
, 1 ≤ xk ≤ 2, xk → 1 for k → ∞. We guess x∗ = 1,

xk = 1 +
1.5

k
. Thus xk → 1 as k →∞. Hence z =

1 + 1.5
k − 1

‖1 + 1.5
k − 1‖

= 1.

We conclude f ′(1) · 1 ≥ 0⇒ 2 ≥ 0.
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fig:para_constraintExample 4.8. (a)
1 2

Figure 4: Minimising a quadratic function on an interval.

(b)
min
a≤x≤b

f(x)

fig:necessary_cond

a b b

f’(x)<=0
f’(x)>=0

Figure 5: Necessary conditions for a constrained minimum.

f ′(x∗) · 1 ≥ 0 necessary condition - necessary if x∗ = a

f ′(x∗) · −1 ≥ 0 necessary condition - necessary if x∗ = b

f ′(x∗) = 0 necessary condition - necessary if a < x∗ < b

Note in the above theorem there will be a sequence xk → x∗ (e.g.

xk = x∗ + 1
k ) and an accumulation point z of the sequence

xk − x∗

‖xk − x∗‖
.

min
(x1,x2)

x2
1 + x2

2 subject to 1 ≤ x1 ≤ 2; 1 ≤ x2 ≤ 2.

Guess: x∗ = (1, 1)T Question: Can you verify that it is a minimum?

∇f(x∗)T z ≥ 0 iff f(x∗)T ∈ Π′(S, x0)

Hence ∇f(x∗)T ≥ 0 ∀z ∈ Π(S, x∗). If you guess x = (2, 2) you can
verify that the condition does not hold.
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fig:paraboloid_constr(c)

1 2

1

2

s
grad f(1,1) = (2,2) T

Figure 6: Necessary conditions for a constrained minimum.

Note that in the case m = p = 0 and for xk = x∗ + αk ± ei, αk → 0
for any fixed i, we obtain zk → z = ±1 and (∇f(x∗))i = 0. This yields the
well–known first–order optimality condition ∇f(x∗) = 0.

Equation (4.12) is the most general necessary condition which is known.
However the condition can not be used for practical problem solving, for
example, in numerical schemes.

Further note that if ∇f(x∗)T z ≥ 0 for some z, then ∇f(x∗)T (τz) ≥ 0
for τ ≥ 0. The set of all vectors τz belongs therefore to a cone. The cone
consisting of all z satisfying the previous theorem and all τz for τ ∈ R+ is
the tangential cone of S at x∗.

Definition 4.9. K ⊂ Rn is a cone, iff for z ∈ K, we have τz ∈ K.
K ′ ⊂ Rn is the dual cone to K ⊂ Rn, iff

K ′ := {y ∈ Rn : yTx ≥ 0 ∀ x ∈ K}.

A cone and its dual is depicted in Figure 4.1.

Definition 4.10. Let S ⊂ Rn and y ∈ S. The closed tangential cone
T (S, y) is the cone consisting of all vectors which are given as differences
a−y for a ∈ S where a is sufficiently close to y and the accumulation points
of such vectors, i.e.,

T (S, y) := ∩∞k=1Πk

where

Πk := {α(a− y) : α ≥ 0, a ∈ S, ‖a− y‖ < 1

k
}.

The important observation is now that all points satisfying the previous
theorem belong to the closed tangential cone on S at x∗ and vice versa.
Hence, the tangential cone can be described by exactly those vectors z de-
fined previously with αk = 1

‖xk−x∗‖ .
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cone

Theorem 4.11. We have z ∈ T (S, x), if and only if there exists a sequence
αk > 0 and a sequence xk ∈ S with xk → x and such that

lim
k
αk(xk − x) = z.

Proof. Let z ∈ T (S, x). Then we have two cases. Either we have
z ∈ Tk for all k and hence z = αk(xk − x), αk ∈ R+, ‖xk − x‖ ≤ 1

k . Hence,
xk → x. Or we have z as accumulation point of a sequence zk ∈ Tk. Then,
zk := αk(yk−x), αk ∈ R+, ‖yk−x‖ ≤ 1

k , ‖z
k− z‖ ≤ εk → 0. Hence, yk → x.

Let xk → x. Hence, for arbitrary p there exists k0 such that ‖xk − x‖ ≤
1
p , ∀k ≥ k0 and hence αk(xk − x) ∈ Tp for all k ≥ k0. Since Tp is closed and

since αk(xk − x) → z, we have z ∈ Tp. The previous arguments hold true
for any p. Hence, z ∈ T (S, x).

Applying the previous theorem to the sequence of theorem 4.7 with αk =
1

‖xk−x∗‖ , we obtain the important necessary optimality condition

x∗ local minimum of NLO =⇒ ∇f(x∗)T z ≥ 0 ∀z ∈ T (S, x∗) (4.13)

or equivalently using the definition of the dual cone

x∗ local minimum of NLO =⇒ ∇f(x∗) ∈ T (S, x∗)′. (4.14)

The previous characterization is unsatisfactory, since the tangential cone is
in general not easy to construct. Further, the constraints g and h do not
appear explicitly in the definition of the cone. The following constraint qual-
ifications aim to describe the tangential cone in expressions of the Jacobi–
matrices of the constraints. Under certain assumptions on g and h a com-
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plete description of the cone is possible. These assumptions are called con-
straint qualifications. The cone Z1 is obtained by the constraints g and h
and is called linearised cone. The set A(x) is called the active set.

Z1(x) := {z ∈ Rn : zT∇gi(x) ≥ 0, i ∈ A(x), zT∇hj(x) = 0, j = 1, . . . , p}
(4.15) co-z1

A(x) := {i ∈ {1, . . . ,m} : gi(x) = 0} (4.16) co-a

The relation between T (S, x) and Z1(x) is seen below.
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Theorem 4.12. We have T (S, x) ⊂ Z1(x) for all x ∈ S.

Proof. For each z ∈ T (S, x) we have xk ∈ S, xk → x, αk(xk − x) → z
for αk ∈ R+. Since xk ∈ S and since hj is differentiable for each j we have

0 = hj(x
k) = hj(x) + (xk − x)T∇hj(x) + ‖xk − x‖εk,j , εk,j → 0.

Since x ∈ S we have after multiplication with αk

0 = αk(xk − x)T∇hj(x) + ‖αk(xk − x)‖εk,j → zT∇hj(x).

Similarly, we have zT∇gi(x) ≥ 0 for i ∈ A(x) since gi(x) = 0.
Unfortunately, we have T (S, x) 6= Z1(x) without further assumptions.

The weakest possible assumption is exactly assuming equality and yields
Karush–Kuhn–Tucker theorem:

Theorem 4.13. Let x∗ be a local solution to NLO and assume (A1)-(A3).
Assume the constraint qualification of Guignard

Z1(x∗)′ = T (S, x∗)′

holds.
Then there exists multipliers λ∗ = (λ∗1, . . . , λ

∗
m) with λ∗i ∈ R+

0 and µ∗ =
(µ∗1, . . . , µ

∗
p) with µ∗i ∈ R such thatco-kkt

∇f(x∗)−∇g(x∗)λ∗ −∇h(x∗)µ∗ = 0, (4.17a)

(λ∗)T g(x∗) = 0 (4.17b)

g(x∗) ≥ 0 (4.17c)

h(x∗) = 0 (4.17d)

The proof is based on Farkas’ Lemma which is a special case of the
Hahn–Banach theorem. Farkas Lemma is as follows:

Lemma 4.14. Let A ∈ Rm×n and b ∈ Rm. Then we have either a solution
r to Ar = b with r ≥ 0 or there exists a y with AT y ≥ 0, bT y < 0

From Figure 4.1 ist is clear that there are only to possibilities: Either
the vector b is in the (positive) span of the columns of A or not. In the proof
of the previous Theorem we have the first case.

Proof. Due to the previous discussion and Guignard assumptions we
have ∇f(x∗) ∈ T (S, x∗)′ = Z1(x∗)′ or equivalently zT∇f(x∗) ≥ 0 for all
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farkas

Figure 7: Illustration of Farkas’ Lemma. Part (II) corresponds to the case
where b belongs to the positive span of the columns of A and hence there
exists r ≥ 0 such that Ar = b. In part (I) the set AT y ≥ 0 and bT y < 0 is
non–empty and is depicted in the lower left part.

z ∈ Z1. Define the complementary set Z := {y ∈ Rn : yT∇f(x∗) < 0}.
Hence, Z ∩ Z1(x∗) = ∅. Rewriting the definition of Z1(x∗) we have

Z1(x∗) =

{
z ∈ Rn :

∇gi(x∗)T z ≥ 0, i ∈ A(x∗)
∇hj(x∗)T z ≥ 0, ∀j
−∇hj(x∗)T z ≥ 0,∀j

}

We now apply Farkas Lemma with

A :=
(
∇gi∈A(x∗)(x

∗) ∇hj:∀j(x∗) −∇hj:∀j(x∗)
)
∈ Rn×|A|+2m

and
b = ∇f(x∗).

It holds AT z ≥ 0 fpr z ∈ Z1(x∗) by definition and for z ∈ Z1(x∗) we have
∇f(x∗)T z ≥ 0. Since we have AT z ≥ 0 =⇒ bT z ≥ 0, there exists a solution
0 ≤ r ∈ R|A|+2m with Ar = b or written explicitly

|A|∑
i=1

ri∇gi(x∗) +

m∑
j=1

rj+|A|∇hj(x∗) +

m∑
j=1

−rj+|A|+m∇hj(x∗) = ∇f(x∗).

Hence, the Karush–Kuhn–Tucker theorem holds true for the multipliers λ∗i ≥
0, i ∈ A(x∗), λ∗i = 0, i 6∈ A(x∗) and µ∗j = rj+|A| − rj+|A|+m.
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Remark 4.15. Condition (4.17) explicitly reads

∇f(x∗)−
m∑
i=1

λ∗i∇gi(x∗)−
p∑
j=1

µ∗j∇hj(x∗) = 0

and for i = 1, . . . ,m λ∗i gi(x
∗) = 0.

For m = p = 0 we obtain again the well–known first–order condition
∇f(x∗) = 0.

For m = 0 we obtain the classical Lagrange Multiplier theorem

∇f(x∗)−∇h(x∗)µ∗ = 0.

Example 4.16. Again we consider the example with the paraboloid above:

min
(x1,x2)

x2
1 + x2

2 subject to 1 ≤ x1 ≤ 2; 1 ≤ x2 ≤ 2.

If x∗ is a local minimum then (with further conditions) it also satisfies the
Karush-Kuhn-Tucker conditions:

∇f(x∗) =
m∑
i=1

λi∇gi(x∗) +

p∑
j=1

µj∇hj(x∗)

with

λigi(x
∗) = 0;

gi(x
∗) ≥ 0;

hj(x
∗) = 0;

where λi ≥ 0. To rewrite the optimization problem in this format we need
to re-write the constraints, 1 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2 in the form:

g1(x1, x2) = x2 − 1;

g2(x1, x2) = 2− x1;

g3(x1, x2) = x2 − 1;

g4(x1, x2) = 2− x2.

Hence evaluating the system above for the specific problem given we ob-
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tain: (
2x1

2x2

)
= λ1

(
1
0

)
+ λ2

(
−1
0

)
+ λ3

(
0
1

)
+ λ4

(
0
−1

)
;

λ1(x1 − 1) = 0;

λ2(2− x1) = 0;

λ3(x2 − 1) = 0;

λ4(2− x2) = 0;

gi(x) ≥ 0.

We now verify the KKT for the case x∗ = (1, 1):(
2
2

)
=

(
λ1 − λ2

λ3 − λ4

)
;

λ2(2− x1) = 0;

λ4(2− x2) = 0;

Hence λ2 = λ4 = 0, and λ1 = λ3 = 2. If we took x∗ = (1, 0) we obtain
λ3 = λ4 = 0 but taking x̃ = (1, 2) gives λ1 = 2 and λ4 = −4, thus x̃ can
never be a minimum since some λs are negative!

The condition of Guginard is the weakest possible condition in the fol-
lowing sense. Assume x∗ is a local minimum and f is continuously differ-
entiable. If and only if (4.17) holds in x∗, then T (S, x∗)′ = Z1(x∗). For a
proof we refer to Gould und Tolle.

The remaining discussion focus on constraint qualifications which imply
the Guginard condition. The other constraint qualification are typically sim-
pler to verify. The most important constraint qualifications are summarized
below.

Definition 4.17. For x ∈ S let A = A(x) = {i : gi(x) = 0} be the active
set.

x∗ ∈ S satisfies the Mangasarian-Fromowitz-condition (MFCQ),
if

∇h(x∗) has full column rank and ∃z ∈ Rn : ∇h(x∗)T z = 0, ∇gA(x∗)T z > 0

x∗ ∈ S satisfies the regularity condition / linear independence
constraint qualification (LICQ), if

(∇h(x∗),∇gA(x∗)) has full column rank.
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The Slater condition for NLO is satisfied, if −gi is convex for all
i = 1, . . . ,m and hj is affine linear for all j = 1, . . . , p and if there exists an
x0 such that

h(x0) = 0, gL(x0) ≥ 0, gNL(x0) > 0,

where gL are all affine linear and gNL are all other inequality constraints.

For convenience we introduce the following additional notation. If A ⊂
{1, . . . ,m} is a set of indices, e.g., A = {i1, . . . , is}, then we denote by
∇gA the matrix (∇gi1 , . . . ,∇gis). The Slater condition can only hold, if the
admissible set S is convex. The previous constraint qualifications all imply
the condition of Guginard. The MFCQ is the weakest of the above given
conditions and some conditions are related to each other. We state some
important theorems on the conditions and their implications.

Theorem 4.18. If x ∈ S satisfies the MFCQ condition, then the condition
of Guginard is satisfied.

If x ∈ S satisfies the LICQ condition, then the condition of Guginard is
satisfied.

If NLO satisfies the Slater condition, then the modified MFCQ condition
holds. The modified MFCQ implies the Guignard condition.

A consequence of the previous theorem and theorem 4.7 is the following
result.

S29 Theorem 4.19. Let x∗ ∈ S. If x∗ is a local minimum of f on S and if
either in x∗ MFCQ or LICQ or if NLO satisfies the Slater condition, then
there exists multipliers λ∗1, . . . , λ

∗
m ≥ 0, µ∗1, . . . , µ

∗
p ∈ R such that

∇f(x∗)−∇g(x∗)λ∗ −∇h(x∗)µ∗ = 0, λ∗i gi(x
∗) = 0, i = 1, . . . ,m.

All constraint qualifications of the previous theorem are stronger than
the Guignard condition. Hence, we can expect additional properties of the
multipliers when requiring MFCQ or LICQ. Indeed, we have the following
additional ’regularity results’.

Theorem 4.20. Let x∗ ∈ S and let x∗ be a local minimum of f on S.
If and only if in x∗ MFCQ is satisfied, then the set of possible multipliers

(µ∗, λ∗) in (4.17) is bounded (Gauvin 1977).
If and only if in x∗ MFCQ is satisfied, then there exists neighborhoods

Uδ(0) ⊂ Rp, Vδ(0) ⊂ Rm and γ(x∗) > 0 such that the system

h(x) = e1, g(x) ≥ e2, ‖x− x∗‖ ≤ γ(x∗)
(
‖e1‖+ ‖(e2)+‖

)
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has a solution for e1 ∈ Uδ(0), e2 ∈ Vδ(0) (Robinson 1976).
If in x∗ LICQ is satisfied, then µ∗ and λ∗ of (4.17) are uniquely defined.

The condition MFCQ guarantees stability against perturbations of the
constraints. All conditions only yield necessary optimality conditions. These
conditions can also be formulated using the Lagrange function.

Other approaches use the Morse Lemma in order to study optimality
conditions. We will see later that this corresponds to the LICQ condition.
To this end we introduce the following definition and theorems for normal
forms of order one and two.

Definition 4.21. Let U, V be open sets in Rn and F : U → V bijective. F
is called a Ck- diffeomorphism, iff F ∈ Ck(U ;V ) and F−1 ∈ Ck(V,U). If F
and F−1 are continuous (k=0), then F is called a homeomorphism.

If F is a homeomorphism and x̄ a local minimum for f. Then, ȳ = F (x̄)
is a local minimum of f(F−1(y)).

Theorem 4.22. Let k ≥ 1 and f ∈ Ck. Suppose that Df(x̄) 6= 0. Then,
there exists an open neighborhood U and V of x̄ and 0 and a Ck diffeomor-
phism F : U → V with F (x̄) = 0 such that

f(F−1(y)) = f(x̄) + y1.

Proof. W.o.l.g. we may assume that ∂f
∂x1

(x̄) 6= 0. Define y = F (x) by

y1 = f(x)− f(x̄), yj = xj − x̄j .

Note that detDF (x̄) = ∂f
∂x1

(x̄) 6= 0 and hence DF (x̄) is non-singular. Due

to the inverse function theorem F is locally invertible with F−1 ∈ Ck :

f(x̄) + y1 = f(x) = f(F−1(y)).

The point x̄ is not a local minimum of f since ∂f 6= 0 and in the new
coordinates F−1(y) the function f is linear in y1.

Theorem 4.23 (Morse Lemma). Let f ∈ C2, ∇f(x̄) = 0 and ∇2f(x̄) non-
singular. Suppose exactly k eigenvalues of ∇2f(x̄) are negative. Then, there
exists an open neighborhood U and V of x̄ and 0 and a Ck diffeomorphism
F : U → V with F (x̄) = 0 such that

f(F−1(y)) = f(x̄)−
k∑
i=1

y2
i +

n∑
i=k+1

yj2
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Theorem 4.24. Let k ≥ 1 and hi, gj ∈ Ck. Suppose that LICQ holds at
x̄ ∈ S Set q = |A(x̄)|. Then, there exists an open neighborhood U and V of
x̄ and 0 and a Ck diffeomorphism F : U → V such that

F (x̄) = 0, F (S ∩ U) = {(0)m × Rq+ × Rn−m−q} ∩ V

with y = F (x) defined by

yi = hi(x), i = 1, . . . ,m

ym+i = gi(x), i ∈ |A(x̄)|
yq+m+i = ξTq+m+i(x− x̄)

where (∇hi(x̄),∇gi,i∈|A(x̄)|ξj) are a base of Rn.

The admissible set S in y coordinates is described by linear equalities
yi = 0 and inequalities yi ≥ 0, i = m + 1, . . . ,m + q. Minimizing f on S
is equivalent to minimize f(F−1) as function of y. One can prove that 0 is
a local minimum of f(F−1(y)). The derivatives of f(F−1) at 0 is the KKT
system.

To close we wish to consolidate the ideas presented above by applying
them to a simple example. We apply KKT theorem with constraint qualifi-
cations which give necessary conditions for a minimum conditions:

∇f(x∗)−
n∑
i=1

λ∗i∇gi(x∗)−
p∑
j=1

µ∗i∇hj(x∗) = 0

λigi(x
∗) = 0;

gi(x
∗) ≥ 0;

hj(x
∗) = 0.

These are necessary for x∗ to be a local minimum, if the constraint
qualifications hold.

Example 4.25. (a) n = 2, m = 0, p = 1, f(x) = −x1 − x2, h1(x) =
1
2((x1)2 + (x2)2)− 1.

Thus solve minx f(x) subject to h1(x) = 0.

Constraint Qualification:

(i) MFCQ:

∇h(x) =

(
x1

x2

)
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and rank(∇h(x)) = 1 for x ∈ S which is the maximum column
rank.

(ii) LICQ:≡ MFCQ.

(iii) Slater: hj is affine linear if hj(x) = Hx + b which is not true
since h is non-linear.

Since MFCQ holds then KKT necessarily holds:(
−1
−1

)
− µ1

(
x1

x2

)
= 0;

x2
1 + x2

2 = 0.

the solution of which are: (x1, x2) = (−1,−1) with µ1 = 1 and (x1, x2) =
(1, 1) with µ1 = −1. Sufficient conditions will rule out one of the so-
lutions.

b) n = 2, m = 2, p = 0, f(x) = −x1, g1(x) = 1 − (x1)2 − x2, g2(x) =
1 + x2 − (x1)2.
x∗ =

(
1
0

)
Constraint Qualifications:

(i) MFCQ: ∃z : zT∇gA(x∗)(x
∗) > 0

(p ≡ 0) A(x∗) = {1, 2} since x∗ = (1, 0) we obtain g1(x∗) = 0,
g2(x∗) = 0.

∇gA(x∗)(x) =
(
∇g1(x∗) ∇g2(x∗)

)
=

(
−2 −2
−1 1

)

We need z ∈ R2 such that

zT

(
−2 −2
−1 1

)
> 0

Take z = (−1,−1).
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(ii) LICQ: ∇gA(x∗) must have full rank. If the minimum is not known,
we have to check ∇gA(x∗) has full rank ∀x ∈ S.

∇g1 =

(
−2x1

−1

)

∇g2 =

(
−2x1

1

)
.

If A(x∗) = {1, 2} then

∇gA =

(
−2x1 −2x1

−1 1

)

has rank 2 for x1 6= 0. If A(x∗) = {1} or A(x∗) = {2} then the
vectors have full rank.

(iii) Slater: Check that −gi is convex:

−∇2g1 =

(
2 0
0 0

)

4.2 Lagrange function and its relation to necessary optimal-
ity conditions

The optimality conditions can also be formulated using the Lagrange func-
tion.

Definition 4.26.

L(x, λ, µ) := f(x)− λT g(x)− µTh(x)

is called the associated Lagrange function to NLO.

A reformulation of the KKT equation (4.17) is hence given by

∇xL(x∗, λ∗, µ∗) = 0

h(x∗) = 0

min(λ∗i , gi(x
∗)) = 0 i = 1, . . . ,m

Again, the previous set of conditions and suitable constraint qualifications
are only necessary for a local minimum but not sufficient.
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There is a reformulation of the solution to NLO as saddle point of the
Lagrangian. In the following we assume that (x, λ, µ) vary independently.
If we have a solution

(x∗, λ∗, µ∗) ∈ Rn × Rm+ × Rp

such that
L(x∗, λ, µ) ≤ L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗) (4.18) G32

for all x ∈ Rn, λ ≥ 0 ∈ Rm, µ ∈ Rp. then, we also have a solution to NLO.

Theorem 4.27. If (x∗, λ∗, µ∗) is a solution to (4.18), then x∗ is a solution
to NLO.

Proof. Let (x̄, λ̄, µ̄) be a saddle point. Then, by definition we obtain

f(x̄)−
∑

λigi(x̄)−
∑

µjhj(x̄) ≤

f(x̄)−
∑

λ̄igi(x̄)−
∑

µ̄jhj(x̄) ≤

f(x)−
∑

λ̄igi(x)−
∑

µ̄jhj(x).

for any λ ∈ R+ and µ and x. This implies that∑
(λ̄i − λi)gi(x̄) +

∑
(µ̄j − µj)hj(x̄) ≤ 0.

For λi = λ̄i and µj = µ̄j except for j = j0 where µ̄j0 = α + µj0 we obtain
αhj0(x̄) ≤ 0 for any α ∈ R. This implies hj(x̄) = 0. Furthermore, for λi = λ̄i
except for i0 where λi0 = λ̄i0 + 1 we obtain −gi0 ≤ 0. For λ = 0 we have
λ̄T g(x̄) ≤ 0 which together with λ̄ ≥ 0 and g(x̄) ≥ 0 implies that λT g(x̄) = 0.

f(x̄)−
∑

λigi(x̄)−
∑

µjhj(x̄) ≤ f(x̄) ≤

f(x)−
∑

λ̄igi(x)−
∑

µ̄jhj(x) ≤ f(x)

if x is in the feasible set. Hence, x̄ is the minimum.

Remark 4.28. For many problems there is no solution (4.18) even so there
is a solution to NLO.

4.3 Sufficient optimality conditions

In this section sufficient conditions for x∗ to be a local minimum will be
discussed. The first theorem gives sufficient conditions under the additional
and restrictive assumption that f convex.
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S30 Theorem 4.29. Let −gi, i = 1, . . . ,m be convex, hj , j = 1, . . . , p affine
linear and f convex on Rn. Then, the multiplier rule (4.17) is also sufficient
for global optimality of x∗. If f is strictly convex, then x∗ is unique.

Proof. First note that the set S is convex, i.e., x, x∗ ∈ S we have
λx+(1−λ)x∗ ∈ S for all λ ∈ [0, 1]. Let x ∈ S and hence g(x) ≥ 0, h(x) = 0.
Since x∗ satisfies (4.17) we have multipliers λ∗i ≥ 0 and hence due to the
convexity of f,−g and the linearity of h and the convexity of S :

f(x) ≥ f(x)− (λ∗)T g(x)− (µ∗)Th(x)

≥ f(x∗)−∇f(x∗)T (x− x∗) + (λ∗)T (−g(x∗)−∇g(x∗)T (x− x∗))
. . . −(µ∗)T (h(x∗) +∇h(x∗)T (x− x∗))
= f(x∗)− (∇f(x∗)−∇g(x∗)λT −∇h(x∗)µ∗)T (x− x∗)
= f(x∗)

Since the previous holds for all x ∈ S, we have global optimality.
Combining this results with the general KKT–theorem we obtain: x∗ is a

minimum, if and only if the multiplier rule (4.17) holds under the assumption
that f is convex and NLO satisfies the Slater condition. Hence, in the convex
case the multiplier rule is sufficient for optimality.

However, in general the condition f convex is not satisfied. The follow-
ing theorem gives a sufficient condition in the general case. We need the
following definition.

Let x∗ ∈ S and

N∗ := (∇h1(x∗), . . . ,∇hp(x∗),∇gi1(x∗), . . . ,∇gil(x
∗)),

where A = A(x∗) is the active set. We abbreviate the previous by N∗ =
(∇h(x∗),∇gA(x∗). We call

Z0
1 (x∗) := {z : (N∗)T z = 0}

the linearised subspace at S in x∗. IfN∗ has full column rank and n columns,
then Z0

1 (x∗) is x∗. x∗ is hence a corner of S.

S31 Theorem 4.30. Let f, g, h ∈ C2(U(x∗)) and x∗ ∈ S be a local minimum of
f on S. Let N∗ = (∇h(x∗),∇gA(x∗)) have full column rank, i.e., LICQ is
satisfied.

Then, there exists uniquely defined multipliers λ∗ ≥ 0 (∈ Rm) and µ∗ ∈
Rp such that

∇xL(x∗, λ∗, µ∗) = 0
(λ∗)T g(x∗) = 0

zT∇2
xxL(x∗, λ∗, µ∗)z ≥ αzT z for all z ∈ Z0

1 (x∗) mit α ≥ 0.

 (4.19) G31
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holds.
Conversely, if LICQ is satisfied and (4.19) holds with α > 0 and if

λ∗ + g(x∗) > 0, then x∗ is a strict local minimum of f on SS.

Remark 4.31. The condition λ∗+g(x∗) > 0 is called strict complementarity
and implies that if gi(x

∗) = 0 we have λ∗i > 0 and also λ∗i = 0 implies
gi(x

∗) > 0. There are also optimality conditions which hold true without the
condition of strict complementarity .

If x∗ satisfies the multiplier rule and LICQ. Then the multipliers are
unique and can be computed as follows

∇f(x∗)−N(x∗,A)

(
µ∗

λ∗A

)
= 0, N(x∗,A) = (∇h(x∗),∇gA(x∗))

Using a QR−decomposition of N we have

QN =

(
R

0

)
=⇒

R

(
µ∗

λ∗A

)
=

(
Q∇f(x∗)

)
i=1,...,p+|A|

}
first p+ |A| components

The condition (4.19) of theorem 4.30 for α = 0 is also called second–
order sufficient condition.

We offer the following motivation for the proof of (4.30). Denote by

Z0
1 (x) := {(∇h1, . . . ,∇hm,∇gi1 , . . . ,∇gir)T z = 0, ij ∈ A(x)}.

Then a constraint qualification of second–order is given by

∀z ∈ Z1(x)0∃χ ∈ C1 : χ(0) = x, χ′(0) = z, h(χ(t)) = 0, gA(χ(t)) = 0.
(4.20) constraint qualification 2nd order

Theorem 4.32. Let x∗ be a local minimum, Z ′1 = T ′ and assume the
second–order constraint qualification (4.20). Then, we have for all z ∈
Z0

1 (x∗)

zT

∇2f(x∗)−
∑

λi∇2gi(x
∗)−

∑
j

µj∇2hj(x
∗)

 z ≥ 0.
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The latter condition is necessary. If we consider the unconstrained case
we had x∗ local minimum, then zT∇2f(x∗)z ≥ 0 is necessary. If ∇f(x∗) = 0
and zT∇2f(x∗)z > 0, then x∗ is a local minimum. Hence, it is tempting
to replace in the previous theorem ≥ by > in order to obtain sufficient
conditions. However, there is a counterexample in the constrained case. The
reason being that the set of admissible directions for variations of ∇2f(x∗)
is restricted to Z0

1 compared to Rn in the unconstrained case. Since we
allow less directions to test with, the assumptions on ∇2f(x∗) have to be
enforced.

We give some examples on the conditions.

a) n = 2, m = 0, p = 1, f(x) = −x1 − x2, h1(x) = 1
2((x1)2 + (x2)2)− 1.

x∗ =
(

1
1

)
satifies (4.19) with α > 0: There is a strict local minimum at

x =
(−1
−1

)
. Further, x0 =

(−1
−1

)
satisfies ∇xL(x0, λ, µ) = 0 with µ = 1,

but not (4.19), since x0 is a maximum.

Next we give a detailed presentation: If the minimum is at x∗ = (1, 1),

0 = ∇f(x∗)− µ∗∇h(x∗) =

(
−1
−1

)
− µ∗

(
1
1

)
;

µ∗ = −1. Hence sufficient conditions are

∇2f(x∗) =

(
0 0
0 0

)
; ∇2h(x∗) =

(
1 0
0 1

)
.

Thus

zT
((

0 0
0 0

)
− (−1)

(
1 0
0 1

))
z = zT

(
1 0
0 1

)
z = zT z > 0; ∀z 6= 0;

is satisfied with α = 1. Hence x∗ is a local minimum.

b) n = 2, m = 2, p = 0, f(x) = −x1, g1(x) = 1 − (x1)2 − x2, g2(x) =
1 + x2 − (x1)2.
x∗ =

(
1
0

)
, λ∗1 = λ∗2 = 1

4 , A(x∗) = {1, 2}. x∗ is a corner and (4.19) is
satisfied with α > 0 (Z0

1 = {0}). This is a global minimum since it is
a convexe problem with Slater condition. x∗∗ =

(−1
0

)
is a maximum

with λ∗∗1 = λ∗∗2 = −1
4 .

Again we make a detailed presentation
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The local minimum x∗ = (1, 0). We verify the sufficient conditions:(
−1
0

)
− λ∗1

(
−2
−1

)
− λ∗2

(
−2
1

)
= 0;

g1(x∗) = 0; g2(x∗) = 0; λigi = 0; λi + gi > 0⇒ λi ≥ 0.

which implies λ∗1 = λ∗2 = 1
4 from the last equation.

zT
((

0 0
0 0

)
−1

4

(
−2 0
0 0

)
−1

4

(
−2 0
0 0

))
z = zT

(
1 0
0 0

)
z = αzT z > 0; α > 0; ∀z ∈ Z0

1 (x∗)

where

Z0
1 (x∗) =

{
z ∈ R2 : zT

(
−2 −2
−1 1

)
= 0

}
;

=

{
z ∈ R2 : −2z1 − z2 = 0;−2z1 + z2 = 0⇒ z1 = 0

}
;

= {(0, 0)};

We need now to check that

zT

(
1 0
0 0

)
z ≥ αzT z

just for z = (0, 0) for any α. Hence x∗ is a strict local minimum.

c) n = 2, m = 0, p = 1, f(x) = −10x1x2, h1(x) = 1
2((x1)2 + (x2)2)− 1.(

1
1

)
,
(−1
−1

)
satisfy (4.19) with α = 20 : 2 is a strict local minimum, see

figure 4.3.

1. Linear or quadratic programming problems are a special case of convex
optimization. The general linear programming problem is as follows

f(x) = cTx

g(x) = GTx+ g0 (≥ 0)

h(x) = HTx+ h0 (= 0)

The standard form for linear programming is covered by the previous
theory with
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co-c

Figure 8: Contourlines for example (c)

f(x) = cTx

h(x) = HTx+ h0

g(x) = x

The convex quadratic programming problem is

f(x) = −bTx+ 1
2x

TAx A positive semi–definite

g(x) = GTx+ g0 (≥ 0)

h(x) = HTx+ h0 (= 0)

All previous problems are convex optimization problems and special
algorithms for their solution exist.

4.4 Lagrange function and its relation to sufficient optimal-
ity conditions

In case of convex optimization problems the saddle point condition (4.18) is
also sufficient for existence of a local minimum.

41



S33 Theorem 4.33. Let f,−g1, . . . ,−gm : Rn → R be konvex, h1, . . . , hp and
affine linear. Let the Slater–condition be satisfied. Then x∗ is a solution
NLO, if and only if there exists λ∗ ∈ Rm, λ∗ ≥ 0 and µ∗ ∈ Rp such that

L(x∗, λ, µ) ≤ L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗)

for all x ∈ Rn, for all λ ≥ 0 and for all µ ∈ Rp.

There are important implications of the previous theorem. At first, the
results can be used as a first numerical method for solving convex NLO:
Assume f is uniformly convex on Rn, i.e., λmin(∇2f(x)) ≥ γ > 0 for all
x ∈ Rn. Then, for fixed λ ≥ 0, µ ∈ Rp solve the unconstrained minimization
problem

x = x(λ, µ) := argminL(x, λ, µ).

The problem has a unique solution provided that f is uniformly convex.
Then, define

Φ(λ, µ) = L(x(λ, µ), λ, µ)

and solve the box–constrained problem

Φ(λ, µ)
!

= max, λ ≥ 0.

Second, the results can be used to derive the duality relations in linear
programming. This will be done in the sequel for a linear programming
problem in standard form:

f(x) = cTx
!

= min

Ax = b ,

x ≥ 0 .

The Lagrange function is L = cTx − µT (Ax − b) − λTx for λi ∈ R+ and
µ ∈ R. The Slater condition (−g convex, h affine linear and ∃x0 : h(x0) =
0, gL(x0) ≥ 0) is satisfied if the feasible set {x : Ax = b, x ≥ 0} is not empty.
Then, Theorem 4.25 applies:

c−ATµ− λ = 0 ,

Ax− b = 0 ,

xiλi = 0 , i = 1, . . . , n

This is also the optimality system for the problem

f̂(µ) = µT b
!

= max

c−ATµ ≥ 0.
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with multipliers xi ∈ R+. Due to the saddle point condition L(x∗, λ, µ) ≤
L(x∗, λ∗, µ∗) we have

(λ∗, µ∗) = argmax λ,µc
Tx∗ − µTAx∗ + µT b− λTx∗

= argmax (c−ATµ)Tx∗ + µT b− λTx∗

and xi ≥ 0, λi ≥ 0. Hence, −λTx∗ → max implies λ = 0. If (x, µ) is feasible
we have µT b ≤ cTx. Due to the KKT system we have that in the optimum

(µ∗)T b = cTx∗ .

4.5 Examples, discussion of nonlinear constraint qualifica-
tions

We recall the general nonlinear optimization problem in standard form. This
is given by

min f(x) subject to

S := {x : g(x) ≥ 0, h(x) = 0}.

Under the assumptions that S 6= ∅,f, g, h are defined on some open set D
where S is a closed subset of D and f, g, h are at least twice continuously
differentiable and constraint qualifications, we obtain the necessary (first
oder) conditions

∇f(x∗)− λT∇g(x∗)− µT∇h(x∗) = 0

λ ≥ 0

λT g(x∗) = 0

h(x∗) = 0

g(x∗) ≥ 0

and the sufficient (second order) condition

zT

∇2f(x∗)−
∑
i

λ∗i∇2gi(x
∗)−

∑
j

µj∇2hj(x
∗)

 ≥ αzT z
for suitable z.

Remark 4.34. Some authors use

g(x) ≤ 0
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instead of the previous formulation. In this case the sign in front of the
inequality multipliers λ has to be changed. The sign in front of the equality
multiplier µ can be changed to a plus at costs, since there is no further
restriction on µ.

In the case of inequality constraints only, we have that z is an admissible
direction, iff zT∇gi(x∗) = 0 for all inequalities i.

1. Let f(x) = −x1−x2 and h(x) = 1
2

(
x2

1 + x2
2

)
−1. We minimize f(x) on

a circle of radius one with center x = (0, 0). The minimum is attained
at x∗ = (1, 1). The multiplier µ = −1 and the necessary conditions are
satisfied. However, ∇2f(x∗) is the all zero matrix. But as expected
the matrix

∇2f(x∗)− µ∇2h(x∗)

is positive definite.

2. Let f(x) = −x1 and g1(x) = 1− x2
1− x2 and g2(x) = 1− x2

1 + x2. The
problem as the minimum attained at x∗ = (1, 0) and λi = 1

4 . There
is an additional extremum at x = (−1, 0). In this case the necessary
optimality conditions are not satisfied since λi < 0. For x∗ = (1, 0) we
obtain

∇2f(x∗)− λ1∇2g1(x∗)− λ2∇2g2(x∗) =

(
1 0
0 0

)
. This matrix is not(!) positive definite. However, the necessary con-
dition states that only for certain directions z we need the positivity.
In our case zT∇gi(x∗) = 0 implies z = (0, 0).

3. Let f(x) = −x1 and g1(x) = (1−x1)3−x2 and g2(x) = x1 and g3(x) =
x2. Then, the minimum is attained at x∗ = (1, 0) and ∇f(x∗) =
(−1, 0)T . The gradients of the constraints are

∇g1(x∗) = (0,−1)T , ∇g2(x∗) = (1, 0)T ,∇g3(x∗) = (0, 1)T .

Due to λ2g2((1, 0)) = 0 we have λ2 = 0. Hence, in the first equation
of the necessary conditions we need to express ∇f(x∗) in terms of
∇g1(x∗) and ∇g2(x∗). This is impossible! The reason is that no(!)
constraint qualification does not hold at the x∗ = (1, 0). The tangential
cone T (M,y) is the set that contains all positive multiples of directions
a− y where a ∈ Uδ(y) ∩M. In our example we have

T (S, (1, 0)) = {(α, 0) : α ≤ 0}.
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The linearized cone Z1(x) is given by linearization of the constraints

Z1(y) = {z : zT∇gi(y) ≥ 0,∀i : gi(y) = 0 andzT∇hj(y) = 0 ∀j}.

In our case
Z1((1, 0)) = {(α, 0) : α ∈ R}.

The dual cones are T ′ = {y : y2 ∈ R, y1 ≤ 0} and Z ′1 = {y : y2 ∈
R, y1 = 0}. The dual cone represents vectors having an angle less or
equal to ±π to any point in the set. Since ∇f(x∗) ∈ T ′ we need at
least Z ′1 = T ′. Here, even the weakest of all constraint qualification

Z ′1 = T ′

is violated!

Further counterexamples are stated below. The general problem reads

min f(x) subject to g(x) ≥ 0, h(x) = 0

The KKT system is

∇f(x∗)− λT∇g(x∗)− µT∇h(x∗) = 0

λ∗ ≥ 0

λT g(x∗) = 0

Example 4.35.

f(x) = −x1, g(x) =

(1− x1)3 − x2

x1

x2


The gradients are

∇f(x∗) =

[
1
0

]
,∇g(x∗) =

[
0 1 0
−1 0 1

]

and the minimum is x∗ = (1, 0). Hence, λ2 = 0 and we cannot write ∇f(x∗)
as a linear combination of the remaining gradients. The multiplier rule is
not valid. Note that ∇g1 and ∇g3 are linear dependent and therefore the
MFCQ constraint qualification is violated.
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Example 4.36.
f(x), h(x) = 1

We convert the equality constraint in two inequality constraints

f(x), h(x)− 1 ≥ 0, 1− h(x) ≥ 0

Since ∇g(x) = (∇h(x),−∇h(x)) which cannot be column regular (LICQ) no
matter how “good” h(x) was. Hence, the constraint qualification is violated
after reformulation.

5 Differentiability for operators on Banach spaces

We introduce the basic definitions of differentiable operators and contraction
principles used later for solving optimization problems.

5.1 Introduction

If not stated otherwise, we consider a Banach space X, a Banach space Y,
a possible nonlinear transformation T defined on a subdomain U ⊂ X and
having range R ⊂ Y.

Definition 5.1. Let U ⊂ X be open.

1. F : U → Y is called (Frechet-)differentiable at u ∈ U , iff there exists
a linear map A ∈ L(X,Y ), such that

F (u+ h) = F (u) +Ah+ o(‖h‖), ‖h‖ → 0

i.e.
1

‖h‖
‖F (u+ h)− F (u)−Ah‖ → 0, ‖h‖ → 0

2. F : U → Y is called Gateaux-differentiable at u ∈ U , iff there exists a
linear map A ∈ L(X,Y ), such that for t ∈ R

1

t
(F (u+ th)− F (u)− t Ah)→ 0

for all h ∈ X and t→ 0.

We write DF (u) for the Frechet derivative of F in u and DGF (u) for the
Gateaux derivative. The Gateaux derivative is a directional derivative. The
Frechet differentiability does not depend on the norm. We will call a function
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differentiable, if it is Frechet differentiable. If F is Frechet differentiable,
then it also has a Gateaux derivative. The converse is only true, if u →
DGF (u) is continuous, see Propositions below. Some authors also allow A
to be a nonlinear map in the case of Gateaux differentials.

Example 5.2. The constant map F (u) = c is differentiable at any u and
DF (u) = 0 for all u ∈ X.

Let B : X × Y → Z be a bilinear continuous map. Then B is differ-
entiable at every point (u, v) ∈ X × Y and DB(u, v) is the map [h, k] 7→
B(h, v) +B(v, k).

Let H be a Hilbert space with scalar product. Then F : u 7→ ‖u‖2 = (u, u)
is differentiable at every point u ∈ H and DF (u) is the map h 7→ 2(u, h).

Let X = Rn and Y = Rm with f(x) = f(x1, . . . , xn) : X → Y con-
tinuously differentiable. Then Df(x) is the Frechet differentiable and its
derivative can be expressed as the matrix ( ∂fi∂xj

)ij .

We conclude with assumption and definitions of above:

1. The map A ∈ L(X,Y ) is uniquely determined.

2. F is differentiable at u ∈ U ⇒ F is continuous

3. F is differentiable at u ∈ U ⇒ F is Gateaux-differentiable at u with
DF (u) = DGF (u)

4. Let X,Y, Z be Banach spaces and U ⊂ X, V ⊂ Y open; further let
F : U → Y with FU ⊂ V be differentiable at u ∈ U and G : V → Z
differentiable at v = Fu.

Then G ◦ F : U → Z is differentiable at u ∈ U and

D(G ◦ F )(u) = DG(v)DF (u)

.

Exercise 5.3. 1. Prove that f(u) = sin(u(1)) is F-differentiable in C(0, 1).

2. Prove that f(u) = ‖u‖2H is F-differentiable in a Hilbert space H.

Proposition 5.4. (“Mean-Value” Theorem) Let F : U ⊂ X → Y be
(Gateaux-)differentiable at any point of U .

Then for every u, v ∈ U with [u, v] = conv(u, v) ⊂ U

‖F (u)− F (v)‖ ≤ ‖u− v‖ sup{‖DGF (w)‖ : w ∈ [u, v]}
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Proposition 5.5. [2.3] Let F : U ⊂ X → Y be Gateaux-differentiable at
any u ∈ U and let DGF (u) : U → L(X,Y ) be continous at u0 ∈ U .

Then F is (Frechet-)differentiable at u0 and DF (u0) = DGF (u0).

On a Banach space X consider the open set U ⊂ L(X) of invertible
linear continuous operators and the map i : U → U defined by i(T ) = T−1.

Then i is Frechet differentiable and Di(T )H = T−1HT−1. Motivation of
the formula:

T Di(T )H = T ((T +H)−1 − T−1) = (Id+HT−1)−1 − Id = Di(Id)HT−1

Di(T )H = T−1Di(Id)HT−1

Proof. For all H ∈ U we have

0 =
1

‖H‖

(
(T +H)−1 − T−1 −Di(T )

)
=

1

‖H‖

(
((Id+HT−1)T )−1 − T−1(Id+HT−1)

)
Suppose the line–segment [u, v] ∈ U and F ∈ C1(U ;Y ). The map F ◦γ :

[0, 1]→ Y given by

F ◦ γ(t) = F (tu+ (1− t)v) : [0, 1]→ Y

is in C1 and the derivative is given by

(F ◦ γ)′(t) = F ′(tu+ (1− t)v)[u− v]

Integrating from 0 to 1 we obtain the useful equivalence

F (v)− F (u) =

[∫ 1

0
F ′(tu+ (1− t)v)dt

]
(u− v)

wherein F ′ takes values in L(X;Y ).
Higher order derivatives are introduced in the following definition.

Definition 5.6. Let X,Y be Banach spaces and U ⊂ X open. F : U → Y
be differentiable with the derivative

F ′ : U → L(X,Y )

1. If F ′ is differentiable at u0 ∈ U and we write

DF ′(u0) = D2F (u0) = F ′′(u0)

Here F ′′(u0) ∈ L(X,L(X,Y )) = L2(X,Y ) is the set of all bilinear
continous maps from X ×X to Y .
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2. Analogously we define

F (n)(u0) = DnF (u0) ∈ Ln(X,Y )

We write
F ∈ Cn(U, Y )

if F (n) exists everywhere and the map F : U → Ln(X,Y ) is continous.

Proposition 5.7. Let F : U → Y be twice differentiable in u ∈ U .
Then

F (u+ h) = F (u) + F ′(u)h+
1

2
F ′′(u)[h, h] + o(‖h‖2), h→ 0

Furthermore F ′′(u) ∈ L2(X,Y ) is symetric, i.e.

F ′′(u)[h, k] = F ′′(u)[k, h] ∀h, k ∈ X

Definition 5.8. Let X,Y, Z Banach spaces, U ⊂ X, V ⊂ Y open and
let F : U × V → Z be given. Assume that for fixed v0 ∈ V the map
F (·, v0) : U → Z, u→ F (u, v0) is differentiable at u0 ∈ U .

Then we say that F is partially differentiable in (u0, v0) with respect to
u and write

DuF (u0, v0) = Fu(u0, v0)

for its partial derivative w.r.t. u.

Proposition 5.9. (Partial Derivatives)

1. F : U × V → Z is differentiable in (u0, v0) ∈ U × V .

Then the partial derivatives w.r.t. u, v exists in (u0, v0) and

Fu(u0, v0)h = DF (u0, v0)(h, 0) ∀h ∈ X

Fv(u0, v0)k = DF (u0, v0)(0, k) ∀k ∈ Y

2. If Fu, Fv exists and are continous on U × V , then F is differentiable

3. If F ∈ C2(U × V,Z), then (Fu)v = (Fv)u

Theorem 5.10. (Taylor’s Formula)
Let F ∈ Cn(X,Y ), u ∈ U, [u, u+ h] ⊂ U .
Then

F (u+ h) =
n−1∑
j=0

1

j!
F (j)(u)[h, . . . , h] +R

where

R =
1

(n− 1)!

∫ 1

0
(1− t)(n−1)F (n)(u+ th)dt[h, . . . , h]
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Theorem 5.11. Let X be a Banach space and let A be a bounded linear
operator from X into X. If ‖A‖ = a < 1 then (I − A)−1 exists and ‖(I −
A)−1‖ ≤ 1/(1− a).

Proof. Existence. Given an arbitrary x ∈ X, we show that there
exists a unique y ∈ X, such that (I − A)y = x. Consider the sequence
xn =

∑n
i=0A

i/i!x. Then xn is a Cauchy sequence, since ‖A‖ < 1. Further
note that (I−A)

∑n
i=0A

i/i!x = x−An/n!x→ x. Therefore, the limit point
y of xn exists and has the desired properties. �

Theorem 5.12. Let f : X → Y be continuously Frechet differentiable on
X. Let x∗ ∈ X. Then f is Lipshitz in a neighbourhood of x∗.

Proof. Note that in the finite dimensional case we have f ′(x) is continu-
ous by assumption and therefore ‖f(x)−f(y)‖ ≤ ‖f ′(x)‖‖x−y‖ ≤M‖x−y‖
by mean value theorem and the continuity of f ′ on a ball Br(x). The proof
is analogously in infinite dimensions. �

Example 5.13. Let X = L2([a, b]) and f, x ∈ X. Consider the integral
equation

x(t) = f(t) + λ

∫ b

a
K(t, s)x(s)ds a.e.

with the kernel
∫ b
a

∫ b
a K(t, s)2dsdt = β2 < ∞. Then the integral defines a

bounded linear operator on X, i.e.

T : L2(a, b)→ L2(a, b)

by T (x)(t) = f(t) +
∫ b
a K(t, s)x(s)ds, since by Hölders inequality∫ b

a

(∫ b

a
K(t, s)x(s)ds

)2

dt ≤
∫ b

a

(∫ b

a
K(t, s)2ds

∫ b

a
x2(s)ds

)
dt ≤ β2‖x‖2

Hence T : L2(a, b)→ L2(a, b) and T is a contraction, iff λ < 1/β.

Example 5.14. We show that the differential

δf(x;h) =

∫ 1

0
gx(x, t)h(t)dt

in Example 2 is a Frechet differential. We have

|f(x+ h)− f(x)− δf(x;h)| = |
∫ 1

0
{g(x+ h, t)− g(x, t)− gx(x, t)h(t)}dt|
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For a fixed t we have, by the one–dimensional mean value theorem,

g(x+ h, t)− g(x, t) = gx(x̄(t), t)h(t)

where ‖x(t)− x̄(t)‖ ≤ h(t). Given ε > 0 the uniforma continuity of gx in x
and t implies that there is a δ > 0 such that ‖h‖ ≤ δ,

‖gx(x+ h, t)− gx(x, t)‖ < ε.

Therefore, we have

|f(x+ h)− f(x)− δf(x;h)| = |
∫ 1

0

(
gx(x̄, t)− gx(x, t)

)
h(t)dt| ≤ ε‖h‖

for ‖h‖ ≤ δ. The result follows.

Example 5.15. Let X = Cn[0, 1] the space of continuous n−vector func-
tions on [0, 1], let Y = Cm[0, 1] and define T : X → Y by

T (x) =

∫ t

0
F (x(τ), τ)dτ

where F has continuous partial derivatives with respect to its arguments .The
Gateaux differentiable of T is easily seen to be

δT (x;h) =

∫ t

0
Fx(x(τ), τ)h(τ)dτ.

This is the Frechet differential and δT (x;h) is continuous in the variable x.

Example 5.16. Let H1
0 where Ω is a bounded domain of Rn denote the

usual Sobolev spaces with scalar product (·, ·)H1,2 and usual norm. Let n > 2
and suppose f satisfies

|f(x, s)| ≤ a+ b|s|σ with σ ≤ n+ 2

n− 2
= 2∗ − 1.

. By Sobolev embedding we have that H1
0 is imbededded in 2∗. and hence

‖v‖L2∗ ≤ c‖v‖H1,2 . Now, we consider the map fL2∗ → Lq with q = 2∗/σ.
We obtain that f is continuous, i.e., we conclude from u → u∗ in L2∗ we
conclude f(u) → f(u∗) in Lq. Furthermore, we have f ∈ L2n/(n+2) for all
u ∈ H1

0 and due to Hölder’s inequality we further obtain f(u)v ∈ L1 for all
u, vßinH1

0 . The equality

(N(u), v)H1,2 =

∫
Ω
f(x, u(x))v(x)dx
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for all u, v ∈ H1
0 defines an operator. Since H1,2 is a Hilbert space the

operator is defined on H1
0 → H1

0 . The operator N is continuous, since

‖N(u)−N(v)‖ = sup{‖
∫

Ω
(f(x, u)− f(x, v))wdx‖ : ‖w‖H1,2 ≤ 1}

≤ sup{‖f(u)− f(v)‖L2n/(n+2)‖w‖L2∗ ≤ c‖f(u)− f(v)‖L2n/(n+2)

If now um → u∗ in H1
0 then, um → u∗ in L2∗ and due to the continuity of

f the assertion follows. Then, define

F (x, s) =

∫ s

0
f(x, t)dt

and estimate using the assertion on f , F as

|F | ≤ c+ d|s|2∗

Then, F (·, u(·)) ∈ L1 for all u ∈ H1
0 and it makes sense to consider φ :

H1
0 → R by setting

φ(u) =

∫
Ω
F (x, u(x))dx.

The functional φ can be obtained by composition according to the following
diagram

φ : H1
0 →α L2∗ →F L2n/(n+2) →β L1 →φ R.

We can proof that φ is differentiable with

φ′(u)v =

∫
Ω
f(x, u(x))v(x)dx

and hence for any f satisfying the above condition we obtain that φ is a C1−
functional on H1

0 with gradient

∇φ(u) = N(u).

5.2 Successive Approximations

In the classical formulation the method of successive approximation applies
to equations of the type

x = T (x) (5.1)

A solution is a fixed point for T and under certain coniditions this fixed
point can be obtained by considering the sequence xn+1 = Txn. The most
famous theorem on existence is Banachs Fixed Point Theorem.
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Definition 5.17 (Contraction). Let S be a subset of a normed space X and
let T be a mapping S to S. Then T is a contraction, iff there exists 0 ≤ α < 1
such that

‖T (x1)− T (x2)‖ ≤ α‖x1 − x2‖

for all x1, x2 ∈ S.

Definition 5.18 (Contraction Mapping Theorem). If T is a contraction on
a closed subset S of a Banach space, there exists a unique x0 ∈ S satisfying
x0 = T (x0). Furthermore, x0 can be obtained as limit of the iteration xn+1 =
Txn for an arbitrary x1 ∈ S.

Proof. Since T is a contraction, we have ‖xn+1 − xn‖ ≤ αn−1‖x2 − x1‖
and therefore ‖xn+p−xn‖ ≤ (αn+p−2+· · ·+αn−1)‖x2−x1‖ ≤ αn−1

∑p−1
i=0 α

k =
αn−1 1−αp

1−α ‖x2−x1‖ ≤ αn−1‖x2−x1‖. Hence, xn is a Cauchy sequence. Since
X is a Bananch space, we conclude that x0 = limxn exists and x0 ∈ S since
S is closed. By ‖x0 − T (x0)‖ = ‖x0 − xn‖ + α‖xn−1 − x0‖ we see, that x0

is the fixed point. Uniquenuess is due to the contraction property of T. �

Example 5.19. Consider A ∈ Rn×n strictly diagonal dominant, i.e., for
all i |aii| >

∑
j 6=i |aij |. Consider the equation Ax = b. We scale the ith

equation by 1/|aii|, i.e.,

b̃i = bi/aii, (Ã)ij = Aij/aii ∀j.

In the fixed point form the equation reads

x = (I − Ã)x+ b̃

where ‖caij‖ < 1 for all i, j. To define appropriate Banach spaces we need to
introduce a norm. Since on finite dimensional spaces all norms are equiva-
lent, we choose the following

‖x‖ = max
i
|xi|

and the corresponding matrix norm is

‖A‖ = max
i

∑
j

|aij |

The corresponding matrix norm (operator norm) is defined by

‖A‖ = max |Ax|/|x|
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Hence for the mapping T (x) = (I −A)x+ b we have

‖T (x)− T (y)‖ ≤ ‖I − Ã‖‖x− y‖ = max
i

∑
j 6=i
|ãij |‖x− y‖ ≤ α‖x− y‖

and therefore T is a contraction with α < 1.
The above iteration converges. Since maxi

∑
j 6=i |aij | might be close to 1,

the convergence rate is poor.
This method is a gradient descent method for the problem

min
x

1

2
xTAx− bTx =: f(x)

with A symmetric positive definite. Since ∇f = Ax− b the gradient decsent
is given by

x+ = (I −A)x+ b.

The main drawback of contraction mappings is, that the convergence is
only linear. In many applications faster techniques are considered. This can
be obtained by Newton’s method.

newtons method Theorem 5.20. Let X and Y be Banach spaces and let P be a mapping
from X to Y. Assume further that P is twice Frechet differentiable and that
‖P ′′‖ ≤ K. There exists a point x1 ∈ X s.t. p1 = P ′(x1) has a bounded
inverse with ‖p−1

1 ‖ ≤ β1 and ‖p−1
1 [P (x1)]‖ ≤ η1. Further let h1 = β1η1K

satisfy h1 < 1/2.
Then the sequence xn+1 = xn − p−1

n [P (xn)] exists for all n > 1 and
converges to a solution of P (x) = 0.

Proof. We prove that for a point x1 satisfying all assumptions, the point
x2 := x1−p−1

1 P (x1) satisfies the same assumptions with new constants p2, η2

and β2.
x2 is well-defined due to the assumption on x1. Further, ‖x2− x1‖ ≤ η1.

Since P is twice Frechet differentiable we can apply the mean value theorem
to p1 and since p−1

1 is bounded we obtain ‖p−1
1 (p1−p2)‖ ≤ β1 supx ‖P ′′(x)‖‖x2−

x1‖ = β1Kη1 = h1. Since P ′′ is globally bounded by K. Consider the oper-
ator H := I − p−1

1 (p1− p2) = p−1
1 p2 By the above H is invertible (Neumann

series) and has a bounded inverse ‖H−1‖ ≤ 1
1−h1 . Since p2 = p1H we have

the existence of p−1
2 and the bound of its norm by ‖p−1

2 ‖ ≤ β1/(1−h1) =: β2.
Now, we have to estimate ‖p−1

2 P (x2)‖. We consider T1(x) = x − p−1
1 P (x)

which has the properties T1(x1) = x2 and T ′(x1) = 0. Further, T is twice
Frechet differentiable.

p−1
1 P (x2) = x2 − T1(x2)− T ′1(x1)(x2 − x1) = T1(x1)− T1(x2)− T ′1(x1)(x2 − x1)
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By the Frechet differentiability we can estimate the last terms by the second
derivative T ′′ = p−1

1 P ′′

‖p−1
1 P (x2)‖ ≤ 1

2
sup
x
‖T ′′(x)‖‖x2 − x1‖2 ≤

1

2
β1Kη

2
1

Finally,

‖p−1
2 P (x2)‖ = ‖H−1p−1

1 P (x2)‖ ≤ 1

2
h1η1/(1− h1) =: η2 <

1

2
η1

and h2 = β2η2K ≤ (β1η1K)h1/(1 − h1)21/2 < 1/2. Since ηn+1 < 1/2ηn ≤
(1/2)n−1η1 we obtain that xn is a Cauchy sequence with limit x. ‖xn+k −
xn‖ = ‖xn+k − xn+k−1 + xn+k−1 ± · · · − xn‖ ≤ ηn

∑k−1
i=0 (1/2)i ≤ 2ηn.

Now, pn(xn+1 − xn) + P (xn) = 0 for all n. pn is bounded, since ‖pn‖ ≤
‖pn − p1 + p1‖ ≤ ‖p1‖ + K‖xn − x1‖ and the sequence xn is converging.
Hence, in the previous equation ‖P (xn)‖ → 0 and by continuity P (x) = 0.
�To prove the quadratic convergence property one need to assume that the
inverse of the derivative at the stationary point exists and that the following
terms are bounded: P−1, P ′′, P ′′′.

5.3 Pseudo-Inverse Operators

For the definition and the convergence of augmented Lagrangian methods
we introduce pseudo-inverse operators and discuss some properties.

Assume that A ∈ L(X,Y ) is a linear operator and let y ∈ Y be given.
Then we can consider the optimization problem

min
x∈X
‖Ax− y‖Y (5.2)

There might be more than one solution to the above problem. Therefore,
we define the set S := {x̃ ∈ X : x̃ = argmin‖Ax− y‖} for a given operator
A and a point y ∈ Y. The pseudo-inverse is defined as the mapping

A# : Y → X (5.3)

which maps a given y ∈ Y to the minimum norm element x ∈ S.

Example 5.21. Consider the finite dimensional case with X = Rn and Y =
Rm. Hence, A ∈ Rm×n. For L2−approximation we usually have rank(A) =
n << m. Then ATA ∈ Rn×n is invertible and the above minimization prob-
lem has a unique solution x which satisfies the set of normal equations

ATAx = AT y (5.4)
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If now n >> m and the matrix A has rank(A)=m we can conclude as follows:
AAT ∈ Rm×m is invertible and the minimum of (5.2) satisfies

ATAx = AT y = AT (AAT )(AAT )−1y (5.5)

Therefore, x = AT (AAT )−1y =: A#y is the unique solution.

In abritrary Hilbert spaces (needed by definition of the minimization
problem in terms of a scalar product) we define the pseudo-inverse operator
as

A# := A∗(AA∗)−1 (5.6)

Usually we later on assume that the operator A is surjective (corresponds to
the rank(A)=m assumption in the above example). We prove the inverta-
bility of AA∗ and hence A# is well-defined. Usually, we have to given the
precise range and null spaces to define the operators properly. But we are
particular interested in operators A that are surjective and hence R(A) = Y
is closed. Therefore [2], N(A)T = R(A∗) and vice versa.

Theorem 5.22. Let A ∈ L(X,Y ) be surjective. Then AA∗ is bijective.

Proof. We show that N(AA∗) = {0}. Assume AA∗y = 0 for some
y ∈ Y. Then 0 =< y,AA∗y >= ‖A∗y‖ and hence A∗y = 0. But due to
N(A∗) = R(A)T = Y T = {0} we obtain y = 0.

We show that AA∗ is onto Y. First, R(AA∗) ⊂ R(A) = Y. It remains
to show R(A) ⊂ R(AA∗). Let y = Ax. Exists z ∈ Y with A∗z = x, i.e.
x ∈ R(A∗) = N(A)T . Now decompose x = xN(A) + xN(A)T . Then ∃z such
that A∗z = xN(A)T and further AA∗z+ 0 = AA∗z+AxN(A) = Ax = y. This
finishes the proof. �

Theorem 5.23. Let D ⊂ X be open and non-empty. Let h : D → Y
be continuous Frechet differentiable on D and let x0 ∈ D. Assume that
Dh(x0)(·) is surjective. Then Dh(·)() is surjective in some δ−neighbourhood
of x0.

Proof. Idea is to define the following operators (well-defined by the
previous discussion):

T () := Dh(x0)
(
Dh(x0)∗

)
() (5.7a)

S() :=
(
Dh(x)

(
Dh(x)∗

)
−Dh(x0)

(
Dh(x0)∗

))
() (5.7b)
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and to prove by the pertubation theorem that T + S is bijective. This in
turn implies that Dh(x)() is bijective. First, see that

‖S‖ ≤M1M2‖h(x)− h(x0)‖ (5.8)

wherein M1 := maxx∈Br(x0) ‖h(x)‖ and M2 is the Lipshitz constant on
Br(x0) for Dh(·)(). Hence

‖ST−1‖ ≤M1M2‖x− x0‖‖T−1‖ < 1 (5.9)

For more details refer to [11] page 32. �
The last result is given without proof. A proof can be found for example

in [11] page 33-35.

Theorem 5.24. Let D ⊂ X be open and non-empty. Let h : D → Y
be continuous Frechet differentiable on D and let x0 ∈ D. Assume that
Dh(x0)(·) is surjective. Then Dh(·)# is Lipshitz in some δ−neighbourhood
of x0.
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6 Controllability involving ordinary differential equa-
tions

This section is mainly taken from [6] but it is also present in many textbooks
on controllability and H∞−calculus.

The problem is stated as follows. We are interested in the controllability
of linear ordinary differential equations. We have two times T0 and T1 where
T0 < T1 and a matrix A : (T0, T1)→ Rn×n such that L∞((T0, T1);Rn×n) as
well as a matrix B ∈ L∞((T0, T1);Rn×m). We define the time–varying linear
control system as

x′(t) = A(t)x+B(t)u(t). (6.1) coron01

The control is u ∈ Rm, the state is x ∈ Rn. For given x0 ∈ Rn and
u ∈ L1(T0, T1;Rm) the Cauchy problem

(6.1) and x(T0) = x0 (6.2) coron02

has a unique solution x(t) on (T0, T1) and such that

x ∈ C0(T0, T1;Rn).

Definition 6.1. The linear time–varying control system (6.1) is controllable
if, for every (x0, x1), there exists u ∈ L∞(T0, T1;Rm) such that the solution
x ∈ C0(T0, T1;Rn) of the Cauchy problem (6.2) satisfies x(T1) = x1.

Next, we derive necessary and sufficient conditions such that (6.1) is
controllable. To this end we define the resolvent of a homogenous time–
varying system

x′(t) = A(t)x(t). (6.3) coron03

The resolvent R(t, τ) is the solution to the homogenous system in the time
interval (τ, t).

Definition 6.2. The resolvent R : [T0, T1]2 → Rn×n of the time–varying
system

x′(t) = A(t)x(t)

is the map
R : (t, τ)→ R(t, τ)

such that for every τ ∈ [T0, T1] the map t → R(t, τ) is the solution to the
Cauchyproblem

M ′(t) = A(t)M(t), M(τ) = Id. (6.4)
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Note that in the case of A(t) = A, the resolvent is given by

R(t, τ) = exp(A(t− τ)) =
∞∑
k=0

(t− τ)k

k!
Ak

If A is dependent on t and if A(t)A(s) = A(s)A(t) for every s, t then the
resolvent is given by

R(t, τ) = exp(

∫ t

τ
A(s)ds).

The solution to the Cauchy problem (6.3) and x(τ) = x0 is under the as-
sumptions as before given by

x(t) = R(t, τ)x0 = exp(

∫ t

τ
A(s)ds)x0.

In general, the following results hold true.

Proposition 6.3. The resolvent R satisfies

• R ∈ C0([T0, T1]2;Rn×n)

• R(τ, τ) = Id.

• R(t, τ)R(τ, η) = R(t, η).

• If A ∈ C0([T0, T1];Rn×n), then R ∈ C1([T0, T1]2;Rn×n) and we have

Rt(t, τ) = A(t)R(t, τ), Rτ (t, τ) = −R(t, τ)A(τ).

Furthermore, R is invertible and it’s inverse is the resolvent with inter-
changed arguments.

R(t, τ)R(τ, t) = Id.

The proof is immediate. The previous proposition is obtained from the
definition and the derivative with respect to τ follows from the formula for
the inverse of R. The regularity properties follow from the Picard–Lindelöf
Theorem.

Proposition 6.4. The solution of the Cauchy problem (6.2) is given by

x(t) = R(t, T0)x0 +

∫ t

T0

R(t, s)B(s)u(s)ds (6.5) coron05

for all t ∈ [T0, T1].
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Indeed, a simple computation shows that

x′(t) = A(t)R(t, T0)x0 +R(t, t)B(t)u(t) +

∫ t

T0

A(t)R(t, s)B(s)u(s)ds

= A(t)

(
R(t, T0)x0 +

∫ t

T0

R(t, s)B(s)u(s)ds

)
+B(t)u(t).

Definition 6.5. The controllability Gramian of the control system (6.1) is
the symmetric n× n matrix

C =

∫ T1

T0

R(T1, τ)B(τ)BT (τ)R(T1, τ)Tdτ. (6.6) coron04

Clearly C is symmetric. Furthermore, it is a non–negative matrix, since

xTCx =

∫ T1

T0

xTR(T1, τ)B(τ)BT (τ)R(T1, τ)Txdτ =

∫ T1

T0

‖xR(T1, τ)B(τ)‖2dτ ≥ 0.

Theorem 6.6. The linear time varying control system (6.1) is controllable
if and only if its controllability Gramian C is invertible.

Proof. Assume C is invertible. Set for a.e. τ ∈ (T0, T1)

u(τ) = BT (τ)R(T1, τ)TC−1(x1 −R(T1, T0)x0).

Then, the solution x(τ) to (6.1) with the previous conrol is given by (6.5).
Hence,

x(T1) = R(T1, T0)x0 +

∫ t

T0

R(T1, s)B(s)u(s)ds

= R(T1, T0)x0 +

∫ t

T0

R(T1, s)B(s)BT (s)R(T1, s)
TC−1(x1 −R(T1, T0)x0)ds

= R(T1, T0)x0 + C C−1(x1 −R(T1, T0)x0) = x1.

Assume C is not invertible. We show that the system is not controllable.
If C is not invertible, then there exists y 6= 0 such that Cy = 0. Therefore,
yTCy = 0 which is

0 =

∫ T1

T0

yTR(T1, s)B(s)BT (s)R(T1, s)
T yds

=

∫ T1

T0

‖BT (s)R(T1, s)
T y‖2ds

=⇒ yTB(s)R(T1, s) = 0 a.e. s ∈ (T0, T1).
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Let u ∈ L1(T0, T1;Rm), x(T0) = 0 and let x ∈ C0(T0, T1;Rn) be the solution
to (6.1). Then,

yTx(T1) =

∫ T1

T0

yTR(T1, s)B(s)u(s)ds = 0.

Since y 6= 0, there exists x1 such that yTx1 6= 0, e.g., x1 = y. Hence,
whatever the control u is , it can never reach x1 = x(T1), since yTx(T1) = 0.
This contradicts the controllability. �The
exact control u defined in the proof has also a different interpretation. It is
the optimal control with minimal L2−norm.

Proposition 6.7. Let (x0, x1) ∈ Rn×Rn and let u ∈ L2(T0, T1;Rm) be such
that the solution of the Cauchy problem (6.2) satisfies x(T1) = x1. Then,∫ T1

T0

‖ū(t)‖2dt ≤
∫ T1

T0

‖u(t)‖2dt. (6.7) coron06

Proof. Let v = u− ū. Then, x̄ and x being the solutions of the Cauchy
problems (6.2) with control u and ū, respectively. The terminal states are
x̄(T1) = x(T1) = x1. Then,∫ T1

T0

R(T1, t)B(t)v(t)dt =

∫ T1

T0

R(T1, t)B(t)u(t)dt−
∫ T1

T0

R(T1, t)B(t)ū(t)dt

=
(
x1 −R(T1, T0)x(T0)

)
−
(
x̄1 −R(T1, T0)x(T0)

)
= 0

Due to the parallelogram equality we have for ū and u in L2−norm

‖u‖2L2(T0,T1) = ‖ū‖2L2(T0,T1) + ‖v‖2L2(T0,T1) + 2

∫ T1

T0

ūT vdt.

The scalar product is evaulated as follows∫ T1

T0

ūT vdt = (x1 −R(T1, T0)x0)TC−1

∫ T1

T0

R(T1, s)B(s)v(s)ds = 0

Hence, the result follows from the parallelogram equality. �
Note, that (6.7) holds true with equality if and only if ū = u a.e. in t ∈

(T0, T1). The necessary and sufficient condition for controllability requires
the compuation of the matrix C which is quite difficult, since it involves
the full evolution of the pde. Next, we discuss the so–called Kalman rank
condition for controllability. It is also a necessary and sufficient condition
for controllability in the case of linear time invariant systems. However, it
is only necessary in the case of time variant systems.
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Theorem 6.8. The time invariant linear control systems

x′(t) = Ax(t) +Bu(t), (6.8)

is controllable on [T0, T1] if and only if

rank
(
B,AB,A2B, . . . , An−1B

)
= n. (6.9) coron07

We need a few basic facts from linear algebra to prove the result. Assume
we have a linear operator A ∈ Rn×m with full rank, rank(A) = n. If the
rank(A) < n, then there exists x ∈ Rm 6= 0 with Ax = 0. If rank(A) < n,
then the image of A is a linear subspace in Rn. Therefore, there exists a
vector y ∈ Rn that is not in the image of A. Since Rn is a Hilbert space we
can compute the orthogonal projection of y on the image of A. Hence, there
exists ȳTAx = 0 for all x ∈ Rn.

Proof. Since A does not dependent on time we have R(t, τ) = exp((t−
τ)A) for all τ, t ∈ [T0, T1]. Hence,

C =

∫ T1

T0

exp (T1 − τ)ABBT exp (T1 − τ)Adτ.

Let us first assume that the time–invariant system is not controllable. Then,
C is not invertible and there exists y 6= 0 and y ∈ Rn such that

0 = Cy =⇒ 0 = yTCy =

∫ T1

T0

yT exp (T1 − τ)ABBT exp (T1 − τ)Aydτ.

Therefore for all τ ,
BT exp (T1 − τ)Ay = 0.

If we denote by

k(τ) = yT exp (T1 − τ)ATB, τ ∈ [T0, T1]

we observe k = 0. Differentiating with respect to τ we observe

k(i)(τ) = (−1)iyTAiB = 0, i ∈ N, τ ∈ [T0, T1].

Hence, there exists y 6= 0 such that yTAiB = 0, i =, . . . , n− 1 and therefore
(6.9) does not hold true.

To prove the converse assume that (6.9) does not hold true. Hence, there
exists y 6= 0 with y ∈ Rn and yTAiB = 0 for i = 0, . . . , n − 1. The Caley-
Hamilton Theorem states that for p(λ) = det(A − λId) we have p(A) = 0.
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p(A) =
∑n

k=0 akA
k is a polynomial in A of degree n. Due to our assumption

we and since p(A) = 0 we have yTAnB = 0. Furthermore, p(An+m) =
p(An)Am = 0 for all m ≥ 1. Therefore, ki(τ) = (−1)iyT exp(T1− τ)AiB = 0
for τ = T1 and all i ∈ N. k is the exponential function that is real analytic:
it therefore allows an expansion as infinite Taylor series. Choosing as point
for the expansion T1 we observe k ≡ 0. Since k ≡ 0, we have yTCy = 0

for y 6= 0. If 0 ≤ ‖yTCz‖ ≤
(
yTCy

) 1
2
(
zTCz

) 1
2

= 0 for all z ∈ Rn. Then,

Cy = 0. Therefore, C is not invertible. Hence, the system is not controllable.
�Next, we discuss time–varying linear control systems. We assume that
A and B are of class C∞ on [T0, T1]. Let us define a sequence of maps
Bi : C∞(T0, T1;Rm×n) in the following way

B0(t) = B(t),

Bi(t) = Bi−1(t)′ −A(t)Bi−1(t).

Theorem 6.9. Assume that for some t̄ ∈ [T0, T1]

rank
{
Bi(t̄), i ∈ N

}
= n.

Then, the linear control system x′ = A(t)x+B(t)u is controllable.

Proof. We assume that the linear control system x′ = A(t)x+B(t)u is
not controllable. Then, there exists Cy = 0 and y 6= 0. Hence,

0 = yTCy =

∫ T1

T0

‖B(τ)TR(T1, τ)T y‖2dτ

=⇒ B(τ)TR(T1, τ)T y = 0 ∀τ

0 = B(τ)T
(
R(T1, t̄)R(t̄, τ)

)T
y

= B(τ)TR(t̄, τ)TR(T1, t̄)
T y

= zTR(t̄, τ)B(τ) = K(τ)

with z 6= 0, since R is invertible. Furthermore, K(i)(τ) = zTR(t̄, τ)Bi(τ) = 0
for all i ∈ N and all τ. Since R is invertible, there exists w = R(t̄, τ)z 6= 0
such that wTBi(τ) = 0 and therefore the rank of (Bi(t̄)) is not maximal. �
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7 Optimal control problems involving ordinary dif-
ferential equations

This section is mainly taken from [4], but it is also present in many textbooks
on optimal control theory. This part is the classical first extension of finite–
dimensional optimization problems to the infinite dimensional spaces.

The problem is stated as follows. We are interested in the evolution of
a deterministic system described by an ordinary differential equation with
x ∈ Rn. We assume that the evolution can be influenced by an external
input u. All functions are time–dependent, i.e., x = x(t) and u = u(t).
We assume that an appropriate model is then provided by the controlled
system. We do not write the dependence on t, if it is obvious.

x′(t) = f(x, u), x(0) = x0 (7.1) 6.1

We furthermore assume that the control u : [0, T ] → U ⊂ Rm takes values
inside a given set U . This set is not necessarily bounded. The set of ad-
missible controls is denoted by U and contains all measurable functions u
such that u(t) ∈ U for a.e. t. To guarantee local existence and uniqueness
of solutions x(t) to (7.1) it is natural to assume

A f : Rn × Rm → Rnis Lipschitz wrt to x and continuous wrt to u.
(7.2)

For any initial condition local existence for any control u is then given by
the Theorem of Picard-Lindelöf. We will denote by

t→ x(t, t0, x0, u)

the solution to the Cauchy problem (7.1) with initial condition

x(t0) = x0 (7.3) 6.2

Since u ∈ U we obtain a family of trajectories x(t; t0, x0, u).

Example 7.1. Call x(t) the position of a boat in a river and let v(x) ∈ R2

be the velocity of the water at the point x. Assume that the boat is powered
by an engine giving at most speed ρ and a steering wheel such that it can
move in any direction u, ‖u‖ ≤ ρ. Then, the evolution of the boat can be
modelled by

x′(t) = v(x) + u, ‖u‖2 ≤ ρ.
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Figure 9: Field of the ode and sample trajectory. Figure 6.1

Figure 10: Field of the ode with x-dependent shift and sample trajectory. f
is the flow field and x′ = f(x) + g(x)u. Figure 6.2
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If set for example ρ = 1 and assume an x-dependent shift whenever a
control is applied we obtain the very important class of control systems

x′(t) = f(x) + g(x)u, u ∈ [−1, 1]

Example 7.2. Consider a mechanism, such as a crane or trolley, of mass
m which moves along a horizontal track without friction. If x(t) represents
the position at time t, we assume the motion of the trolley is governed by

mẍ(t) = u(t), t > 0, (7.4) eqn:trolley

where u(t) is an external controlling force that is applied to the trolley.
Assume initial position and velocity of trolley are given by x(0) = x0,

x′(0) = y0, respectively. We wish to choose a function u (which is naturally
enough called a control function) to bring the trolley to rest at the origin in
minimum time.

Physical Restrictions: controlling force must be bounded in magnitude:
|u(t)| ≤M .

Take m = M = 1, and rewrite equation (7.4):

x′1(t) = x2(t); x′2(t) = u(t)

where now x1(t) and x2(t) are now the position and velocity of the body at
time t:

or

x′(t) = Ax(t) + bu(t), x(0) =

[
x0

y0

]
(7.5) eqn:trolley1

where A =

[
0 1
0 0

]
, b =

[
0
1

]
, x(t) =

[
x1(t)
x2(t)

]
Control Problem:

• Find a function u, subject to (7.5), which brings the solution of (7.5),

x(t) to

[
0
0

]
in minimum time t.

• Any control that steers us to

[
0
0

]
in minimum time is called an optimal

control, e.g., a period of maximum acceleration (u = +1) and then
maximum braking (u = −1).

66



Example 7.3. A control surface on an aircraft is to be kept at rest at a
fixed position. A wind gust displaces the surface from the desired position.
Assume that if nothing were done, the control surface would behave as a
damped harmonic oscillator, i.e. if θ measures deviation from a desired
position, then free motion of surface satisfies:

θ̈ + aθ̇ + ω2θ = 0; (7.6)

θ(0) = θ0 displacement due to wind gust; (7.7)

θ̇(0) = θ̇0 velocity imparted to surface by gust. (7.8)

On an aircraft the oscillation of the control surface can not be permitted,
and so we need to design a servo-mechanism to apply a restoring torque and
bring surface back to rest in minimum time.

θ̈ + aθ̇ + ω2θ = u(t); (7.9)

θ(0) = θ0
˙θ(0) = θ̇0. (7.10)

where u(t) represents restoring torque at time t. Assume |u(t)| ≤ C, where
C is a constant, which can be normalised to 1.

Problem: Find u such that the system will be brought to θ = 0, θ̇ = 0 in
minimum time.

Assume θ > 0 and θ̇ > 0 then torque must be directed to negative θ and
should be as large as possible: u(t) = −1.

If we let u(t) = −1 for too long we might overshoot the terminal condi-
tions θ = 0, θ̇ = 0. Thus at some point we need u(t) = +1 inorder to brake
i.e. we are led to controls that take on (only) values (±1); such controls are
called bang-bang controls.

Note: Setting x1 = θ and x2 = θ̇ we have

x1 = θ; ẋ1(0) = θ̇0 (7.11)

ẋ2 = −ax2 − ω2x1 + u; x2(0) = θ̇0 (7.12)

ẋ = Ax+ bu, x(0) =

[
θ0

θ̇0

]
(7.13)

where A =

[
0 1
ω2 −a

]
, b =

[
0
1

]
and u is chosen with |u(t)| ≤ 1 and to mini-

mize J(u) =
∫ T

0 dt where T is any time for which x1(T ) = 0 and x2(T ) = 0.
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Example 7.4. Let x(t) be the amount of steel produced by a mill at time
t. The amount produced at time t is to be allocated to one of the two uses:
production of consumer products; or investment.

Note: Steel located to investment is used to increase productive capacity
- using steel to produce new steel mills, transport facilities, or whatever.

Let u(t), where 0 ≤ u(t) ≤ 1, denote the fraction of steel produced at
time t that is allocated to investment. Then 1− u(t) is for consumption.

The assumption that re-invested steel is used to increase the productive
capacity could be written as:

dx

dt
= ku(t)x(t),

where x(0) = C, the initial endowment, k is an appropriate constant (i.e.
rate of increase in production is proprtional to amount located to invest-
ment).

Problem: Choose u(t) so as to maximise the total consumption over a
fixed T > 0, i.e. maximise

J(u) =

∫ T

0
(1− u(t))x(t) dt

Next, we introduce the notion of the reachable or attainable set at time
T starting from x0 at time t0. It consists of all points x ∈ Rn which can
be connected through a trajectory to x0 during the time [t0, T ] using some
control u ∈ U.

R(T ) := {x(T ; t0, x0, u), u ∈ U} (7.14) 6.4

The control is called an open loop control if it is a function u = u(t) and
a closed loop or feedback control if it is of the type u = u(x). There is a
variety of literature on the study of control systems (7.1), e.g.,

1. Starting from a given state x0 describe the set R(T ) and study its
properties. This is concerned with the dynamics of the ODE.

2. For each initial state x0 find a control u(·) that steers the system
towards the origin, so that for t → ∞ we obtain x(t, 0, u) → 0. This
is called stabilization. Alternatively, one can steer the system at rest
(x′ = 0), i.e., to states x̂ such that f(x̂, u) = 0.

Preferably, a control satisfying stabilization should be of the form u =
u(x). Then, the evolution of the trajectory is

x′(t) = f(x, u(x)).
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Figure 11: Reachable set R(T ) Figure 6.3
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In the engineering community u(x) is also called a control law or feed-
back controller. It gives for every state x a control u such that finally
the system will be at rest. No further optimization is needed. Explicit
control laws u(x) can be computed in special cases only, e.g., linear
controlled systems. This is dealt with in H∞−calculus.

3. Find a control u ∈ U being opimal with respect to a certain cost
function. For example, given the initial condition (7.3), one may seek
to minimize the cost

J(u) =

∫ T

t0

h(x(t), u(t))dt+ φ(x(T ))

over all control functions u ∈ U and with x = x(t, t0, x0, u). The
running cost h and the terminal cost φ are assumed to be continuous
functions. This is a problem of optimal control and can be solved using
Pontryagin’s Maximum Principle.

Clearly, by using the term ’minimal value’ of the cost functional we mean
the analogon of the finite dimensional problem, i.e.,

J(u∗) ≤ J(u), ∀u ∈ Ω[t0, T ]

thus there exists δ > 0 such that J(u∗) ≤ J(u), ∀u ∈ Bδ(u∗) ∩ Ω[t0, T ].
Hence we require a norm for piecewise continuous functions, for example:

‖u‖∞ := sup
t∈∪Nk=0(θk,θk+1)

‖u‖

with t0 = θ0 < θ1 < . . . < θN < θN+1 = T being a partition for u. If
we assume that the controls are continuously differentiable between two
successive discontinuities [θk, θk+1], k = 0, . . . , N another norm would be:

‖u‖1,∞ := sup
t∈∪Nk=0(θk,θk+1)

‖u(t)‖+ sup
t∈∪Nk=0(θk,θk+1)

‖u′(t)‖

7.1 Pontryagin Maximum Principle

We discuss Pontryagin’s maximum principle on a particular control problem.
This problem is called Mayer’s problem.

x′ = f(x, u), u ∈ U, t ∈ [0, T ], x(0) = x0 (7.15) 7.1

max
u∈U

ψ(x(T, u)) (7.16) 7.2
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There is no running cost involved and we only measure the terminal
payoff over all admissible controls. We seek now necessary optimality con-
ditions. To this end assume that t→ u∗ is an optimal control function and
x∗ the corresponding optimal trajectory, i.e., x∗ = x(t; 0, x0, u

∗).
In order to obtain necessary optimality conditions we proceed as in the

finite dimensional case. We study perturbations of the optimal control and
the behaviour of the cost functional on these perturbations. Let x(t) be a
solution to

x′(t) = g(t, x) (7.17) 7.3

where g is measurable wrt t and continuosly differentiable wrt to x. Later g
will be given as g(x, t) = f(x, u(t)) for some given control u.

Consider a family ε→ xε of ’nearby’ solutios xε(t) as depicted in Figure
12. These canbe obtained for example by using different starting points or
due to different control functions at t = s. We have x′ε = g(t, xε).

At a fixed time s we are interested in the dependence of this family of
solutions on ε. We study

lim
ε→0

xε(s)− x(s)

ε
= v(s).

If we assume that this limit exists at some time s, then it exists for any
time t and the function t→ v(t) given by

lim
ε→0

xε(t)− x(t)

ε
= v(t).

is well–defined. In fact, we have for any ε and g Lipschitz in x due to
Gronwall’s inequality

‖xε(t)− x(t)‖ ≤ exp(L|t− s|)‖xε(s)− x(s)‖

and hence the previous limit exists provided that the limit at x = s exists.
Furthermore, the linearized tangent vector v(t) satisfies the linearized

evolution equation

v′(t) = A(t)v(t) (7.18) 7.4

A(t) = Dxg(t, x(t)) (7.19) 7.5

This holds true, since we have xε(t) =
∫ t
s g(τ, xε(τ))dτ + xε(s) and

v(t) = lim
ε→0

1

ε

∫ t

s
Dxg(τ, x(τ))(xε(τ)− x(τ))dτ +O(‖xε − x‖2) + v(s)

= lim
ε→0

∫ t

s
Dxg(τ, x(τ))v(τ)dτ +O(‖εv‖2) + v(s).
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Figure 12: Optimal trajectory and isolines of ψ..Optimal control and needle
perturbation on interval of length ε. Figure 7.1Figure 7.2Figure 7.3
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The equations (7.18,7.19) are the sensitivity equations, since they de-
scribe variations of the solution. A different system is the adjoint equation
given by

p′(t) = −p(t)A(t)⇔ p̄′ = −AT (t)p̄ (7.20) 7.6

where p ∈ R1×n and pT = p̄. The matrix A = Dxg(t, x(t)). The adjoint
system will be derived later formally using the Lagrange calculus. A solution
p(t) to the adjoint system and a solution v(t) ∈ Rn×1 to the system (7.18)
satisfy

d

dt
(p̄ · v) = p′(t)v(t) + p(t)v′(t) = 0. (7.21) 7.7

Therefore, the product of adjoint and sensitivity is constant over time.
The previous calculations hold true for any perturbation of the trajectory

x and only require v(s) to exist at some time s. In order to derive necessary
optimality conditions for u∗ we study particular perturbations of the control
u∗ and the corresponding perturbed trajectories. If u∗ is the optimal control,
then any perturbation cannot increase the optimal payoff ψ(x(T ;u∗)). Fix
a time τ ∈ [0, T ] and a control value ω ∈ U. For ε > 0 small, we consider the
needle variation uε ∈ U given by

uε(t) =

{
ω t ∈ [τ − ε, τ ]
u∗(t) else

(7.22) 7.8

Call t→ xε(t) ≡ x(t, 0, x0, uε) the perturbed trajectory. We compute the
terminal point xε(T ) and study the variation of ψ. ψ shall not increase due
to this perturbation. We have xε(τ − ε) = x∗(τ − ε), since the pertubation
starts acting at τ − ε. On a small time interval [τ − ε, τ ] we consider the
first–order Taylor expansion as

xε(τ − ε) = xε(τ)− εx′ε(τ) +O(ε2)

or
xε(τ) = xε(τ − ε) + εx′ε(τ) +O(ε2)

and
x∗(τ) = x∗(τ − ε) + εx∗(τ) +O(ε2).

Therefore, x∗(τ) = xε + O(ε). Since (x∗)′ = f(x∗, u∗) and x′ε = f(xε, ω) =
f(x∗, ω)+fx(·)O(ε). If u∗ is continuous in τ , then v(τ) exists, since we obtain
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v(τ) = lim
xε(τ)− x∗(τ)

ε
= f(x∗(τ), ω)− f(x∗(τ), u∗(τ)) (7.23) 7.9

If v exists at time τ, then due to the previous computations it exists for
t ≥ τ with

A(t) = Dxf(x∗(t), u∗(t)).

Since for t ≥ τ , uε ≡ u∗ the evolution of the tangent vector v(t) is given
by the linear equation

v′(t) = A(t)v(t), t ∈ [τ, T ] (7.24) 7.10

By maximility of ψ at x∗ we have ψ(xε(T )) ≤ ψ(x∗(T )) and using the
mean value theorem 0 ≥ 1

ε

(
ψ(xε(T ))− ψ(x∗(T ))

)
= ∇ψ(ξ)

(
ψ(xε(T )) ≤ ψ(x∗(T ))

)
→

∇ψ(x∗(T ))v(T ) ≤ 0.

∇ψ(x∗(T ))v(T ) ≤ 0 (7.25) 7.11

For every time τ where u∗ is continuous and every admissible value ω ∈ U
we generate the vector

v(τ) = f(x∗(τ), ω)− f(x∗(τ), u∗(τ))

and propagate it forward in time until t = T by solving the linearized
equation (7.24). Then, the inequality (7.25) is necessary for optimality.
This requires to propagate the infinitely many vectors v(τ) forward, we can
use the adjoint equation (7.21) to propagate ψ backwards in time, since we
have d

dt p̂ · v = 0. We solve

p′(t) = −p(t)A(t), p(T ) = ∇ψ(ψ∗(T )) (7.26) 7.12

and hence

0 ≥ p(T )v(T ) = p(τ)v(τ) = p(τ)
(
f(x∗(τ), ω)− f(x∗(τ), u∗(τ))

)
∀ω, τ.

This yields

max
ω∈U

(
p(τ)f(x∗(τ), ω)

)
= p(τ)f(x∗(τ), u∗(τ)) = p(τ)x∗ ′(τ) (7.27) 7.13

and therefore for every time τ ∈ (0, T ) where u∗ is continuous, the speed
x′(τ) corresponding to the optimal control is the one with the inner product
with p being as large as possible. The result can be extended to any τ being
a Lebesgue point of u∗ and f only Lipschitz in x.
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Figure 13: Trajectories for different controls uε and vectors v(·) and p(·)
with p(T ) := ∇ψ(x∗(T )). Figure 7.4
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Theorem 7.1 Theorem 7.5. [Pontryagin Maximum Principle for Mayer’s problem] Con-
sider the problem x′ = f(x, u), u(t) ∈ U und x(0) = x0. Let u∗ be an optimal
control for the maximization problem

max
u∈U

ψ(x(T )).

Define the vector p(t) as the solution to the adoint system p′(t) = −p(t)Dxf(x∗(t), u∗(t))
with terminal condition p(T ) = ∇ψ(x∗(T )).

Then for almost every τ ∈ (0, T ) the following necessary first–order op-
timality condition holds

max
ω∈U

(
p(τ)f(x∗(τ), ω)

)
= p(τ)f(x∗(τ), u∗(τ))

Pontryagin’s maximum principle allows for the following computation of
an optimal control: At first solve the pointwise maximization problem (7.27)
for u and fixed values x and p. We obtain a highly nonlinear, possibly mulit-
valued function u(x, p) given by

ū(x, p) = argmaxω
(
pf(x, ω)

)
.

Continue by solving the two-point boundary value problem7.15

x′ = f(x, ū(x, p)), x(0) = x0, (7.28a)

p = −pDxf(x, u(x, p)), p(T ) = ∇ψ(x(T )) (7.28b)

A two–point boundary value problem (7.28) can be solved by the shoot-
ing method. Guess an initial value p(0) = p0 solve the forward problem in x
and p. Check, whether we reach the final state p(T ) and increase or decrease
the initial value depending whether we overshoot or not. Typically, adding
conditions on û yields so–called bang–bang controls, i.e., û either attains the
maximial or the minimial value in U and any time τ ∈ (0, T ).

7.2 Extensions to Pontryagin’s maximum principle – Run-
ning costs

In conection with the control system (7.15) more general optimization prob-
lems can be considered. We discuss the following extension involving not
only a terminal payoff but also a runnig cost depending on time, state x(t;u)
and/or control u(t).

max
u∈U

ψ(x(T ;u))−
∫ T

0
h(t, x(t;u), u(t))dt
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This problem can be reduced to Mayer’s problem by setting

x′n+1(t) := h(t, x(t), u(t)), xn+1(0) = 0

and solving
max
u∈U

ψ(x(T ;u))− xn+1(T ;u).

7.3 Extensions to Pontryagin’s maximum principle – Termi-
nal constraints

In connection with the control problem (7.15) and (7.16) we additionally ask
the trajectory to satisfy terminal constraints. We are interested in solving

max
u∈U

ψ(x(T ;u)) (7.29) 8.6

subject to
x′ = f(t, x, u), u(t) ∈ U, t ∈ (0, T ) (7.30) 8.7

and initial and terminal constraints

x(0) = x0, gi(x(T )) = 0, i = 1, . . . ,m. (7.31) 8.8

The idea is to treat this problem as Mayer’s problem with additional
algebraic equality constraints. We are interested in necessary first–order
conditions. A first idea on how to derive these conditions is given by com-
paring with the finite–dimensional case. The most simple to prove theorem
on necessary optimality conditions is due to Fritz John (Theorem 4.5). Spe-
cialized to our case it reads

Theorem 7.6. Let x∗ ∈ S := {x ∈ Rn : hi(x) = 0, i = 1, . . . ,m} be a local
maximizer of the function ψ : Rn → R on x∗. Then, there exists multipliers
λ∗i ∈ R and λ0 ≥ 0 such that ‖λ‖ 6= 0 and

λ0∇ψ(x∗) +

m∑
i=1

λi∇hi(x∗) = 0.

There is also a geometric interpretation of this condition: Assume that
at a point x∗ = x(T ) ∈ S the m+1 gradients ∇ψ(x∗),∇h1(x∗), . . .∇hm(x∗)
are linearly independent. Then, the tangent space to S at this point consists
of all vectors orthogonal to the span of S and is given by

TS := {v ∈ Rn : ∇hi(x∗) · v = 0}. (7.32) 8.1
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The set TS gives a local set of directions with the idea that if we stay locally
in this set we do not violate the constraints. This has to be considered in
relation with the variation of the functional value. Hence, the set S+ :=
{x ∈ S : ψ(x) ≥ ψ(x∗)} consists of all feasible points x where we can
improve the functional value but still stay in the feasible region. We look for
another description of this set. The tangent cone to S+ (or set of profitable
directions) is given by (see Figure 14).

TS+ := {v ∈ Rn : ∇ψ(x∗) · v ≥ 0, ∇hi(x∗) · v = 0}. (7.33) 8.2

Indeed, ∇ψ(x∗) points in the direction of increasing values of ψ. The set
TS+ is a cone.

The set of feasible directions is charaterized by a hyperplane with nor-
mals hi, i.e, v ·∇hi(x∗) = 0. In order to have v pointing in the same direction
as ∇ψ we need to have ∇ψ · v ≥ 0. We look for a characterization of vectors
p ∈ Rn satisfying

p · v ≥ 0, ∀v ∈ TS+

Note that if there is only one vector ṽ ∈ TS+ , then p = ṽ satisfies this
condition and we can increase the functional value of ψ by going along ṽ. In
general, the following result is true.

Lemma 7.7. Assume that ∇ψ(x∗),∇h1(x∗), . . . ,∇hm(x∗) are linearly in-
dependent (Slater condition).

A vector p ∈ Rn satisfies

p · v ≥ 0 for all v ∈ TS+ (7.34) 8.3

if and only if it can be written as a linear combination

p = +λ0∇ψ(x∗) +

m∑
i=1

λi∇hi(x∗). (7.35) 8.4

with λ0 ≥ 0.

Concluding from (7.35) to (7.34) is obtained by multpyling equation
(7.35) by v ∈ TS+ and obtain pv = λ0∇ψ(x∗)v ≥ 0, if λ0 > 0. For the
conserve direction we refer to [?]. However, there is the following interpre-
tation: Consider a single equality constraint. Given ∇ψ(x∗) we can increase
the value of ψ by moving along vectors such that ∇ψ(x∗)v ≥ 0. On the
other hand, every vector has to be othorgonal to ∇h(x∗) to guarantee that
the new point is feasible. Hence, p 6= 0 can be written as linear combination
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with positive λ0 of ∇ψ and ∇h. For a formal proof define w1 = ∇ψ(x∗) and
w2, . . . , wm+1 as wi = ∇hi−1(x∗). Due to the assertion these vectors are
linearly independent and can be extended to a base oof Rn. Denote by vi
the dual base, i.e., viwj = δij . Then, p =

∑
λiwi and v ∈ TS+ is given by

v =
∑
civi. Since w1v ≥ 0 for all v ∈ TS+ we have c1 ≥ 0. Since wiv = 0 for

i = 2, . . . ,m+ 1 we have ci = 0. Hence,

pv = λ1c1 +
∑

i>m+1

λici

Since pv ≥ 0 for all v ∈ TS+ , this is only true if λ1 ≥ 0 and λi = 0.
Next, we apply this result to the control problem. To this end we let

x∗ = x(t;u∗) denote the optimal trajectory. As before, we consider the
needle variation for given τ ∈ (0, T ) and ω ∈ U as

uε(t) :=

{
ω t ∈ [τ − ε, τ ]
u∗(t) else

(7.36) 8.5

As before, we define the first–order variation of the terminal point as

vτ,ω := lim
ε→0

x(T ;uε)− x(T ;u∗)

ε

We denote by Γ the smallest convex cone containing all vectors vτ,ω. This
is the cone of feasible directions, i.e., directions in which we can move the
terminal point x(T ;u∗). This cone is due to the fact, that the constraints
do not act on the control u (corresponding to the previous vector x) but
on the state x coupled to u by the sytem dynamics. In the cone Γ the
sensitivity of the system’s dynamics with respect to the control is measured,
see Figure 14.

Figure 14: Feasible set S, tangent set and cone for a single equality con-
straint ∇hi. The cone Γ and it’s relation to the perturbation of the control
u∗. Figure 8.1Figure 8.2

This yields the geometric (and due to the previous Lemma also the
analytic) version of Mayer’s probem with terminal constraints. The cone
of feasible directions is Γ. Γ depends on u∗, x∗ and T . The cone of prof-
itable directions is TS+ . This cone depends on x∗(T ) and ∇ψ(x∗(T )) and
∇hi(x∗(T )). If both cones are separated, then the trajectory x∗ correspond-
ing to the control u∗ is optimal. If two cones are separate, then there exists
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a separating hyperplane denote by a vector p = p(T ). This is the theory of
finitely many constraints, since at time T we have to discuss the optimality
conditions only at x∗(T ).

Theorem 7.8. Let x∗(t) := x∗(t;u∗(t)) be the optimal trajectory for the
problem (7.29)-(7.31).

Then the cones Γ and TS+ are weakly separated, i.e., there exists a non-
zero vector p(T ) such that

p(T ) · v ≥ 0 ∀v ∈ TS+ (7.37) 8.9

and
p(T ) · v ≤ 0,∀v ∈ Γ (7.38) 8.10

p(T ) is the normal of a hyperplane separating Γ and TS+ . This is neces-
sary for optimality since we cannot improve ψ and stay feasible. All feasible
directions satisfy p(T ) · v ≤ 0, those which improve ψ satisfy p(T ) · v ≥ 0.
The difference to Fritz John’s theorem is due to the fact that we have to
treat two feasibility constraints: we need to stay feasible wrt ot the terminal
constraints hi described in the set TS and we need to stay feasible wrt to
variations of the trajectory described by Γ. If we are optimal both sets have
to be separate, i.e., we cannot move in any of these sets without leaving the
other one, see Figure 15.
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Figure 15: The cone Γ and it’s relation to the perturbation of the control
u∗. Figure 8.3
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Using the previous Lemma we can restate this theorem as follows.

Theorem 7.9. Let x∗(t) := x∗(t;u∗(t)) be the optimal trajectory for the
problem (7.29)-(7.31). Then, there exists a non–zero vector function t →
p(t) such that

p(T ) = +λ0∇ψ(x∗) +
m∑
i=1

λi∇hi(x∗(T )), λ0 ≥ 0 (7.39)

p′ = −p(t)Dxf(t, x∗(t), u∗(t)), t ∈ (0, T ) (7.40)

p(τ)f(τ, x∗(τ), u∗(τ)) = max
ω∈U
{p(τ)f(τ, x∗(τ), w)} (7.41)

Proof. By the previous Lemma the equations (7.37) and (7.39) are
equivalent. Every tangent vector vτ,ω ∈ Γ satisfies the linearized evolution
equation and if p satisfies the adjoint equation, the product p(t)vτ,ω(t) is
constant. Equation (7.38), then states 0 ≥ p(T )vτ,ω(T ) = p(t)vτ,ω(t) and
using the definition of vτ,ω we obtain (7.41).

Some further remarks are in order. If the function f has sufficient regu-
larity, and if the maximization problem has a unique solution inside
U , then the last condition can be rewritten as

∂u
(
p(τ)f(x∗(τ), u∗(τ))

)
= 0.

Introducing now the Hamiltonian operator H as

H(t, x, u, p) = pf(t, x, u)

we obtain another representation of the optimality system. This is typically
used in applications. We have

x′ = f(x, u) ≡ ∇pH
p′ = −pDxf(x, u) ≡ −∇xH

pf(x, u) = max
ω∈U
{pf(x,w)} ≡ ∇uH

and

x(t0) = x0

p(T ) = +λ0∇ψ(x∗) +

m∑
i=1

λi∇hi(x∗(T )), λ0 ≥ 0

If we additionally have running costs we obtain by the same trick as before
the following result:
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Theorem 7.10. Consider the problem:

max J(u) =

∫ T

t0

h(t, x(t), u(t)) dt

subject to:

x′(t) = f(t, x(t), u(t)) t0, x(t0) - fixed (7.42)

for u ∈ C[t0, T ]m with fixed end-point t0 < T , where h and f are con-
tinuous in (t, x, u)and have continuous first partial derivatives with respect
to x and u∀(t, x, u) ∈ [t0, T ]×Rn ×Rm. Suppose u∗ ∈ C[t0, T ]m is a (local)
minimizer for the problem, and let x∗ ∈ C1[t0, T ]n denote the correspond-
ing state. Then there exists a vector function p∗ ∈ C1[t0, T ]n such that
(x∗, u∗, p∗) satisfies the system:

H = −h(t, x, u) + pf(t, x, u) (7.43)

x′ = f(t, x, u) = Hλ; x(t0) = x0; (7.44)

p′ = hx(t, x(t), u(t))− p(t)fx(t, x(t), u(t)) = −Hx; λ(T ) = 0 (7.45) eqn:adjoint

0 = −hu(t, x(t), u(t)) + p(t)fu(t, x(t), u(t)) = Hu (7.46) eqn:min

for t0 ≤ t ≤ T .

From the previous more general theorem we had the condition that u
has to maximize pf(t, x, w)+h(t, x, w) Hence, we additionally conclude that
the condition

Huu ≤ 0

is also necessary for optimality.

Example 7.11. Consider the optimal control problem

min J(u) :=

∫ 1

0
[
1

2
u(t)2 − x(t)] dt

subject to: x′(t) = 2[1− u(t)]; x(0) = 1.
Solution: Form the Hamiltonian function

H(x, u, λ) =
1

2
u2 − x+ 2λ(1− u).

Candidate solutions (u∗, x∗, λ∗) are those satisfying the Euler-Lagrange
equation:

x′ = Hλ = 2(1− u∗); x∗(0) = 1 (7.47)

λ′ = −Hx = 1; λ∗(1) = 0 (7.48)

Hu = 0 = u∗(t)− 2λ∗(t). (7.49)
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The adjoint equation yields: λ∗ = t − 1, and from optimality condition, we
get: u∗(t) = 2(t− 1).

Note: u∗ is a candidate minimum for the problem since Huu = 1 > 0 for
each 0 ≤ t ≤ 1. Thus

x∗′(t) = 6− 4t; x∗(0) = 1 (7.50)

⇒ x∗(t) = −2t2 + 6t+ 1 (7.51)

u∗(t) = 2(t− 1); (7.52)

λ∗(t) = t− 1. (7.53)

One can verify that H is constant along the optimal trajectory, H(t, x∗(t), u∗(t), λ∗(t)) =
−5.

Finally, to illustrate the optimality of u∗ consider modified controls v(t, η) :=
u∗(t)+ηw(t), and their associated responses y(t; η). The perturbed cost func-
tion reads:

J(v(t; η)) :=

∫ 1

0
[
1

2
u∗(t) + ηw(t)]2 − y(t; η)] dt

subject to y′(t; η) = 2[1− u∗(t)− ηw(t)]; y(0) = 1.
Note in this case minimum is always attained at η = 0.

In the above context we can also give a sufficient condition for optimality.

Theorem 7.12. Consider the problem:

max J(u) =

∫ T

t0

h(t, x(t), u(t)) dt

subject to:

x′(t) = f(t, x(t), u(t)) t0, x(t0) - fixed (7.54)

for u ∈ C[t0, T ]m with fixed end-point t0 < T , where g and f are con-
tinuous in (t, x, u)and have continuous first partial derivatives with respect
to x and u∀(t, x, u) ∈ [t0, T ] × Rn × Rm. Suppose that f and h are strictly
jointly convex in x and u. Suppose u∗ ∈ C[t0, T ]m, x∗ ∈ C1[t0, T ]n and
p∗ ∈ C1[t0, T ]n satisfy the following system.

x′ = f(t, x, u); x(t0) = x0; (7.55)

p′ = hx(t, x(t), u(t))− p(t)fx(t, x(t), u(t)); λ(T ) = 0 (7.56)

0 = −hu(t, x(t), u(t)) + p(t)fu(t, x(t), u(t)) (7.57)

Suppose further that
p ≥ 0 ∀t. (7.58)

Then, u∗ is a strict global minimizer for the problem.
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7.4 Extensions to Pontryagin’s maximum principle – Lagrange
Minimization Problem and Problems of the Calculus of
Variations

We consider a control problem with fixed terminal point and running costs.

min
x

∫ T

0
L(t, x(t), u(t))dt or max

x

∫ T

0
−Ldt (7.59) 8.14

subject to
x′ = f(t, x, u), u(t) ∈ U (7.60) 8.15

and the initial and terminal constraints

x(0) = x0, x(T ) = xT . (7.61) 8.16

This problem can be restated in terms of the previous theorem by intro-
ducing xn+1 satisfying

x′n+1 = L(t, x, u), xn+1(0) = 0

and without a terminal constraint on xn+1. Hence, the adjoint vector p =
(p1, . . . , pn, pn+1) is governed by the adjoint equation

p′ = −p

(
Dxf 0
DxL 0

)
.

Therefore, the adjoint function pn+1 to xn+1 is constant in time. The con-
straints are given by

hi = xi(T )− xi,T
for i = 1, . . . , n and

ψ(x(T )) = xn+1(T ).

A direct application of the previous theorem yields

pn+1(T ) = λ0, pi(T ) = +λi 1

and the following dynamics for i = 1, . . . , n

p′i(t) = −
∑
j

pj∂xifj − pn+1∂xiL

. Since p has to be non–zero, the only requirement is either λi = 0 and
pn+1 = λ0 is strictly positive or some λi is non-zero. Summarizing, we
proved
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Theorem 7.13. Let t → x∗(t;u∗) be an optimal trajectory corresponding
to the optimal control u∗. Then, there exists a constant λ0 ≥ 0 and a row
vector pT ∈ Rn (not both equal to zero) such that

p′ = −pDxf(t, x∗, u∗)− λ0DxL(t, x∗, u∗) (7.62)

p(τ)f(τ, x∗(τ), u∗(τ)) + λ0DxL(t, x∗, u∗) =

max
ω∈U
{p(τ)f(τ, x∗(τ), w) + λ0DxL(t, x∗, ω)} (7.63)

There is no terminal condition on p(T ).

The previous theorem can also be used to derive the Euler–Lagrange
equations for ODE control theory. To this end consider the problem

min
x,x′

∫ T

0
L(t, x(t), x′(t))dt (7.64) 8.19

over all absolutely continuous functions x : [0, T ]→ Rn subject to

x(0) = x0, x(T ) = xb (7.65) 8.20

Since x is absolutely continuous it has weak derivatives a.e. in W 1,1.
We rewrite this as the problem (7.59) subject to

x′(t) = u(t), u(t) ∈ Rn (7.66) 8.21

We assume that L is smooth and that x∗ is an optimal solution. By the
previous theorem there exists a constant (λ0) =: λ ≥ 0 and a row vector
p(t) (not both equal to zero) such that

p′ = −λ∂xL(t, x∗, x′∗) (7.67) 8.22

p(x′∗) + λL(t, x∗, x′∗) = min
ω
{pω + λL(t, x∗, ω)} (7.68) 8.23

If λ ≡ 0, then p(t) 6= 0 and by (7.68) x′∗ has to be the minimum over
Rn which is a contradiction. Hence, we have λ > 0. We normalize p, λ such
that λ = 1 (possible due to (7.67).

From (7.68) we obtain a necessary condition for ω to be a minimizer is
∂ω
(
pω + L(t, x, ω)

)
= 0 and hence

p(t) = −∂x′L(t, x∗(t), x′∗(t)).
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Formally, this is also obtained from (7.67) by

dp

dt
= − ∂

∂x
L(t, x∗(t), x′∗(t)) =⇒

p(t) = − ∂

∂x

∫ t

L(·)dτ = − ∂
∂x
dt

d

dt

∫ t

L(·)dτ = −∂x′L(t, x∗(t), x′∗(t))

Combining (7.67) with the equation for p we obtain the Euler–Lagrange
equations.

d

dt

(
∂

∂x′
L(t, x∗(t), x′∗)

)
=

∂

∂x
L(t, x∗(t), x′∗(t)) (7.69) 8.24

Euler–Lagrange’s equation can also be derived directly from (7.64). Con-
sider a perturbation xε = x + εη with η(0) = η(1) = 0. Necessary for opti-
mality is

0 =
d

dε

∫
L(t, xε, x

′
ε)dt =

∫
∂xLη + ∂x′Lη

′dt =

∫
(∂xL−

d

dt
∂x′L)ηdt ∀η

7.5 Application: Linear Time–Varying Systems and Linear
Quadratic Regulators

Consider a state of linear time-varying (LTV) system,

x′(t) = A(t)x(t) +B(t)u(t),

with x(t) ∈ Rn and u(t) ∈ Rm, from an initial state x(t0) ∈ Rn and u(t) ∈
Rm, from an initial state x(t0) 6= 0 to a terminal state x(T ) ≈ 0, T given,
using “acceptable” levels of control u(t), and not exceeding acceptable levels
of the state x(t) on the path. To simplify the notation we use the transposed
vector p ∈ Rn.

The performance index is defined by:

J(u) =

∫ T

t0

1

2
[u(t)TQ(t)u(t) + x(t)TR(t)x(t)] dt+

1

2
x(T )TSfx(T )

where Sf ≥ 0, R(t) ≥ 0, Q(t) > 0 are symmetric.
Euler-Lagrange Equations:

x′ = Hp(t, x(t), u(t), p(t)); x(t0) = x0;

p′ = −Hx(t, x(t), u(t), p(t)); p(T ) = Sfx(T );

0 = Hu(t, x(t), u(t), p(t))
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where

Hx(t, x(t), u(t), p(t)) =
1

2
u(t)TQ(t)u(t)+

1

2
x(t)TR(t)x(t)+pT [A(t)x(t)+B(t)u(t)]

Hence
u∗(t) = −Q(t)−1B(t)T p∗(t) (7.70) eqn:ustar

which in turn gives:[
x∗(t)
p∗(t)

]
=

[
x∗(t)
p∗(t)

][
A −BQ−1BT
−R −AT p∗(t)

]
; (7.71) eqn:adj_system

x∗(t0) = x0 (7.72)

p∗(T ) = Sfx
∗(T ). (7.73)

Sweep Method:

• Determine p(t0) such that can be integrated in time as an initial value
problem: i.e. sweep p∗(T ) = Sfx

∗(T ) backward to the initial time:

p∗(t0) = S(t0)x∗(t0).

• For intermediate times, substitute p∗(t) = S(t)x∗(t) into (7.71) to
obtain a matrix Riccati equation:

S′ = −SA−ATS + SBQ−1BTS −R; (7.74)

S(T ) = Sf (7.75)

Note: S(t) is a symmetric matrix at each t0 ≤ t ≤ T since Sf is
symmetric.

• Integrate from T to t0 to obtain:

p∗(t0) = S(t0)x∗(t0)

• Once p∗(t0) is known, x∗(t) and p∗(t) are found by forward integration
of (7.71) from x∗(t0) and p∗(t0), respectively, to obtain u∗(t), t0 ≤ t ≤
T from (7.70).

• Alternatively, use the entire trajectory S(t), t0 ≤ t ≤ T to determine
the continuous feedback law for optimal control:

u∗(t) = −[Q(t)−1B(t)TS(t)]x∗(t)
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Remark 7.14. The approach can be extended to Linear Quadratic Regulator
(LQR) problems with mixed state/control terms in the integral cost:

J(u) :=

∫ T

t0

1

2

[
u(t)
x(t)

]T [
Q(t) P (t)
P (t)T R

][
u(t)
x(t)

]
dt+

1

2
x(T )TSfx(T )

Thus the matrix Riccati Equation takes the form:

S′ = −S(A−BQ−1P T )− (A−BQ−1P T )TS+SBQ−1BTS+PQ−1P T −R,

The state/adjoint equations take the form[
x∗(t)
p∗(t)

]
=

[
A−BQ−1P T −BQ−1BT

−R+ PQ−1P T −(A−BQ−1P T )T

][
x∗(t)
p∗(t)

]

and the control is given by:

u∗(t) = −Q(t)−1[P (t)Tx∗(t) +B(t)T p∗(t)]

= −Q(t)−1[P (t)T +B(t)TS(t)]x∗(t).

7.6 Dynamic Programming For Pontryagin’s Maximum Prin-
ciple

We consider again a control system of the form as in (7.1)

x′ = f(x, u), u(t) ∈ U (7.76) 9.1

We now assume that the set U of admissible controls is compact while f is
continuous, uniformly bounded and Lipschitz in x. Further, we are given
initial data x(s) = y ∈ Rn. Under these assumptions there exists for every
control u(·) ∈ U and initial data a unique solution. We seek an admissible
control function u∗ : [s, T ] → U which minimizes the general problem with
running costs, i.e.,

J(s, y, u) =

∫ T

s
h(x(t), u(t))dt+ g(x(T )) (7.77) 9.4

for bounded, Lipschitz functions (in x) g and h.
Dynamic programming is a technique to solve the minimization problem

minu J . The problem is a special case of Mayer’s problem and necessary
conditions have been given in the previous section. The idea of dynamic
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programming is to study the mininimization problem by looking at the value
function.

V (s, y) = min
u(·)∈U

J(s, y, u) (7.78) 9.8

We are looking at a family of minimization problems for different initial
values x(s) = y. We study how the costs vary as a function of the initial
data. The orginal problem (7.1), resp. (7.76) is then a subproblem solved
by evaluating V (t0, x0).

The idea of dynamic programming is to start studying V (T, y) which is
supposed to be simple to study, since it is stated at terminal time. From the
behavior of V (T, y) one proceeds backwards in time and studies V (T −τ, y).
A control acting on (T−τ, T ) connects certain states y(T−τ) to states ȳ(T ).
For the latter from the previous study it is clear how the optimal control u
at time T has to be. This way we can go backwards and determine optimal
controls for small time intervals, see Figure 16. A main point will be that
the solution to the ode (7.76) is a semigroup

Hence, we are interested in how the minimum cost varies as a function of
the initial data. Preliminary we note that the following Lemma holds true.

Lemma 9.1 Lemma 7.15. Let the functions f, g, h be bounded and Lipschitz in x. Then,
the value function V defined by (7.78),(7.77) is bounded and Lipschitz con-
tinuous in y and s.

Proof is immediate since J is Lipschitz in s and y and min is continuous.

9.2 Theorem 7.16 (Dynamic Programming Principle). For every τ ∈ [s, T ] and
y ∈ Rn one has

V (s, y) = inf
u(·)∈U

{∫ τ

s
h(x(t; s, y, u), u(t))dt+ V (τ, x(τ ; s, y, u))

}
(7.79) 9.11

In other words (16) the optimization problem on the time interval [s, T ]
can be split into two separate problems:

1. As a first step, we sole the optimization problem on the subinterval
[τ, T ] with running cost h and terminal costs g. In this way we obtain
the value function V (τ, ·) at time τ.

2. As a second step we solve the optimization problem on the sub-interval
[s, τ ] with running cost h and terminal costs V (τ, ·) determined by the
first step.
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Figure 16: Dynamic Programming Principle. Figure 9.1
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At the initial time s given by (7.79) the value V (s, y) is the solution to
minimiziation problem min(7.77) subject to (7.76). The importance of the
previous theorem is the practical application: Giving a time–discretization
of [s, T ] in suitable time cells τi one can apply the second step on each
interval except for the last. Using e.g. piecewise constant controls on each
time interval one obtains a numerical representation of the value functional.
We refer to [4], page 37.

7.7 Hamilton Jacobi Bellmann Equation For Pontryagin’s
Maximum Principle

The purpose of the HJB equation is to provide a characterization of an op-
timal control u. So far, we only have necessary conditions for optimality
involving state, adjoint and control function as well as a scheme by dy-
namic programming on how to compute an optimal control by successively
computing the value functional.

Here, in contrast the focus is on sufficient conditions for a control to
be optimal. Furthermore, the value function (7.78) will be characterized as
solution to a partial differential equation, namely the HJB equation. The
idea is to consider V (s, y) as function of two parameters and try to find a
characterizing equation. The main theorem is as follows.

10.1 Theorem 7.17 (HJB-Equation). Assume that U is compact, let f, g, h be
bounded and Lipschitz with respect to x. Consider the cntrol problem (7.76),
the value function V defined by (7.78) and (7.77).

Then, V is the unique, viscosity solution of the HJB-equation

−
(
Vt +H(x,∇V )

)
= 0 (7.80) 10.1

with terminal condition

V (T, x) = g(x) x ∈ Rn (7.81) 10.2

and Hamiltonian

H(x, p) = min
ω∈U

{
f(x, ω)p+ h(x, ω)

}
(7.82) 10.3

We refer to [4] for the definition of viscosity solutions and the proof. In
fact, dynamic programming is the method of characteristics applied to the
partial differential equation, see below, and the lines of Figure 16 are the
characteristics of (7.80). The function H is really a Hamiltonian and we
later erive the corresponding equations. We conclude with some important
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calculations showing the relation between Pontryagin’s maximum principle,
dynamic programming and HJB-equation. The precise relation is as follows:

The trajectories which satisfy Pontryagin’s maximum principle provide
characteristic curves for the HJB equation of dynamic programming.

All the following calculations assume that the involved functions are
sufficiently smooth. At first, we start from the HJB equation. Call p = ∇V
such that pi = ∂xiV. Then,

∂2

∂xj∂xi
V =

∂2

∂xi∂xj
V = ∂xipj = ∂xjpi.

Therefore, differentiating (7.80) with respect to xi we obtain

∂tpi + ∂xiH +
∑
j

∂pjH∂xipj = ∂tpi + ∂xiH +
∑
j

∂pjH∂xjpi = 0

If t→ x(t) is any smooth curve the total derivative of pi along x is compute
as

d

dt
pi(t, x(t)) = ∂tpi +

∑
j

∂xjpix
′
j .

Combining with the previous equation we obtain

d

dt
pi(t, x(t)) = −∂xiH +

∑
j

∂xjpi

(
x′j − ∂pjH

)
.

Hence, if x′j = ∂pjH (characteristic equation for a Hamiltonian) the last
term vanishes and the derivative of the generalized impuls is given by the
spatial derivative of the Hamiltonian. The previous calculations show that
we can obtain a solution to (7.80,7.81) by solving the characteristic system
of the PDE given by the set of ODE’s parameterized by x̄10.20

x′i = ∂piH(x, p), p′i = −∂xiH(x, p), (7.83a)

xi(T ) = x̄i, pi(T ) = ∂xiV (T, x) = ∂xig(x̄) (7.83b)

Obviously, the previous system is obtained for solutions V (t, x).
Conversly, we recover V by setting

V (t, x(t, x̄)) = g(x̄)+

∫ T

t

(
H(x(s), p(s)− p(s)∂pH(x(s), p(s))

)
ds, ∇xV (t, x(t, x̄)) = p(t; x̄)

where x(s), p(s) are the solutions to the system of ODEs above. Note, that

dtV (t, x(t, x̄)) = −H(x(t), p(t))− p(t)∂pH(x(t), p(t))
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and by definition

dtV (t, x(t, x̄)) = Vt(t, x(t, x̄)) + x′(t)∇xV (t, x(t, x̄))

Therefore, we obtain for V defined as above and x(t), p(t) solutions to the
ODEs (7.83) we obtain the PDE again. Hence, (7.83) is equivalent to
(7.80,7.81).

It remains to show that Pontryagin’s maximum principle also yields
(7.83). This will be discussed in the simpler situation of h ≡ 0 and U = Rn.
Pontryagin’s maximum principle (7.5) applied here as minimum principle
then reads

x′ = f(x, u), x(s) = x0, p̄
′ = −p̄Dxf(x, u), p̄(T ) = −∇g(x(T )).

and
max{p̄f(x, ω)} = p̄f(x, u)

or written in terms of p = −p̄

x′ = f(x, u), x(s) = x0, p
′ = −pDxf(x, u), p(T ) = ∇g(x(T )).

and
min
ω
{pf(x, ω)} = pf(x, u)

.
The HJB equation is equivalent to (7.83) for an abitrary point x̄ for

trajectories p and x. Hence, it remains to show that the Hamiltonian H
given by (7.82) satisfies

∇pH(x, p) = f(x), ∇xH(x, p) = pDxf or H(x, p) = pf(x, u).

Due to equation (7.82) we define the optimal trajectory u = u(x, p) by

H(x, p) = pf(x, u) := min f(x, ωp).

Then, at a minimum pDuf(x, u) = 0 and hence

DpH(x, p) = f(x, u) + pDuf(x, u)∂pu = f(x, u)

and similarly
DxH(x, p) = pDxf(x, u).

This shows that HJB is equivalent to Pontryagin’s maximum principle. We
summarize the results in Figure 17.
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Figure 17: Relations of HJB, dynamic programming and Pontryagin’s max-
imum principle Figure 9.4

95



8 Necessary optimality conditions in infinite di-
mensional spaces

8.1 Equality constraints

We want to derive the necessary optimality conditions for a general mini-
mization problem. The Lagrange multiplier theorem is based on the inverse
function theorem. This theory is a local theory in the sense that no convexity
assumption on the functional or the describing set is required. In contrast
we present below global results under the assumption that certain sets are
convex. In the latter theory the Lagrange multiplier is even more mean-
ingfull in the following sense: A general minimization problem minX f over
some set H : X → Z, H(x) = 0, can either be viewed in the primal space
X by studying the contonourlines of f (local approach) or by studying the
constraint space Z (global approach). The Lagrange multiplier is an element
of the dual to the constraint space Z∗. It therefore is a linear functional on
Z or geometrically a hyperplane. Having a hyperplane to separate certain
sets we can obtain global results for convex functions lying above or below
this hyperplane.

The more general theory is the local approach which we discuss at first.

Definition 8.1 (Regular point). Let T be a continuously Fréchet differen-
tiable mapping from an open set D in a Banach space X into a Banach
space Y. If x0 ∈ D is such that T ′(x0) maps X onto Y , then the point x0 is
called regular point of the transformation T.

An easy example is T : Rn → Rm. If at x0 the Jacobian of T has rank
m, then x0 is a regular point. Consider the operator T := ∆ : H1

0 (Ω) →
H1

0 (Ω)′ for an open set Ω ⊂ Rn with sufficiently smooth boundary. Since
∀f ∈ H1

0 (Ω)′∃!u ∈ H1
0 (Ω) such that ∆u = f , we obtain, that T ′ is surjective.

Theorem 8.2 (Inverse Function Theorem). Let x0 be a regular point of a
mapping T : X → Y , where X and Y are Banach spaces. Then there is a
neighborhood N(y0) for the point y0 = T (x0) and a constant K such that
the equation T (x) = y has a solution for every y ∈ N(y0) and the solution
satisfies ‖x− x0‖X ≤ K‖y − y0‖.

A proof can be found in standard textbooks, e.g. [10, 2, 16]
Derivation of necesary conditions for equality constraint optimization

problems is the content of the next theorems.

Lemma 8.3. Let f : X → R and H : X → Y, wherein X and Y are Banach
spaces. Assume that f,H are continuously Fréchet differentiable in an open
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set containing x0 and that x0 is a regular point of H. Furthermore, assume
that x0 is a local minimum of the problem min f(x) subject to H(x) = 0.

Then f ′(x0)h = 0 for all h satisfying H ′(x0)h = 0.

Proof. Consider the transformation T : X → R × Y given by T (x) =
(f(x), H(x)). Assume there exists an h such that H ′(x0)h = 0 and f ′(x0)h 6=
0. The Fréchet derivative of T at x0 is T ′(x0) = (f ′(x0), H ′(x0)) : X →
R × Y and x0 is a regular point of T. Since x0 is a regular point of H and
f ′(x0) 6= 0 is a linear mapping from X to R. Applying the inverse function
theorem to T , we obtain that there ∃x such that ‖x−x0‖ ≤ ε and such that
T (x) = (f(x0) − δ, 0) with ε, δ > 0. This contradicts the assumption on a
local minimum in x0. �

There is a geometric interpretation of this result. The set of vectors h,
such that H ′(x0) = 0 is the tangent space. We translate the tangent space
to the point x0. The above theorem states, that f is stationary at x0 with
respect to variations in the tangent plane.

Theorem 8.4 (Lagrange Multiplier Theorem). Let f : X → R and H :
X → Y, wherein X and Y are Banach spaces. Assume that x0 is the min-
imizer of f subject to H = 0. Assume that f,H are continuously Fréchet
differentiable in an open set containing x0 and that x0 is a regular point of
H.

Then there exists y∗0 ∈ Y ∗ such that the Lagrange function

L(x, y∗) : X × Y ∗ → R. L(x, y∗) = f(x)+ < y∗, H(x) >Y ∗,Y (8.1)

is stationary at (x0, y
∗
0), i.e.,

f ′(x0)− < y∗0, H
′(x0) >= 0 (8.2)

H(x0) = 0 (8.3)

Note, that H(x0) = 0 is an equality in X. The first equation has to be
understand in the sense of linear mappings L(X;R) = X∗, i.e.,

∀h ∈ X.f ′(x0)h− < y∗0, H
′(x0)h >= 0 (∈ R) (8.4)

Further, we denote the application of a linear operator A on an element x by
Ax. The application of a functional f ∈ X∗ on a element in x ∈ X is denoted
by < f, x > . If A : X → R, then by notation we have < A, x >= Ax.

Proof. From the previous lemma, we have f ′(x0) ∈ L(X;R) = X∗ is
orthogonal on the null space of H ′(x0). The range of H ′(x0) is closed. If a
linear operator A has a closed range, then the range of the adjoint operator
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A∗ is the orthogonal complement of the nullspace of A. A proof of this
statement can be found in [10, 2]. Therefore,

f ′(x0) ∈ N(H ′(x0))T = R[H ′(x0)∗]. (8.5)

and there exists y∗0 ∈ Y ∗ such that

f ′(x0)−H ′(x0)∗y∗0 = 0 (∈ X∗) (8.6)

Now we can rewrite this equation by using the definition of the adjoint
< A∗y∗, x >=< y∗, Ax > to obtain

f ′(x0)− y∗0H ′(x0) = 0 (∈ X∗) (8.7)

�
Due to our choice of the notation the following lines are equivalent

< f ′(x0), x >X∗,X − < y∗0, H
′(x0)x >Y ∗,Y = (8.8)

f ′(x0)x− < H ′(x0)∗y∗, x >X∗,X= (8.9)

f ′(x0)x− (H ′(x0)∗y∗)x (8.10)

If X is a Hilbert space we can use the Riesz representation theorem, see
[2, 16], to reformulate as follows:

< x∗, x >= (x̄, x) (8.11)

where (, ) denotes the scalar product on X and x̄ is the image of x∗ under
the isometric, conjugate linear isomorphism J : X∗ → X.

We offer a further interpretation of the Lagrange Multiplier Theorem.
Consider the finite dimensional case. Then the theorem states, that the
gradient f ′ at the optimum is a linear combination of the gradients of the
constraints h′i. In case of two constraints, the gradient f ′(x0) is contained in
the plane spanned by h′1(x0) and h′2(x0).

Remark 8.5. Formally, the KKT systems in the finite and infinite dimen-
sional case are equal. However, one has to notice that the assumptions put
in the infinite dimensional case are much more restrictive. In the case of
equality constraints we conclude for the infinite dimensional case. The op-
erator of the equality constraints h′ has to be surjective and has to be a
bounded linear operator. The latter condition is automatically satisfied in
the finite dimensional case assuming that h is sufficiently regular. This is
replaced by continuously Frechet differentiable in the infinite dimensional
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case. Both are not just a change of the notation, but actually a stronger
assumption. This can also be seen in the proof of the Lagrange multiplier
theorem, where we need to use the “closed range theorem”, to deduce the
existence of a Lagrange multiplier y∗0 such that

f ′(x0)−H ′(x0)∗y∗0 = 0.

This is automatically satisfied in the finite dimensional case, since there the
adjoint is given by the transposed gradient.

Example 8.6. Linear quadratic problems
Consider the problem

min
(y,u)∈Y×U

1

2
‖Q(y − yd)‖2H +

α

2
‖u‖2U

subject to
Ay +Bu = 0

and under the assumptions.

• α > 0 and A ∈ L(Y,Z) has a bounded inverse, B ∈ L(U,Z) and there
exists a feasible point.

The problem fits in the previouse theorem for X = Y × U . Then,

f(x) =
1

2
‖Q(y − yd)‖2H +

α

2
‖u‖2U

is continuously Frechet–differentiable. The same is true for the constraint
mapping H(y, u) = Ay + Bu : Y × U → Z since it is linear in y and u. It
remains to check for the regularity condition at a point x = (y, u) ∈ X. The
derivative of H at y0, u0 is given by

DH(y0, u0)[y, u] = Ay +Bu ∈ Z.

We have to check whether or not for any z ∈ Z there exists (ȳ, ū) ∈ Y × U
such that Aȳ + Bū = z. In fact, since A has an inverse we set ū = 0 and
ȳ = A−1z independent of y0 and u0. Applying the previous theorem at a
loca minimizer x0 = (y0, u0) we obtain the necessary first–order optimality
conditions for z∗ ∈ Z∗ and all ỹ, ũ ∈ Y × U.

The functional is J := 1
2

(
Q(y − yd), Q(y − yd)

)
+ α

2 (u, u) and Jyỹ =
(Q(y − yd), Qỹ) = (Q∗Q(y − yd), ỹ), Ju()ũ = α(u, ũ).

Ay +Bu = 0

(Q∗Q(y − yd), ỹ) + α(u, ũ)− < z∗, Aỹ +Bũ >= 0
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We can reformulate this by taking all variations we obtain

Ay +Bu = 0

Q∗Q(y − yd)−A∗z∗ = 0

αu−B∗z∗ = 0

The Lagrange function is

L(y, u, λ) =
1

2
‖Q(y − yd)‖2H +

α

2
‖u‖2U− < λ,Ay +Bu >Z∗,Z .

Example 8.7. Distributed control of elliptic equations Consider the
problem

min
(y,u)∈Y×U

1

2
‖y − yd‖2L2 +

α

2
‖u‖2L2

subject to
−∆y = u, y = 0 in Ω, on ∂Ω

and under the assumptions. Using classical theory on weak solutions to el-
liptic equations we observe that the followig operators are well–defined under
the asumption that Ω is sufficiently regular.

• Y = H1
0 (Ω), U = L2(Ω)

• < Ay, v >Y ∗,Y =
∫

Ω∇y · ∇vdx ∈ L(Y, Y ∗)

• < Bu, v >Y ∗,Y = −
∫

Ω uvdx ∈ L(U, Y ∗)

• Y = Y ∗ since Y is a Hilbert space.

• For any u ∈ L2(Ω) there exists a unique solution y ∈ Y to < Ay +
Bu, v >= 0 for all v ∈ V. Furthermore, the norm of the solution can
be bounded by u.

• Derivative of c wrt to y has bounded inverse

Again, we have to check, if the constraint mapping is surjective. The
constraint mapping is

H(x) = Ay +Bu : Y × U → Y ∗

and given by

< H(y, u), v >=

∫
Ω
∇y∇v − uvdx
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Since the equation −∆y = y∗ admits a unique solution for any y∗ ∈ Y ∗ and
since H is a linear and bounded operator we obtain as before that any point
ȳ, ū is a regular point of the mapping DH ∈ L(Y × U ;Y ∗).

The optimality condition at y∗, u∗ reads for a multiplier λ∗ ∈ Y ≡ Y ∗

and any v ∈ Y.

Ay∗ +Bu∗ = 0 (8.12)

(y∗ − yd, v)L2 +

∫
Ω
∇v∇λ∗dx = 0 (8.13)∫

Ω
(αu∗ − λ∗)vdx = 0 (8.14)

The strong form is therefore

−∆y∗ = u in Ω, y∗ = 0 on ∂Ω (8.15)

−∆λ∗ = (y∗ − yd) in Ω, λ∗ = 0 on ∂Ω (8.16)

αu∗ + λ∗ = 0 a. e. in Ω. (8.17)

The Lagrange function is

L(y, u, λ) =
1

2
‖y − yd‖2L2 +

α

2
‖u‖2L2 −

∫
Ω
∇y · ∇v − uvdx.

Example 8.8. Application to pde’s: Stokes problem
We give an example of the Lagrange multiplier rule omitting technical

details. Consider a bounded set Ω ⊂ Rn with smooth boundary and the space
X = H1

0 (Ω). Let

f(u) =

∫
Ω

1

2
|∇u|2 −

∫
Ω
φudx (8.18)

with the constraint H(u) := divu, i.e. H(u) = 0 ∈ L2(Ω). Hence in the set-
ting above Y = L2(Ω). We introduce as in the Lagrange multiplier theorem
the Lagrange function

L(x, y∗) := f(x)+ < y∗, H(x) >Y ∗,Y =

∫
Ω

1

2
|∇u|2 −

∫
Ω
φudx+

∫
Ω
qdivudx

since Y ∗ is isomorphic to Y and with x ≡ u, y∗ ≡ q. Assume, that all neces-
sary operations (i.e. differentiation, constraint qualification) are fulfilled we
obtain for v ∈ X f ′(u)v =

∫
Ω

(
(∇u∇

)
v − fvdx and H ′(u)v = divv. Hence,

∀v ∈ H1
0 (Ω) :

∫
∇u∇v − fvdx+

∫
Ω
qdivvdx = 0, divu = 0
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This is obviously the strong formulation of the equation

−∆u+∇q = f, divu = 0, u|∂Ω = 0

It remains to show, that H ′(u) = div is a linear, bounded operator, i.e. ∈
L(H1

0 (Ω);L2(Ω)), and is surjective. For v ∈ H1
0 (Ω) we claim

∫
Ω(divv)2dx =∫

Ω(
∑

i ∂xivi)
2dx ≤

∫
Ω(
∑

i |∇v|)2dx ≤ n2
∫

Ω |∇v|
2 + |v|2dx ≤ c‖v‖H1

0 (Ω).

Further, for w ∈ L2(Ω) the functions vi = 1
n

∫ xi
0 w(x1, . . . , xi = y, . . . , xn)dy

have the property divv = w and vi ∈ L2(Ω) since Ω is bounded. Indeed,∫
Ω(
∫ xi

0 w()dy)2dx is by Jensens’ inequality and Fubini’s theorem less than:∫
Ω

∫ xi
0 w()2dydx ≤

∫
Ω

∫ c
0 w()2dydx ≤

∫
Ω

∫
Ωw

2dzdx ≤ µ(Ω)|w|L2(Ω). There-
fore, H ′ is surjective.

Example 8.9. Lagrange multiplier approach for elliptic problems
We consider the same problem as above, but formulate this in a different

way.

min J(y, u) =

∫
Ω

(y − yd)2 + αu2dx

subject to

−∆y = f + u in Ω and y = 0 on ∂Ω

Let yd, f ∈ L2(Ω) be given functions. To be in the setting of the previous
section, we define the following operators and spaces. J : H1

0 (Ω)×L2(Ω)→
R and H(y, u) : H1

0 (Ω)×L2(Ω)→ H−1(Ω) defined by H(y, u)φ =
∫

Ω∇y∇φ−
(f + u)φdx for all φ ∈ H1

0 (Ω). Hence, H(y, u) defines a continuous, affin-
linear functional on H1

0 (Ω). In the setting of the Lagrange multiplier theorem
we have X := H1

0 (Ω) × L2(Ω) and Y := H−1(Ω). To apply the theorem
we need to prove that J,H are Frechét differentiable and that there exists a
regular point (y0, u0). The existence of a minimizer is given by the discussion
of the previous paragraph. Clearly, J is differentiable. Further, H is a affine
linear operator in y and u, i.e., H = H̃ + f where H̃ is a linear operator.
It is differentiable, if the operator is bounded. Since |H(y, u)φ| ≤ c(‖y‖ +
‖u‖)‖φ‖ this holds true. Further, we have to prove, that (y0, u0) obtained
as solution of the previous paragraph is a regular point, i.e., H ′(y0, u0) ∈
L(H1

0 (Ω)×L2(Ω);H−1(Ω)) is surjective. Consider h ∈ H−1(Ω). We need to
find (y, u) ∈ H1

0 (Ω)× L2(Ω) s.t. H ′(y0, u0)(y, u) = h⇔ H ′(y0, u0)(y, u)φ =
h(φ) for all φ ∈ H1

0 (Ω). Since H is a linear operator H ′(y0, u0)(y, u) =
H(y, u). Then applying the definition of H and using that H1

0 (Ω) is a Hilbert
space ∫

Ω
∇y∇φ+ (f + u)φdx =

∫
Ω
∇h̃∇φ+ h̃φdx ∀φ ∈ H1

0 (Ω)
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wherein h̃ denotes the element in H1
0 (Ω) such that h(φ) = (h̃, φ)H1

0 (Ω) This

element exists by Riesz representation theorem. Hence, we need to find (y, u)
such that the following equation is satisfied

∫
Ω∇(y − h̃)∇φ + (f + (u −

h̃))φdx = 0. We set y = y0 − h̃ and u = u0 − h̃. This proves the surjectivity
of H ′(y0, u0) = H(·). Hence, we can apply the Lagrange multiplier theorem
and obtain: There exists p∗ ∈ (H−1(Ω))′ = H1

0 (Ω) :

J ′(y0, u0)(y, u)− < p∗, H ′(y0, u0)(y, u) >H1
0 ,H

−1= 0 ∀(y, u) ∈ X
H(y0, u0) = 0 ∈ X∗

Written in more detail∫
Ω

(y0 − yd)y + 2αu0udx−
∫

Ω
∇p∗∇y + up∗dx = 0 ∀(y, u) ∈ H1

0 (Ω)× L2(Ω)

which implies

∆p∗ = −(y0 − yd) ∈ H1
0 (Ω) (8.19)

2αu0 − p∗ = 0 ∈ L2(Ω) (8.20)

and by the second equation

−∆y0 = f + u0 ∈ H1
0 (Ω) (8.21)

This gives the adjoint equation and the optimality system. However, the
proof of existence of an optimal solution was given by the considerations of
the previous paragraph.

The previous examples can be summarized in the following theorem.

labell-5 Theorem 8.10. Let U,H be given Hilbert spaces and let Uad be a given
non-empty, closed and convex set in U . Let yd ∈ H and λ ≥ 0 be given.

Assume that S : U → H is a linear and bounded operator. An element
u∗ ∈ Uad solves the problem

min
u∈Uad

f(u) :=
1

2
‖Su− yd‖2H +

λ

2
‖u‖2U

if the following variational inequality is satisfied(
S∗
(
Su∗ − yd

)
+ λu∗, u− u∗

)
≥ 0,∀u ∈ Uad.
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Proof. Using the result of the exercise below we have that 2f(u) =
G(F (u)) + K(u) is Frechet-differentiable with the functions F (u) = Su :
U → H, K(u) = λ‖u‖2U and G(z) = ‖z − yd‖2H . We have that

DK(u)v = λ(2u, v)U , DG(z)η = (2(z − yd), η)H

and therefore

Df(u)h = (Su− yd, Sh)H + λ(u, h)U = (S∗(Su− yd) + λu, h)U .

The variational inequality is obtained as a consequence of Theorem 9.11.
This proves the result. �

Exercise 8.11. 1. Show that the following holds true: Let U, V,W be Ba-
nach spaces and F : U → V and G : V →W be Frechet–differentiable
maps. Then E(u) = G(F (u)) : U → W is Frechet-differentiable with
derivative

DE(u) = DG(F (u)) ◦DF (u).

2. Prove the variational inequality in the following setting: Let U be a
Hilbert space and C ⊂ U a convex set. Assume that ū is the minimum
of J : U → R on C. Then, the variational inequality

(DJ(ū), u− ū) ≥ 0

is satisfied for all u ∈ C by considering the function J̃ : R → R given
by J̃(t) = J(ū+ t(u− ū)).

Remark 8.12. The operator S in the linear quadratic case of the first ex-
ample is given by S = −A−1B. Therefore, the general assumptions in the
previous examples have always been that A has a bounded inverse in order
to have S as bounded linear operator.

8.2 Inequality constraints

Next, we briefly discuss inequality constraints. We consider the problem

min f(x) subject to G(x) ≤ 0 (8.22)

where f : X → R and G : X → Y and X,Y are Banach spaces.
To understand the definition of the problem, we introduce the following

deifnitions.
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Definition 8.13. A set P in a vector space is a cone, iff ∀x ∈ P : αx ∈ P
forall α ∈ R and α ≥ 0.

A set P in a vector space is convex, iff ∀x, y ∈ P, α ∈ [0, 1] the point
αx+ (1− α)y ∈ P.

Let P be a subset of a normed space X. Then x is in the interior of P
(intP ), iff there is ε > 0 such that ∀y : ‖y − x‖ ≤ ε we have y ∈ P.

Definition 8.14 (Inequalities). In a general Banach space Y we call x ≥ y,
iff x− y ∈ P and P is a (positive) convex cone.

The negative convex cone N is defined by N := −P.

The following example might illustrate the definition.

X = Rn, P = {x ∈ Rn : xi ≥ 0} (8.23)

is a positive convex cone. Further, the set of all non-negative continuous
functions is a convex cone in the set C(R). Since a cone is a set we have
that the interior and the closure of P are well-defined. Also, 0 ∈ P . Hence
we write x > 0, iff x ∈ intP. If we assume a normed space we conclude
that ‖x‖ > 0 if x ∈ intP. For the KKT theorem stated below it is essential
that P posses an interior point. Nevertheless, this is not granted for every
Banach space.

Example 8.15. Let X = L1([0, 1]), ‖ · ‖ and P is taken as the subset of
a nonnegative functions on the interval [0, 1], i.e., P := {f ∈ L1([0, 1]) :
f(x) ≥ 0, a.e.}. We claim, that forall f ∈ P and forall ε > 0 and g ∈
L1([0, 1]) such that g 6∈ P and ‖f − g‖ ≤ ε. Therefore, f is not an interior
point. Wlog assume ε < ‖f‖. Then there exists a < b, a, b ∈ [0, 1] such

that
∫ b
a |f |dx ≤ ε/2. Indeed, assume converse (∀a < b :

∫ b
a |f |dx > ε/2)

and let ε/2k = ‖f‖. Then ‖f‖ =
∑k

i=0

∫ (i+1)/(k+1)
i/(k+1) |f |dx >

∑k
i=0 ε is a

contradiction. Hence, define g = −f forall x ∈ [a, b] and g = f else. We
obtain ‖f − g‖ ≤ ε and g 6∈ P.

In a convex positive cone we have the common relations x ≥ y, y ≥
z =⇒ x ≥ z. For a, b ∈ P and P convex cone, we have a + b ∈ P. Since
21

2(a+ b) ∈ P . Therefore, x− z = x− y + y − z ∈ P.

Example 8.16. The inequality constraint is well–posed in X = C0([0, 1]).
This space has interior points and is equipped with the sup–norm.

Using the result on equality constrained optimization, we can conjecture
that the following is true:

0 = f ′(x0)− < y∗0, G
′(x0) >= 0 (8.24)
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for

y∗ ≥ 0 (8.25)

and wherein

< y∗, G(x0) >= 0. (8.26)

Since we need to satisfy an inequality we only allow positive y∗. This corre-
spondes to the fact, that we do not have the full plane spanned by G′(x0),
but a cone. Further, we need to impose the above relation only for those
inequality constraints which are active at the solution. Therefore, we get
the second condition, which implies (in the finite dimensional case) y∗i = 0
if g(x0) > 0. The following theorem can be proven.

Definition 8.17 (Regular point for the inequality constraints). Let X,Z
be Banach spaces. Assume Z has a (positive) convex cone with nonempty
interior. Let G be mapping from X to Z which is Gateaux differentiable. A
point x ∈ X is called regular for the inequality constraint, iff G(x) ≤ 0 and
if there exists h ∈ X such that G(x) +G′(x)h < 0.

KKT-I Theorem 8.18 (Generalized Karush-Kuhn-Tucker Theorem). Let X,Z be
Banach spaces where Z has a (positive) convex cone P 6= ∅ with interior
points. Let f : X → R and G : X → Z be Fréchet differentiable mappings
with continuous derivatives. Suppose x0 minimizes f(x) subject to G(x) ≤ 0
and x0 is a regular point for the inequality constraint. Then there exists a
z∗0 ∈ Z∗ with

z∗0 ≥ 0 (8.27)

< z∗0 , G(x0) >Z∗,Z= 0 (8.28)

f ′(x0)+ < z∗0 , G
′(x0) >Z∗,Z= 0 (8.29)

Proof. Consider the space W = R× Z and define the two sets

A = {(r, z) : r ≥ f ′(x0)h, z ≥ G(x0) +G′(x0)h, for some h ∈ X}(8.30)

B = {(r, z) : r ≤ 0, z ≤ 0} (8.31)

We are going to prove the theorem along the following claims

1. A,B are convex. Clear.

2. A,B are cones. A =
(
f ′(x0)h,G(x0) +G′(x0)h

)
+ Ã and Ã is a cone.
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3. B 6= ∅ and contains interior points. Since P has an interior point.

4. Set A does not contain any interior point of set B. Assume the converse
∃(r, z) ∈ A with r < 0, z < 0. Then by definition of A: f ′(x0)h < 0
and G(x0) +G′(x0)h < 0. Now, there exists a open sphere B(G(x0) +
G′(x0)h; r) such that ∀G ∈ B : G ≤ 0 and hence B is contained
in the negative cone N := −P in Z. Further, for 0 < α < 1 the
sphere B̃(α[G(x0) + G′(x0)h], αr) is contained in −P . Since x0 is a
regular point (1 − α)G(x0) ≤ 0 and P is convex, we conclude that
(1− α)G(x0) + α[G(x0) +G′(x0)h] < 0 ∈ N. Due to

‖G(x0 + αh)−G(x0)− αG′(x0)h‖ = o(α)

Hence, G(x0 + αh) < 0 for α sufficiently small. Analogously, for
f(x0 + αh) < f(x0). This contradicts the x0 optimality.

5. According to a variant of the Hahn-Banach theorem there exists a
hyperplane separating A and B. Hence there are r0, z

∗
0 , δ :

r0r+ < z∗0 , z > ≥ δ ∀(r, z) ∈ A
r0r+ < z∗0 , z > ≤ δ ∀(r, z) ∈ B

Since (0, 0) contains in A and B, we have δ = 0. By the properties of
B : r0, z

∗
0 ≥ 0. Further, r0 6= 0 since G(x0) + G′(x0)h < 0. Hence, we

normalize r0 = 1. Rewriting the separation condition for A gives

f ′(x0)h+ < G(x0) +G′(x0)h, z∗0 >≥ 0 ∀h ∈ X

For h = 0 we obtain < z∗0 , G(x0) >≥ 0, z∗0 ≥ 0, G(x0) ≤ 0 =⇒

< z∗0 , G(x0) >= 0

Since f ′, G′ are Fréchet differentiable we conclude for ±h :

f ′(x0)+ < z∗0 , G
′(x0) >= 0

�

Definition 8.19 (Sublinear functionals). A real-valued function p defined on
a normed vector space X is a sublinear functional, iff p(x+y) ≤ p(x) +p(y)
and p(αx) = αp(x) for all x, y ∈ X and α ∈ R.
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Theorem 8.20 (Hahn-Banach). Let X be a real normed vector space and p
a continuous sublinear functional on X. Let f be a bounded linear functional
defined on a subspace M of X with f(m) ≤ p(m) ∀m ∈ M. Then there
exists a bounded linear functional F extending f from M to X and such
that F (x) ≤ p(x) on X.

A proof can be found in [2]. To obtain a geometric interpretation of
Hahn-Banach’s theorem we recall that |x| = p(x) is a sub–linear functional
on X. We assume that 0 6∈M . Then, for a subspace M we define the linear
functional with f(m) = −1 for all m ∈ M. Then, the Banach theorem tells
us that this functional can be extended to X by F ≤ p. Since p(0) = 0 and
the set M ⊂ K = {x ∈ X : F (x) = −1} is a hyerplane, we have separated
x = 0 from M by K.

The variant used in the proof above is known as the Eidelheit Separation
Theorem.

Theorem 8.21. Let K1,K2 be convex sets in the normed vector space X
such that K1 has interior points and K2 does not contain any interior point
of K1. Then there is a closed hyperplane H (i.e. there exists a linear func-
tional x∗ on X such that H = {x :< x∗, x >= c}.) separating K1 and K2.
I.e., there exists a linear functional x∗ on X such that

sup
x∈K1

< x∗, x > ≤ c ≤ inf
x∈K2

< x∗, x >

A proof can be found in [10]. We give the proof in a slightly different
setting.

Proof. Consider K = K1−K2. Then 0 6∈ K since K2 contains no interior
point of K1. Now, additionaly we assume that K is a ball with center x0,
radius r = 1 and consider the shifted ball K̃ = K − x0. Hence, −x0 is
not in the interior of K̃. Further, −x0 spans a one-dimensional subspace
M = {−αx0 : α ∈ R}. We consider the functional f(α(−x0)) = α‖x0‖ on
M. f is bounded and linear on M with norm 1. Hence (with p(m) = ‖m‖)
we apply Hahn-Banachs theorem and obtain the functional F on X with
norm 1. For all points x in the interior of K̃ we conclude

F (x) ≤ ‖F‖‖x‖ < 1‖x0‖ = f(−x0) = F (−x0)

We decompose x ∈ K̃ as follows

x = x1 − x2 + (−x0), xi ∈ Ki
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and obtain by the linearity of F

F (x1)− F (x2) + F (−x0) < F (−x0)

Hence, x∗ = F and c = F (−x0). In the general proof we have to replace the
p(·) by the Minkowski functional. �

Next, we discuss further constraint qualifications. We note that the
qualification used in the previous theorem is not sufficient, since e.g. there
are no interior points in Lp(Rn). The other famous condition is due to Zowe
et. al. and dates back to 1979, and Robinson (1976). The presentation of
other possible constraint qualifications is similar to the finite–dimensional
case. We start to transfer the steps in the finite–dimensional case to infinite–
dimensions. The proofs given before are more or less direct proofs. Here,
we proceed similar to the presentation given in the previous section on finite
space dimensions or in the book of Spellucci.

Consider the following problem

min
x∈X

f(x) subject to g(x) ∈ K,x ∈ C (8.32) PG

under the assumptions A that

1. X,Z are Banach spaces

2. f : X → R, g : X → Z continuously Frechet differentiable

3. C ⊂ X is non–empty, closed and convex ( in order to guarantee exis-
tence)

4. K ⊂ Z is a closed, convex cone ( as extension to inequality constraints
in finite dimensions), i.e.,

∀λ ≥ 0, z ∈ K =⇒ λz ∈ K.

5. The feasible set Xad = {x ∈ X : g(x) ∈ K,x ∈ C.} is non-empty.

Exactly, as in the finite–dimensional case we define the tangenet cone of
Xad at a point x ∈ Xad by

TXad,x := {s ∈ X : ∃ηk ∈ R, ηk > 0, xk ∈ Xad : lim
k
xk = x, lim

k
ηk(xk−x) = s}

(8.33) tangent cone

and we proof completly analogously the following theorem.
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Theorem 8.22. Let the assumptions A hold true. Then, any local solution
x∗ of (8.32) satisfies the optimality condition

x∗ ∈ Xad, < f ′(x∗), s >X∗,X≥ 0 ∀s ∈ TXad,x∗ .

Proof. By assumption x∗ ∈ Xad. Furthermore, for any s by definition
of T there exists a sequence ηk and xk approximating s and x∗. Since x∗ is
a local minimum and since ηk is positive we have

0 ≤ ηk
(
f(xk)− f(x∗)

)
= ηk < f ′(x∗), xk − x∗ > +ηko(‖xk − x∗‖.

Taking the limit on both sides we obtain the desired inequality. �Of
courese, this optimality condition cannot be used in applications, since the
tangent cone is too complicated to work with. As in the finite–dimensional
case we seek for characterizations of the tangent cone in terms of the describ-
ing the equality and inequality constraints. Comparing with the assumptions
of our main theorem we investigate at first the following cone (this is not
) the most general. It corresponds to the LICQ condition. The linearized
cone at a point x ∈ Xad is defined as

LXad,x,g = {ηs : η > 0, s ∈ X, g(x) + g′(x)s ∈ K,x+ s ∈ C} (8.34) LICQ-I

The following result is then easy consequence of the previous theorem.

Theorem 8.23. Let the assumptions A hold true. Let x∗ be a local solution
to (8.32). Assume additionally that

LXad,x∗,g ⊂ TXad,x∗ (8.35) ACQ

Then, the following necessary optimality conditions holds true.

x∗ ∈ Xad, < f ′(x∗), s >X∗,X≥ 0 ∀s ∈ LXad,g,x∗ .

The question is now whether or not (8.35) holds true. Comparing with
(8.18) we observe that it is reasonable to require that there exists x ∈ K,x ∈
LXad,x,g satisfying a strict inequality constraint (this requires that K has
interior points, see computations below).

Lemma 8.24. Let the assumptions A hold true. Let g be affine linear.
Then, (8.35) is satisfied.

Proof. Let s ∈ LXad,g,x be given. Then, there exists η > 0 such that
K ∈ g(x) + ηsg′(x) = g(x+ ηs) and x+ ηs ∈ C. By convexity of K we ave
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g(x + η/ks) ∈ K and hence x + η/ks ∈ Xad and similarly x + η/ks ∈ C.
Hence, we conlude that xk = x+ ηks and ηk = η/s satisfies the assumptions
on TXad,x. �

Another more general condition is due to Robinson:

x∗ ∈ Xad, g(x∗) + g′(x∗)(C − x∗) ∈ interioir K (8.36) RR

The condition is understood in the following sense: there exists c ∈ C the
point g(x∗) + g′(x∗)(c − x∗) is belongs to the interior of K. In particular,
this requires that there exists an interioir point in K. If C ≡ X, then since
x∗ ∈ C the condition can be rewritten as

x∗ ∈ Xad, g(x∗) + g′(x∗)s < 0 (8.37) RR-2

being exactly the definition of a regular point in the case of inequality con-
straints.

Theorem 8.25. The condition (8.36) implies (8.35)

Summarizing, the previous results we obtain the following theorem (Zowe
et. al.)

Theorem 8.26. Let the assumptions A hold true. Then, for any local solu-
tion x∗ of (8.32), where condition (8.36) holds true, the following optimality
condiiton are necessary. There exists z∗ ∈ Z∗ such that

g(x∗) ∈ K,x∗ ∈ C (8.38)

z∗ ∈ {z̄ ∈ Z∗ :< z̄, z >≤ 0 ∀z ∈ K} (8.39)

< z∗, g(x∗) >= 0 (8.40)

< f ′(x∗) + g′(x∗)z∗, x− x∗ >≥ 0 ∀x ∈ C (8.41)

We apply the previous result problems in PDE–constrained optimization.
Consider the following situation. Let Ω ⊂ Rn be sufficiently regular. Let
Y,U be Banach spaces. Uad ⊂ U a closed convex set in U and KY ⊂ Ỹ a
closed convex cone in a Banach space Ỹ . Assume that Y ⊂ Ỹ .2

The PDE is described by c(y, u) = 0 where c : Y ×U → X is continuosly
Frechet differentiable. We consdier the problem

min f(y, u) subject to c(y, u) = 0, y ∈ Ky, u ∈ Uad
2Example. Y = H1(Ω), Ỹ = C(Ω̄), n ≤ 3 due to Sobolev embedding.
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Hence, the constraint operator is

H : Y × U ∈ X × Ỹ s.t. H(y, u) = (c(y, u), y) ∈ K := {0} ×KY

and the feasible set is
C := Y × Uad.

Robinson’s regularity condition at a feasible point x = (y, u) reads there-
fore (

0
Ky

)
∈ interior

(0
y

)
+

(
cy(y, u) cu(y, u)
IY,Ỹ 0

)(
Y

Uad − u

) .

We give another condition implying Robinsons’s regularity condition.

Lemma 8.27. Let (y, u) ∈ C. If cy(y, u) ∈ L(Y ;X) is surjective and if there
exists ũ ∈ Uad and ỹ ∈ interior Ky such that

cy(y, u)(ỹ − y) + cu(y, u)(ũ− u) = 0,

then Robinson’s regularity condition is satisfied.

Note that the previous is exactly the condition given by the multiplier
theorem for inequality constraints applied to c(y, u).

Proof. Denote byBY,ε the ball in Y with radius ε centered at the point 0.
Since ỹ belongs to the interior of KY there exists ε > 0, s.t., ỹ+BỸ ,2ε ⊂ KY .
Since BY,ε is open in Y and cy is a linear and bounded operator, we obtain
by the open mapping theorem that cy(y, u)BY,ε is an open set in X. Since
Y is a Banach space ỹ − y + BY,ε ⊂ Y. Finally, we have that ũ ∈ Uad,
cy(y, u)(ỹ − y) + cu(y, u)(ũ− u) = 0, KY ⊂ Ỹ and Y ⊂ Ỹ .

We start with Robinson’s regularity condition.(
0
Ky

)
∈ interior

(0
y

)
+

(
cy(y, u) cu(y, u)
IY,Ỹ 0

)(
Y

Uad − u

)
rewritten as (

0
y

)
+

(
cy(y, u) cu(y, u)
IY,Ỹ 0

)(
Y

Uad − u

)
−

(
0
Ky

)
⊃
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(
0
y

)
+

(
cy(y, u) cu(y, u)
IY,Ỹ 0

)(
ỹ − y +BY (ε)

ũ− u

)
−

(
0

ỹ +BỸ ,2ε

)
since ỹ − y +BY (ε) ⊂ Y and ũ− u ∈ Uad and ỹ +BỸ ,2ε and then(

cy(y, u) cu(y, u)
IY,Ỹ 0

)(
ỹ − y +BY (ε)

ũ− u

)
−

(
0

−y + ỹ +BỸ ,2ε

)

=

(
cy(y, u)
IY,Ỹ

)
BY,ε +

(
cy(y, u)(ỹ − y) + cu(y, u)(ũ− u)

(ỹ − y)

)
−

(
0

−y + ỹ +BỸ ,2ε

)

=

(
cy(y, u)
IY,Ỹ

)
BY,ε +

(
0

BỸ ,2ε

)
⊃

(
cy(y, u)BY,ε

BỸ ,2ε

)

since Y ⊂ Ỹ and cy(y, u)BY,ε is open in X containing the zero. Hence, the
set on the right hand side is an open neighborhood in X × Ỹ . Hence, there
exists an interior and Robinson’s condition is satisified. � The
previous computations can be applied to treat the following elliptic problem
with state constraints. Consider the problem on a domain Ω with smooth
boundary.

min
1

2
‖y − yd‖2L2 +

α

2
‖u‖2L2 (8.42)

subject to (8.43)

−∆y + y = γu in Ω (8.44)

∂vy = 0 on ∂Ω (8.45)

y ≥ 0 on ∂Ω (8.46)

Let n ≤ 3 and we know that there exists a solution operator

S : u ∈ U = L2 → y ∈ H1 ∩ C(Ω̄)

mapping to the space of continuous functions. We rewrite the problem using
an operator A : Y → X defined through the bilinear form

a(y, v) =

∫
∇y∇vdx+ (y, v)L2

and
Bu = γu : U → X.

We set Uad = U and the spaces Y = H1 and X = (H1)∗, Ỹ ⊃ Y and Ky =
{y ∈ Ỹ : y ≥ 0}. We introduce the following operator c(y, u) : Y × U → X
as c(y, u) = Ay +Bu.
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Choosing Ỹ = H1 and X = Y ∗ is possible, but the cone Ky ⊂ Ỹ has no
interior point and therefore Robinson’s regularity condition does not hold.
However, the solution operator has higher regularity since it maps into the
space H1 ∩ C(Ω̄). The operator B : U → X is an operator on L2 we can
choose X = L2. We now choose

Y = {y ∈ H1 ∩ C(Ω̄) : Ay ∈ L2}.

This is a Banach space with norm ‖ · ‖H1 +‖ · ‖C +‖A · ‖L2 and the operator
A is then well–defined as operator A : Y → X = L2. Furthermore, it is
bounded and surjective. Since cy(y, u) = A we have hence satisfied the first
assumption of the previous Lemma. Setting now Ỹ = C(Ω̄). Then, KY ⊂ Ỹ
and KY has an interior point. Last, we have to check, that there exists point
such that for ỹ ∈ interior of KY there exists ũ ∈ Uad = L2 such that

0 = A(ỹ − y) +B(ũ− u)

Using ỹ = y + γ and ũ = u gives the result for any feasible point (y, u) ∈
Y × Uad. Hence, the condition is satisfied and we can state the necessary
first order conditions at the optimal point (ȳ, ū) as follows.

Aȳ +Bū = 0, ȳ ≥ 0 (8.47)

(ȳ − yd, v)L2 + (p̄, Av)L2+ < q̄, v >C∗,C= 0 (8.48)

q̄ ∈ K∗Y , < q̄, ȳ >C∗,C= 0 (8.49)

(αū+ γp̄, u− ū) ≥ 0 ∀u ∈ U (8.50)

We also give the strong form. The dual C∗ consists of regular Borel measures
(Radon measures) and the set K∗Y is the set of nonpositive functionals on C∗

which can be identified as measures −µΩ,−µ∂Ω, respectively, i.e., we have

q ∈ K∗Y , < q, v >C∗,C= −
∫

Ω
vdµΩ −

∫
∂Ω
vdµ∂Ω.

Therefore, we obtain

−∆ȳ + ȳ = γū, ∂ν ȳ = 0, ȳ ≥ 0 (8.51)

−∆p̄+ p̄ = −(ȳ − yd) + µΩ, ∂ν p̄ = µ∂Ω (8.52)

µΩ, µ∂Ω ≥ 0 (8.53)∫
Ω
ȳdµΩ −

∫
∂Ω
ȳdµ∂Ω(ȳ − yd, v)L2 + (p̄, Av)L2+ < q̄, v >C∗,C= 0 (8.54)

αū+ γp̄ = 0 (8.55)
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8.3 Examples of PDE constrained optimization problems

We consider parabolic optimal control problems in one spatial dimension. As
an example one may consider heat conductivity problems. The PDE is the
linear heat equation with Robin–type boundary conditions. A theoretical of
this problem can be either done using weak solutions in anisotropic Sobolev
spaces or using classical theory based on Green’s function. We consider
the later in this paragraph. The theory of anisotropic Sobolev spaces leads
to operator equations similar to those discussed for elliptic problems. The
setting is now as follows.

Let Ω be a domain and y0 an initial temperature distribution. The
optimal control should drive the a temperature y(x, t) in time time T to
some desired temperature yd. Clearly, we assume that the object can only
be heated through the boundary. This leads to

min
1

2

∫
Ω

(y(x, T )− yd)2dx+
λ

2

∫ T

0

∫
Ω
u(x, t)2ds(x)dt (8.56)

under the constraintslabell-2

yt −∆y = 0 ∈ (0, T )× Ω =: Q (8.57a)

∇yn(x) + αy = βu, on (0, T )× ∂Ω =: Γ (8.57b)

y(x, 0) = y0(x) ∈ Ω (8.57c)

We also might add pointwise constraints on the control of the type

0 ≤ u(x, t) ≤ 1 on Γ (8.58) labell-3

The set of admissible controls is defined by

Uad = {u ∈ L2(Γ) : u satisfies (8.58)}.

At first, we derive a formal optimality system and prove later on that
the formal computations are feasible. The Lagrange function corresponding
to (8.56) is given by

L(y, u, p) = J(y, u)−
∫
Q

(yt −∆y)pdxdt−
∫

Γ
(∇yn+ αy − βu)pdsdt.

We expect the necessary optimality conditions to be

DyL(ȳ, ū, p̄)y = 0, DuL(ȳ, ū, p̄)(u− ū) ≥ 0
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for all variations y with y(0) = 0 and all u ∈ Uad. We linearize L with respect
to y and obtain

DyL(ȳ, ū, p̄)y =

∫
Ω

(ȳ(x, T )− yd)y(T )dx−
∫
Q

(yt −∆y)pdxdt (8.59)

−
∫

Γ
(∇yn+ αy)pdst = (8.60)∫

Ω
(ȳ(x, T )− yd)y(T )dx−

∫
Q

(−pt −∆p)ydxdt−
∫

Ω
y(T )p(T ) (8.61)

+

∫
Γ
∇ynpdst+

∫
Γ
y∇pndst−

∫
Γ
(∇yn+ αy)pdst (8.62)

If we choose y ∈ C∞0 (Q), then boundary terms disappear and we obtain in
L2 the following identity

pt + ∆p = 0.

If we choose test functions such that y(T ) 6= 0 we obtain as equailty in L2

that
p(T ) = ȳ(T )− yd ∈ Ω

Finally, if we allow functions y to vary also on the boundary of the domain
we obtain

∇pn+ αp = 0.

These equations are the adjoint equations for the problem as derived for-
mally. It remains to derive the gradient equation by computing the deriva-
tive of L with respect to u.

DuL(ȳ, ū, p̄)(u− ū) = λ

∫
Γ
ū(u− ū)dst+

∫
Γ
βp(u− ū)dst (8.63)

and hence the variational inequality∫
Γ
(λū+ βp)(u− ū)dst ≥ 0∀u ∈ Uad. (8.64)

The previous computations are valid only in the case where the regularity
of y and p is such that yt and pt is well-defined. A setting in which this
is possible is given in the case of one–dimensional problem using Green’s
function.

Let us assume that Ω = (0, 1) and the control is prescribed on the
right boundary x = 1 only. It is atime-dependent control u(t). At the
boundary x = 0 we prescirbe Neumann conditions. Furthermore, we assume
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an initial condition of y0 = 0. The numbers T > 0, λ ≥ 0 and β ≥ 0 with
β ∈ L∞(0, T ). Furthermore, we assume that f, yd ∈ L2(0, 1). We look for
optimal controls u in Uad ⊂ L2(0, T ).

In order to discuss rigorous results for the optimization problem (8.56)
we consider the general initial-value problem for the one-dimensional heat
equation given by

yt − yxx = f (8.65)

yx(0, t) = 0 (8.66)

yx(1, t) + αy(1, t) = u(t) (8.67)

y(x, 0) = y0(x) (8.68)

It can be shown that the equation has the following solution

y(x, t) =

∫ 1

0
G(x, ξ, t)y0(ξ)dξ+

∫ t

0

∫ 1

0
G(x, ξ, t−s)f(ξ, s)dξds+

∫ t

0
G(x, 1, t−s)u(s)ds

(8.69)
where G is the Green’s function. The precise type of the Green’s function
depends on the boundary conditions as well as the domain. It can be shown
that in the previous case we have

α = 0 : G(x, ξ, t) = 1 + 2

∞∑
n=1

cos(nπx) cos(nxπ) exp(−n2π2t)(8.70)

α > 0 : G(x, ξ, t) =
∞∑
n=1

1

Nn
cos(µnx) cos(µnξ) exp(−µ2

nt) (8.71)

Here, µn ≥ 0 are the solutions to the equation µ tan(µ) = α and we have
Nn = 1

2 + sin(2µn)/(4µn).

Exercise 8.28. Show that G is non–negative, symmetric in x and ξ and
singular at x = ξ as well as t = 0.

One has the following regularity result. Provided the assumptions on
f, y0 are satisfied we have that y ∈ L2(Ω) if u ∈ L2(0, T ). Hence, the solution
is not a classical, but a generalized solution to the one-dimensional heat
equation.

1. In the case of control at the boundary we set in the previous formula
f = y0 = 0. Then, the problem reads: minimize (8.56) subject to
yy − yxx = 0, yx(0, t) = 0, yx(1, t) + αy(1, t) = u, y(x, 0) = 0.
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In the cost functional only the terminal costs y(x, T ) appear and they
can be rewritten as

y(x, T ) =

∫ T

0
G(x, 1, T − s)β(s)u(s)ds = (Su)(x)

for the integral operator S mapping L2(0, T ) into L2(0, 1). It can be
shown that S is in fact a bounded linear operator.

2. In the case of distributed control the function f is the control and
u = y0 = 0. The problem reads minimize∫

Q

1

2
(y(x, t)− yd)2dxdt+

λ

2
u2dxdt

subject to yt − yxx = f, yx(0, t) = 0, yx(1, t) + αy(1, t) = 0, y(x, 0) = 0
where we now assume that yd is in L2(Q). We replace again y in the
cost functional by it’s representation as Green’s function and obtain

y(x, t) =

∫ t

0

∫ 1

0
G(x, ξ, t− s)f(ξ, s)dξds = (Sf)(x, t).

Again, S is a linear (and even bounded) operator from L2(Q) to L2(Q).

We discuss briefly existence results and optimality conditions. Using the
operator representation we obtain as formulation in the first case:

min
u inUad

f(u) =
1

2
‖Su− yd‖L2(0,1) +

λ

2
‖u‖L2(0,T ) (8.72) labell-4

We have existence due to Theorem 9.16 and the necessary optimality cnodi-
tion at a minimum ū (

S∗S(ū− yd) + λū, u− ū
)
≥ 0. (8.73)

In order to obtain the first-order system we introduce the adjoint operator
S∗ and discuss its properties. The adjoint is defined by the equality in the
Hilbert space U = L2(0, 1) and V = L2(0, T ) with S : V → U

(v, Su)U = (S∗v, u)V
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and we obtain by the following calculation for any u, v ∈ U that

(v, Su)U =

∫ 1

0
v(x)

∫ T

0
G(x, 1, T − s)β(s)u(s)dsdx (8.74)

=

∫ 1

0

∫ T

0
G(x, 1, T − s)β(s)v(x)u(s)dsdx (8.75)

=

∫ T

0
u(s)

∫ 1

0
u(s)β(s)G(x, 1, T − s)v(x)dxds (8.76)

=

∫ T

0
(S∗v)(s)u(s)ds = (S∗v, u)V (8.77)

S∗v(s) = β(s)

∫ 1

0
G(ξ, 1, T − s)v(ξ)dξ (8.78)

Lemma 8.29. We have S∗v(t) = β(t)p(1, t) where p is the solution to the
parabolic problem

−pt − pxx = 0, px(0, t) = 0, px(1, t) + αp(1, t) = 0, p(x, T ) = v(x) (8.79)

Proof. From the definition of S∗ and due to the symmetry of Green’s
function with respect to the first two arguments we obtain

(S∗v)(t) = β(t)

∫ 1

0
G(1, ξ, T − t)v(ξ)dξ (8.80)

This defines a function

p(t) =

∫ 1

0
G(1, ξ, T − t)v(ξ)dξ.

In the definition of S∗ we now transform time by using τ = T − t. We thus
obtain

ỹ(x, τ) = p(x, T − τ) =

∫ 1

0
G(1, ξ, τ)v(ξ)dξ.

Hence, ỹ satisfies the equation

ỹτ − ỹxx = 0, ỹx(0, τ) = 0, ỹx(1, τ) + αỹ(1, τ) = 0, ỹ(x, 0) = v(x) (8.81)

Now, using again the substiution we recover p as p(x, t) = ỹ(x, T − t). Note
that provided ỹ has sufficient regularity we have pt = −ỹt. �

Combining the previous lemma with the necessary variational inequality
gives the following result.
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Theorem 8.30. A control ū ∈ Uad with corresponding state ȳ = Sū is
optimal, if and only if the following inequality holds for p̄ satisfying (8.79)
with v = (ȳ(T )− yd).∫ T

0

(
β(t)p̄(1, t) + λū(t)

) (
u(t)− ū(t)

)
dt ≥ 0, ∀u ∈ Uad. (8.82) labell-8

We want to obtain a pointwise result we first prove the following result.

Lemma 8.31. Let Ω be an open set. Let u, v, φ, ua, ub ∈ U = L2(Ω),Ω ⊂ R
and Uad = {u ∈ L2(Ω) : ua(x) ≤ u(x) ≤ ub(x) a.e. } satisfy∫

Ω
φ(x)

(
v(x)− u(x)

)
dx ≥ 0, ∀v(x) ∈ Uad.

Then, we have
φ(x)

(
v − u(x)

)
≥ 0

for all v ∈ [ua(x), ub(x)] and a.e. in x ∈ Ω.

Proof. Since z ∈ L2(0, 1) we have that almost everywhere in x the
following limit exists

lim
ρ→0

1

‖Bρ(x)‖

∫
Bρ(x)

∫
Bρ(x)

φ(ξ)dξ = φ(x).

Assuming ρ is sufficiently small we have that Bρ ∈ Ω. A similar equality
holds for u, ua, ub. Consider now the set of points where the equality holds
for u and φ (the complement of this set has measure zero). Choose such
a point x0 and w ∈ [ua(x0), ub(x0)] ∈ R. Define v(x) = w in Bρ(x0) and
v(x) = u(x) for x ∈ Ω\Bρ(x0). The variational inequality then yields

0 ≤ 1

‖Bρ(x)‖

∫
Ω
φ(x)(v(x)− u(x))dx = (8.83)

1

‖Bρ(x)‖

∫
Bρ(x)

φ(x)(w − u(x))dx (8.84)

→ρ→0 (8.85)

0 ≤ φ(x0)(w − u(x0)) (8.86)

This proves the lemma. �
From the previous lemma we also obtain after simple rearrangment:

φ(x)v ≥ φ(x)u(x) ∀v ∈ [ua(x), ub(x)], a.e. in x. (8.87)
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and hence a.e. in x

min
v∈[ua(x),ub(x)]

φ(x)v = φ(x)u(x). (8.88)

This equality implies the following for a.e. x

φ(x) > 0 : u(x) = ua(x) φ(x) = 0 : u(x) ∈ [ua(x), ub(x)] (8.89)

φ(x) < 0 : u(x) = ub(x) (8.90)

labell-7 Lemma 8.32. Let Ω be an open set. Let u, v, φ, ua, ub ∈ U = L2(Ω),Ω ⊂ R
and Uad = {u ∈ L2(Ω) : ua(x) ≤ u(x) ≤ ub(x) a.e. } satisfy∫

Ω
φ(x)

(
v(x)− u(x)

)
dx ≥ 0, ∀v(x) ∈ Uad.

Then, we have

φ(x) > 0 : u(x) = ua(x) (8.91)

φ(x) = 0 : u(x) ∈ [ua(x), ub(x)] (8.92)

φ(x) < 0 : u(x) = ub(x) (8.93)

We apply lemma 8.32 to the parabolic problem and obtain

labell-9 Lemma 8.33. Let Uad = {u ∈ L2(0, T ) : ua(t) ≤ u(t) ≤ ub(t)a.e.int} for
some functions ua, ub ∈ L2(0, T ). Then, the variational inequality∫ T

0

(
β(t)p̄(1, t) + λū(t)

) (
u(t)− ū(t)

)
dt ≥ 0, ∀u ∈ Uad

holds true, if and only if a.e. in t

ū(t) = P[ua(t),ub(t)](−β(t)/λ(t)p(1, t)), λ > 0

and using the Heavi-side function H

ū(t) = ua(x)H(β(t)p(1, t)) + ub(x)H(−β(t)p(1, t)), λ = 0

Proof. This is a direct consequence of lemma 8.32 with φ(t) = β(t)p(1, t)+
λū(t). Assume first λ0 then we have

(
β(t)p(1, t)

λ
+ ū(t))v ≥ (

β(t)p(1, t)

λ
+ ū(t))ū(t).
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Hence, if −β(t)p(1,t)
λ ≤ ua(t), then 0 ≤ ua + β(t)p(1,t)

λ ≤ u + β(t)p(1,t)
λ and

therefore u(t) = ua(t). Similarly, we have u(t) = ub(t) if −β(t)p(1,t)
λ ≥ ub(t).

In the case β(t)
λ p(1, t)+ ū(t) = 0 we have ū(t) = −β(t)

λ p(1, t). This proves the
result. Except for the last case the discussion is similar in the case λ = 0. In
the case λ = 0 u(t) is not defined if βp = 0. The converse directions follows
from integration of the given inequalities. �

In the case of distributed control we obtain the following result.

Theorem 8.34. A control ū ∈ Uad = {u ∈ L2(Q) : ua ≤ u ≤ uba.e.inx, t}
for some functions ua, ub ∈ L2(0, T ) is optimal for the problem

min

∫
Q

1

2
(y(x, t)− yd)2dxdt+

λ

2
u2dxdt

subject to yt − yxx = u, yx(0, t) = 0, yx(1, t) = 0, y(x, 0) = 0, if and only if(
p̄(x, t) + λū(x, t)

) (
v − ū(x, t)

)
≥ 0, v ∈ [ua(x, t), ub(x, t)].

where p̄ satisfies the following set of equations

−pt = pxx + y − yd, px(0, t) = 0, px(1, t) = 0, p(x, T ) = 0. (8.94)

Exercise 8.35. Prove the previous theorem.

Finally, we discuss the case λ = 0 in more detail. For simplicity we set
Uad = {−1 ≤ u ≤ 1} and β = 1 and consider the problem

min
1

2

∫ 1

0

(
y(x, T )− yd

)2
dx(8.95)

yt − yxx = 0, yx(0, t) = 0, yx(1, t) = u(t)− αy(1, t), y(x, 0) = 0, u ∈ Uad.(8.96)

Due to Lemma 8.33 we have

ū(t) =

(
1 p(1, t) < 0
−1 p(1, t)

)
. (8.97)

However, there is no information at points where p(1, t) = 0. It can be
shown that the set of points where p(1, t) = 0 is of measure zero. This are
the switching points and outside these points the control is either one or
minus one. Therefore, we speak of a bang-bang control.

122



Theorem 8.36 (Bang-bang principle). Let ū be the optimal control for the
boundary control problem (8.95) and ȳ the corresponding state. Assume that

‖ȳ − yd‖L2(0,1) > 0.

Then p(1, t) has only a countable number of zeros. The only accumula-
tion point is t = T. Further, |u(t)| = 1 a.e. in t.

A proof can be found in Troeltzsch, p78.

8.4 Necessary optimality conditions in the convex case – sen-
sitivity, duality

As explained above the theory of Lagrange multipliers allows for a particular
nice geometric interpretation in the case of convex optimization. We recall
the definition of a positive vector and cone.

Let P be a convex cone in the vector space X. Then for x, y ∈ X we
write x ≥ y if x − y ∈ P. The cone N = −P is the negative conce in X.
We easily verify that x ≥ y, y ≥ z implies x ≥ z and since 0 ∈ P we obtain
x ≥ x. In the normed space X we write x > 0 if x is an interior point of the
positive cone. As before, we will require to have an interior point in order
to apply a separating hyperplane argument.

Given a normed space X and a positive cone P we denote by P ∗ the
corresponding positive cone in the dual space X∗ defined by all linear func-
tionals being positive on P :

P ∗ = {x∗ ∈ X∗ :< x, x∗ >≥ 0 ∀x ∈ P} (8.98) luen2

Example. In the space Rn the positive functionals are given by the row–
vectors with non–negative components. In the space C0(0, 1) the positive
cone are all continuous, non–negative functions. The dual cone consists of
all functions of bounded variation which are non–decreasing.

Remark 8.37. If f is a bounded linear functional on X = C0(0, 1). Then
there exists a function of v of bounded variation on (0, 1) such that for all
x ∈ X

f(x) =

∫ 1

0
x(t)dv(t).

and such that the norm of f is the total variation of v. Conversly every
function defines a bounded linear functional on X.

This result does not hold for more than one space dimension. The total
variation of a function v is defined by TV (v) = supti

∑
i |v(ti) − vti−1 |. Any
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function v of bounded variation is continuous to the right. The character-
ization is not unique. One has to normalize such that e.g. v(a) = 0. The
norm is TV. For any function v of bounded variation and x continuous the
integral is well-defined as Stieltjes-Integral and computed as

lim
0<tj<1

∑
j

x(tj)|v(tj)− v(tj−1)|.

Lemma 8.38. Let the positive cone P in the normed space X be closed. If
x ∈ X satisfies < x, x∗ >≥ 0 for all x∗ ≥ 0.

Proof. Assume x 6∈ P . Then, by the separating hyperplane theorem,
there is an x∗ ∈ X∗ such that < x, x∗ > < < p, x∗ > for all p ∈ P. Since P is
a cone, < p, x∗ > can never be negative because then < x, x∗ >>< αp, x∗ >
for some α > 0. Thus, x∗ ∈ P ∗. Since infp∈P < p, x∗ >= 0 we obtain
< x, x∗ >< 0 and a contradiction. �

Remark 8.39. A hyperplane H in a linear vector space X can be charac-
terized by a linear functional x∗ in the following sense: H = {x ∈ X :<
x, x∗ >= c}. Hyperplanes including the origin, play a prominent role. If H
does contain the origin, then there exists aunique linear functional x∗ such
that H = {x ∈ R :< x, x∗ >= 1.}. Any hyperplane is closed, if f is a con-
tinuous linear functional. Hence, we almost always are interested in closed
hyperplanes.

Hahn-Banach’s Theorem can be expressed in terms of hyperplanes: Let
K be a convex set with non-empty interior. Suppose that V is a linear
subspace of X which does not contain any interior point of K. Then, there
exists a closed hyperplane H containing V but not containing interior points
of K : < v, x∗ >= c for all v ∈ V and < k, x∗ >< c for all k ∈ int(K). This
can be furher specialised to Eidelheit’s separation theorem, see above.

We give a general definition of convexity in normed spaces.

Definition 8.40. Let X be a vector space and let Z be a vector space having
a positive cone P . A mapping G : X → Z is said to be convex, if the domain
Ω of G is a convex and if

G(αx+ (1− α)y) ≤ αG(x) + (1− α)G(y)

for all x, y ∈ Ω and α ∈ (0, 1).

Note that by definition the set

{x ∈ X : x ∈ Ω, G(x) ≤ z}
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is convex, provided that G and Ω are convex.
We will now consider the optimization problem

min
x∈X

f(x) subject to x ∈ Ω, G(x) ≤ 0 (8.99) l:1

under the assumptions (A) that

• X,Z are normed spaces, G : X → Z , Z contains a positive cone.

• Ω is convex and G is convex and f is real-valued, convex

The analysis of the preceeding section is based on the following function.
Let

Γ = {z ∈ Z : ∃x ∈ Ω : G(x) ≤ z}

and define
w(z) := inf{f(x) : x ∈ Ω, G(x) ≤ z}

The original problem is of course the solution to w(0). The set Γ is convex.
We study hence variations of the feasible set and it’s relation to the minimal
functional value. We hvae the following properties: At first, w is convex,
since the appearing sets in the following equation get smaller and smaller.
w(αz1 +(1−α)z2) = inf{f(x) : x ∈ Ω : G(x) ≤ αz1 +(1−α)z2} ≤ inf{f(x) :
x = αx1 + (1− α)x2, xi ∈ Ω : G(xi) ≤ zi} ≤≤ α inf{f(x) : x1 ∈ Ω : G(x1) ≤
z1} + (1 − α) inf{f(x) : x2 ∈ Ω : G(x2) ≤ z2} Second, the functional is
decreasing in z, i.e., z1 ≥ z2 =⇒ w(z1) ≥ w(z2). This also due to the
infimum. Hence, a typical plot of w(z) against z shows a decreasing convex
function. Therefore, any hyperplane tangential at a point z0 lies below the
function w. Hence, if we would move the coordinate system such that the
tangent at z0 is horizontal, we observe that w is minimized at z0. The
shift of the tangent is viewed as adding a linear function to the tangent
and w respectively. Another way, of saying this is as follows: Adding an
appropriate linear functional < z, z∗ > to w(z) the resulting combination

w(z)+ < z, z∗ >

is minimized z0. We are now interested to apply this procedure at z0 = 0.
The functional (or graphically the linear function) is z∗ and will be later on
the Lagrange multiplier. It is the element 1, z∗ in R× Z∗. This idea results
in the following theorem.

Theorem 8.41. Assume (A) holds. Assume that there exists a point x1 ∈ Ω
such that G(x1) < 0 (i.e., interior point of P must exists). Let µ0 = inf f(x)
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subject to x ∈ Ω and G(x) ≤ 0. Assume |µ0| <∞. Then, there is an element
z∗ ∈ Z∗ and z∗ ≥ 0 such that

µ0 = inf
x∈Ω

f(x)+ < G(x), z∗ > .

If the infimum is achieved at x0 ∈ Ω with G(x0) ≤ 0, then < G(x0), z∗ >=
0.

A proof can be found in [?], pages 218. The convexity is explained by
the reasoning on the position of the hyperplane above. The interior point
condition is severe. It is used to obtain the existence of a non–vertical z∗ 6=
∞ hyperplane. The case of H(x) = 0 excluded by the previous theorem.
Note that the trick to set G1 = H and G2 = −H and G = (G1, G2) does
not(!) work, since there is no point satisfying G(x1) < 0. There is a version
of this theorem with H : X → Y being affine linear and Y being finite–
dimensional.

Lemma 8.42. Assume the setting of the previous theorem. Assume x0

achieves the constrained minimum. Then, there is a z∗0 such that the La-
grangian

L(x, z∗) = f(x)+ < G(x), z∗ >

has a saddle point at (x0, z
∗
0).

Proof. A saddle point at x0 and z∗0 is characterized by

L(x0, z
∗) ≤ L(x0, z

∗
0) ≤ L(x, z∗0)

for all x ∈ Ω and z∗ ≥ 0. We take z∗0 from the previous theorem. From

µ0 = inf
x∈Ω
{f(x)+ < G(x), z∗0 >}

we obtain the second inequality. Since x0 achieves the minimum we have
< G(x0, z

∗
0 >= 0, x0 ∈ Ω, G(x0 <= 0

L(x0, z
∗)− L(x0, z

∗
0) = f(x0)+ < G(x0), z∗ > −f(x0) =< G(x0, z

∗ >≤ 0

�
Convexity also ensures sufficient conditions for optimality. The details

are given in [10] chapter 8.5. The main result is as follows

Theorem 8.43. Assume(A) holds and additionally that P is closed. Sup-
pose there exists z∗0 ∈ Z∗, z∗0 ≥ 0 and an x0 ∈ Ω such that the Lagrangian
L(x, z∗) = f(x)+ < G(x), z∗ > possess a saddle point at x0, z

∗
0 among

x ∈ Ω, z∗ ∈ Z∗. Then, x0 solves the minimization problem minx∈Ω f(x)
subject to G(x) ≤ 0.
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8.4.1 Sensitivity in the convex case

The Lagrange function is also used in order to study sensitivity and dual-
ity relations of the optimization problem. The interpretation is as follows.
Consider the minimization problem

min f(x)subject to G(x) ≤ z0

and assume that due to the previous theorem z∗0 is the supporting hyper-
plane at z0. Since w is convex this hyperplane also serves as a lower bound
for w.

Theorem 8.44. Let f and G be convex and suppose xi, i = 0, 1 is a solution
to the problem

min f(x), x ∈ Ω, G(x) ≤ zi.

Suppose z∗i are the corresponding Lagrange multipliers.
Then,

< z1 − z0, z
∗
1 >≤ f(x0)− f(x1) ≤< z1 − z0, z

∗
0 > .

Proof. The Lagrange multipliers z∗0 makes

f(x0)+ < G(x0)− z0, z
∗
0 >≤ f(x)+ < G(x)− z0, z

∗
0 >

for all x ∈ Ω. Since x0 attains the minimum we have < G(x)− z0, z
∗
0 >= 0

and therefore the first inequality follows, if x = x1. Since then< G(x1), z∗ >≤<
z1, z

∗ > . �
Hence, the right–hand side of the equation yields

f(x)− f(x0) ≥< z0 − z, z∗0 >

where x solves the minimization problem min f(x) : G(x) ≤ z. Hence,
f(x) = inf{f : x ∈ Ω, G(x) ≤ z} and therefore the statement can be rewrit-
ten as

w(z)− w(z0) ≥< z0 − z, z∗0 >= − < z − z0, z
∗
0 > .

If w is differentiable at z0 we obtain

w′(z) = −z∗0

and therefore, the Lagrange multiplier is the negative of the first–order sen-
sitivity of the optimal objective with respect to the constraints. Therefore, in
economics the Lagrange multipliers are called hidden or shadow costs. If w
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is differentiable, then we obtain from the previous inequality for z = z0 + εh
that |w(z) − w(z0)| ≤ ε < h, z∗0 >. This justifies the gradient of w′. Note
that in many textbooks one can find the admissibility condition G(x) ≥ 0.
In this case the Lagrangian is given by L = f(x)− < G(x), z > and similarly
for w.

Figure 18: Sensitivitiy

8.4.2 Duality in the convex case

Consider again the convex problem min f(x) subject to x ∈ Ω and G(x) ≤ 0.
Again, we consider the plot of the convex function

w(z) := inf{f(x) : G(x) ≤ 0, x ∈ Ω}.

We consider the intersection at z = 0 of hyerplanes attached to different
points zi. The observation is as follows. The point of intersection µ0 lies
above(!) all other points of intersection. This hyperplane of course is given
by the Lagrange multiplier. Next, we express this fact in terms of duality
principle in terms of the multiplier. We define the dual functional

φ(z∗) = inf
x∈Ω
{f(x)+ < G(x), z∗ >}

on the positive cone P in Z∗. The function φ may well be unbounded.
However, there is an interpretation of this function in terms of w. Recall,
that Γ = {z ∈ Z : ∃x ∈ Ω : G(x) ≤ z}.

Lemma 8.45. The dual function φ is concave and can be expressed as

φ(z∗) = inf
z∈Γ
{w(z)+ < z, z∗ >}.

Proof. Let η, ψ ∈ Z∗ and α ∈ (0, 1) φ(αη + (1 − α)ψ) = infz∈Γ{αw +
α < z, η > +(1 − α)w + (1 − α) < z, ψ >} ≥ infz∈Γ{αw + α < z, η >
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} + inf{(1 − α)w + (1 − α) < z, ψ >} and hence ψ is concave. For any
z∗ ≥ 0 and any z ∈ Γ we estimate φ(z∗) = infx∈Ω(f(x)+ < G(x), z∗ >) ≤
infx∈Ω,G(x)≤z(f(x)+ < z, z∗ >) = w(z)+ < z, z∗ > . On the other hand
for any fixed x1 ∈ Ω with z1 = G(x1) we have f(x1)+ < G(x1), z∗ >≥
inf{f(x)+ < z1, z

∗ >: G(x) ≤ z1, x ∈ Ω} = w(z1)+ < z1, z
∗ > . Since this

holds for any x1 such that there exists a z1 with G(x1) ≤ z1 we take the
infimum on both sides and obtain φ(z∗) ≥ infz∈Γ(w(z)+ < z, z∗ >). �

We offer the following additional interpretation of this result. The el-
ement (1, z∗) ∈ R × Z∗ determines a family of hyperplanes consisting of
points (r, z) such that

r+ < z, z∗ >= k

for some k ∈ R constant. If we consider the hyperplane with k = φ(z∗)
the previous Lemma tells that this hyperplanes supports the set (w,Γ) (the
region above w). An applied result of this fact is the Lagrange duality.

Theorem 8.46. Assume (A). Suppose there exists an x1 suc that G(x1) < 0
and that µ0 = inf{f : G(x) ≤ 0, x ∈ Ω} is finite. Then,

inf
G(x)≤0,x∈Ω

f(x) = max
z∗≥0

φ(z∗).

The maximum is achieved for some z∗.

Since w is decreasing an equivalent reformulation using w(0) ≤ w(z) for
all z ≤ 0 is

min
z≤0

w(z) = max
z∗≥0

φ(z∗).

Figure 19: Duality
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8.5 Descent directions for cost functionals and PDE con-
strained problems

In the case of PDE constrained problems the previous discussions allow for a
numerical algorithm for efficient computation of the optimal solution. This
algorithm can be stated in infinite–dimensional setting and is applicable in
the following situation.

Let U, Y be Banach spaces. Let W ′ be the dual of a reflexive Banach
space W. Let the objective functions be

J : Y × U → R (8.100)

and the state operator be

E : Y × U →W ′ (8.101)

The controls are u ∈ U, the states are y ∈ Y. We want to solve the following
problem3

min
y∈Y,u∈U

J(y, u) subject to E(y, u) = 0 (8.102)

The crucial assertion for the following derivation to be true is that For all
u ∈ U the state equation E(y, u) = 0 posses a uniqe solution y = y(u). .

Example 8.47. The classical example is of course

J(y, u) =
1

2
‖y − yd‖2L2 +

λ

2
‖u‖2L2

and
−∆y = u in Ω, y = 0 on ∂Ω

with U = L2 and Y = H1 and W = (H1)∗ = H1.

8.5.1 Definitions and Notation

From the previous chapters we recall that the following definitions

Definition 8.48 (Dual space). Let Y be a Banach space. Then the dual
space is defined as

Y ′ = L(Y ;R) (8.103)

3E = 0 in W ′ means E[w] = 0∀w ∈W.
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For notation: the evaluation of a functional y′ ∈ Y ′ at a point y ∈ Y is
denoted by

y′[y] ∈ R (8.104)

For equalities y′1 = y′2 means y′1[y] = y′2[y]∀y ∈ Y.

Definition 8.49 (Adjoint operator). Let X,Y be Banach spaces and T :
X → Y be an operator. Then the adjoint operator is defined by

T ′ : Y ′ → X ′, y′ → (T ′y′)[x] := y′[Tx]∀x ∈ X (8.105)

Example 8.50. We obmit the parenthese for T ′, i.e. T ′y′ = T ′(y′). Deriva-
tives are not be denoted by ′.

Definition 8.51 (Frechet derivative). Let X,Y be Banach spaces. Let T :

X → Y then the operator ∀x ∈ X : dT (x)
dx ∈ L(X;Y ) is the Frechet derivative,

iff ∀x, x0 ∈ X

T (x) = T (x0) +
dT (x0)

dx
(x− x0) + o(‖x− x0‖2) (8.106)

Example 8.52. In the case T : X → R we have dT (x)
dx ∈ L(X;R) = X ′.

Thus by notation dT (x0)
dx (x) = dT (x0)

dx [x].

Theorem 8.53 (Chain rule in speacial case). Let U, Y be Banach spaces.
Let y : U → Y and L̃ : Y → R be differentiable operators. Define the
operator L = L ◦ y by

u→ L(y(u)) : U → R (8.107)

Then the derivative dL(y(u))
du ∈ U ′ is given by ∀ũ ∈ U, u ∈ U

dL(y(u))

du
[ũ] =

dy(u)

du

′[dL(y(u))

dy
[ũ]
]

(8.108)

or in short notation

Lu(y(u)) = y′u(u)Ly(y(u)) (8.109)

The derivative of y is given by dy(u)
du ∈ L(U ;R) = U ′, i.e. let denote ỹ :=

dy(u)
du ∈ L(U ;Y ) for arbitrary, fixed u ∈ U. We have dL(y(u))

du ∈ L(U ;R) = U ′

and by chain rule dL(y(u))
du [ũ] = dL(y(u))

dy [ỹ(ũ)]. Thus the structure is A[B(ũ)],
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where A ∈ Y ′, B ∈ L(U ;Y ), ũ ∈ U. Since U, Y are Banach spaces we can
define the operator B′ : Y ′ → U ′ and have (B′y′)[u] = y′[Bu]. With y′ =
A, u = ũ we get (B′A)[u] = A[B(ũ)]. Inserting all definitions we derive the
above.

Hence, we can compute

Theorem 8.54 (Derivative of a duality product). Let Y be a Banach space.
Let W be a reflexive Banach space, i.e. W ′′ = W. Let E : Y → W ′ be a
differentiable operator. Then the following holds ∀ỹ ∈ Y and fixed w ∈W

d{E(y)[w]}
dy

(ỹ) =
(dE(y)

dy

′
w
)

[ỹ] (8.110)

We note dE(y)
dy ∈ L(Y ;W ′) for fixed y and hence dE(y)

dy

′
: W ′′ = W → Y ′.

Since W is reflexiv and with B := dE(y)
dy we have for all fixed w = w′′ ∈

W,W ′′ and for all ỹ ∈ Y (B′w′′)[ỹ] = w′′(Bỹ) = (Bỹ)[w]. By appling the
definition of the derivative to the operator y → E(y)[w] and using the above

calculations, we obtain d{E(y)[w]}
dy (ỹ) =

(
dE(y)
dy (ỹ)

)
[w] = (dE(y)

dy

′
w)[ỹ].

8.5.2 Algorithm for computing the descent direction

Let U, Y be Banach spaces. Let W ′ be the dual of a reflexive Banach space
W. Let the objective functions be

J : Y × U → R (8.111)

and the state operator be

E : Y × U →W ′ (8.112)

The controls are u ∈ U, the states are y ∈ Y.
We assume, that forall u ∈ U the state equation E(y, u) = 0 posses a

uniqe solution y = y(u). Then the above control problem is equivalent to
the reduced control problem, namely

min
u∈U

j(u) = J(y(u), u) (8.113)

j(u) is the reduced objective function.
We assume J,E Frechet differentiable and u→ y(u) is Frechet differen-

tiable.
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We introduce a Lagrange multiplies w ∈ W for the state equation and
define the Lagrange function L : Y × U ×W → R by

L(y, u, w) = J(y, u) + E(y, u)[w] (8.114)

We obtain

L(y(u), u, w) = J(y(u), u) = j(u) ∀u ∈ U,w ∈W (8.115)

since E(y(u), u) = 0 ∀u ∈ U.
Hence we get ∀u ∈ U,w ∈W

dj(u)

du
[ũ] =

(
dy(u)

du

′dL(y(u), u, w)

dy
+
dL(y(u), u, w)

du

)
[ũ]∀ũ ∈ U (8.116)

The idea is now to choose w ∈W, s.t.

dL(y(u), u, w)

dy
[ỹ] = 0 ∀ỹ ∈ Y (8.117)

This is the adjoint equation and w its solution w = w(u) is the adjoint
state. Expressing Ly in terms of J and E we obtain

0 =
dL(y(u), u, w)

dy
[ỹ] =

(
dJ(y(u), u)

dy
+
dE(y(u), u)

dy

′
w

)
[ỹ] ∀ỹ ∈ Y(8.118)

If we assume, that Ey is continuously invertible the adjoint state w = w(u)
is uniquely determined.

Inserting the adjoint state w(u) in ju we obtain

dj(u)
du [ũ] =

(
dy(u)
du

′ dL(y(u),u,w(u))
dy + dL(y(u),u,w(u))

du

)
[ũ]

= dL(y(u),u,w(u))
du [ũ]

=
(
dJ(y(u),u)

du + dE(y(u),u)
du

′
w
)

[ũ]

∀ũ ∈ U


(8.119)

Algorithm for computing the gradient dj(u)
du for given u ∈ U.

1. Compute y = y(u) ∈ Y by solving the state equation

E(y, u) = 0 (8.120)
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2. Compute the adjoint state w = w(u) ∈ W by solving the adjoint
equation

d

dy
E(y, u)′w = − d

dy
J(y, u) (8.121)

3. Compute d
duj(u) by the equation

d

du
j(u) =

d

du
J(y, u) +

d

du
E(y, u)′w (8.122)

For the given control problem we obtain the following steps:

1. Solve −∆y = u, y = 0 for y given u.

2. Solve −∆p = (y − yd), p = 0 for p given y

3. Obtain the gradient of the reduced cost functional as u+ λp.

9 Existence of Minimizers in infinite space dimen-
sions

9.1 General case

We prove the existence of minimizers in infinite space dimensions. It turns
out that this can be achieved by a variational approach. This introduction
can also be found in [14, 7]. In the following sections we will then assume that
there exists at least a local minimizer and focus on constraint qualifications.
Another approach focus on montone operators that extend the well-known
montone functions in R.

At first we present a general theory before latter treating at first uncon-
strained problems by means of variational theory and second constrained
problems.

We consider the following abstract formulation

min J(u) subject to u ∈ C (9.1)

where J : C ⊂ U → R and wherein U is a Banach or Hilbert space.
We may extend J to U by setting J(U) = +∞ for all u 6∈ C. We

distinguish between local and global minimizer.

Definition 9.1 (Minimzers). A point u ∈ U is called a local minimizer, if
there exists an open set V ⊂ U such that u ∈ U and J(u) ≤ J(v)∀v ∈ V
and a global minimizer, if J(u) ≤ J(v)∀v ∈ U.
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As we shall see later, local minimizers of smooth functionals can be
characterized by conditions on the first and second derivative. For global
optima, there is in general no other condition than the above. Of course,
each global minimizer is also a local one, but in general not vice versa.

In order to obtain existence of solutions for a general optimization prob-
lem, two basic properties are needed: compactness and lower semicontinuity.
We recall the definition of the latter.

Definition 9.2. Let (U, T ) be a topological space and let J : U → R be a
given functional. Then J is lower semicontinuous at u ∈ U if

J(u) ≤ sup
V ∈T

inf
v∈V

J(v) (9.2)

If U is a metric space this definition is equivalent to a charaterization by
sequences. The functional J is lower semicontinuous at u ∈ U if

J(u) ≤ lim inf J(uk) (9.3)

for all sequences uk converging to u.

To prove existence of a minimizer lower semicontinuity and compact-
ness is sufficient. Note that compactness in infinite dimensional spaces is
a stronger assumption than in finite dimensional spaces. In particular, the
conclusion “bounded and closed implies compact” does not hold in infinite
dimensional spaces. We repeat the definition of compactness.

Definition 9.3 (Compactness). A topological space (X,T ) is compact, iff
every open cover of X has a finite cover.

If X is a metric space and topological compact, then there exists a con-
vergent subsequence. In a metric space “sequentially compact” and “topo-
logical compact” are equivalent.

Theorem 9.4 (Existence). Let J : U → R be lower semicontinuous and let
the level set

{u ∈ U : J(u) ≤M} (9.4)

be non-empty and compact for some M ∈ R. Then there exists a global
minimum of of the problem

min
u∈U

J(u) (9.5)
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Proof. Let α := inf J(u). Then there exists a sequence uk such that
J(uk) → α. For k sufficiently large we have J(uk) ≤ M and hence uk is
contained in a compact set. Then there exists a subsequence also denoted
by uk such that uk → u∗ ∈ U. Note that J(u∗) > −∞ since J : C ⊂ U →
(−∞,∞) by definition, i.e., evaluations of J for elements u ∈ C yields finite
values. Due to the lower semicontinuity we obtain

α ≤ J(u∗) ≤ lim inf J(uk) = α (9.6)

Therefore, u∗ is a local minimizer. �Usually,
the compactness of the above set is not guranteed. One can at most hope,
to obtain a bounded set. The following theorem yields a weak convergent
subsequence for bounded sets, for proofs see [2, 16].

Compactness Theorem Theorem 9.5. Let U be a Hilbert space and let uk be a bounded sequence
in U. Then there exists a weak convergent subsequence (ukl), ie.,

< v, ukl >→< v, u∗ > ∀v ∈ U (9.7)

for some u∗ ∈ U.

Exercise 9.6. 1. Show that every strongly convergent sequence is weakly
convergent.

2. Prove that ‖A‖L(X,Y ) = sup‖x‖X=1 ‖Au‖Y defines a norm on the
space of all linear operators on Banach spaces X,Y.

3. Given a Hilbert space X. Prove that xn → x weakly and yn → y strong
implies (xn, yn)→ (x, y).

Note that this theorem is a special case of the theorem of Eberlein-
Smulyan.

Eberlein-Smulyan Theorem 9.7 (Eberlein-Smulyan). A space X is reflexiv (ie. there exists a
linear, isometric and continuous mapping I such that I(X) = X ′′ where X ′′

is the bi-dual), iff the closed unit ball in X is weakly sequentially compact.

There is a similar result for the dual space X ′.

Theorem 9.8. Let X be separabel (ie. there exists a dense, countable subset
in X), then the closed unit ball in X ′ is weakly-∗ sequentially compact.
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We finally prove the weak version of the previous theorem. Note that
we need to require J to be weak lower semicontinuous, ie.,

uk → u weakly =⇒ J(u) ≤ lim inf J(uk) (9.8)

We will later see, under which additional assumptions on J this condition
holds.

Existence theorem Theorem 9.9 (Existence). Let U be a Hilbert space. Let J : U → R be
weak lower semicontinuous (wlsc) and let the level set

{u ∈ U : J(u) ≤M} (9.9)

be non-empty and bounded for some M ∈ R. Then there exists a global
minimum of of the problem

min
u∈U

J(u) (9.10)

Proof. Let α := inf J(u). Then there exists a sequence uk such that
J(uk) → α. For k sufficiently large we have J(uk) ≤ M and hence uk is
bounded. Hence there exists a weakly convergent subsequences denoted by
uk such that uk → u∗ ∈ U weakly. Since J is wlsc we have

α ≤ J(u∗) ≤ lim inf J(uk) = α (9.11)

Therefore, u∗ is a local minimizer. �
The condition {u ∈ U : J(u) ≤M} is a bounded set can be enforced by

coercivity.

coercivity theorem Theorem 9.10 (Coercivity). Let U be a Hilbert space and J : U → R
satisfy

J(u)

‖u‖
→ ∞ as ‖u‖ → ∞ (9.12)

Then the set

{u ∈ U : J(u) ≤M} (9.13)

is non-empty and bounded for M sufficiently large.

Proof. For arbitrary u0 ∈ U we have J(u0) < ∞ and hence for M ≥
J(u0) the set M := {u ∈ U : J(u) ≤ M} is non-empty. Now, let M
be given with a sufficiently large and arbitrary M and assume that M is
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unbounded. Then there exists uk ∈ M with ‖uk‖ → ∞ and J(uk) ≤ M.
Dividing this inequality by ‖uk‖ and let k →∞, we obtain a contradiction
to the coercivity assumption. �

Reviewing the existence results of the previous section, we observe that
there are only two main ingredients: We need boundedness of the sequence to
conclude the existence of a weakly convergent subsequence and we need weak
lower semicontinuity to exchange exchange application of the functional with
the limit. Typically, in applications the admissible set C is not the full
Hilbert space. We can either set now J(u) = +∞ for u 6∈ C but then have
to proof the coercivity or we may proceed as follows: If C is additionally
bounded, closed and convex, then we trivially obtain the boundedness of the
sequence and that the limit exists in C. All the previous arguments can then
be applied analogously. This gives the following existence result.

existence for bounded sets Theorem 9.11 (Existence on bounded, closed, convex subsets). Let U be a
Hilbert space and C be a closed, convex and bounded subset of U. Let J :
U → R be a weakly lower semicontinuous function. Then, there exists a
minimum to

min
u∈Uad

J(u).

Finally, one can skip the assumption on boundedness of U and replace
it by the coercivity. The proof is then as before with the difference that the
limit is now in Uad since it is still and closed and convex.

existence for unbounded sets Theorem 9.12 (Existence on closed, convex subsets). Let U be a Hilbert
space and C be a closed and convex subset of U. Let J : U → R be a weakly
lower semicontinuous and coercive function. Then, there exists a minimum
to

min
u∈Uad

J(u).

Next, we consider first necessary conditions which be extended later on.
In this general setting we can prove the following Let U be a Banach space
and C ⊂ U a convex set. Let J : C → R be Gateaux differentiable. Let
ū ∈ C a solution to

min
u∈C

J(u) (9.14)

Then the variational inequality

J ′(ū)(u− ū) ≥ 0 ∀u ∈ C (9.15)

is satisfied.
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Proof. Let u ∈ C be arbitrary. Then consider u(t) = ū + t(u− ū) and
since C is convex: u(t) ∈ C for all t ∈ [0, 1]. Obviously

J(ū) ≤ J(u(t)) (9.16)

and therefore

1

t

(
J(ū+ t(u− ū))− J(ū)

)
≥ 0 (9.17)

For t→ 0 we obtain the desired result. �
Note that C convex is a rather strict restriction on the constraints. If

we for example consider an equality constrained problem, min J(u) subject
to h(u) = 0, then h has to be linear to satisfy this restriction. In the
following sections we will therefore consider more general constraint qualifi-
cations which also gives some information, if C is not convex and which are
also related to the structure of h. Nevertheless, the important case of box
constraints is covered by this theorem.

Also, comparing with the finite dimensional case (see below), there exists
a more general result which can be found for example in [5] pp. 16.

Definition 9.13. Let C be a closed subset of the Banach space U. For u ∈ C
we define the tangential cone TC(u) at u by

TC(u) := {v ∈ U : ∃ε > 0∀0 ≤ t ≤ ε∃w(t) ∈ C : ‖u+ tv − w(t)‖ = o(t)}(9.18)

If u belongs to the interior of C, then the tangential cone is TC(U) = U.
Further, we have a similar theorem to the above of necessary first order
conditions if C is closed.

Theorem 9.14. Let J : U → R be continuously Frechet differentiable and
let u∗ be a local minimizer of minu∈C J(u). If C is closed, then

J ′(u∗)v ≥ 0 ∀v ∈ TC(u∗) (9.19)

Proof. Obviously, TC 6= ∅. Let v ∈ TC(u∗) be given. Then for each
t ∈ [0, ε] we have due to the continuity of J

J(w(t)) = J(u∗ + vt) + o(t) = J(u∗) + tvJ ′(u∗) + o(t) (9.20)

Since J(u∗) is a local minimum we have

0 ≤ tvJ ′(u∗) + o(t) (9.21)
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for t sufficiently small. This implies that vJ ′(u∗) ≥ 0, since for any fixed
constant c̃ > 0 : tc̃ 6= o(t). �

The above is the most general result for necessary first order conditions.
Since we later on consider equality and inequality constraints of the type
h(x) = 0, g(x) ≤ 0, i.e., C := {x : h(x) = 0, g(x) ≤ 0} we would like to char-
acterize the set TC(u∗) in terms of h and g. In general, this is not possible.
We need to impose further assumptions to obtain a relation between
the gradient at the minimum and the functions h and g respectively. This
will also give are more precise characterisation of the minimum (i.e. KKT
theorem and existence of Lagrange multipliers).

9.2 Examples of PDE constrained optimization problems

The previous theory can be applied to several problems in PDE constrained
optimization. We give some examples below. A more general treatment
of unconstrained problems by variational methods is given in the following
subsection.

The first example is tracking–type problem for an elliptic partial differ-
ential equation. We consider the problemocp pde 1

min
1

2
‖y − yd‖2L2 +

λ

2
‖u‖2L2 (9.22a)

subject to −∆y = βu in Ω (9.22b)

y = 0 on ∂Ω (9.22c)

ua ≤ u ≤ ub a.e.x ∈ Ω (9.22d)

To avoid technical difficulities will make the following assumption on the
domain Ω ∈ Rn. It is assumed that Ω is a bounded, Lipschitz domain. Fur-
thermore, we assume that λ ≥ 0 and β ∈ L∞ and that the other appearing
functions are sufficiently regular, e.g., ua ≤ ub ∈ L2 and yd ∈ L2. Then,
we define the set of suitable control functions u to be in Hilbertspace with
suitable compactness properties and choose

Uad = {u ∈ L2 : ua ≤ u ≤ ub a.e. x ∈ Ω}.

Then, Uad is a non–empty, convex subset and closed subset of L2, since it is
defined pointwise a.e. in Ω.

Exercise 9.15. Prove that Uad is closed and convex.

Due to standard elliptic existence theory we obtain that for every u ∈ Uad
a unique solution y ∈ H1

0 (Ω). Therefore, a reasonable state space is Y = H1
0
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(where we skipp the dependence of Ω whenever the intention is clear). To
apply the existence result of the previous section we itnroduce a mapping

G(u) = y : L2 → H1
0

where for a given control u, the state y is defined as the solution to

−∆y = βu in Ωy = 0 on ∂Ω (9.23)

We obtain that G is linear and bounded, since due to standard theory , we
have

‖G(u)‖H1 = ‖y‖H1 ≤ c‖u‖L2 .

We furtherforemore introduce the operator

S = IL2,H1G : L2 → L2

where I is the imbedding from H1
0 → L2 and I is linear and bounded.

Introducing S has the advantage that the adjoint operator S∗ is an operator
from L2 → L2. Introducing, S we can reformulate the optimization problem
as follows

min
u∈Uad

1

2
‖Su− yd‖2L2 +

λ

2
‖u‖2L2 (9.24)

Using this reformulation we can apply the existence results and obtain the
following result.

existence result hilbert space Theorem 9.16. Let {U, ‖ · ‖U} and {H, ‖ · ‖H} be real vector spaces and
Uad a non–empty, closed and convex set Uad ⊂ U, yd ∈ H and λ ≥ 0.
Let S : U → H be a linear and continuous operator. Then, the following
quadratic problem admits

min
u∈Uad

1

2
‖Su− yd‖2H +

λ

2
‖u‖2U (9.25)

an optimal solution u∗ and its unique if λ > 0.

Exercise 9.17. In the setting of Theorem 9.16 prove that f(u) = ‖Su −
yd‖2H + λ

2‖u‖
2
U is strict convex if λ > 0.

We can either proof this directly or by applying the previous results.
The direct proof is along the following lines. Since j(u) := 1

2‖Su − yd‖
2
H +

λ
2‖u‖

2
U ≥ 0 there exists the infimum of all functional values j := infu∈Uad j(u).

Hence, there exists a sequence un ∈ Uad such that for n→∞ we obtain

j(un)→ j.
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Now, since we are in the infinite-dimensional space, the bounded and closed
set Uad is not necessarily compact. However, it is weak sequentially com-
pact, i.e., amy bounded sequence has a weakly convergent subsequence, see
Theorem 9.5. Since Uad is also convex, the limit u∗ is in Uad, see The-
orem 9.7. Since S is a continuous operator, so is j. However, this is not
sufficient to conclude j(un) = j(u). However, j is a composition of norms and
therefore weak lower semicontinuous (alternatively: j continous and convex
implies weakly lower semicontinuity) . Hence, we obain for a subsequence

j(u∗) ≤ lim inf j(un) = j.

Since j is the infimum on all values we obtain that u∗ is the minimizer of j.
Since j is convex as soon as λ > 0 we obtain uniqueness.

Proof. Consider the case λ > 0. The function j(u) := 1
2‖Su − yd‖

2
H +

λ
2‖u‖

2
U is weak lower semicontinuous. For u 6∈ Uad we set j(u) = +∞. For

λ > 0 the function j satifsfies

j(u)/‖u‖ → ∞

as ‖u‖ → ∞ and hence the set {u ∈ U : j(u) ≤ M} is bounded form some
due to Theorem 9.10. Furthermore, it is non empty, since Uad ⊂ U. Then,
due Theorem 9.9 there exists a minimum u ∈ U . Since for u 6∈ Uad we have
j(u) = +∞, we obtain that u ∈ Uad. Uniqueness is due to the fact that j is
convex if λ > 0.

Alternatively, we could apply Theorem (9.11) to deduce the existence.
�

This allows now for the following result on the PDE constrained problem.
Let U = H = L2. Then, Uad = {u ∈ L2 : ua ≤ u ≤ ub} is a closed, convex
and bounded subset of U . Hence, by applying Theorem 9.16 we obtain

Lemma 9.18. The problem (9.22) admits an optimal solution u∗ ∈ Uad
under the given assumptions on Ω, β, ua and ub. The solution is unique if
λ > 0.

and by applying theorem (9.12) we have

Lemma 9.19. The problem (9.22) admits an unique optimal solution u∗ ∈
Uad under the given assumptions on Ω, β and for ua = −∞ and ub = +∞
and if λ > 0.

The previous results obviously extend to further PDE constrained prob-
lems. Consider for example Robin boundary data instead of the Dirchlet
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data:ocp pde 2

min
1

2
‖y − yd‖2L2 +

λ

2
‖u‖2L2 (9.26a)

subject to −∆y = βu in Ω (9.26b)

∂ny = α(ya − y) on ∂Ω (9.26c)

ua ≤ u ≤ ub a.e.x ∈ Ω (9.26d)

We assume here that ya ∈ L2(∂Ω) and α ∈ L∞(∂Ω) and
∫
∂Ω αds > 0.

Standard PDE theory guarantees the existence and uniqueness of y ∈ H1

for any fixed u ∈ L2 and ya ∈ L2. We denote by yu the solution to (u, ya ≡ 0)
and by y0 the solution to (u ≡ 0, ya). Then, any solution y can be written
as y = yu + y0. The solution operator G : u → yu is linear and continuous
as a mapping from L2 to H1 and we again apply the embedding from H1 to
L2 to define the operator S = IdL2,H1G. The full solution is hence written
as

Su+ y0 : L2 → L2

and the problem can be reformulated as

min
u∈Uad

1

2
‖Su− yd + y0‖2L2 +

λ

2
‖u‖2L2 . (9.27) ocp pde 3

Obviously, the previously established results also cover this case and we
obtain existence and for λ > 0 of an optimal control u∗.

Next, consider for example Robin boundary data with boundary control
ocp pde 2

min
1

2
‖y − yd‖2L2 +

λ

2
‖u‖2L2(∂Ω) (9.28a)

subject to −∆y = 0 in Ω (9.28b)

∂ny = α(u− y) on ∂Ω (9.28c)

ua ≤ u ≤ ub a.e.x ∈ ∂Ω (9.28d)

We assume here that α ∈ L∞(∂Ω) and
∫
∂Ω αds > 0 to guarantee uniqueness

of the solution. Standard PDE theory guarantees the existence and unique-
ness of y ∈ H1 for any fixed u ∈ L2(∂Ω). Hence, the solution operator
G : u→ y : L2(∂Ω)→ H1 is linear and continuous as a mapping from L2 to
H1 and we again apply the embedding from H1 to L2 to define the operator
S = IdL2,H1G. The full solution is hence written as

Su : L2(∂Ω)→ L2(Ω)
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and the problem can be reformulated as

min
u∈Uad

1

2
‖Su− yd‖2L2 +

λ

2
‖u‖2L2(∂Ω). (9.29) ocp pde 3

Obviously, the previously established results also cover this case and we
obtain existence and for λ > 0 of an optimal control u∗.

Exercise 9.20. 1. Given a smooth bounded domain Ω ⊂ Rn, b, yd ∈
L2(Ω) and d ∈ L2(∂Ω). We assume that d is a boundary value of a
function y ∈ H1(Ω). Derive the necessary optimality conditions for the
problem

min

∫
Ω

(y − yd)2dx

subject to
−∆y = u+ b

and
y = d

on ∂Ω with the box constraints −1 ≤ u ≤ 1 a.e. in x.

2. Derive formally the necessary conditions for the problem

min

∫
Ω

(y − yd)2 + λu2dx+

∫
∂Ω
dydSx

subject to
−∆y + y = u+ b

and
y = d

on ∂Ω with the box constraints −1 ≤ u ≤ 1 a.e. in x.

9.3 Variational problems or unconstrained energy minimiza-
tion

Applications of the above theory are given in the book by Evans [7]. In
particular we are interested in minimization problems related to partial dif-
ferential equations. The problems are unconstrained in the sense that we
minimize a cost functional depending on ∇u and/or u without further PDE
constraints. The functional we investigate is given in Definition 9.21.
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2:def Definition 9.21. Let U ⊂ Rn open, bounded domain with smooth boundary.
Let L : Rn×R×U → R, L = L(p, z, x) be a given function. Then we define
the functional

I(u) =

∫
U
L(∇u(x), u(x), x)dx,

where u : U → R.

In the next few lines, we see that there is a pde problem behind such
minimization problems. Sei u ein Minimierer von I und v ∈ C∞0 (U) eine
beliebige Testfunktion. Weiterhin erfüllt u = g auf ∂U. Die Euler-Lagrange
Gleichung ergibt sich dann aus der Bemerkung, daß die Funktion

i(τ) := I(u+ τv), τ ∈ R

ein Minimum für τ = 0 hat, d.h. es gilt

i′(0) = 0.

Differentiation (L, u hinreichend glatt) der Funktion i(τ) nach τ, Auswer-
tung im Punkt τ = 0 und partielle Integration ergibt dann die zugehörige
PDE

0 =

∫
U

[
−

n∑
i=1

(Lpi(Du, u, x))xi + Lz(Du, u, x)

]
vdx

und damit (obige Gleichung gilt ∀v) die klassische nichtlineare PDE zweiter
Ordnung

0 = −
n∑
i=1

(Lpi(Du, u, x))xi + Lz(Du, u, x), ∀x ∈ U

u = g, ∀x ∈ ∂U

9.3.1 Beispiele

1. L(p, z, x) = 1/2|p|2 führt zu ∆u = 0.

2. L(p, z, x) = 1/2
n∑

i,j=1
aij(x)pipj − zf(x) führt zu −

n∑
i,j=1

(aij(x)uxi)xj =

f.

3. L(p, z, x) =
√

(1 + |p|2) führt zu div( Du
(1+|Du|2)1/2

) = 0, der sogenan-

nten Minimalflächen Gleichung.
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Bisher war u : U → R gesucht. Die Funktionale lassen sich jedoch
leicht auf Systeme erweitern , d.h. gesucht werden Funktionen u : URm.
Damit ergibt sich ∇u zu einer m × n Matrix und die Funktion L hat den
Definitionsbereich

L : Rm×n × Rm × U → R

Die gleiche Idee wie oben ergibt dann ein System von m Differentialgle-
ichungen in U, welches gekoppelt und nichtlinear ist. Die Struktur ist wie
folgt

−
n∑
i=1

(
Lpki

(Du, u, x)

)
xi

+ Lzk(Du, u, x) = 0, k = 1, . . . ,m

Dabei bezeichnet Lpki
die Ableitung nach der Komponente (k, i) der Funk-

tion L.
Bestimmte Lagrange Funktionen sind interessant zu studieren. Die so-

genannten Null-Lagrange Funktionen.

Definition 9.22. Die Funktion L heißt Null-Lagrange Funktion, wenn das
System der Euler-Lagrange Gleichungen für alle glatten Funktionen gelöst
werden.

Daraus ergibt sich der folgende Satz.

Theorem 9.23. (Null-Lagrange und Funktionale)
Sei L eine Null-Lagrange Funktion und seien u, û zwei C2(U ;Rm) Funk-

tionen mit u ≡ û auf ∂U. Dann gilt I(u) = I(û).

Proof. Betrachten der Ableitung der Funktion i(τ) = I(τu+ (1− τ)û)
ergibt i′(τ) = 0.

Theorem 9.24. (Beispiel einer Null-Lagrange Funktion)
Die Determinantenfunktionen L(P ) = detP ist ein Null-Lagrange.

Proof. Der Beweis benutzt das Lemma
n∑
i=1

(cofDu)ki,xi = 0, k =

1, . . . , n.4

4Evans, siehe Seite 440ff
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9.3.2 Coercivity

To apply existence and uniqueness theorems of the previous discussion, we
introduce some growth criterias for L.

Für das Funktional I(u) der Lagrange Funktion L, definiert man ein
starkes Wachstum des Funktionales für große Argumente u durch folgende
Koerzivitätsbedingung

Definition 9.25. Sei 1 < q <∞ und gelte weiterhin

∃α > 0, β ≥ 0 : L(p, z, x) ≥ α|p|q − β ∀p ∈ Rn, z ∈ R, x ∈ U

Dann erfüllt I die Koerzivitätsbedingung.

Example 9.26. Es gilt

|Dw| → ∞ =⇒ I(w) ≥ α|Dw|q − β|U | → ∞,

d.h. I koerziv impliziert, daß

inf I(w) ≥ −β|U | > −∞

gilt.
Die letzte Ungleichung kann auch noch sinnvoll definiert werden, wenn

die Funktion u nicht glatt ist, sondern lediglich aus W 1,p. Somit definiert
man für die Kanditaten der Minimierung die Menge A durch

A = {w ∈W 1,p(U) : w = g ∀x ∈ ∂U}

w = g auf ∂U ist zu verstehen im Spursinn, d.h. die Abbildung T :
W 1,p(U) → Lp(∂U) soll stetig sein. Dies ist erfüllt, wenn ∂U ∈ C1 gilt.
Zum Beweis dieser Aussage zeige man dies zuerst für glatte Funktionen und
approximiere dann Sobolevfunktionen durch glatte Funktionen5

9.3.3 Weak lower semicontinuity

Besides some coercivity we also needed weak lower semicontinuity. We in-
troduce the notation again and focus on the Sobolev spaces necessary in the
problem description.

Bei dem Existenzbeweis wird eine Minimalfolge in A gewählt, von der
gezeigt werden kann, daß sie in W 1,p beschränkt ist. Somit hat diese eine
schwach konvergente Teilfolge.

5Evans
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Nun möchte man gerne, daß gilt um ⇀ u impliziert I(um) → I(u), um
auf ein Minimum zu schliessen.

An Voraussetzungen hat man jedoch nur um ⇀ u,Lp und Dun ⇀
Du,Lp. Durch die Sobolevschen Einbettungssätze W 1,p(U) ⊂⊂ Lq(U) kann
die Konvergenz um ⇀ u noch verstärkt werden, doch über die Gradienten
ergibt sich keine Aussage. Die obige Implikation ist aber zu stark zu fordern,
es reicht auch den Begriff der Unterhalbstetigkeit einzuführen.

Definition 9.27. I heißt schwach folgenunterhalbstetig auf W 1,p(U), wenn
für alle Folgen um mit

um ⇀ u,W 1,p

gilt
I(u) ≤ lim inf I(um)

9.3.4 Convexity

We obtain that convexity can gurantee the weak lower semicontinuity. This
is an important fact, since convexity is much easier to check, then wlsc.

Für hinreichend glatte Funktionale I erfüllt L eine Konvexitätsbedingung.
Im folgenden Satz ergibt sich ein Zusammenhang zwischen der Unterhalb-
stetigkeit.

9.3.5 Konvexität

Definition 9.28. (Konvexität)
Eine Funktion f : Rn → R heißt konvex, wenn gilt

f(τx+ (1− τ)y) ≤ τf(x) + (1− τ)f(y) ∀x, y ∈ Rn, 0 ≤ τ ≤ 1

Theorem 9.29. 1. Sei f konvex, dann existiert für alle x ∈ Rn ein r ∈
Rn mit

f(y) ≥ f(x) + r(y − x) ∀y ∈ Rn

2. Sei f ∈ C1(Rn) und konvex, dann gilt r = Df(x)

3. Sei f ∈ C2(Rn). Dann ist äquivalent D2f(x) ≥ 0⇔ f konvex.

Theorem 9.30. Sei U beschränkt, L beschränkt, glatt und p → L(p, z, x)
konvex für alle z, x. Dann ist I schwach (folgen)unterhalbstetig in W 1,p(U).
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Proof. 6 Es werden verschiedene Sätze aus der Lebesguetheorie ver-
wendet. Zuerst gibt man sich eine Folge uk ⊂ W 1,p(U) vor, die schwach
konvergent ist. Hieraus schließt man die Beschränktheit von Duk und uk in
Lp(U). Problem: Zu untersuchen ist der Grenzwert∫

U
L(Duk, uk, x)dx,

d.h. ein Grenzwert in beiden Argumenten der Funktion L.
Nun wird die Konvergenz von uk in Lp(U) verstärkt durch (1) kompakte

Einbettung von W 1,p in Lp(U), (2) aus starker Konvergenz in Lp folgt Kon-
vergenz f.ü. (bzgl. |·| in R, (3) auf geeigneten Teilmengen folgt gleichmässige
Konvergenz.

Die Konvergenz des Gradienten kann nicht verstärkt werden, daher be-
nutzt man die Konvexität von L in der Variablen des Gradienten, um diesen
günstiger darzustellen. Es ergibt sich das neue Problem∫

U
L(Du, uk, x) +DpL(Du, uk, x)(Duk −Du)dx

Die Konvergenzen für uk sichern den Grenzübergang, denn der erste
Term konvergiert nach dem Satz von Lebesgue (L,U beschränkt) und der
zweite Term konvergiert (gegen Null), da das Produkt einer gleichmässig
konvergenten Folge und einer schwach konvergenten Folge konvergiert (siehe
Zettel).

Insgesamt ergibt sich dann die Behauptung. Wichtig war, daß der Gra-
dient nur noch linear auftritt und dann die schwache Konvergenz ausgenutzt
werden kann.

9.3.6 Existence and Uniqueness

Finally, we combine our findings and prove existence and uniquness. We
again state the proof, although it is similar to the general discussion before.

Theorem 9.31. (Existenz)
Sei L koerziv und konvex in der Variablen p. Sei weiterhin A nicht leer.
Dann gibt es mindestens eine Funktion u ∈ A mit

I(u) = min
w∈A

I(w)

6Evans, siehe Seite 446ff
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Proof. 7 Nach obigen Bemerkungen gilt inf I > −∞, Iw.slsc. Das Ziel
ist aus der Minimalfolge eine schwach konvergente Teilfolge auszuwählen.
Hinreichend dafür ist die Beschränktheit der Minimalfolge in W 1,q. An-
schließend muß noch u ∈ A gezeigt werden, d.h. das Minimum liegt auch
Definitionsbereich.

Existenz der Minimalfolge

1. Sei inf I <∞, denn sonst existiert kein Minimum

2. Aus inf I > −∞ folgt ∃uk ⊂ A mit I(uk)→ inf I.

Beschränktheit der Minimalfolge

3. Aus I(w) ≥ α‖Dw‖q − β (Koerzivität) und (1) folgt ‖Dw‖Lq ist
beschränkt für alle w ∈ A

4. U beschränkt und damit liefert Poincaresche Ungleichung: ‖u‖Lq ist
beschränkt.

5. =⇒ uk ⊂W 1,q beschränkt, d.h. es existiert eine schwach konvergente
Teilfolge uk ⇀ u.

u ∈ A

6. Satz von Mazur über schwach konvergente Folgen und die Abgeschlossen-
heit der Menge A lieferen die Behauptung

u ist Minimum

7. Da I w.slsc ist, folgt I(u) ≤ lim inf I(uk) und nach Wahl der uk gilt
I(uk)→ inf I, d.h. I(u) = min I. �

Um Eindeutigkeit der Lösung zu zeigen, sind weitere Voraussetzungen
an L nötig.

Theorem 9.32. (Eindeutigkeit)

Sei L = L(p, x) und ∃θ > 0 :
n∑

i,j=1
Lpipj (p, x)ξiξj ≥ θ|ξ|2 ∀x, p. Dann

ist das Minimum eindeutig.

7Evans, siehe Seite 448ff
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Proof. 8 Annahme es existieren zwei Minima u,w. Dann ist das Ziel,
zu zeigen, daß mit v = (u + w)/2 gilt I(v) < (I(u) + I(w))/2, was ein
Widerspruch ist.

Um diese Ungleichung zu beweisen, entwickelt man L nach p um q in
eine Taylroreihe bis zum zweiten Glied und schätzt dieses mit der zweiten
Bedingung ab. Geschickte Wahl der Größen p, q und Integration liefern
dann die Behauptung (zuerst erhält man Du = Dw, aber mit Poincarescher
Ungleichung folgt daraus u = w).

Die zweite Bedingung entspricht der Koerzivitätsbedingung elliptischer
Differentialgleichungen, die dort ebenfalls Eindeutigkeit garantiert.

9.3.7 Summary

Hinreichend zur Lösung des Minimierungsproblemes über W 1,p(U) ist also
I koerziv
und I w.slsc

=⇒ ∃u : min I = I(u)
bzw. mit stärkeren, aber einfacher zu überprüfenden Voraussetzungen

an L dann
L glatt, koerziv
und L konvex

=⇒ ∃u : min I = I(u)

und L gleichmässig konvex

=⇒ ∃!u : min I = I(u)

Example 9.33. We will give some examples that exactly fit to the theory
above. Of course, most of them are already included in the discussion of the
previous section. They are combined here to see some more simple applica-
tions.

We consider the problem with Ω ⊂ Rn bounded:

J(u) =

∫
Ω

(
|∇u(x)|2 + u2(x)− φ(x)u(x)

)
dx. (9.30)

We consider the problem stated in U = H1
0 (Ω) and assume φ ∈ L2(Ω) to be

given. First, we check, if {u ∈ U : J(u) ≤ M} is non-empty and compact.
Using Hölder inequality and the assumption we obtain∫

Ω
‖∇u‖2dx ≤ J(u) ≤M (9.31)

8Evans, siehe Seite 449ff
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Using the Poincare inequality we further see, that J(u) ≤ M implies u ∈
H1

0 (Ω) and ‖u‖H1
0
≤ M. Hence the above set is weakly (sequentially) com-

pact. Since u = 0 satisfies the constraint, we further notice that the set
if not empty. Next, we have to show, that J is weakly sequentially lower
semicontinuous. Assume uk → u weak in H1

0 (Ω). Since weak convergent se-
quences are bounded, we obtain ∇uk and uk are uniformly bounded in L2(Ω).
Now, we need some embedding theorems from the theory of Sobolev spaces.
If Ω has smooth boundary and n > 2, then H1

0 (Ω) ⊂⊂ L2(Ω). Using the
embedding we obtain that uk converges in L2(Ω) to u. (I.e. compact opera-
tor maps bounded sequences to convergent (sub-)sequences). Then we have∫
u2
k − φukdx→

∫
u2 − φudx. Now, we need to consider the convergence of

the gradients ∇uk. We note that

|∇uk|2 =
∑

i(∂xiuk)
2 = (9.32a)∑

i

((
∂xiu

)2
+ 2∂xiu(∂xiuk − ∂xiu) + (∂xiuk − ∂xiu)2

)
≥(9.32b)

‖∇u‖2 + 2∇u(∇uk −∇u) (9.32c)

=⇒
∫

Ω |∇uk|
2 − |∇u|2dx ≥ 2

∫
Ω∇u(∇uk −∇u)dx→ 0 (9.32d)

Indeed, ∇uk − ∇u is weakly convergent by assumption and ∇u ∈ L2(Ω).
Therefore, the above is just the definition of weakly convergent sequences.
Finally, we proved

J(uk)− J(u) ≥ 0 (9.33)

if uk → u weakly in H1
0 (Ω). Note that we have used the convexity property

of J in the argument ∇u. Now, we can apply the above theory and deduce
that there exists a minimum of the problem min J(u). We assume (without
proof) that J is Frechet differentiable. Then the we can conclude that the
variational inequality (with C = U) is satisfied in the minimum:

J ′(u∗) = 0

Computing the derivative we obtain the (strong form) of the elliptic differ-
ential equation

−∆u∗ + u∗ = φ/2 ∈ Ω, u = 0 on ∂Ω (9.34)

152



10 Numerical methods for Unconstrained Opti-
mization In Finite Space Dimensions

In the following we take f : D ⊂ Rn → R; f ∈ C1(D) (In most cases it
is implicitly assumed that also f ∈ C2,1(D), i.e., f ∈ C2(D) and for every
compact subset D1 ⊂ D there exists L ≥ 0, such that

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖ for all x, y ∈ D.

Also C2,1(D) ⊃ C3(D).)
Normally a scheme determines a sequence {xk} with

(i) xk ∈ Lf (f(x0)) = {x ∈ D : f(x) ≤ f(x0)}

(ii) ∇f(xk)→ 0

(iii) xk − xk+1 → 0

(There is also a scheme, which in addition enforces the necessary second-
order condition “∇2f(x∗) positive semi-definite” for every accumulation
point of {xk}.)

The conditions (i), (ii), (iii) are enforced during construction
of the scheme.

The existence of accumulation points, the convergence of the whole se-
quence and the minimality of the limit x∗ follows only from additional as-
sumptions on f . It has to be known that x0 ∈ D.

The assumption: Lf (f(x0)) = {x ∈ D : f(x) ≤ f(x0)} is compact
guarantees the existence of the accumulation points and the existence of
convergent subsequences with ∇f(x∗) = 0.

10.1 Numerical Schemes for Unconstrained Minimization,
n = 1

In the following we simplify the problem by taking D = R. We would like to
find the (one) minimum of f through a systematic search on the graph of f ,
only by applying the function values. An analog for the Bisection method
for finding a root (zero) is in this case the Tri-section:

Only the continuity of f is needed. This is favourable if the f -values are
inaccurately known (“’corrupted Data or Data with noise”’). The Trisection
partitions the interval into three parts, which means two values are evaluated
and the length of the total interval is reduced to 2/3 per step.
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Consider f(x) (for some x, f ′(x) may not exist). Suppose we want to
solve

min f(x) such that a ≤ x ≤ b. (10.35) eqn:1dprob

Let x∗ ∈ [a, b] denote the optimal solution (minimizer). We evaluate
f(x) at x1 and x2 (assume x1 < x2 on [a, b]) to determine the sub-interval
in which x∗ lies. Such a subinterval is called an interval of uncertainty.

There are three cases which we need to consider:

1. Case 1: f(x1) < f(x2)

Since f(x) is increasing before x reaches x2, then x∗ ∈ [a, x2) as illus-
trated in the figure.

x x 21
x

1
x 2

a
b

a b
x *

x
*

Figure 20: Case 1

2. Case 2: f(x1) = f(x2)

For some part of the interval [x1, x2], f(x) decreases and the optimal
solution x∗ < x2 i.e. x∗ ∈ [a, x2).

3. Case 3: f(x1) > f(x2)

For some part of the interval [x1, x2], f(x) decreases and the optimal
solution x∗ /∈ [a, x1) i.e. x∗ ∈ (x1, b].

The following is the algorithm that can be applied to search for a mini-
mum in one-dimension:

1: Let I0 = [a, b] be the initial interval of uncertainty.

2: Determine x0
1 and x0

2 and evaluate f(x) on these points.

3: While the length of Ik is not sufficiently small do

• Determine case 1 - 3 above and reduce Ik.
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Figure 21: Case 2
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Figure 22: Case 3

• Evaluate f(x) at the two-endpoints of Ik.

To select the endpoints xk1 and xk2 one can apply the Golden Section
Search described below.

To select the endpoints xk1 and xk2 one needs a judicious way of operating.
A common example is the Golden Section Search.
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Golden Section Search:
We need a cleverer way of partitioning the interval such that only one

test point per interval reduction is needed and the interval reduction is as
large as possible. This gives the partition based on the “ Principle of a
Golden Section Search”:

Total Interval
Bigger sub-interval

=
bigger sub-interval
smaller sub-interval

1
% = %

1−% , % > 0 ⇒ % = 1
2(
√

5− 1) ≈ 0.618

=⇒ %

(%)2
=

(%)2

%− (%)2
,

1− (%)2

1− %
=

1− %
%− (%)2

Here the sub-interval 0, % is divided by %2 and the sub-interval %2, 1 is
divided by 1− % using the principle of the Golden Section Search.
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Problem: Given [a, b]. Sought: a minimum x∗ of f on [a, b].
Assumption: f ∈ C[a, b].

Search using the principle of the golden section:

% := 1
2(
√

5− 1); a(0) := a; b(0) := b; l(0) := (b(0) − a(0))%

x
(0)
R := b− %l(0); x

(0)
L := a+ %l(0);

Compute f(x
(0)
R ), f(x

(0)
L ).

k =0, 1, 2, ...

l(k+1) := %l(k)

In case f(x
(k)
R ) > f(x

(k)
L ), then

b(k+1) := x
(k)
R ; a(k+1) := a(k);

x
(k+1)
L := a(k+1) + %l(k+1); x

(k+1)
R := x

(k)
L

Compute f(x
(k+1)
L )

otherwise

a(k+1) := x
(k)
L ; b(k+1) := b(k); x

(k+1)
L := x

(k)
R ;

x
(k+1)
R := b(k+1) − %l(k+1)

Compute f(x
(k+1)
R ).

Theorem 10.1. Let f : [a, b]→ R be strict quasi-convex on [a, b]. Then x∗

is a minimum of f x∗ ∈ [a(i), b(i)] for all i and

l(i) = %(b(i) − a(i)) = (%)il(0) for all i,

also a(i) → x∗, b(i) → x∗, i.e. the rate of convergence is linear .

Remark 10.2. • We would like to note that with the Golden Section
Search:

x1 = b− ρ(b− a);

x2 = a+ ρ(b− a);

i.e. we move a distance of ρ(b − a) from both end points of interval.
Thus evaluating f(x1) and f(x2) reduces the interval of uncertainty to
length ρ(b− a):

if f(x1) ≤ f(x2), x∗ ∈ [a, x2) which gives x3 = x2 − ρ(x2 − a) and
x4 = a+ρ(x2−a) = a+ρ2(b−a) = a+ (1−ρ)(b−a) = x1. Similarly,
for f(x1) > f(x2) we have x∗ ∈ (x1, b] in which case x3 = x2 and
x4 = x1 + ρ(b− x1). In general f must only be computed once at each
iteration step.
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Figure 23: Applying the Golden Section Search

a bx1
x2

(b − a)

(b − a)!

!

• Also l2 = ρl1 = ρ2(b − a). In general lk = ρlk−1 = ρk(b − a). If we
want a final interval of uncertainty to have length � ε, we perform k
iterations of Golden Section Search where
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ρk(b− a) < ε

Criticism: this is a simple, reliable but expensive algorithm
(too many function values have to be computed if high accuracy is de-
manded)

But: Faster schemes demand better differentiability properties of f . A
helpful tool is the polynomial interpolation:

Here we are interested in polynomials of degree 2 or 3, since in this case
a minimum of the polynomials can be determined simply.

10.2 Numerical Schemes for Unconstrained Minimization,
n > 1

Remark 10.3. Most usual minimizing schemes normally apply the gradi-
ents of the objective function to compute directions, in which xk will change.
Assembling the formulae for the gradients can be a very daunting and ex-
pensive process.

1. Using formulae for numerical differentiation, for example,

∂f

∂xi
(y) =

f(y + τei)− f(y − τei)
2τ

+ Ω((τ)2).

In this case one has to choose the discretisation step-width τ care-
fully, especially depending on the evaluation accuracy in f , inorder to
achieve reasonable results. If the function values of f are themselves
results from another algorithm (for example, a Finite Element compu-
tation program or a differential equation solver) then it is not clear if
such an algorithm produces in the least a differentiable function of the
ptimization parameter. An example is a differential equation solver
with step-width control. Hence it is recommended that numerical dif-
ferentiation should be avoided whenever possible. In principle we can
also achieve here high accuracy, if the function values themselves are
proved to be of high accuracy.

2. Automatic Differentiation - Application of automatic systems (Pre-
compiler) which generate automatically a programme for differenti-
ation. This approach can be taken, if the evaluation of f is inde-
pendently undertaken by a separate procedure. Such an approach is
called “automatic Differentiation” and there are such programs avail-
able. (jakef, ADIFOR, ADOL-C, TAMC etc.) The program code for
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the function is given and the output is also a program code for the
function, the gradient and eventually even a Hessian matrix. The so
called Modelling Systems which allow an approximative formulation of
the Optimization problem, and this is internally transformed into an
evaluation program for the corresponding functions, do also contain an
option for automatic differentiation (AMPL, GAMS).

3. Application of Formula Manipulators (Computer Algebra Packages)
which after inputting a formula for f generate the formula for ∇f .
(MATHEMATICA, MAPLE, AXIOM, DERIVE, MUPAD, etc.)

10.2.1 Line-Search Methods

The methods are used to determine a point x∗ such that ∇f(x∗) = 0. In
general one only obtains a point x∗ which is not necessarily the minimum.
For all currently used methods we require at least a descent in the functional
values. The general form of a descent method is

xk+1 = xk − σkdk (10.36)

and we construct methods generating a sequence xk such that xk → x∗ and
f(x∗) ≤ f(xk). For a proof of convergence it is sufficient to have

f(xk)− f(xk+1) ≥ ψ(‖∇f(xk)‖) (10.37) descent suff

with a function ψ : R+ → R+ and of the form ψ = ctβ and f bounded from
below: fk = f(xk) is strictly decreasing and bounded from below. Hence,
f = lim fk exists and therefore 0 ≥ limψ(‖∇fk‖) ≥ 0. The construction of
suitable σk and dk, such that (10.37) holds is given below.

Definition 10.4. Let x ∈ S, f ∈ C1. Then −d is a descent direction, if
∇f(x)Td ≥ 0.

Definition 10.5. Let x ∈ S, f ∈ C1,−d is a descent direction. σ satisfies
the principle of sufficient decrease if

f(x)− f(x− σd) ≥ c1σ∇f(x)Td

and if
σ ≥ c2∇f(x)Td/‖d‖2

for constants c1,2 independent of d, x, σ.
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In the following we assume that

A1. D = Rn, f ∈ C2 bounded from below , x0 ∈ D : Lf (x0) is compact.
(10.38) ass1

Under the previous assumptions is M2 well-defined.

M2 = max{‖∇2f‖ : y ∈ Lf (x0)}.

σ satisfying the principle of sufficient decrease can be found using the fol-
lowing theorem.

Theorem 10.6. Let x ∈ S, f ∈ C1. Let d ∈ Rn with ∇f(x)Td > 0 and
δ ∈ (0, 1). Then, there exists τ such that

1. f(x− σd) < f(x)− δσ∇f(x)Td ∀σ ∈ (0, τ)

2. f(x− τd) = f(x)− δτ∇f(x)Td

3. τ ≥ ρ := 2(1−δ)
M2

∇f(x)T d
‖d‖22

.

4. − d
dσf(x− σd) = ∇f(x− σd)Td > δ∇f(x)Td ∀σ ∈ (0, ρ2).

The previous theorem states that there exists σ sufficiently large (≥ ρ
2)

satisfying the principle of sufficient decrease. Several possibilities to obtain
σ are known.

1. Exact Line Search corresponding to property III.

In the case of the exact line search approach we consider the following
problem:

min
σ>0

f(xk + σdk).

To solve the problem the minimizer for

φ(σ) = f(xk + σdk), σ > 0

has to be found. The process of finding such a minimizer is too ex-
pensive and the exact line search approach is not prefered. However,
if f is convex then we evaluate

σ =
∇f(x)Td

dT∇2f(x− θσd)d
, θ ∈ (0, 1) (10.39) line search convex case
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2. Inexact Line Search:

In this approach steps that are neither too long nor too short are
picked. The methods also assist in picking a “useful” initial guess for
each step length inorder to ensure fast asymptotic convergence.

The following is a summary of a basic line search algorithm with back-
tracking:

1: Given σinit > 0 (e.g. σinit = 1);

2: Let σ0 = σinit;

3: While f(xk) ≥ f(xk + σld
k) do

• set σl+1 = τσl, where τ ∈ (0, 1) (e.g. τ = 1
2)

• l← l + 1

4: σk = σl.

Backtracking prevents steps from getting too small since τ iσinit, i =
0, 1, . . . is accepted. Unfortunately, there is no mechanism for prevent-
ing steps taken from being too large relative to the decrease in f . A
remedy is Armijo’s rule.

3. Goldstein – Armijo

This is an inexact line–search with backtracking. Let (x, d) ∈ Lf (x0)×
Rn with ∇f(x)Td > 0. Assume parameters δ, β with 0 < δ, β < 1 and
c3,4 positive and c3 < c4. Set

σ0 ∈

(
c3
∇f(x)Td

‖d‖2
, c4
∇f(x)Td

‖d‖2

)

and determine

k = min{j : f(x)− f(x− βjσ0d) ≥ δβjσ0∇f(x)Td}

and obtain
σ = σ0β

k.

Theorem 10.7. The Goldstein–Armijo rule yields always an admis-
sible stepsize σ satisfying the principle of sufficient decrease.
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fig:armijo

acceptable 
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Figure 24: The Armijo condition: φ(σ) = f(xk + σdk) on the y axis, the
x-axis is σ, the dotted straight line l(σ) = f(xk) + c1σ〈dk,∇f(xk)〉.

If f is convex, c3,4 should be chosen such that (10.39) is not(!) ex-
cluded. This amounts to set

c3 ≤
1

sup ‖∇2f‖
, c4 ≥ sup ‖∇−2f‖.

Next, we discuss how to determine the admissible direction dk.
The stepsize σ is chosen independent of d. From the principle of sufficient
decrease we have

f(xk)− f(xk − σdk) ≥ c1c2(∇f(x)Td)2/‖d‖2 (10.40)

since σ ≥ c2∇f(x)Td/‖d‖2. If f is bounded from below we obtain∇f(xk)Tdk/‖dk‖ →
0. For dk suitable we want to conclude that this implies ∇f(xk) → 0. For
gk = ∇f(xk) and βk = (gk)Tdk/(‖dk‖‖gk‖) = cos(dk, gk) we have

f(xk)− f(xk − σdk) ≥ c1c2(βk)2‖gk‖2 (10.41)

and hence
lim inf ‖gk‖ → 0

if
∑

(βk)2 → ∞. This has to be satisfied by all directions dk. On example
is the SOR–Newton: dk is a priori given, normally dk = ±e(k mod n)+1 (co-
ordinate direction) or dk = ±v(k mod n)+1, {vj} approximate eigenvector
system of ∇2f(xk), is tried first in the course of computing. These direc-
tions are not uniformly downhill direction. Nevertheless with additional
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assumption of f being uniformly convex the convergence of the correspond-
ing descent methods can be proved.

General descent directions satisfying the previous assumptions on βk can
be found using gradient directions:

Definition 10.8. Let d ∈ Rn. Then d is called downhill direction if, for
suitable constants c5,6 > 0 and independent of x, d we have

c5‖∇f(x)‖ ≥ ‖d‖ ≥ 1

c5
‖∇f(x)‖, ∇f(x)Td ≥ c6‖∇f(x)‖‖d‖.

From the previous definition it follows

∇f(x)Td ≥ c7‖d‖2, ∇f(x)Td ≥ c8‖∇f(x)‖2.

For downhill directions we have

f(xk)− f(xk − σdk) ≥ c1c2c
2
6‖∇f(xk)‖2

and therefore ∇f(xk)→ 0.

Theorem 10.9. Let (A1) hold. Let xk = xk−1−σk−1d
k−1 with dk downhill

direction, σk satisfying the principle of sufficient decrease. Then, f(xk) is
monotone decreasing, ∇f(xk) → 0, if σk is bounded, xk+1 − xk → 0, if xk

has a accumulation point x∗, then ∇f(x∗) = 0 and if there are only finitely
many points with ∇f(x∗) = 0, then there is precisesly one accumulation
point.

Proof. f(xk) − f(xk − σdk) ≥ c1c2c
2
6‖∇f(xk)‖2 ≥ 0 yields that f(xk)

is monotone decreasing with xk ∈ Lf (x0). Since Lf (x0) is compact f(xk)−
f(xk+1)→ 0 and there exists a sequence xkl → x∗. For every accumulation
point of xk we obtain from ∇f(x∗) = 0 since f(xk) − f(xk+1) → 0 implies
‖∇f(xk)‖2 → 0. Since ‖xk+1 − xk‖ ≤ σk‖dk‖ ≤ σkc5‖∇f(xk)‖ we have for
σ bounded, xk+1 − xk → 0. �

Definition 10.10. The sequence Ak ∈ Rn×n is called uniformly positive
definite, if Ak is symmetric and all eigenvalues of Ak are larger than a
constant ρ > 0.

Theorem 10.11. Let (A1) hold. Let Ak be a uniformly positive definite
sequence of matrices with lim ‖Ak‖ ≤ c2. Then

dk = A−1
k ∇f(xk)
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is a downhill direction and we have

ρxTx ≤ xTAkx ≤ cxTx

and 1
c ≥ ‖A

−1
k ‖ ≥

1
ρ .

We give a few examples of downhill search directions.

1. Gradient Search Direction/ Steepest Gradient Direction. In
this approach we set dk = −∇f(xk). This can be also be justified by
applying the Taylor Theorem:

f(xk+σd) = f(xk)+σ〈∇f(xk), d〉+1

2
σ2dT∇2f(xk+td)d for some t ∈ (0, σ).

The rate of change of f along d at xk is the coefficient of σ: 〈∇f(xk), d〉.
If we take d to be a unit vector i.e. ‖d‖ = 1 we can evaluate the d of
most rapid decrease by solving the following:

min
d
dT∇f(xk) subject to ‖d‖ = 1.

Since 〈∇f(xk), d〉 = ‖∇f(xk)‖‖d‖ cos θ and ‖d‖ = 1, we obtain

〈∇f(xk), d〉 = ‖∇f(xk)‖ cos θ

which is a minimum if cos θ = −1 at θ = π. In conclusion we obtain:

〈∇f(xk), d〉 = −‖∇f(xk)‖

〈 −∇f(xk)

‖∇f(xk)‖
, d〉 = 1.

Since d is a unit vector we have

d =
−∇f(xk)

‖∇f(xk)‖
,

in general one can take

d = −∇f(xk).

2. Newton’s method

Here dk is the solution (or approximate solution ) of

Akd
k = −∇f(xk)
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fig:steepest
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Figure 25: Gradient Search Direction

where {Ak} is symmetric and positive definite, the matrix sequence
must satisfy the following requirements

Ak+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk) Secant relation

and Ak+1 can be computed recursively from Ak, x
k+1−xk, ∇f(xk+1)−

∇f(xk) and eventually from data that was computed much earlier.
For some of these constructions one can under additional assumptions
prove that the matrix sequence {Ak} converges to the Hessian matrix
of f in the minimum.

In case the reader wonders where the idea comes from, again a version
of Taylor’s Theorem is used:

∇f(x+ d) = ∇f(x) +∇2f(x)d+

∫ 1

0
[∇2f(x+ td)−∇2f(x)]d dt

where

∫ 1

0
[∇2f(x+ td)−∇2f(x)]d dt

is o(‖d‖) since we assume that ∇f is continuous. Setting x = xk and
d = xk+1 − xk, we obtain

∇f(xk+1) = ∇f(xk) +∇2f(xk+1)(xk+1 − xk) + o(‖xk+1 − xk‖)
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if xk+1 and xk are close to x∗. This result implies that

∇2f(xk+1)(xk+1 − xk) ≈ ∇f(xk+1)−∇f(xk) (10.42) eqn:sdirection

Hence a reasonable choice for Ak is to choose it in such a way that
equation (10.42) is mimicked.

With the Newton’s method itself we choose

Ak = ∇2f(xk)

The application of exact Hessian matrix is only for uniformly convex
f sensible. In other cases Ak must be modified inorder to preserve the
positive definiteness and in the process the fast rate of convergence is
lost.

Note also that the Newton Method can be derived directly from the
Taylor Theorem by performing the following steps: use

f(xk + d) ≈ f(xk) + 〈∇f(xk), d〉+
1

2
dT∇2f(xk)d = mk(d).

Assume ∇2f(xk) > 0, we obtain a Newton direction by finding d that
minimizes mk(d). Setting ∇mk(d) = 0 gives

∇2f(xk)d+∇f(xk) = 0.

Hence dk = −(∇2f(xk))∇f(xk) which can be rewritten as∇2f(xk)dk =
−∇f(xk).

3. Quasi–Newton methods, DFP, SP1, BFGS Construction:

dk is the solution of Akd
k = −∇f(xk) (Ak symm. pos. def.)

With
si := xi+1 − xi, yi := ∇f(xi+1)−∇f(xi)

the following requirements are expected:

Aid
i = −∇f(xi), xi+1 = xi + σid

i

Ai+1s
i = yi Secant relation

“Ai+1 −Ai small ” in the sense of a suitable norm which is also an additional requirement
eventually other than symmetry on Ai+1.

167



In one-dimension Ai+1 is exactly the slope of the secant and in more
dimensions its meaning is clear from the Taylor series:

yi =

∫ 1

0
∇2f(xi + τsi)dτsi .

Ai+1 has in the direction si the same properties of the mapping like
a local mean value of the Hessian matrix of f . This provides the so
called Quasi-Newton method of minimum variation. The most famous
are the
Davidon-Fletcher-Powell DFP 1959/1963 (the oldest method of
this type )

Ai+1 =

(
I − yi(si)T

(si)T yi

)
Ai

(
I − si(yi)T

(si)T yi

)
+
yi(yi)T

(yi)T si
9

The formula can be derived if the minimal principle

||(Hi)
−1/2(Ai+1 −Ai)(Hi)

−1/2||F = min

with supplementary conditions like symmetry and secant relation is
used. ||.||F denotes the Frobenius norm of a matrix (the square root
of the square sum of all elements). Hence

Hi =

∫ 1

0
∇2f(xi + τsi)dτ .

This method is not specially favourable since it is sensitive to devia-
tions σi − σ̄i, σ̄i = the optimal step-widths. In any case (yi)T si > 0
otherwise σi loses definiteness.

Broyden-Fletcher-Goldfarb-Shanno 1970 BFGS

Ai+1 = Ai −
Ais

i(si)TAi
(si)TAisi

+
yi(yi)T

(yi)T si

Practically, the inverse of Ai is updated:

Hi := (Ai)
−1

Hi+1 := I − ρiyi(si)T ()Hi(I − ρiyi(si)T ) + ρisi(si)T

dk = −Hk∇f(xk).

9xyT = n× n-matrix with components xiyj i=row, j=column
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where ρi =
1

(yi)T si
In this case the minimal principle is

||(Hi)
1/2(A−1

i+1 −A
−1
i )(Hi)

1/2||F = min

with the same supplementary condition: (yi)T si > 0. The motivation
of BFGS is as follows: If we consider a linear quadratic optimization
problem with positive definite, symmetric matrix A of the form f(x) =
1
2x

TAx− bTx+ γ the gradient is ∇f(x) = Ax− b. Hence, we have

A(xn − xn−1, xn−1 − xn−2, . . . , x1 − x0) = (yn, yn−1, . . . , y1) (10.43)

for yi = ∇f(xi)−∇f(xi−1). If si = xi−xi−1 are linearly independent,
then A is uniquely defined by the equations Asi = yi. Hence, A can
be obtained from n + 1 pairs (xi,∇f(xi)). The idea of second-order
methods is to construct an approximation Ai of A such that

Ais
i = yi

holds and herewith reconstruct A at the local minimum. The only
rank–one modification to go from Ai to Ai+1 is

Ai+1 = Ai + (zi(zi)T )β

This is SR1. However, Ai+1 is not necessarily positive definite. There-
fore, a rank-2 modification is necessary. We have

Ãi = Ai −
Ais

i(si)TAi
(si)TAisi

satisfies Ãis
i = 0 and Ãi is positive semi-definite. An additional rank-

1 modification under the assumption (yi)T si > 0 yields the BFGS
formula:

Ai+1 = Ãi +
yi(yi)T

(yi)T si
.

In summary we re-iterate the strategy: impose symmetry (symmetry
of Hessian), difference between Ai+1 and Ai must have low rank, A0

is chosen by the user.

SR1: Broyden 1967

Ai+1 = Ai +
(yi −Aisi)(yi −Aisi)T

(yi −Aisi)T si

= Ai +
(Hi −Ai)sisTi (Hi −Ai)

sTi (Hi −Ai)si
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with

Hi =

∫ 1

0
∇2f(xi + τsi)dτ .

SR1 often converges faster than BFGS, but Ai+1 can not be guar-
anteed to be pos.def. or can even be not defined! With some modifi-
cations of the formulas one can get around this problem.

Originally this scheme was developed from the quadratic form of f
(in practice it is for this case not interesting). Also

f(x) = 1
2x

TAx− bTx, A = ATpos. def.

Then
∇f(x) = Ax− b thus Asi = yi

For DFP, BFGS the following applies in this case: in case σj is opti-
mally chosen, then

Aks
j = yj j = k − 1, . . . , 0.

It is then
A−1
k Asj = sj , j = k − 1, . . . , 0

and if k = n then An = A. Generally xN = x∗ with N ≤ n. For the
SR1 scheme one does not need this requirement in order to run the
scheme through inorder to obtain the same result.

10.2.2 Trust–Region Methods

In line–search and Quasi–Newton methods the descent direction and the
stepwidth are determined separately. The idea of trust–region methods is
to obtain both the stepwidth and the descent direction in a single step. This
is only possible, if the function is sufficiently easy to evaluate. Therefore,
in the trust region concept we apply a quadratic (or linear) approximation
model for f at the beginning of the k−th step.

f(x) ≈ ϕk(x) = f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)TAk(x− xk)

as well as (already available) ”’trust region radius”’ ∆̃k, i.e. we expect the
quadratic model of f to be sufficiently accurately described in the sphere

||x− xk||p ≤ ∆̃k .
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fig:trust_region

x k

!

Figure 26: Trust Region: The dotted line is the trust region radius ∆k, the
outer circle is the trust region, φk(x) is the approximation of f(x), and xk

is the current iterate.

The matrix Ak should be symmetric and is typically chosen as a Quasi–
Newton approximation for ∇2f(xk). The idea is now to minimize ϕk(x)
in the ball ‖x − xk‖ ≤ ∆̃k. Once, we obtain the minimum x̃ we verify, if
there has been a sufficient decrease in the f−value. If this is the case the
new iterate will be x̃. If not, we decrease the trust–region radius ∆̃k and
minimize ϕk(x) again. The norm ‖.‖ can be chosen arbitrarily, for example,
the Euclidean norm, or the weighted Euclidean norm or the maximum norm.

We now consider the minimization of the model function. The con-
strained alternative problem is

min
x
ϕk(x) subject to ||x− xk||p ≤ ∆̃k . (10.44) trqp

In fact the global solution of the problem is considered. The problem 10.44
has to be solved for every iteration k and admits a unique solution that
can be calculated efficiently. In the case of the Euclidean norm (p = 2) the
solution problem can be characterised as:
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Theorem 10.12. Let Ak spd. dk = x−xk is a unique global solution of the
problem 10.44 (with the Euclidean vector norm) if:

1 λk ≥ 0, ||dk|| ≤ ∆̃k, λk(∆̃k − ||dk||) = 0

2 (Ak + λkI)dk = −∇f(xk)

3 Ak + λkI is positive semi-definite.

Details can be found in Sorensen, SIAM J. Numer. Anal. 19, 1982, 409–

426. The idea is as follows: Reformulate the constraint as 0 ≤ 1
2

(
∆̃2
k − ‖dk‖22

)
and consider the Lagrangian

L(dk, λk) = f(xk) +∇f(xk)Tdk +
1

2
(dk)TAkd

k − 1

2
λk∆̃k +

1

2
λk‖dk‖22.

Provided that a constraint qualification applies the necessary first order
optimality system reads

∇f(xk) +Akd
k + λkd

k = 0

λk ≥ 0, ‖dk‖2 ≤ ∆̃k,

λk

(
∆̃2
k − ‖dk‖22

)
= 0

Remark 10.13. Trust Region for Solving min f(x): k = 1, 2, . . .

(a) Given xk build ϕk(x) as a “model function” of the form:

ϕk(x) = f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)Ak(x− xk)

with Ak spd (e.g. BFGS, DFP, ∇2f(xk)).

(b) Given ∆̃k, solve the problem 10.44 for x∗.

(c) Compute
f(xk)− f(x∗)

f(xk)− ϕk(x∗)
if ρ� 1

– ϕk was not a good model!

– ∆̃k = τ∆̃k (e.g. τ = 1/2), go to (b).
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– if ρ ≈ 1
xk+1 = x∗, ∆̃k+1 = ∆̃k go to (a).

In step (b) we have to efficiently solve equation 10.44. We know the
solution (x∗, λk) needs to satisfy

(Ak + λkId)(x∗ − xk) = −∇f(xk);

λk ≥ 0, λk(∆k − ‖x∗ − xk‖) = 0

We proceed as follows:

• Ak(x∗ − xk) = −∆f(xk) solve for x∗.

• if ‖x∗ − xk‖2 ≤ ∆k it implies λk := 0 and have our solution (x∗, λk).

• if ‖x∗ − xk‖2 > ∆k: we define

x∗(λ) := xk + (Ak + λId)−1(−∇f(xk))

and solve the nonlinear problem

∆k‖x∗(λ)− λk‖2 = 0

for λ ∈ R, λ > 0 using the Bisection Method.

Lower bound λmin = 0 and upper bound λmax = ‖∇f(xk)‖2/∆k.
If the norm is Euclidean and the Ak is positive semi-definite, then the

solution to the previous optimality system reduces to solving a linear system
and a nonlinear equation: We have to solve

(Ak + λkI)dk = −∇f(xk) (10.45) tr-leq

with either λk = 0 and ‖dk‖2 ≤ ∆̃k or λk > 0 and ‖dk‖2 = ∆̃k. For fixed
λk let us denote by dk(λk) the solution to (10.45) (see below for details on
its computation). We start by solving dk(0). If ‖dk(0)‖2 ≤ ∆̃k we are done.
Otherwise, we solve the nonlinear equation

‖dk(λ)‖2 − ∆̃k = 0

by a bisection method. The solution λ can be bracketed by the lower bound
λmin = 0 and λmax = ‖∇f(xk)‖2/∆̃k. The bound λmax is an upper bound,
since

0 = ‖dk(λ)‖2 − ∆̃k ≤ ‖(A+ λ)−1‖2‖∇f(xk)‖2 − ∆̃k ≤
‖∇f(xk)‖2

λ
− ∆̃k.
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The later inequality holds true since the Ak is positive definite and therefore
the eigenvalues of Ak+λ are larger than λ. It remains to discuss the compu-
tation of dk(λ) as solution to (10.45) for fixed λ. The idea is to transform Ak
to tri–diagonal form by Householder transformation which is possible since
Ak is assumed to be symmetric and positive definite: We have

WkAkW
T
k = Tk

and Wk(Ak + λ)W T
k = Tk + λk. Hence, in every solution step we compute

only a Cholesky decomposition of Tk + λk.
Finally, we have either λk = 0, if Ak is positive definite and

Akd
k = −∇f(xk) with ||dk||u ≤ ∆̃k ,

or λk > 0 and λk such that

||dk||u = ∆̃k .

Then set
x̃k+1 = xk + dk

and test whether ∆̃k has been reasonably chosen, that is the reduction in f
using ϕk is somehow achieved. We define the test variables

%k
def
=

f(xk)− f(x̃k+1)

f(xk)− ϕk(x̃k+1)
.

If %k ≤ ε where 0 < ε � 1, then the step is ignored, take half a step, by
halving ∆̃k and repeat the computation of dk. If ε ≤ %k ≤ 1− η1 mit 0 <
η1 < 1− ε, then the step is accepted and set

xk+1 = x̃k+1 , ∆̃k+1 = ∆k = ∆̃k .

If it was the case that %k > 1 − η1 then the step is also accepted, but we
possibly increase ∆̃k+1:

xk+1 = x̃k+1 , ∆k = ∆̃k , ∆̃k+1 = min{2∆k,∆max} ,

where ∆max is specified by the user. The essential difference with the first
concept is the fact that here the correction direction (xk+1−xk)/||xk+1−xk||
changes with ∆k. In addition the assumptions that are imposed on Ak are
weaker. The effort of doing the algebra per step is frequently higher.
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Remark 10.14. We can compare the descent in ϕ with the descent in f
for the following reason: Assume λk = 0, then dk = −A−1

k ∇f(xk) and the
decrease in ϕ is

ϕk(x
k)− ϕk(xk + dk) =

1

2
(A−1

k ∇f(xk))T∇f(xk) = −1

2
(dk)T∇f(xk) > 0.

Recall the sufficient decrease condition on f,

f(x)− f(x+ d) ≥ − const dT∇f(x).

Hence, we can compare the descent in f with some fraction of the descent
in ϕk. A similar argument holds true for λk > 0.

The following is the general convergence theorem:

Theorem 10.15. Let f be twice continuously differentiable on the open set
D and bounded from below. Let the matrix sequence {Ak} be bounded. Then
every accumulation point x∗ of {xk} satisfies the following condition

∇f(x∗) = 0 .

If the level sphere L = {x : f(x) ≤ f(x0)} is compact, then every
infinite subsequence of this sequence has the same accumulation point. If in
such an accumulation point ∇2f(x∗) is positive definite, the whole sequence
converges to this accumulation point. If

Ak = ∇2f(xk)

then the accumulation point satisfies the second order condition that ∇2f(x∗)
is positive semidefinite.

Note that here it is not necessary to explicitly construct directions with
negative curvature. Proof: by Schultz, Byrd und Schnabel: A family of
trust-region-based algorithms for unconstrained minimization with strong
global convergence properties. SIAM J. Numer. Anal. 22, (1985), 47–
67.
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11 Numerical Methods for Constrained Minimiza-
tion Problems In Finite Space Dimensions

11.1 Method for Quadratic Programming Problems

We call the following special type of NLO a quadratic programming prob-
lem:co-qp

f(x) =
1

2
xTAx− bTx+ c (11.46a)

h(x) = HTx+ h0 (11.46b)

g(x) = GTx+ g0 (11.46c)

for matrices H ∈ Rn×p, G ∈ Rn×m and vectors h0 ∈ Rp and g0 ∈ Rm,
respectively. In the following we additionally assume that A is symmetric.

Assumption. AT = A (11.47)

Problems of the type (11.46) typically appear as subproblems for general
nonlinear constrained optimization methods. In the case A positive semidef-
inite the problem is a convex problem. In this case special methods exist for
efficiently solving (11.46). There are methods which solve (11.46) in poly-
nomial time. In the case A not positive definite the problem is known to
be NP–hard. However, there exists methods which generate feasible points
satisfying the first and second–order necessary conditions.

11.1.1 The Primal Projection Method

We present a method for computing a local minimizer of (11.46) in the case
A symmetric positive definite. We refer to the remarks below for changes
and modifications in the case A symmetric but indefinite. The method is
called primal method, since it approximates only x∗. The methods requires
a feasible initial value x0 ∈ S.

Before stating the general algorithm we discuss the simpler case m = 0,
i.e., an equality constrained quadratic programming problem. In the case A
symmetric positive definite and H of full column rank (i.e., rank(H) = p)
we have a convex optimization problem and the KKT–conditions are also
sufficient for x∗ to be a global minimizer.

Theorem 11.1. Let f(x) = 1
2x

TAx − bTx + c with A symmetric, positive
definite and S = {x ∈ Rn : HTx + h0 = 0}. Let H have full column rank.
Let x0 ∈ Rn be an arbitrary vector.
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Then, x∗ is a global minimum of NLO, if and only if the following set
of linear equations are satisfied(

A H
HT 0

)(
x0 − x∗
µ∗

)
=

(
∇f(x∗)

HTx0 + h0

)
(11.48)

Proof. The KKT–conditions (4.17) are sufficient for global optimality
since NLO is a convex optimization problem. Since ∇f(x0) = Ax0 − b we
obtain from (4.17)

Ax∗ − b−Hµ∗ = 0, HTx∗ + h0 = 0

⇔ A(x0 − x∗) +Hµ∗ = Ax0 − b, HTx∗ + h0 = 0

⇔ A(x0 − x∗) +Hµ∗ = ∇f(x0), HT (x0 − x∗) = HTx0 + h0.

This finishes the proof.
The assertion of the theorem is depicted in figure 27.

Figure 27: Graphical solution to an equality constraint quadratic program-
ming problem. co-figqp

Hence, the minimum and its corresponding (unique) Lagrange multiplier
µ∗ are obtained by solving the linear system (11.48). The solution of this
linear system should be performed by the following method. This method
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relies on the fact that A is positive definite. Denote by h(x0) = HTx0+h0 ∈
Rp Then, apply a QR decomposition of H to obtain

QH =

(
R
0

)
, QAQT =: B =

(
B11 BT

21

B21 B22

)
, b := Q∇f(x0) = (b1, b2)T

where
R ∈ Rp×p, B22 ∈ Rn−p×n−p and b2 ∈ Rn−p.

Hence, (11.48) is equivalent to

QAQTQ(x0 − x∗) +

(
Rµ∗

0

)
=

(
b1
b2

)
HTQTQ(x0 − x∗) = (RT , 0)Q(x0 − x∗) = h(x0)

If we write Q(x0 − x∗) = (s1, s2)T with s1 ∈ Rp we can obtain s1 by

s1 = R−Th(x0).

Hence, we obtain
s2 = B−1

22 (b2 −B21s1)

and
µ∗ = R−1

(
b1 −B11s1 +BT

21s2

)
Finally, x∗ is obtained by solving x∗ = x0 +QT (s1, s2)T .

Next, we turn to the case of inequality constraints, i.e., m > 0. The
solution is found iteratively by considering a sequence of equality constraint
problems of the previous type. We proceed as follows: At any iterate xk we
fix the active constraints Ak := {i ∈ {1, . . . ,m} : gi(x

k) = 0} and solve the
equality constraint problem

min
1

2
xTAx− bTx+ c subject to h(xk) = 0, gi(x

k) = 0 ∀i ∈ A(xk)(11.49)

using the previously introduced method. The solution will be denoted by
x∗ := xk − dk. According to the sign of the Lagrange multiplier µki for
i ∈ A(xk) we can decide if the index i belongs to the correct active set
A(x∗). If µki < 0, then i does not belong to the active set for the inequal-
ity constraint problem. We hence deactivate the corresponding constraint
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before continuing with the next iterate xk+1. We introduce the following
notation:

A(xk) := {i ∈ {1, . . . ,m} : gi(x
k) = 0},

GB := (Gij)i∈{1,...,n},j∈B,

NB := (H,GB) ∈ Rn×p+|B|.

The details are as follows.

Algorithm

Let x0 ∈ S be given. For k = 0, 1, 2, . . . :

1. Compute the indices of the active set B := A(xk).

2. Solve the linear system with dk ∈ Rn, µk ∈ Rp and λkB ∈ R|B|.(
A NB

NT
B 0

)( dk

(µ
k

λk
B

)

)
=
(∇f(xk)

0

)
Note that xk − dk is the global minimum of f on the set

FB := {x ∈ Rn : HTx+ h0 = 0, GTBx+ g0 = 0}.

3a. If dk = 0 and λkB ≥ 0, then xk =: x∗ is the minimum of f on S and
the KKT–conditions are satisfied for (x∗, µk ≡ µ∗, (λ∗B, 0)).

3b. If dk = 0 and λki < 0 for some i ∈ B, then deactivate the constraint
i := argmin{i ∈ B : λki < 0}, i.e.,

B := B\{i},

and go to (2).

3c. If dk 6= 0, then obtain the optimal stepwidth σk such that xk−σ∗kdk ∈
S by 10

σ∗k = min{(GTxk + g0)i
(dk)T∇gi

: ∀ i 6∈ B and (dk)T∇gi > 0}

σk = min{1, σ∗k}

and update
xk+1 = xk − σkdk

and continue with step (1).

10Let min{∅} = +∞
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We give an example of the behavior of the algorithm in figure 11.1.1. We
have in x0 : d0 6= 0 and B = {0} and σ0 < σ∗0. In x1 we have B = {1} and
d1 = 0, but λ1

1 < 0. Hence, we inactivate and obtain x2 for B = ∅. Finally,
in x2 we have B = {2}, d2 6= 0, σ2 < σ∗2 and move to x3 ≡ x∗.

co-figuqp

Figure 28: Iterates generated by the primal projection method.

The following theorem guarantees the convergence of the algorithm in a
finite number of steps.

S39 Theorem 11.2. Let f(x) = 1
2x

TAx−bTx and A = AT positive definite. Let
g(x) = GTx + g0, h(x) = HTx + h0, S = {x ∈ Rn : g(x) ≥ 0, h(x) =
0} 6= ∅. Assume that

For all x ∈ S let NA(x) = (H,GA(x)) = (H, gi1 , . . . , gil)

with A(x) = {i1, . . . , il} have full column rank p+ l.

}
(11.50) Vor

Then, the previously introduced algorithm converges to x∗ = argmin {f(x) :
x ∈ S} in a finite number of steps.

Proof. We have due to the definitions

f(xk) > f(xk+1) since ∂σf(xk − σdk) < 0 ∀σ ∈ [0, 1).

We have to distinguish the following cases

1. σ∗k ≥ 1. Then, xk+1 = argmin{f(x) : x ∈ F} and x ∈ FB and Ak+1 =
Ak.

2. σ∗k < 1 and |Ak| ≤ |Ak+1|.
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3. If σ∗k < 1 and |Ak| = |Ak+1|, then dk = 0.

4. If |Ak| < |Ak+1|, then σ∗k < 1. Since NA(x) has full column rank, this
case can only happen at least n times. Hence, for all i there exists a
k such that i ≤ k ≤ i + n + 1 and xk = argmin{f(x) : x ∈ FB,B ∈
P(1, . . . ,m)}. Further, f(xk+j) < f(xk) for all j ≥ 1.

Since there are only a finite number of subsets of P(1, . . . ,m)} the assertion
follows. This finishes the proof.

Some remarks are in order.

1. There are algorithms for solving the convex quadratic programming
problem in polynomial time. However, these algorithms need to com-
pute the exact solution to linear systems of the size n.

2. In the previous algorithm we allow at most one constraint to be de-
activated in every step. There are alternative methods using multiple
deactivations. However, these methods can run into trouble as the
following example shows. Assume that x0 is such that ∇f(x0) is a
linear combination of all gradients of the active constraints with neg-
ative factors. Deactivation of all(!) constraints yields hence a descent
direction pointing out of the feasible set and the iterate x0 does not
change any more. Deactivation of only one active constraints yields
an admissible descent direction.

3. In case of positive definite A one can also use the characterization of
the optimal value as saddle point of the Lagrangian. The method of
Goldfarb and Idnani is based on this approach .

4. The case of the indefinite quadratic programming problem. The previ-
ously introduced algorithm can still be used in the case of A symmetric
and indefinite, if only equality constraints are present. The algorithm
applies since it relies on the projected Hessian of f(x)− λTh(x) only.
Under the assumption that NLO admits a unique strict local mini-
mizer the algorithm can still be used.

In the case of inequality constraints the problem is more severe. Con-
sider for example the case n = 2, f(x) = 1

2

(
x2

1 + x2
2

)
and g(x) =

(x2, 1 − x1 − x2, 1 + x1 − x2)T . If we start at x0 = (α, 0) for any
α ∈ (−1, 1), then we obtain by the previous algorithm x1 = (0, 0) and
∇f(x1) = 0. Hence, even if we deactivate the constraints, we cannot
decrease along∇f(x1). Further, ∇2f(x1) is positive definite on Z1(x1),
but not on Z+

1 (x1). A remedy would be to allow a descent in direction
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of negative(!) curvature of f, here for example d1 := −∇g1(x1). Using
these ideas in the previous algorithm this implies to change the algo-
rithm such that the projected Hessian B22 has at most one negative
eigenvalue.

11.2 Trust-Region Methods

We consider the problem of minimizing a nonlinear objective function that
depends on real variables with no restrictions on the values of the variables,
i.e.

min
x∈Rn

f(x) (11.51) p_unconstrained

with f : Rn → R. Moreover we assume that f is twice continuously differ-
entiable.

Before we start to consider algorithms to solve (11.51), we begin with a
brief review of some basic optimality conditions for (11.51).

D-min-unconstrained_min Definition 11.3.

1. We call a vector x∗ a global minimizer (solution) of (11.51) if

f(x∗) ≤ f(x) for all x ∈ Rn.

2. We call a vector x∗ a local minimizer (solution) of (11.51) if there
exists an ε > 0 such that

f(x∗) ≤ f(x) for all x ∈ Bε(x∗),

where Bε(x∗) denotes the ε-Ball at x∗.

3. We call a vector x∗ a strict (or isolated) local minimizer (solution) of
(11.51) if there exists a ε > 0 such that

f(x∗) < f(x) for all x ∈ Bε(x∗) \ {x∗}.

Theorem 11.4 (Existence of Minimizers). Let f be continuous and assume
there exists an x0 ∈ Rn, such that the level set N0 := {x ∈ Rn : f(x) ≤
f(x0)} is compact. Then there exists a global minimizer of (11.51).

nec_unconstrained Theorem 11.5 (Necessary Optimality Conditions).

1. If x∗ is a local minimizer of (11.51) and f is continuously differen-
tiable in an open neighbourhood of x∗, then x∗ satisfies the first order
necessary optimality condition : ∇f(x∗) = 0.
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2. If x∗ is a local minimizer of (11.51) and f is twice continuously differ-
entiable in an open neighbourhood of x∗, then x∗ satisfies the second
order necessary optimality condition: ∇f(x∗) = 0 and ∇2f(x∗) is
positive semidefinite.

We will call a point x∗ that satisfies the first order necessary condition a
stationary point of (11.51). According to Theorem 11.5 any local minimizer
of must be a stationary point.

Theorem 11.6 (Sufficient Optimality Conditions). Suppose that ∇2f is
continuous in an open neighbourhood of x∗ satisfying ∇f(x∗) = 0 and
∇2f(x∗) is positive definite. Then x∗ is a strict local minimizer of f .

The necessary and sufficient conditions are used to recognize and identify
local minimizers. The necessary conditions help us to identify the set of
candidates for a local minimizer, whereas the sufficient conditions gives a
guarantee that a candidate is in fact a strict local minimizer. However, the
sufficient conditions are not necessary, i.e. a point may be a strict local
minimizer, and yet might fail to satisfy the sufficient conditions (consider
for example the strict global minimizer x∗ = 0 of f(x) = x4).

Finally, if f is a convex function, then any local minimizer of (11.51) is
also a global minimizer.

Theorem 11.7. When f is convex, any local minimizer of x∗ is a global
minimizer of f . If in addition f is differentiable, then any stationary point
x∗ is a global minimizer of f .

11.2.1 Introduction

There exist a variety of algorithms to solve such unconstrained optimization
problems involving a smooth objective function (see e.g. the monographs
[?], [?], [?], [?]). All methods have in common, that one starts at an initial
iterate x0 and generates a sequence of successive iterates (xk) using infor-
mation about the function f at previous iterates. In general, they use this
information to find a new iterate xk+1 such that f(xk+1) < f(xk).

The methods differ however in the way move from one iterate to the next
and in the choice which information they use. There exist two fundamental
strategies: the line search and the trust-region strategy.

In the line search strategy one chooses a search direction sk and searches
along this direction from the current iterate xk for a new iterate xk+1. A
step length α along the search direction is then determined by approximately
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solving the one-dimensional optimization problem

min
α>0

f(xk + αsk).

In this chapter we mainly consider the second strategy, the so-called trust
region method (as it is described in [?],[?]). Here one uses the informa-
tion about f in the current iterate to construct a model function mk that
locally approximates f in the current iterate xk. The model function mk

is constructed such that it is simpler than the nonlinear function f (e.g.
quadratic) and thus is easier to solve than the original problem. However,
since mk is only a good approximation of the original objective function in a
neighborhood of xk one successively (approximately) minimizes mk in some
region around xk (in which we trust our model function mk to be sufficiently
close to f). In other words, in the trust region method we find a candidate
step s by (approximately) solving the subproblem

min
s∈Rn

mk(s) subject to ‖s‖ ≤ ∆. (11.52) tr-sub*

If the candidate sk (the solution to (11.52)) does not produce sufficient
decrease in f , then we deduce that the trust region is too large and we
reduce the trust-region radius ∆ and re-solve (11.52). On the other hand,
if we could achieve a good reduction in f , then we have more trust in our
model mk and might enlarge the trust region for the computation of the
next step.

Hence, in contrast to the line search strategy, here we determine the
direction and the length of the next step simultaneously by (approximately)
minimizing the model function mk inside a trust-region. In general, the
direction of the step varies for different sizes of the trust-region radius ∆.

The size of the trust-region is thus a critical factor for the effectiveness of
each step. If the region is too small, the algorithm misses an opportunity to
take a substancial step towards the minimizer of (11.51). However, if it is too
large, then minimizing the model mk might be misleading, as the solution
of (11.52) might be far away from the minimizer of f in the chosen region.
Therefore the trust-region in turn is chosen according to the performance
of the algorithm for the previous iterations. As identifier one often uses the
quotient of the so-called predicted reduction mk(0)−mk(sk) and the actual
reduction f(xk)− f(xk + sk).

11.2.2 Outline of the Algorithm

Let xk ∈ Rn be the current iterate and as mentioned before, we assume
that f is twice continuously differentiable. In order to derive an explicit
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algorithm from the ideas mentioned above, we have to decide about the
model function mk and trust-region that we want to use and we have to find
a suitable update of our trust-region:

1. The Trust-region Model:
A common approach to approximate a nonlinear function in a current
iterate xk uses Taylor-series expansion of f around xk. Although a
linear model might also be of interest, here we will focus on a quadratic
model of f , i.e. our model function is of the form

mk(s) := fk + gTk s+
1

2
sTBks , (11.53) model-function

where fk = f(xk), gk = ∇f(xk) and Bk is some symmetric approxi-
mation to the Hessian matrix ∇2f(xk). Since

f(xk + s) = fk + gTk s+
1

2
sT∇2f(xk + θs)s

for some scalar θ ∈ (0, 1) and

f(xk + s) = mk(s) +
1

2
sT (∇2f(xk + θs)−Bk)s = mk(s) +O(‖s‖2)

the approximation error is small if ‖s‖ is small. Using the exact Hes-
sian matrix, i.e. setting Bk = ∇2f(xk) yields an approximation error
of the order O(‖s‖3).

2. The Trust-region:
Although our model function mk(s) is a good approximation of f in a
neighbourhood of our current iterate xk it might be unbounded from
below, if Bk is indefinite. We therefore introduce the trust-region
constraint

‖s ‖ ≤ ∆k ,

where ∆k > 0 denotes a ’suitable’ scalar trust-region radius. In theory,
the trust-region subproblem (11.52) does not depend on which norm
‖ · ‖ we use, in practice however our choice might make a difference
(e.g. if the ∞-norm is used, the feasible region is simply a rectangular
box → (11.52) yields a box-constrained problem). By the equivalence
of norms, there exists constants κl ≥ κs > 0 (dependent on the norm
we use), such that

κs‖ · ‖ ≤ ‖ · ‖2 ≤ κl‖ · ‖.
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In particular we have κl = 1 and κs = n−
1
2 for the l1 norm and κl = n

and κs = 1 for the l∞ norm in Rn.

As a general form of (11.52) we obtain the
Trust-region Subproblem:

min
s ∈ Rn

mk(s) = fk + gTk s+
1

2
sTBks subject to ‖s ‖ ≤ ∆k.

(11.54) tr-sub

3. The Update of the Trust-region Radius:
Having solved (11.54) we want to accept the trial step sk and set
xk+1 = xk + sk only if the predicted model decrease mk(0) −mk(sk)
(or at least a reasonable fraction of it) is realised by the actual decrease
fk − f(xk + sk). We measure this by computing the ratio

ρk =
aredk
predk

:=
fk − f(xk + sk)

mk(0)−mk(sk)
, (11.55) tr-rho

where we call the numerator actual reduction and the denuminator
predicted reduction. Note that mk(0) = fk.

If ρk is negative, the new objective value f(xk+sk) is greater than the
objective value in the current iterate, so the step sk should be rejected.
Moreover, since the model is not accurate, we reduce the trust-region
radius to encourage a more suitable step at the next iteration.

On the otherhand, if ρk is close to (or even larger than) 1, then we
have good reason, that we can trust our model and that the next step
might benefit from an increase in the trust-region radius. Hence we
expand the trust-region.
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We now summarize these steps an describe the process of the basic trust-
region method by the following algorithm.

Algorithm 1: Basic Trust-Region Algorithm

Choose an initial vector x0, an initial trust-region radius ∆0 and
update parameters 0 < ηs ≤ ηv < 1, 0 < γd < 1 ≤ γi;;
for k = 0, 1, 2, . . . do

1 if gk = 0 thentr-alg1
STOP.

2 Choose symmetric approximation Bk of the Hessian matrixtr-alg2
∇2f(xk).;

3 Compute (approximately) the solution sk oftr-alg3

min
s ∈ Rn

mk(s) = fk + gTk s+
1

2
sTBks subject to ‖s‖ ≤ ∆k.

;

4 Compute ρk given by (11.55).;tr-alg4

5 Update xk and the trust-region radius ∆k: ;tr-alg5

if ρk ≥ ηv then
Set xk+1 = xk + sk and ∆k+1 = γi∆k

else if ρk ≥ ηs then
Set xk+1 = xk + sk and ∆k+1 = ∆k

else
Set xk+1 = xk and ∆k+1 = γd∆k

tr-alg

Here, reasonable values for the parameters η and γ are for example
ηv = 0.9, ηs = 0.1 and γi = 2,γd = 0.5. In the following we will call a
step sk very successful if ρk ≥ ηv, we call it successful if ρk ≥ ηs and finally
we call it unsuccessful if ρk < ηs.

What remains for us to clarify is how to solve the trust-region subprob-
lems in step 3 of Algorithm 1.
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11.2.3 The Trust-Region Subproblem

11.2.4 Characterization Exact Solutions

In this section we consider the exact solutions of the trust-region subproblem
(11.54) using the l2-norm, i.e. ‖ · ‖ = ‖ · ‖2. The following theorem gives us
a precise characterization of the exact solutions of (11.54).

thm-tr-kkt Theorem 11.8. [Charakterization of Exact Solutions] The vector s∗ is a
global solution of the trust-region subproblem

min
s ∈ Rn

m(s) = f + gT s+
1

2
sTBs subject to ‖s ‖2 ≤ ∆ ,

with Bk being symmetric, if and only if s∗ is feasible and there exists a scalar
λ ≥ 0 such that the following conditions are satisfied:

(B + λI)s∗ = −g, (11.56)

λ(∆− ‖s∗‖) = 0, (11.57)

(B + λI) is positive semidefinite. (11.58)

If (11.56) and (11.57) are satisfied and B + λI is positive definite, s∗ is
unique.

In order to prove this result we will make use of the following lemma.

tr-lem-exact Lemma 11.9. Let m be the quadratic function defined by

m(s) = gT s+
1

2
sTBs,

where B is any symmetric matrix. Then

1. m attains a minimum if and only if B is positive semidefinite and g
is in the range of B;

2. m has a unique minimizer if and only if B is positive definite;

3. if B is positive semidefinite, then every s satisfying Bs = −g is a
global minimizer of m.

Proof. First let g be in the range of B, then there exists a vector s such that
Bs = −g. Hence, for all v ∈ Rn we have

m(s+ v) = gT (s+ v) +
1

2
(s+ v)TB(s+ v)

= gT s+
1

2
sTBs+ gT v +

1

2
vTBv + (Bs)T v

= m(s) +
1

2
vTBv ≥ m(s), (11.59)
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since B is supposed to be positive semidefinite. Thus s is a minimum of m.
For the opposite direction, assume that s is a minimizer of m. Then the
necessary conditions (Definition 11.5) have to be satisfied, i.e.

∇m(s) = g +Bs = 0 and ∇2m(s) = B is positive semidefinite,

which proves the first part.
Concerning the second part, if B is positive definite, we get a strict

inequality in (11.59). Hence, s is the unique minimum of m. To prove the
opposite direction, it remains to show that B is positive definite. However,
assume there exists a vector v 6= 0 such that vTBv = 0, thus Bv = 0. Then
(11.59) yields m(s+ v) = m(s) in contradiction to the uniqueness of s.

Finally, the third part follows from the proof of the first part.

Next, we will prove Theorem 11.8.

Proof. (of Theorem 11.8) Assume that there exists a λ ≥ 0 such that the
conditions (11.56)-(11.58) are satisfied, then by Lemma 11.9 s is a global
minimizer of the function

m̃(s) := gT (s) +
1

2
sT (B + λI)s = m(s) +

λ

2
sT s . (11.60) thm-tr-exact-prf1

Hence,

m(v) ≥ m(s) +
λ

2
(sT s− vT v) (11.61) thm-tr-exact-prf2

for all v ∈ Rn. By (11.57) it follows that λ(∆2 − sT s) = 0 and thus

m(v) ≥ m(s) +
λ

2
(∆2 − vT v)

which implies that m(v) ≥ m(s) for all v ∈ Rn that satisfy ‖v‖ ≤ ∆. Hence,
s is a global minimizer of the trust-region subproblem.

For the converse, assume that s is a global solution of the trust-region
subproblem. We will show that there is a λ ≥ 0 such that (11.56)-(11.58)
are satisfied. First, consider the case ‖s‖ < ∆ then by Lemma 11.9 the
conditions are satisfied for λ = 0.

We therefore assume that ‖s‖ = ∆. Then any λ ∈ R satisfies (11.57).
Suppose there exist no λ ≥ 0 such that (11.56) is satisfied. Then y =
∇m(s) =g + Bs 6= 0 and yT s = (Bs + g)T s 6= −λs for any λ ≥ 0. We
therefore have α := ∠(y, s) 6= π, thus

cos(α) =
yT s

‖y‖ ‖s‖
> −1.
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Define v = −
(

y
‖y‖ + s

‖s‖

)
, then v is a descent direction of m in s since

∇m(s)T v = yT v = −

(
yT y

‖y‖
+
yT s

‖s‖

)
= −‖y‖ (1 + cosα) < 0.

Moreover,[
d

dt

1

2
‖s+ tv‖2

]
t=0

= sT v = −

(
sT y

‖y‖
+
sT s

‖s‖

)
= −‖s‖ (cosα+ 1) < 0.

Thus, for small t > 0, we have ‖s + tv‖ < ‖s‖ = ∆. Hence, we obtain a
contradiction to the optimality of s such that there has to exist a λ ≥ 0 such
that (11.56) and (11.57) are satisfied. To prove that (11.58) holds, we show
that

wT (B + λI)w ≥ 0 ∀w ∈ Rn with wT s < 0.

Let t = −2 wT s
‖w‖2 > 0. Then

‖s+ tw‖2 = ‖s‖2 + 2 twT s+ t2‖w‖2 = ‖s‖2 ≤ ∆2

and therefore

0 ≤ m(s+ tw)−m(s) = tyTw +
t2

2
wTBw = −tλ sTw +

t2

2
wTBw

=
t2

2
λ‖w‖2 +

t2

2
wTBw =

t2

2
wT (B + λI)w

The inequality is independent of the sign of w and by reasons of continuity
it remains true for vectors w with wT s = 0, hence (B + λI) is positive
semidefinite.

Finally, the uniqueness of s in the case that (B+ λI) is positive definite
follows from Lemma 11.9 and thus a strict inequality in (11.61).

11.2.5 Calculating Nearly Exact Solutions

Theorem 11.8 suggests a method how the trust-region subproblems in step
3 of Algorithm 1 can be solved. First, if B is positive semidefinite and the
solution sk of Bks = −gk satisfies ‖sk‖ ≤ ∆k, then sk solves (11.54). This
can simply be checked by evaluating if Bk can be decomposed by Cholesky
factors, using these factors to solve the linear system and evaluating the
norm of that solution.
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However, if the solution sk of the linear system satisfies ‖sk‖ > ∆k or
B is singular or indefinite, then we are searching for a solution (s, λ) of the
nonlinear system of equations

(Bk + λI)s = − gk and ‖s‖ = ∆k, (11.62) tr-nonlinearsystem

where, following Therorem 11.8, we require in addition that (Bk+λI) is pos-
itive semidefinite. In the following, we are therefore searching for a method
to solve (11.62).

Since B is supposed to be symmetric (as it is the exact or approximated
Hessian of f), there exist an orthogonal matrix Q and a diagonal matrix Λ
such that B = QΛQT , where Q consists of (orthonormal) eigenvectors of
B and Λ = diag(λ1, . . . , λn) where λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues
of B. It clearly holds that (B + λI) = Q(Λ + λI)QT . Next, we define the
following function

φ(λ) := ‖s(λ)‖2 = ‖ −Q(Λ + λI)−1QT g‖2 =

n∑
j=1

(
qTj g

λj + λ

)2

(11.63) tr-exact-fct1

where qj denotes the jth column of Q. This function is well-defined for
λ 6= λj and if λ > −λ1, then φ(λ) is strictly monotone decreasing, i.e.
φ(λ) → 0 for λ → +∞ (λ > −λ1). Moreover, since g 6= 0, φ(λ) → +∞
for λ → −λj . Hence, there exist a unique solution λ∗ of φ(λ) = ∆2 in the
interval (−λ1,+∞). Thus, the idea to solve the trust-region subproblem
that directly comes into one’s mind is to find the root λ∗ > −λ1 of

ψ(λ) := φ(λ)−∆2.

However, since φ is very unpleasant function that is highly nonlinear and
has many poles, Newton’s method (as a standard method for finding a root
of a nonlinear function) will be unreliable or slow. We therefore transform
the problem and use Newton’s method to solve instead

ψ̃(λ) :=
1

‖s(λ)‖
− 1

∆
.

The derivative of ψ̃(λ) is

ψ̃′(λ) = −s(λ)T∇λs(λ)

‖s(λ)‖3
.

Furthermore, differentiating the nonlinear system of equations (B+λI)s(λ) =
−g we obtain an expression for ∇λs(λ), as

(B + λI)∇λs(λ) + s(λ) = 0 ⇒ ∇λs(λ) = −(B + λI)−1s(λ).
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However, given the factorization (B + λI) = L(λ)L(λ)T we can directly
replace s(λ)T∇λs(λ) by

−s(λ)T∇λs(λ) = s(λ)T ((B + λI)−1s(λ))

= s(λ)T (L(λ)−TL(λ)−1)s(λ)

= (L(λ)−1s(λ))T (L(λ)−1s(λ))

= ‖w(λ)‖2,

where L(λ)w(λ) = s(λ). Applying Newton’s method to ψ̃(λ) then yields
the following algorithm to calculate nearly exact solutions the trust-region
subproblem

Algorithm 2: Nearly Exact - Subproblem Algorithm

Given an initial λ(0) > −λ1 and ∆ > 0;

for ` = 0, 1, 2, . . . do

1 Factorize B + λ(`)I = LLT .;tr-sub-alg1

2 Solve LLT s = −g.;tr-sub-alg2

3 Solve Lw = s.;tr-sub-alg3

4 Settr-sub-alg3

λ`+1 = λ` +

(
‖s‖ −∆

∆

)
‖s‖2

‖w‖2
.

tr-sub-alg

11.2.6 Convergence

In the previous section we discussed exact and nearly exact solutions of the
trust-region subproblem (11.54). However, computing the (nearly) exact
minimum of the subproblem might be quite expensive, especially in the
case of large-scale problems. Fortunately, as we will see next, in order to
guarantee global convergence it is sufficient to require that we achieve as
much reduction in the model as we would from a step in the direction of
steepest descent. This reference solution sCk is called the Cauchy point. In
contrast to the previous section, here we consider again the general trust-
region subproblem, i.e. we use a general norm ‖ · ‖ for the definiton of the
trust-region.
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11.2.7 The Cauchy Point

Definition 11.10 (Cauchy Point). Let gk = ∇f(xk), then the direction of
steepest descent is −gk and we define the Cauchy point sCk := −αCk gk, where

αCk := arg min
α>0

mk(−αgk) subject to α‖gk ‖ ≤ ∆k. (11.64) cauchy-problem

Hence, computing the Cauchy point results in a simple scalar optimiza-
tion problem, since we minimize the quadratic function m̃(α) := mk(−αgk)
in the interval 0 < α ≤ ∆

‖gk ‖ . Moreover, we can guarantee a reasonable
reduction in the model at the Cauchy point.

thm-cauchy Theorem 11.11. Let sCk be the Cauchy point of (11.54), then

fk −mk(s
C
k ) ≥ 1

2
‖gk ‖2 min

(
‖gk ‖2

1 + ‖Bk‖2
, κs∆k

)
(11.65) thm-cauchy-1

Proof. If gk = 0 then (11.65) is clearly satisfied. Hence, suppose gk 6= 0.

1. If the curvature of mk along the direction gk is not strictly positive,
i.e. gTk Bkgk ≤ 0, then m̃(α) = mk(−αgk) is not bounded from below

and thus the solution of (11.64) is α∗ = ∆k
‖gk ‖ . Moreover, for all α ≥ 0

mk(−αgk) = fk − α‖gk‖22 +
α2

2
gTk Bkgk ≤ fk − α‖gk‖22.

Hence,

fk −mk(s
C
k ) = fk −mk(−α∗gk)
≥ α∗‖gk‖22

=
∆

‖gk ‖
‖gk‖22 ≥ κs ∆k‖gk‖2

≥ 1

2
κs ∆k ‖gk ‖2

2. If on the other hand gTk Bkgk > 0, then m̃(α) is strictly convex. Thus,

if the minimizer α∗ of (11.64) lies inside the interval (0, ∆k
‖gk ‖ ], then

the first order necessary conditions for (11.64) reveal that

α∗ =
‖gk ‖22
gTk Bkgk

(11.66) thm-cauchy-2
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and therefore

fk −mk(s
C
k ) =

‖gk ‖42
gTk Bkgk

− 1

2

‖gk ‖42
gTk Bkgk

=
1

2

‖gk ‖42
gTk Bkgk

≥ 1

2

‖gk ‖22
1 + ‖Bk‖2

,

where we have used

gTk Bkgk ≤ ‖gk ‖22 ‖Bk‖2 ≤ ‖gk ‖22 (1 + ‖Bk‖2).

3. If gTk Bkgk > 0 and the minimizer of m̃(α) lies outside the interval

(0, ∆k
‖gk ‖ ], then

‖gk ‖22
gTk Bkgk

≥ ∆k

‖gk ‖

thus

fk − mk(s
C
k ) =

∆k

‖gk ‖
‖gk‖22 −

1

2

∆2
k

‖gk ‖2
gTk Bkgk

≥ 1

2

∆k

‖gk‖
‖gk‖22

≥ 1

2
κs ∆k ‖gk‖2

This yields (11.65).

Furthermore, any step sk that is at least as well suitable as the Cauchy
point to reduce mk(s) inside our trust-region ‖s ‖ ≤ ∆k will also satisfy the
inequality (11.65).

cor-cauchy1 Corollary 11.12. If sk is an improvement on the Cauchy point sCk within
the trust-region ‖sk ‖ ≤ ∆k, then

fk −mk(sk) ≥
1

2
‖gk‖2 min

(
‖gk‖2

1 + ‖Bk‖2
, κs∆k

)
(11.67) cor-cauchy1-1

Furthermore, for any vector sk that satisfies fk − mk(sk) ≥ β(fk −
mk(s

C
k )) we have

fk −mk(sk) ≥
β

2
‖gk‖2 min

(
‖gk‖2

1 + ‖Bk‖2
, κs∆k

)
.
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11.2.8 Convergence Analysis

Next, we will use these results to analyse the convergence behaviour of our
trust-region algorithm (Algorithm 1).

We start our analysis with an error estimate of our model function mk,
i.e. how much can the objective function f and our model function mk vary
(inside the trust-region). Since we are using a second order approximation,
we expect that the error will be of second order in terms of the norm of sk.

lem-tr1 Lemma 11.13. Suppose that f is twice continuously differentiable and that
there exists a constant CH ≥ 1 such that the true Hessian satisfies ‖∇2f(x)‖2 ≤
CH for all x. Moreover, suppose that the model Hessian satisfies ‖Bk‖2 ≤
CB for some positive parameter CB. Then

|f(xk + sk)−mk(sk)| ≤
1

2
κ2
l (CH + CB) ∆2

k, (11.68) lem-tr1-1

for all k and sk with ‖sk‖ ≤ ∆k.

Proof. From the generalized mean-value theorem it follows that there exists
some ξk ∈ [xk, xk + sk] such that

f(xk + sk) = fk + gTk sk +
1

2
sTk ∇2f(ξk)sk.

Hence,

|f(xk + sk)−mk(sk)| =
1

2
|sTk ∇2f(ξk)sk − sTk Bksk| ≤

1

2
(|sTk ∇2f(ξk)sk|+ |sTk Bksk|)

≤ 1

2
(CH + CB) ‖sk‖22 ≤

1

2
(CH + CB)κ2

l ∆2
k.

The next result states the fact that we can always achieve good progress,
if our current iterate xk is not optimal yet (i.e. gk 6= 0) and the trust-region
is sufficiently small.

lem-tr2 Lemma 11.14. Suppose that there exist two constants CH ≥ 1 and CB ≥
0 such that the Hessians of the objective and the model function satisfy
‖∇2f(xk)‖2 ≤ CH and ‖Bk‖2 ≤ CB and let C = 1

2 (CH + CB)κ2
l . Suppose

furthermore that gk 6= 0 and that

∆k ≤ ‖gk‖2 min

(
1

κs(CH + CB)
,
κs(1− ηv)

2C

)
. (11.69) bound-tr-rad

Then iteration k is very successful and

∆k+1 ≥ ∆k.
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Proof. By assumption, we have that 1 + ‖Bk‖2 ≤ CH + CB. Therefore, it
follows by (11.69)

κs∆k ≤
‖gk‖2

CH + CB
≤ ‖gk‖2

1 + ‖Bk‖2
.

Corollary 11.12 then yields

fk −mk(sk) ≥
1

2
‖gk‖2 min

(
‖gk‖2

1 + ‖Bk‖2
, κs∆k

)
=

1

2
‖gk‖2 κs∆k

However, Lemma 11.13 and again (11.69) then gives

|ρk − 1| =
∣∣∣∣f(xk + sk)−mk(sk)

fk −mk(sk)

∣∣∣∣ ≤ 2
C∆2

k

κs‖gk‖2∆k
= 2

C

κs

∆k

‖gk‖2
≤ 1− ηv.

Therefore, ρk ≥ ηv and the iteration is very successful.

Next we use this result to show that the trust-region radius ∆k will not
shrink to zero if the sequence (gk) is bounded away from zero.

lem-tr3 Lemma 11.15. Suppose that there exist two constants CH ≥ 1 and CB ≥
0 such that the Hessians of the objective and the model function satisfy
‖∇2f(xk)‖2 ≤ CH and ‖Bk‖2 ≤ CB and let C = 1

2 (CH + CB)κ2
l . Suppose

furthermore that there exists an ε > 0 such that ‖gk‖2 ≥ ε for all k. Then

∆k ≥ cε := ε γd min

(
1

κs(CH + CB)
,
κs(1− ηv)

2C

)
(11.70) bound-tr-rad2

for all k.

Proof. Assume that the sequence (∆k) is not bounded from below and that
the iteration k is the first one where the trust-region radius falls below the
bound of (11.70), i.e.

∆k+1 < cε. (11.71) lem-tr3-1

Since by assumption ∆k ≥ cε > ∆k+1, the previous iteration must have been
unsuccessful and therefore ∆k+1 = γd ∆k. However, if we substitute ∆k+1

in (11.71) we get

∆k < ε min

(
1

κs(CH + CB)
,
κs(1− ηv)

2C

)
≤ ‖gk‖ min

(
1

κs(CH + CB)
,
κs(1− ηv)

2C

)
.

This yields a contradiction, since by Lemma 11.14 this iteration then must
have been very successful.
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The result of Lemma 11.15 now enables us to deduce that if there are
only a finitely many successful iterations, then the iterates for sufficiently
large k must be first-order optimal.

lem-tr4 Lemma 11.16. Suppose that f is twice continuously differentiable and that
both the true and the model Hessians remain bounded for all k. Suppose
furthermore that there are only finitely many successful iterations. Then
xk = x∗ for sufficiently large k and ∇f(x∗) = 0, i.e. Algorithm 1 terminates
after finitely many iterations.

Proof. If the algorithm produces only finitely many successful iterations,
then xk0+j = xk0+1 = x∗ for all j > 0, where k0 denotes the last successful
iteration. Thus gk0+j = gk0+1. Moreover, since all subsequent iterations
are unsuccessful, the sequence of trust-region radius (∆k) converges to zero.
However, if ‖gk0+1‖ = ε > 0, then this yields a contradiction to Lemma
11.15. Hence ‖gk0+1‖ = 0.

Finally we are now in a position to prove our global convergence results.

thm-tr-convergence Theorem 11.17. Suppose that f ∈ C2, and that both the true and model
Hessians remain bounded for all k. Then either

1. Algorithm 1 terminates after finitely many iterations with a stationary
point x∗, i.e.

g(xl) = 0 for some l > 0 or

2. the objective function is unbounded from below, i.e.

lim
k→∞

f(xk) = −∞ or

3. Algorithm 1 produces an infinite sequence of iterates (xk) that satisfies

lim
k→∞

gk = 0.

Proof. If the number of successful iterations is finite then Lemma 11.16 gives
the result. We therefore assume that Algorithm 1 produces an infinite num-
ber of successful iterations. Let S be the index set of successful iterations.
Furthermore, suppose, that

‖gk‖2 ≥ ε (11.72) thm-tr-convergence1
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for some ε > 0 and all k. Now consider a successful iteration k, then by
Corollary 11.12 and Lemma 11.15 it then follows that

fk − fk+1 ≥ ηs (fk −mk(sk)) ≥ δ :=
1

2
ηs ε min

(
ε

1 + CB
, κscε

)
,

with cε as in Lemma 11.15. Hence, the sum of all successful iterations from
0 to k is

f0 − fk+1 =
k∑
j=0
j ∈S

(fj − fj+1) ≥ σk δ,

where σk > 0 denotes the number of successful iterations up to iteration k.
Thus, since δ is a positive constant and

lim
k→∞

σk = +∞,

it follows that (11.72) can only be true if f is unbounded from below.
Conversely, if f is bounded from below, (11.72) cannot be true and there

exist a subsequence (xk)k∈K with

lim
k→∞
k∈K

‖g(xk)‖ = 0.

Suppose there exists another subsequence of successful iterates, that we will
index by (ti) ⊆ S, such that

‖gti‖ ≥ 2ε > 0

for all i. Moreover define a subsequence (`i) ⊆ K, that consists of the first
successful iterations `i > ti with ‖g`i‖ < ε. Hence we have

‖gk‖ ≥ ε for ti ≤ k < `i and ‖g`i‖ < ε . (11.73) thm-tr-convergence-star

Next, let J := {k ∈ S : ti ≤ k < `i},
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then as before it follows that

fk − fk+1 ≥ ηs(fk −mk(sk)) ≥ ηs
1

2
εmin

(
ε

1 + CB
, κs∆k

)
> 0 (11.74) thm-tr-convergence-star2

holds for all k ∈ J because of (11.73). Therefore, since f is bounded from
below, we have

lim
k→∞
k∈J

∆k = 0

and furthermore for k ∈ J sufficiently large

∆k ≤
2

εηsκs
(fk − fk+1).

We can therefore deduce that

‖xti − x`i‖ ≤
`i−1∑
j=ti
j∈J

‖xj − xj+1‖ ≤
`i−1∑
j=ti
j∈J

∆j ≤
2

εηsκs
(fti − f`i) .

However, since (fk) is monotonic, the right-hand side must converge to zero
for i→∞. Thus ‖xti−x`i‖ converges to zero and since f twice continuously
differentiable, this holds also for ‖gti − g`i‖. This, however, contradicts the
definitions of the sequences (ti) and (`i), thus no such subsequence (ti) can
exist.

11.2.9 A Related Alternative: Adaptive Cubic Regularisation

A new related alternative to trust-region methods for unconstrained opti-
mization is the so-called adaptive cubic regularisation that is discussed in
detail in [?]. The approach is based on the approximate global minimization
of a local cubic regularisation of the objective function. Suppose the Hessian
∇xxf(x) of the objective function f is globally Lipschitz continuous on Rn
with Lipschitz constant L. Then

f(xk + s) ≤ mC
k (s) := fk + gTk s+

1

2
sTH(xk)s+

1

6
L‖s‖3 for all s ∈ Rn .

Introducing a dynamic positive parameter σk instead of the Lipschitz con-
stant L and further allow for a symmetric approximation Bk to the local
Hessian Hk := ∇xxf(xk)we obtain the cubic model function

mc
k(s) := fk + gTk s+

1

2
sTBks+

1

3
σk ‖s‖3 (11.75) cubic-model
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The rules for updating the parameter σk follows the update rules of the
trust-region radius. This approach is justified by analogy to trust-region
methods, since σk might be regarded as the reciprocal of the trust-region
radius.

Furthermore, the step sk is only required to decrease the model as good
as that provided by a suitable Cauchy point.

The resulting algorithm is very similar to the basic trust-region algorithm
Algorithm 1.

Algorithm 3: Adaptive Regularisation using Cubics (ARC)

Choose an initial vector x0, an initial σ0 and update parameters
0 < ηs ≤ ηv < 1, γ2 ≥ γ1 > 1;;

for k = 0, 1, 2, . . . do
1 Compute (approximately) the solution sk oftr-alg3

min
s ∈ Rn

mc
k(s)

such that mc
k(sk) ≤ mc

k(s
C
k ), where the Cauchy point sCk is

determined by

sCk = −αCk gk with αCk = arg min
α∈R+

mc
k(−αgk)

;

2 Compute ρk given by (11.55) (with mk(sk) replaced by mc
k(sk)).;tr-alg4

3 Update xk and σk: ;tr-alg5

if ρk > ηv (very successful iteration) then
Set xk+1 = xk + sk and σk+1 ∈ [0, σk].

else if ρk ≥ ηs (successful iteration) then
Set xk+1 = xk + sk and σk+1 ∈ [σk, γ1σk].

else
Set xk+1 = xk and σk+1 ∈ [γ1σk, γ2σk].

acr-alg

Remark 11.18.

1. If the for the current iterate ρk < ηs then, as for the basic trust-region
method, the reduction in the objective function is regarded as insuf-
ficient and the weight σk is increased with the intention to implicitly
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reducing the size of the step in the next iteration. In this way the up-
dating rules for σk mimmick those ones of changing the trust-region
radius.

2. As for the definition of the trust-region, the `2-norm in the definition
of the model function mc

k(s) can be replaced by a more general norm

on Rn of the form ‖s‖M :=
√
sTMs, where M is a given symmetric

positive definite matrix.

3. The regularisation term ‖s‖3 may also be replaced by a term of the
form ‖s‖p, for some p > 2.

11.2.10 Global Convergence

In the following we will again make use of the set of successful iterations

S := {k ≥ 0 : k successful or very successful} .

At first, we derive a guaranteed lower bound on the decrease in f , similar
to that one for the trust-region method

acr-lem0 Lemma 11.19. Suppose that the step sk satisfies mc
k(sk) ≤ mc

k(s
c
k). Then

for k ≥ 0, we have that

fk−mc
k(sk) ≥ fk−mc

k(s
C
k ) ≥ ‖gk‖2

6
√

2 max(1 + ‖Bk‖, 2
√
σk ‖gk‖)

=
‖gk‖
6
√

2
min

 ‖gk‖
1 + ‖Bk‖

,
1

2

√
‖gk‖
σk

 .

Proof. See [?].

Furthermore, in the following we will make the assumption that there
exists a constant CB ≥ 0 such that

‖Bk‖ ≤ CB for all k ≥ 0 . (11.76) acr-AM1

The following auxiliary Lemma is needed to prove the global convergence
results.

acr-lem1 Lemma 11.20. Suppose (11.76) holds for some CB ≥ 0 and that I is an
infinite index set such that

‖gk‖ ≥ ε, for all k ∈ I and some ε > 0, and

√
‖gk‖
σk
→ 0, as k →∞, k ∈ I.

(11.77) acr-lem1-1
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Then

‖sk‖ ≤ 3

√
‖gk‖
σk

, for all k ∈ I sufficiently large. (11.78) acr-lem1-2

Additionally, if

xk → x∗, as k →∞, k ∈ I, for some x∗ ∈ Rn, (11.79) acr-lem1-3

then each iteration k ∈ I that is sufficiently large is very successful, and

σk+1 ≤ σk, for all k ∈ I sufficiently large. (11.80) acr-lem1-4

Proof. See [?]

Provided the algorithm produces only fintely many successful iterations,
all subsequent iterates are stationary points.

acr-lem2 Lemma 11.21. Suppose (11.76) holds for some CB ≥ 0. Moreover, assume
that there are only finitely many successful iterations. Then xk = x∗ for all
sufficiently large k and ∇f(x∗) = 0.

Proof. See [?].

As next, we prove that if the objective function is bounded from below,
then Algorithm 3 either produces finitely many successful iteration or it
produces an infinite sequence that contains a subsequence (xk)k∈K with
lim k→∞

k∈K
g(xk) = 0.

acr-thm1 Theorem 11.22. Suppose (11.76) holds for some CB ≥ 0. Moreover, as-
sume that f is bounded from below.

lim inf
k→∞

‖gk‖ = 0. (11.81) acr-thm1-1

Proof. If there exist only finitely many successful iterations, then the result
is true by Lemma 11.21. Therefore we assume that Algorithm 3 produces
infinitely many successful iterations. Moreover, we assume that (11.81) does
not hold. Hence there exists an ε > 0 such that

‖gk‖ ≥ ε for all k ≥ 0. (11.82) acr-thm1-2

First we will prove that

∞∑
k∈S

√
‖gk‖
σk

< +∞. (11.83) acr-thm1-3
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It follows from Lemma 11.19, (11.76) and (11.82) that

f(xk)− f(xk+1) ≥ ηs(f(xk)−mc
k(sk))

≥ ηsε

6
√

2
min

 ε

1 + CB
,
1

2

√
‖gk‖
σk


for all k ∈ S. However, since the sequence (f(xk)) is monotonically decreas-
ing and f is supposed to bounded from below, it is convergent and thus the
minimum on the right-hand side will be attained at the second argument
for sufficiently large k ∈ S. Hence,

f(xk)− f(xk+1) ≥ ηsε

12
√

2

√
‖gk‖
σk

for sufficiently large k ∈ S. Summing up over all sufficiently large iterations
(i.e. choosing k0 suffienciently large) yields

f(xk0)− f(xj+1) =

j∑
k=k0
k∈S

(f(xk)− f(xk+1)) ≥ ηsε

12
√

2

j∑
k=k0
k∈S

√
‖gk‖
σk

, (11.84)

for any j ∈ S. Letting j → ∞ then since (f(xk)) is convergent, (11.83)
holds true and √

‖gk‖
σk
→ 0, k →∞, k ∈ S (11.85) acr-thm1-3+

Next we prove that the sequence of iterates (xk) is Cauchy sequence. By
(11.82) and (11.83) the set S satisfies the conditions of the set I in Lemma
11.20 and therefore

‖xl+r − xl‖ ≤
l+r−1∑
k=l

‖xk+1 − xk‖ =

l+r−1∑
k=l

‖sk‖

≤ 3

l+r−1∑
k=l

√
‖gk‖
σk
→ 0 for l→∞(l, r ≥ 0) .

Since (xk) is Cauchy sequence xk → x∗ for some limit point x∗ ∈ Rn. Thus
again by Lemma 11.20 all k ∈ S are very successful.

Suppose all sufficiently large iterations k are successful, i.e. k ∈ S for
all k > k1 for some k1 ≥ 0. Then Lemma 11.20 implies that σk+1 ≤ σk for
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all k > k1 and so (σk) is bounded above, which contradicts (11.83). Thus
(11.82) cannot hold.

It therefore remains to prove that k ∈ S for all k > k1 for some k1 ≥ 0.
Assume that this is not the case. However, since we assumed that S is
infinite, there exits an (infinite) sequence (ki) of very successful iterations
such that ki − 1 is unsuccessful for all i ≥ 0. Then by our update rules
σki ≤ γ2σki−1 for all i. Moreover, since ki − 1 is unsuccessful, we have that
gki = gki−1 for all i. Thus by (11.85)√

‖gki−1‖
σki−1

→ 0, i→∞, k ∈ S

Let I = {ki − 1 : i ≥ 0}, then I satisfies the conditions of Lemma 11.20
and thus ki − 1 is very successful for sufficiently large i ≥ 0. This, however,
contradicts our assumption that ki − 1 is unsuccessful for all i.

Under the additional assumption that the gradient is uniformly continu-
ous on the sequence of iterates (xk), it can be shown that the whole sequence
of gradients converges to zero.

acr-cor1 Corollary 11.23. In addition to the condition of Theorem 11.22, assume
that

‖gki − gli‖ → 0 whenever ‖xki − xli‖ → 0, i→∞, (11.86) acr-AF2

then
lim
k→∞

‖gk‖ = 0. (11.87) acr-cor1-1

Proof. See [?]

11.2.11 Optimality Conditions for the Minimizer

Next we prove a result concerning the necessary and sufficient optimality
conditions for the global minimizer of the cubic model function mc

k(s) which
is very similar to Theorem 11.58, the corresponding result for trust-region
subproblem.

In order to state the optimality conditions for a global minimizer s∗, we
need the derivatives of mc

k(s). These may be expressed as

∇smc
k(s) = gk +Bks+ λs

∇ssmc
k(s) = Bk + λI + λ

(
s

‖s‖

)(
s

‖s‖

)T
,
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where λ = σk‖s‖.

acr-thm2 Theorem 11.24. Any s∗ is a global minimizer of mc
k(s) over Rn if and only

if it satisfies the system of equations

(Bk + λ∗I)s∗ = −gk (11.88) acr-thm2-1

where λ∗ = σk‖s∗‖ and Bk + λ∗I is positive semidefinite. If Bk + λ∗I is
positive definite, s∗ is unique.

Proof. First, suppose that s∗ is a global minimizer of mc
k(s), then

∇smc
k(s
∗) = gk +Bks

∗ + λs∗ = 0,

which proves (11.88). Moreover, by the second order necessary conditions
we have that

wT

(
Bk + λI + λ

(
s

‖s‖

)(
s

‖s‖

)T)
w ≥ 0 (11.89) acr-thm2-2

for all w ∈ realn. If s∗ = 0, then (11.89) is equivalent to λ∗ = 0 and Bk
being positive semidefinite. Thus we only need to consider minimizers that
satisfy s∗ 6= 0.

Moreover, for all vectors w ∈ Rn with wT s∗ = 0 (11.89) becomes

wT (Bk + λI) w ≥ 0

Hence, suppose that wT s∗ 6= 0. Then the line s∗ + αw intersects the ball of
radius ‖s∗‖ twice, at s∗ and another point u∗ 6= s∗, such that ‖u∗‖ = ‖s∗‖.
Let w = u∗ − s∗, then (since s∗ is supposed to be a global minimizer of
mc
k(s)) we have

0 ≤ mc
k(u
∗)−mc

k(s
∗)

= gTk (u∗ − s∗) +
1

2
(u∗)TBku

∗ − 1

2
(s∗)TBks

∗ +
σk
3

(‖u∗‖3 − ‖s∗‖3)

= gTk (u∗ − s∗) +
1

2
(u∗)TBku

∗ − 1

2
(s∗)TBks

∗.

However, by (11.88) we have

gTk (u∗ − s∗) = (s∗ − u∗)TBks∗ + λ∗(s∗ − u∗)T s∗.

and since ‖u∗‖ = ‖s∗‖

(s∗ − u∗)T s∗ =
1

2
(s∗)T s∗ +

1

2
(u∗)Tu∗ − (u∗)T s∗ =

1

2
(w∗)Tw∗

205



Together with the above inequality this gives

0 ≤ 1

2
λ∗(w∗)Tw∗ +

1

2
(u∗)TBku

∗ − 1

2
(s∗)TBks

∗ − (u∗)TBks
∗

=
1

2
(w∗)T (Bk + λ∗I)w∗

thus
wT (Bk + λ∗I)w ≥ 0 for all w with wT s∗ 6= 0 .

The uniqueness of s∗ in the case that Bk + λ∗I is positive definite follows
directly from (11.88).

For the reverse direction see [?].

Remark 11.25.
Note that this result and its proof are very similar to Theorem 11.8. More-
over, if the global solution of the trust-region subproblem satisfies ‖s∗‖ = ∆k,
then comparing the Theorem results we get σk = λ∗/∆k. In view of this
property we can interprete the parameter σk in Algorithm 3 as inversely
proportional to the trust-region radius.

11.2.12 Optimality Conditions

Basic Optimality Conditions for Nonlinear Programming

Consider the general Nonlinear Program (NLP)

min f(x)

subject to h(x) = 0
g(x) ≥ 0 ,

(11.90) nlp

where f : Rn → R, h : Rn → Rq and g : Rn → Rm are here assumed to be
twice continuously differentiable functions. The following definitions [?] are
essential in the theory of Nonlinear Programming.

The general stationarity condition for an ordinary NLP of the form
(11.90) is

∇f(x∗)Td ≥ 0 ∀ d ∈ T (X , x∗) , (11.91) nlpstat-condition

where X := {x ∈ Rn : h(x) = 0, g(x) ≥ 0} denotes the feasible region and
T (X , x∗) denotes the tangent cone that is defined as follows [?]:
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tangent-cone Definition 11.26. Let M ⊆ R` denote a nonempty set and let x ∈ M.
The tangent cone of M at x is defined by

T (M, x) =

{
d ∈ R`

∣∣∣ ∃ (xk) ⊂M,

∃ (ηk) ⊂ R, ηk ↘ 0 : xk → x and (xk − x)/ηk → d
}
.

Moreover the corresponding normal cone of M at x is

N (M, x) = (T (M, x))◦ .

Condition (11.91) represents the fact that there exists no feasible descent
direction at a local optimum x∗ and it is equivalent to

− ∇f(x∗) ∈ N (X , x∗) . (11.92) nlp-stat-condition-dual

As these two stationarity conditions are difficult to verify they are in par-
ticular not well practicable for numerical purposes. Some constraint quali-
fications (CQ) are therefore typically used to guarantee that the unwieldy
tangent cone T (X , x∗) can be replaced by the linearized tangent cone

Tlin(X , x∗) := {d ∈ R`|∇hj(x∗)T d = 0, ∀ j ∈ Ih(x∗), ∇g(x∗)T d ≥ 0, ∀ j ∈ Ig(x∗) } ,

where

Ih(x) = {i ∈ {1, .., q} : hi(x) = 0} ,
Ig(x) = {i ∈ {1, ..,m} : gi(x) = 0} ,

denote the sets of the active constraints in x.
One of the most basic constraint qualification is the so-called Abadie

Constraint Qualification [?].

acq Definition 11.27. Let x∗ ∈ X , then x∗ is said to satisfy the Abadie Con-
straint Qualification (ACQ), if T (X , x∗) = Tlin(X , x∗).

Suppose x∗ satisfies the ACQ, then (11.92) can be replaced by

− ∇f(x∗) ∈ (Tlin(X , x∗))◦

which can then by the Farkas Lemma (Lemma 2.27 in [?]) proved to be
equal to the KKT-conditions (see Definition 11.30), which mostly form the
basis of solution methods and software for NLPs. Since the ACQ is difficult
to verify, often some stronger constraint qualifications are used that imply
the ACQ and hence the admissibility of the KKT-conditions. Two basic
regularity assumptions concerning the feasible region of the NLP that imply
the ACQ are:
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nlp-licq Definition 11.28. Let x∗ be feasible for (11.90), then x∗ is said to satisfy
the Linear Independence Constraint Qualification (LICQ), if the family

∇hi(x∗) i ∈ {1, . . . , q},
∇gj(x∗) j ∈ Ig(x∗)

is linear independent.

nlp-mfcq Definition 11.29. Let x∗ be feasible for (11.90), then x∗ is said to satisfy
the Mangasarian-Fromowitz Constraint Qualification (MFCQ), if

1. the family ∇hi(x∗) i = 1, . . . , q is linear independent and

2. there exists a vector d ∈ Rn that satisfies the conditions ∇gj(x∗)T d > 0
for all j ∈ Ig(x∗) and ∇hi(x∗)T d = 0 for all i ∈ {1, . . . , q}

It can be proved (see for example [?]), that these two constraint qualifi-
cations satisfy the implications LICQ ⇒ MFCQ ⇒ ACQ.

Next we define the Karush-Kuhn-Tucker (KKT-) conditions that form a
necessary optimality condition [?] for Nonlinear Programming problems.

def-nlp-kkt Definition 11.30. Let x∗ ∈ Rn. We call the conditions

∇f(x∗)−∇g(x∗)λ∗ −∇h(x∗)µ∗ = 0
h(x∗) = 0
g(x∗) ≥ 0
λ∗ ≥ 0

gi(x
∗)λ∗i = 0 i = 1, . . . ,m

(11.93) nlp-kkt

Karush-Kuhn-Tucker (KKT-) conditions. Moreover, if there exist λ∗ ∈ Rm
and µ∗ ∈ Rq, such that (x∗, λ∗, µ∗) satisfies (11.93), then we call x∗ a sta-
tionary point of (11.90) and the vectors λ∗ and µ∗ Lagrange multipliers of
x∗.

Suppose that a local solution x∗ of (11.90) satisfies either LICQ or
MFCQ, then the existence of vectors λ∗ ∈ Rm and µ∗ ∈ Rq, such that
(x∗, λ∗, µ∗) satisfies the KKT-conditions form a necessary optimality condi-
tion.

thm-nlp-kkt Theorem 11.31. Let x∗ ∈ Rn be a local solution of (11.90). If x∗ satisfies
either LICQ or MFCQ, then there exist vectors λ∗ ∈ Rm and µ∗ ∈ Rq, such
that (11.93) is satisfied.

Proof. See for example Theorem 2.39 and 2.41 in [?].
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Define the sets

I+
g (x, λ) = {i ∈ {1, . . . ,m} : gi(x) = 0, λi > 0} ,
I0
g (x, λ) = {i ∈ {1, . . . ,m} : gi(x) = 0, λi = 0}

and
S(x, λ) = { d ∈ Rn\{0}|

∇hi(x)Td = 0, i ∈ {1, . . . , q},
∇gj(x)Td = 0, j ∈ I+

g (x, λ),

∇gj(x)Td ≥ 0, j ∈ I0
g (x, λ) }

and let

L(x, λ, µ) = f(x)−
m∑
j=1

λjgj(x)−
q∑
i=1

µihi(x) (11.94) nlp-lagrange

denote the Lagrangian function of (11.90), then we can define a standard
Second Order Sufficient Condition (SOSC) for x∗ to be a local solution of
(11.90).

def-nlp-sosc Definition 11.32. Let x∗ be a stationary point of (11.90) with multipliers
λ∗ and µ∗ and suppose that

dT∇2
xxL(x∗, λ∗, µ∗) d > 0 ∀ d ∈ S(x∗, λ∗) , (11.95) nlp-sosc

then x∗ is said to satisfy the Second Order Sufficient Condition (SOSC) for
(11.90).

nlp-sosc-thm Theorem 11.33. Let (x∗, λ∗, µ∗) satisfy the KKT-conditions and the SOSC,
then x∗ is a strict local solution of (11.90).

Proof. See for example Theorem 2.55 in [?].

11.3 Sequential Quadratic Programming (SQP)

Sequential Quadratic Programming (SQP) methods are the basis of some
of the most effective modern nonlinear programming solvers, as for example
SNOPT, filterSQP, DONLP2 (see also http://www-neos.mcs.anl.gov/neos).
As the name already reveals, these methods are based on the successive
solution of quadratic programs (QP). These QPs form an approximation of
the NLP in a current iterate xk. In each outer iteration of the SQP method
the solution of such a QP yield a new search direction d and associated
multipliers λqp and µqp. A new solution estimate is then obtained by setting
xk+1 = xk + d and taking λqp and µqp as new multiplier estimates λk+1 and
µk+1, respectively. In general, the quadratic subprograms are solved either
by an active set strategy or by Interior Point Methods.
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11.3.1 Lagrange-Newton Method

We start our discussion with the Newton method applied to the KKT-
conditions of the equality constrained nonlinear optimization problem

min f(x)

subject to h(x) = 0 .
(11.96) ecnlp

The KKT-conditions of (11.96) are

∇x L(x∗, µ∗) = ∇f(x∗)−∇h(x∗)µ∗ = 0
h(x∗) = 0 .

(11.97) ecnlp-kkt

This is a system in n+q unknowns and n+q equalities. Define the nonlinear
function F (x, µ) by

F (x, µ) :=

(
∇x L(x, µ)

h(x)

)
(11.98) lnewton-func

then (x∗, µ∗) is a KKT-tupel of (11.96) if and only if it is a root of F (x, µ).
Probably the most famous method to find solutions of F (x, µ) = 0 is New-
tons method. However, to be able to apply Newtons method, we need the
continuously differentiability of F . We therefore assume that f and h are
twice continuously differentiable, since then

F ′(x, µ) =

(
∇2
xxL(x, µ) ∇h(x)
∇h(x)T 0

)
exists and is continuous. Consider a current iterate (xk, µk), then the New-
ton step sk = (sxk, s

µ
k) is determined by the Newton equation

F ′(xk, µk)sk = −F (xk, µk) (11.99) newton

and the resulting Lagrange-Newton algorithm is

11.3.2 Local Convergence

Since the local convergence properties of the Lagrange-Newton algorithm are
determined by those ones of the Newton method applied to arbitrary non-
linear equations F (x) = 0, we first review the local convergence properties
of the general Newton method.

newton-conv Theorem 11.34. Let F : Rn → Rn be continuously differentiable and let x̄
be such that F (x̄) = 0 and F ′(x̄) is regular. Then there exist a δ > 0 such
that for all x0 ∈ Bδ(x̄) it holds
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Algorithm 4: Lagrange-Newton Algorithm

1 Choose initial values for x0 ∈ Rn and µ0 ∈ Rq.;lnewton1
repeat

2 Compute the solution sk oflnewton2 (
∇2
xxL(xk, µk) ∇h(xk)
∇h(xk)

T 0

)(
sxk
sµk

)
= −

(
∇x L(xk, µk)

h(xk)

)

3 Update the iterate and the multiplier:;lnewton3

xk+1 ← xk + sxk;
µk+1 ← µk + sµk ;

4 k ← k + 1;lnewton4

until (xk, µk) satisfies the KKT conditions.;ln-alg

1. the Newton method is well-defined and produces a sequence (xk) that
converges to x̄.

2. The rate of convergence of (xk) is q-superlinear, i.e.

‖xk+1 − x̄‖2 = o(‖xk − x̄‖2) for k →∞ .

3. If in addition F ′ is locally Lipschitz continuous, then the rate of con-
vergence is even q-quadratic, i.e.

‖xk+1 − x̄‖2 = O(‖xk − x̄‖22) for k →∞ .

Proof. See for example [?] pages 234-239

The next Lemma states conditions such that F (x, µ) defined by (11.98)
is regular in a solution (x∗, µ∗).

ln-lem Lemma 11.35. Let f and h be twice continuously differentiable and let
(x∗, µ∗) be such that

1. ∇h1(x∗), . . . ,∇hq(x∗) are linearly independent, i.e. the LICQ holds in
x∗

2. sT∇2
xxL(x∗µ∗)s > 0 holds for all s ∈ Rn \ {0} with ∇h(x)T s = 0, i.e.

the SOSC holds in x∗.
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Then F ′(x∗, µ∗) is regular.

See for example [?] Satz 5.28 As a conclusion, we obtain the following
theorem as local convergence result for the Lagrange-Newton Algorithm.

ln-thm Theorem 11.36. Let f and h be twice continuously differentiable and let
(x∗, µ∗) be a KKT-pair such that the LICQ and the SOSC are satisfied in
x∗, then there exists a δ > 0 such that for all (x0, µ0) ∈ Bδ(x∗, µ∗) it holds

1. the Lagrange-Newton algorithm either stops with (xk, µk) = (x∗, µ∗)
or it produces a sequence (xk, µk) that converges to q-superlinearly to
(x∗, µ∗).

2. If in addition ∇2f and ∇2hj are locally Lipschitz continuous in Bδ(x
∗),

then the rate of convergence is even q-quadratic.

Proof. The first part of the Theorem directly follows from Theorem 11.34
and Lemma 11.35. Concerning the second part, it remains to prove that
the Lipschitz continuity of ∇2f and ∇2hj implies the Lipschitz continuity
of F ′(x, µ) on Bδ(x

∗, µ∗). However, it holds

‖F ′(x, µ)− F ′(x′, µ′)‖2 ≤ (Lf + Lh)‖x− x′‖2 +

q∑
j=1

‖µj ∇2hj(x)− µ′j ∇2hj(x
′)‖2

≤ (Lf + Lh)‖x− x′‖2 +

q∑
j=1

|µj |‖∇2hj(x)−∇2hj(x
′)‖2

+

q∑
j=1

|µj − µ′j |‖∇2hj(x
′)‖2

≤ L ‖(x, µ)− (x′, µ′)‖2

The Lagrange-Newton method can be extended to general nonlinear op-
timization problems (NLP), if one replaces the inequality conditions and
the complementarity condition corresponding to the inequality constraints
in the KKT conditions with an equality condition. This can be done using
a so-called NCP-Function. These are special functions φ : R2 → R that
satisfy the condition

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, and ab = 0.
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The Minimumfunction φ(a, b) = min(a, b) is one example of an NCP-function.
However, most of the NCP-functions have the property that they are not
everywhere continuously differentiable (in particular not in (a, b) = (0, 0)).
Thus in order to apply the Newton method to the resulting equation one
needs to undertake further considerations to solve this problem.

11.3.3 Local SQP Method for Equality Constrained NLPs

Consider the Newton equation (11.99) of the Lagrange-Newton method,
which can also be formulated by

∇2
xxL(xk, µk)s

x
k +∇h(xk)s

µ
k = −∇xL(xk, µk)

∇h(xk)
T sxk = −h(xk) .

(11.100) ecsqp-1

However, if we substitute µqp = µk + sµk in (11.100), then it becomes

∇2
xxL(xk, µk)s

x
k +∇h(xk)µqp = −∇f(xk)
∇h(xk)

T sxk = −h(xk) .
(11.101) ecsqp-2

which are the KKT-conditions of the equality constrained quadratic program
(QP)

mind∈Rn gTk d+ 1
2d

TBkd

subject to h(xk) +∇h(xk)
Td = 0

(11.102) ecqp

where Bk denotes the matrix ∇2
xxL(xk, µk) itself or an approximation of it.

Next, we state conditions for xk being a local solution of (11.96) in terms
of the solutions dk and µqp of (11.102) with Bk = ∇2

xxL(xk, µk).

ecsqp-thm Theorem 11.37. Let f and h be twice continuously differentiable and let
xk ∈ Rn and µqp ∈ Rq. Then the following two statements are equivalent:

1. (xk, µqp) is a KKT-pair of (11.96) that satisfies the SOSC.

2. dk = 0 is an isolated (strict) local minimum of (11.102) and µqp is a
suitable Lagrange multiplier.

Proof. (1)⇒(2):
Assume that (xk, µqp) is a KKT-pair of (11.96) that satisfies the SOSC. The
Lagrangian function of (11.102) is

Lqpk (d, µqp) = gTk d+
1

2
dTBkd+ µTqp(h(xk) +∇h(xk)

Td) .
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Hence, for the derivatives of Lqpk we get

∇dLqpk (d, µqp) = gk +Bkd+∇h(xk)µqp = ∇xL(xk, µqp) +Bkd

∇2
ddL

qp
k (d, µqp) = Bk = ∇2

xxL(xk, µqp),

such that (dk, µqp) = (0, µqp) satisfies ∇dL(xk, µqp) = 0 and

sT∇2
ddL

qp
k (d, µqp)s = sT∇2

xxL(xk, µqp)s > 0 ∀s ∈ Rn\{0} with ∇h(xk)
T s = 0 .

Therefore (dk, µqp) = (0, µqp) is a strict local minimizer of (11.102), as it
satisfies the second order sufficient conditions for (11.102).
(2)⇒(1):
Suppose dk = 0 is an isolated (strict) local minimum of (11.102) and µqp
is a suitable Lagrange multiplier. Then dk = 0 is feasible for (11.102) and
thus h(xk) = 0 and xk is feasible for (11.96). Furthermore, because

0 = ∇dLqpk (0, µqp) = ∇xL(xk, µqp)

(xk, µqp) is a KKT-pair of (11.96). To prove the SOSC, let s ∈ Rn \ {0} be
in the nullspace of ∇h(xk) and define the quadratic function

φ(t) = gTk (ts) +
t2

2
sTBks .

Then, since dk = 0 is a strict local minimizer of (11.102), t = 0 must be a
minimum of a convex function φ(t). Therefore,

0 < φ′′(0) = sTBks = sT∇2
xxL(xk, µqp)s

and (xk, µqp) satisfies the SOSC for (11.96). In particular, xk is a strict local
minimum of (11.96).

We before we end this section with a reduced SQP algorithm, here we
first state the basic local SQP algorithm for equality constraint NLPs.

11.3.4 Reduced SQP Method

One possibility to solve the quadratic programs (11.102) is a so-called null-
space approach, where instead of searching a solution in Rn and introduc-
ing linear equality constraints one reduces the problem to the null-space of
ATk := ∇h(xk)

T . In doing so, one reduces the dimension of the problem and
one gets rid of the equality constraints.
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Algorithm 5: Local SQP Algorithm for Equality Constrained NLPs

1 Choose initial values for x0 ∈ Rn, µ0 ∈ Rq.;sqp1
repeat

2 Compute local minimizer dk of (11.102) and an associatedsqp1
multiplier µqp.;

3 Update the iterate xk and the multiplier:;sqp2

xk+1 = xk + dk and µk+1 = µqp

4 k ← k + 1;sqp2

until (xk, µk) satisfies the KKT conditions.;local-ecnlp-sqp

Suppose Bk is positive definite on the null-space of ATk and Ak has full
column rank. Let uk be any solution of

ATk uk = −hk ,

where hk := h(xk) and let Zk ∈ Rn×r with r = n − q be a matrix whose
columns form a basis of the null-space of ATk . Then

hk +ATk d = 0 ⇐⇒ ∃v ∈ Rr : d = uk + Zkv .

Moreover, the vector v is uniquely given by

v = (ZTk Zk)
−1ZTk (d− uk) .

If we substitute d = uk + Zkv in (11.96) we obtain the equivalent reduced
problem

min
v∈Rr

qrk(v) with qrk(v) := qk(uk + Zkv) , (11.103) redqp

where qk(d) = gTk d+ 1
2d

TBkd.

redqp-lem Lemma 11.38. The point dk ∈ Rn is a solution of (11.102) if and only if

vk = (ZTk Zk)
−1ZTk (dk − uk)

is a solution of (11.103).
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Proof. Let dk be a solution of (11.102) and let vk = (ZTk Zk)
−1ZTk (dk − uk)

. Then we have
dk = uk + Zkvk.

Moreover, for any v ∈ Rr the vector d = uk + Zkv is feasible for (11.102),
since hk +ATk d = 0. Therefore, vk is a local solution of (11.103), since

qrk(v) = qk(d) ≥ qk(dk) = qrk(vk) .

On the other hand, if vk is a solution of (11.103) and suppose dk = uk+Zkvk,
then hk +ATk dk = 0. Let

v = (ZTk Zk)
−1ZTk (d− uk)

for any d ∈ Rn. Then d = uk +Zkv and it follows that dk is a local solution
of (11.102), since

qk(d) = qrk(v) ≥ qrk(vk) = qk(dk) .

Remark 11.39. The first and second order derivative of the reduced func-
tion qrk(v) are given by

∇qrk(v) = ZTk ∇qk(uk+Zkv) = ZTk (gk+Bk(uk+Zkv)) , ∇2qrk(v) = ZTk BkZk .
(11.104) deriv-red

Hence the Hessian of qrk(v) is positive definite and the solution vk of (11.103)
can be determined by the equation ∇qrk(v) = 0. Moreover, by Lemma 11.38
the solution of (11.102) is then dk = uk+Zkvk, where uk solves ATk uk = −hk,
and the corresponding Lagrange multipier µqp is the solution of the multiplier
rule Bkdk +Akµqp = −gk.

Next, note that since qrk(v) is a quadratic function, the second order
Taylor approximation is exact and therefore

qrk(v) = qk(uk) + (ZTk (gk +Bk uk))
T v +

1

2
vTZTk BkZkv .

Furthermore, if the KKT-pair (x∗, µ∗) satisfies the SOSC, then for any Z̄
that consists of a basis of the nullspace of∇h(x∗)T , then the reduced Hessian
of the Lagrangian Z̄T∇2

xxL(x∗, µ∗)Z̄ is positive definite, such that for any
(xk, µk) that is close enough to (x∗, µ∗), a positive definite approximationMk

216



is assumed to be a better approximation of ZTk L(xk, µk)Zk then of L(xk, µk).
Therefore it seems to be appropriate to minimize

q̃rk(v) = qk(uk) + (ZTk (gk +Bk uk))
T v +

1

2
vTMkv

instead of the exact reduced function qrk(v). However, we still have to deal
with the so-called cross term ck = ZTk Bk uk that involves the matrix Bk. In
the following, we make the following assumptions:

rank∇h(x∗) = q (11.105)

‖M−1
k ‖, ‖Bk‖ ≤ CH (11.106)

‖Zk − Z̄‖2 = O(‖xk − x∗‖2) , (11.107)

for some constant CH ≥ 0. Then uk ∈ Rq can be chosen such that

‖uk‖2 = O(‖hk‖2) . (11.108) uk-cond

Therefore ‖ZTk Bk uk‖2 = O(‖hk‖2) and thus in the following we will assume
that the Cross-Term ck satisfies

‖ck‖2 = O(‖hk‖2) . (11.109) ck-cond

Since the constant term qk(uk) is irrelevant for the minimization of q̃rk we
consider the minimzation problem

min
v∈Rr

q̂rk(v) with q̂rk(v) := (ZTk gk + ck)
T v +

1

2
vTMkv , (11.110) red-qp

which can exactly be solved by

Mkvk = −(ZTk gk + ck) .

Since (11.110) is an unconstrained optimization, we do not have a direct
condition to determine the associate multiplier. However, we can again use
the multiplier rule of the original problem, which leads to the equation

Y T
k Akµk+1 = −Y T

k (gk +Bkdk) ,

where the columns of Yk consist of a basis of the range of Ak (e.g. Yk = Ak).
On the right-hand side, though, we obtain again a term involving the matrix
Bk that we would like to ommit. However, as it can be shown that this
term is of the order O(‖xk − x∗‖2) and we suppose that xk is close to x∗

it is admissible to ommit this term. Up to now, the new multiplier µk+1
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depends on the “old” values gk and Ak although the new iterate xk+1 is
already available (and therefore gk+ and Ak+1), thus we could instead use
these values in our update of µk+1. Combining both alternatives yields the
update

Y T
k+1Ak+1µk+1 = −Yk+1gk+1 . (11.111) red-qp-mult

Together this yields the following reduced local SQP Method. Finally, a

Algorithm 6: Local Reduced SQP Algorithm

1 Choose initial values for x0 ∈ Rn, c0 ∈ Rr and a positive definitesqp1
matrix M0;
for k = 0, 1, 2, . . . do

2 Compute multiplier µk according to (11.111) ;alg:lrsqp-1
3 if (xk, µk) satisfies the KKT conditions. thenalg:lrsqp-2

STOP.

4 Determine Zk, whose columns consists of a basis of ATk ;alg:lrsqp-3
5 Compute uk that solves ATk uk = −hk. ;alg:lrsqp-4
6 Compute vk as a solution of (11.110). ;alg:lrsqp-5
7 Set dk = uk + Zkvk and xk+1 = xk + dk. ;alg:lrsqp-6
8 Update the matrix Mk and the cross term ck that satisfiesalg:lrsqp-7

(11.109).;
alg:local-red-sqp

local convergence theorem for Algorithm 6 is :

local-red-sqp-thm Theorem 11.40. Let (x∗, µ∗) be a KKT-pair of (11.96) and suppose the
LICQ and the SOSC holds for (11.96) in (x∗, µ∗). Consider Algorithm 6
and let Mk = ZTk ∇2L(xk, µk)Zk. Moreover, assume that the conditions
(11.107), (11.108) and (11.109) are satisfied. Then there exists a δ > 0
such that for all x0 ∈ Bδ(x∗) the Algorithm produces a sequence (xk) that
converges 2-step q-superlinearly to x∗, i.e.

‖xk+1 − x∗‖2 = o(‖xk−1 − x∗‖2) for k →∞ .

Furthermore, the sequence (µk) converges 2-step r-superlinearly to µ∗. If
∇2f and ∇2hj are Lipschitz continuous in Bδ(x

∗), then the rate of conver-
gence changes to 2-step q-quadratically and 2-step r-quadratically for (xk)
and µk, respectively.

11.3.5 Local SQP Method for general NLPs

In this section we will now extend the local SQP method of the previous
section to general NLPs of the form (11.90). This can easily be done by
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extending the equality constraint, quadratic program (11.102). We just add
the linearized inequality constraints which then yields the general quadratic
subproblem

mind∈Rn gTk d+ 1
2d

TBkd

subject to h(xk) +∇h(xk)
Td = 0

g(xk) +∇g(xk)
Td ≥ 0

(11.112) qp-sqp

As a general local SQP algorithm we then obtain Algorithm 7 A main local

Algorithm 7: Local SQP Algorithm

1 Choose initial values for x0 ∈ Rn, λ0 ∈ Rm and µ0 ∈ Rq.;sqp1
repeat

2 Compute a local minimizer dk of (11.112) that is closest to thesqp1
origin and compute associated multipliers λkqp and µkqp.;

3 Update the iterate and the multipliers:;sqp2

xk+1 ← xk + dk;

λk+1 ← λkqp ;

µk+1 ← µkqp ;

4 k ← k + 1;sqp2

until (xk, λk, µk) satisfies the KKT conditions.;alg:genlocal-sqp

convergence result for Algorithm 7 (Theorem 15.2.2 in [?]) is:

sqp-allg-conv Theorem 11.41. Suppose that the second derivatives of f , g and h exist
and are Lipschitz continuous in some neighbourhood Ω of a stationary point
x∗ of (11.90) with multipliers λ∗ and µ∗. Assume that the LICQ and the
SOSC hold in (x∗, λ∗, µ∗) and furthermore that λ∗j 6= 0 for all j ∈ Ig(x∗).
Then the following holds:

1. Consider any sequence (λk, µk) converging to (λ∗, µ∗). Then there
exists a neighbourhood X ⊂ Ω of x∗ for which the sequence (xk) gener-
ated by Algorithm 3.1 converges q-superlinearly to x∗ from any starting
point x0 ∈ X . Furthermore, if

‖(λk, µk)− (λ∗, µ∗)‖ = O(‖xk − x∗‖),

then the convergence is q-quadratic.
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2. Let (xk) and (dk) be the sequences generated by Algorithm 3.1 and
let (λk+1, µk+1) be the Lagrange multipliers associated with dk. Then
there is a neighbourhood X ⊂ Ω of x∗ and another neighbourhood Y of
(λ∗, µ∗) for which the sequence ((xk, λk, µk)) converges q-quadratically
to (x∗, λ∗, µ∗) from any starting point ((x0, λ0, µ0)) ∈ X×Y.

3. In either case, the set of constraints that are active at x∗ are precisely
those that are active for the quadratic subproblem (11.112) at dk for
large enough k.

Remark 11.42. A similar local convergence result (q-superlinear/quadratic
convergence of the KKT-sequence (xk, λk, µk)) can be shown by the Newton
method applied to the nonlinear system of equations:

F (x, λ, µ) :=

 ∇x L(x, λ, µ)
h(x)

Φ(−λ, g(x))

 = 0 , (11.113) sqp-prf-func

where Φ(−λ, g(x)) := (φ(λ1, g1(x)), . . . , φ(λm, gm(x))) and φ(a, b) denotes
an NCP-function (see Remark in the previous section), e.g. φ(a, b) = min(a, b)
- for the proof see for example [?] p.246-249.

11.3.6 Elastic Mode

One question that we have not considered so far concerns the feasible sets
of the QP subproblems. First, if the NLP is convex, then we can prove that
the feasible sets of (11.112) are nonempty.

lem:sqp-feasible Lemma 11.43. Suppose the feasible set of (11.90) is nonempty and the
functions hi are affine-linear (i = 1, . . . , q) and the functions gj are concave
(j = 1, . . . ,m) then the feasible set of the quadratic subproblems (11.112)
are also nonempty.

Proof. Let x̃ be a feasible point of (11.90), then define dk = x̃ − xk. Then
since all −gj are assumed to be convex, it holds

−gj(xk)−∇gj(xk)Tdk = −gj(xk)−∇gj(xk)T (x̃− xk) ≤ −gj(x̃) ≤ 0 ,

for all (j = 1, . . . ,m). Moreover, since all hi are affine

hi(xk) +∇hi(xk)Tdk = hi(xk) +∇hi(xk)T (x̃− xk) = hi(x̃) = 0 ,

for all (i = 1, . . . , q). Hence dk is feasible for (11.112).
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However, in the general, nonconvex case, the quadratic subproblems
might have an empty feasible set. One workaround to this problem is to
consider the bounds of the feasible sets to be elastic by means of introducing
auxiliary (slack) variables. Moreover, we append a sort of penalty term to
the objective function, such that the relaxation of the constraints is only as
large as is needed. The modified quadratic subproblem then takes the form

mind,ξ,η+,η− gTk d+ 1
2d

TBkd+ α (
∑m

i=1 ξi +
∑q

j=1 η
+
j +

∑q
j=1 η

−
j )

subject to h(xk) +∇h(xk)
Td = η+ − η−

g(xk) +∇g(xk)
Td ≥ −ξ

ξ, η+, η− ≥ 0 .
(11.114) qp-sqp-mod

Some properties of the modified subproblem are summarized in the following
lemma.

Lemma 11.44.

1. The feasible set of the QP (11.114) is nonempty. Moreover, if Bk is
symmetric and positive definite, then (11.114) has a solution.

2. The vector d ∈ Rn is feasible for (11.112) if and only if (d, 0, 0, 0) ∈
Rn+2m+q is feasible for (11.114).

3. Let Bk be symmetric and positive definite. If d ∈ Rn is a solution of
(11.112) with multipliers (λk+1, µk+1) and it holds

α ≥ max{λ1,k+1, ..., λm,k+1, |µ1,k+1|, ..., |µq,k+1|} ,

then (d, 0, 0, 0) is a solution of (11.114). Conversely, if (d, 0, 0, 0) is a
solution of (11.114), the d ∈ Rn is a solution of (11.112) with multi-
pliers (λk+1, µk+1) that satisfy the inequality.

Proof. See Exercise or [?] Lemma 5.41.

In Subsection 11.3.9 we will discuss an associated algorithm of this modi-
fication in combination with a line-search approach as globalization strategy.

11.3.7 Globalized SQP Methods

As we have seen in the previous section, the local SQP algorithm can only
be guaranteed to yield a convergent sequence of iterates, if the initial point
(x0, λ0, µ0) is close enough to a solution of the NLP (see Theorem 11.41),
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most SQP algorithms incorporate a globalisation strategy. The most popular
approaches to promote global convergence of an SQP algorithm concern line-
search methods applied to a suitable penalty or merit function, trust-region
approaches or most recently filter methods. In this section, we will briefly
discuss all these globalization strategies.

11.3.8 Penalty Methods

Before we start our discussion of a globalized SQP method that uses a
penalty function, we first briefly review some properties of penalty function
methods.

Penalty methods are based on so-called penalty functions. Instead of
dealing with the constraints separately, one adds a penalty term, that de-
pends on a penalty parameter α, to the original objective function which
then yields the penalty function P (x;α) and minimizes the unconstrained
problem

min
x∈Rn

P (x;α) . (11.115) penalty

The question that arises with this approach how to choose the penalty term,
i.e. which type of function should we use and how large do we have to
choose α, such that the solution of (11.115) corresponds to the solution
of the original, constrained problem. A special class of penalty functions
are the so-called exact penalty functions. Consider the general constrained
optimization problem

min
x∈Rn

f(x) s.t. x ∈ X , (11.116) genproblem

with X = {x ∈ Rn : h(x) = 0, g(x) ≤ 0}, then the definition of an exact
penalty function for (11.116) is as follows.

exact-penalty Definition 11.45. A penalty function of the form

Pr(x;α) := f(x) + α r(x)

where r : Rn → R denotes a continuous function that satisfies

r(x) ≥ 0 ∀x ∈ Rn and r(x) = 0 ⇔ x ∈ X ,

is called exact in a local minimizer x∗ of (11.116) if there exist a finite
parameter ᾱ > 0 such that x∗ is also a local minimizer of Pr(x;α) for all
α ≥ ᾱ.
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Unfortunately, it can be proved that if Pr(x;α) is exact, the function
r(x) is in general nondifferentiable in x∗ (which poses diffiulties to the direct
application of unconstrained optimization algorithms).

thm:exact-penalty1 Theorem 11.46. Let x∗ be a local minimum of (11.116) with ∇f(x∗) 6= 0.
Suppose that the penalty function Pr(x;α) is exact in x∗. Then r(x) is not
differentiable in x∗.

Proof. Exercise or [?] Lemma 5.9.

One class of exact (nondifferentiable) penalty function for (11.116) can
be obtained using the `q-norm as penalty term:

rq(x) := ‖(g(x)+, h(x))‖q with (gi(x))+ := max(0, gi(x)) . (11.117) lq-function

The presumably most popular, classical penalty function is the exact `1-
penalty function

P1(x;α) := f(x) + α

q∑
i=1

|hi(x)|+ α

m∑
j=1

max(0, gj(x)) . (11.118) l1-penalty

The next result proves the exactness of this penalty function for convex
NLPs in solutions x∗ that satisfy some CQ such that the KKT conditions
are necessary.

thm:exact-penalty2 Theorem 11.47. Let (x∗, λ∗, µ∗) be a KKT point of (11.116), where f and
gi (i = 1, ..,m) are supposed to be convex, and hj (j = 1, ..., q) to be affine
linear. Then P1(x;α) defined in (11.118) is exact in x∗.

Proof. Since each KKT-point of a convex NLP is a saddlepoint of the La-
grangian function, we have

L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗) ∀x ∈ Rn .
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Set ᾱ := ‖(λ∗, µ∗)‖∞ and let α ≥ ᾱ. Then

P1(x∗, α) = f(x∗) + α

q∑
i=1

|hi(x∗)|+ α
m∑
j=1

max(0, gi(x
∗))

= f(x∗)

= f(x∗) +

q∑
i=1

µ∗i hi(x
∗) +

m∑
j=1

λ∗jgj(x
∗)

≤ f(x) +

q∑
i=1

µ∗i hi(x) +

m∑
j=1

λ∗jgj(x)

≤ f(x) +

q∑
i=1

µ∗i |hi(x)|+
m∑
j=1

λ∗j max(0, gj(x))

≤ f(x) + ᾱ

q∑
i=1

|hi(x)|+ ᾱ
m∑
j=1

max(0, gi(x))

≤ f(x) + α

q∑
i=1

|hi(x)|+ α
m∑
j=1

max(0, gi(x))

= P1(x, α) .

Hence x∗ is in fact a global minimizer of P1(x, α) for all α ≥ ᾱ.

A more general result concerning the exactness of `q-penalty functions
is the following, which can be found in [?].

thm:exact-penalty3 Theorem 11.48. Let x∗ be a strict local minimum of (11.116) that satisfies
the MFCQ. Then for every q ∈ [1,∞] there exist an ᾱq > 0 such that x∗ is
a local minimum of Pq(x, α) for all α ≥ ᾱq, i.e. Pq(x, α) is exact in x∗.

11.3.9 Line-Search Approach
sqp-line

In this section we will now use the exact `1-penalty function P1(x;α) in order
to globalize our local SQP method (in this subsection applied to (11.116)).
We will see that under suitable conditions the solutions dk of the SQP sub-
problems are descent directions P1(x;α). Hence we can use an Armijo-like
stepsize σk > 0 and obtain a descent method applied to the penalty function.

However, in the previous subsection we have seen that P1(x;α) is in
general not differentiable everywhere. Hence, we first have to consider how
to decide if d is a descent direction for the penalty function, before we can
apply some sort of descent algorithm to (11.115).
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thm:global-sqp1 Theorem 11.49. The directional derivative of the exact `1-penalty function
P1(x;α) (defined by (11.118)) in some point x in the direction d is given by

P ′1(x;α; d) = ∇f(x)Td+ α
∑

i:gi(x)>0

∇gi(x)Td+ α
∑

i:gi(x)=0

max(0,∇gi(x)Td)

+α
∑

j:hj(x)>0

∇hj(x)Td− α
∑

j:hj(x)<0

∇hj(x)Td+ α
∑

j:hj(x)=0

|∇hj(x)Td| .

Proof. See [?] p.250-252.

This result can now be used to prove that the SQP direction dk (the
solution of the subproblems) is a descent direction of P1(x;α).

thm:global-sqp2 Theorem 11.50. Let dk 6= 0 be the solution of the quadratic subproblem

mind∈Rn gTk d+ 1
2d

TBkd

subject to h(xk) +∇h(xk)
Td = 0

g(xk) +∇g(xk)
Td ≤ 0

(11.119) glob-sqp-qp

with a symmetric and positive definite matrix Bk and let λk+1 and µk+1

be the associated multipliers. Moreover, assume that the penalty parameter
satisfies α ≥ ‖(λk+1, µk+1)‖∞. Then

P ′1(xk;α; dk) ≤ −dTkBkdk < 0 ,

i.e. dk is a descent direction of P ′1(xk;α; dk) in xk.

Proof. Since (dk, λk+1, µk+1) satisfies the KKT-conditions of the quadratic
subproblem, it holds

λi,k+1(gi(xk) +∇gi(xk)Tdk) = 0

for all i = 1, ...,m adding this term to the directional derivative and substi-
tute

∇hj(xk)Tdk = −hj(xk)
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we obtain

P ′1(xk;α; dk) = ∇f(xk)
Tdk +

m∑
i=1

λi,k+1∇gi(xk)Tdk +
m∑
i=1

λi,k+1gi(xk)

+α
∑

i:gi(xk)>0

∇gi(xk)Tdk + α
∑

i:gi(xk)=0

max(0,∇gi(xk)Tdk)

−α
∑

j:hj(xk)>0

hj(x) + α
∑

j:hj(xk)<0

hj(x)

≤ ∇f(xk)
Tdk +

m∑
j=1

λk+1∇gi(xk)Tdk +

m∑
j=1

λk+1 gi(xk)

−α
∑

i:gi(xk)>0

gi(xk)− α
∑

j:hj(xk)>0

hj(xk) + α
∑

j:hj(xk)<0

hj(xk)

since by g(xk)+∇g(xk)
Tdk ≤ 0 it follows that max(0,∇gi(x)Tdk) = 0 for all

i with gi(xk) = 0. Moreover, by the multiplier rule of the KKT conditions
for the quadratic subproblem, we can substitute ∇f(xk)

Tdk

∇f(xk)
Tdk = −dTkBkdk −

m∑
i=1

λi,k+1∇gi(xk)Tdk −
q∑
j=1

µi,k+1∇hj(xk)Tdk

which yields

P ′1(xk;α; dk) ≤ −dTkBkdk −
m∑
i=1

λi,k+1∇gi(xk)Tdk −
q∑
j=1

µi,k+1∇hj(xk)Tdk

+
m∑
j=1

λk+1∇gi(xk)Tdk +
m∑
j=1

λk+1 gi(xk)

−α
∑

i:gi(xk)>0

gi(xk)− α
∑

j:hj(xk)>0

hj(xk) + α
∑

j:hj(xk)<0

hj(xk)

≤ −dTkBkdk +
∑

i:gi(xk)>0

(λi,k+1 − α)gi(xk) +
∑

i:gi(xk)≤0

λi,k+1gi(xk)

+
∑

j:hj(xk)>0

(µi,k+1 − α)hj(xk) +
∑

j:hj(xk)>0

(µi,k+1 + α)hj(xk)

≤ −dTkBkdk ,
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since λi,k+1gi(xk) ≤ 0 for all i with gi(xk) ≤ 0 and by α ≥ ᾱ ≥
‖(λk+1, µk+1)‖∞ it follows that the remaining terms of P ′1(xk;α; dk) are all
nonpositive.

Theorem 11.50 implies that we can use dk as a descent direction for
P1(x;α). In combination with a stepsize algorithm, we therefore obtain a
globally convergent algorithm. Furthermore, if the iterates (xkλk, µk) are
close enough to the solution (x∗λ∗, µ∗) the local convergence properties of
the local SQP algorithm come into play. The resulting globally convergent
algorithm is displayed in Algorithm 8.

Algorithm 8: Global Line-Search SQP Algorithm

1 Choose initial values for (x0, λ0, µ0) ∈ Rn+m+q, a positive definitegsqp1
matrix B0 and parameter β ∈ (0, 1),σ ∈ (0, 1).;
for k = 0, 1, 2, . . . do

2 if (xk, λk, µk) satisfies the KKT conditions. thenalg:gsqp-2
STOP.

3 Compute a solution dk of (11.119) and associated multipliersalg:gsqp-3
λk+1, µk+1. ;

4 if dk = 0 thenalg:gsqp-4
STOP.

5 Compute stepsize tk = max{β` : ` = 0, 1, 2, ...} such thatalg:gsqp-5

P1(xk + tkdk;α)− P1(xk;α) ≤ σ tk P ′1(xk;α; dk) .

;
6 Set xk+1 = xk + tkdk. ;alg:gsqp-6
7 Update the matrix Bk.;alg:gsqp-7alg:global-sqp

Remark 11.51. In a practical method, one would also include an update
strategy for the penalty parameter α.

Similarly, we can globalize the modified SQP method that uses the elastic
mode. As a convergence result we obtain for a corresponding algorithm:

thm:global-sqp3 Theorem 11.52. Let (xk) be the sequence produced by the global modified
SQP algorithm. Suppose the symmetric matrices Bk satisfy

c1‖d‖2 ≤ dTBkd ≤ c2‖d‖2 ∀ d ∈ Rn, k ∈ N

for some constants c1, c2 > 0. Then, every accumulation point of (xk) is a
stationary point of P1(·;α).
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Proof. See [?].

11.3.10 The Maratos Effect

In the following are concerned with a numerical effect that is due to N.
Maratos. Before, we just stated that in a local neighbourhood of the solu-
tion, the local convergence properties of the SQP method come into play.
This, however, is only true if for sufficiently large k ∈ N always the stepsize
tk = 1 is chosen. In particular, we therefore need that

P1(xk + dk;α) < P1(xk;α) .

Unfortunately, N. Maratos showed in his PhD-thesis in 1978 that this is not
always true.

Consider e.g. the following example:

min f(x, y) = 2(x2 + y2 − 1)− x subject toh(x, y) = x2 + y2 − 1 = 0

As derivatives we then have:

∇f(x, y) =

(
4x− 1

4y

)
, ∇h(x, y) = 2

(
x
y

)
(11.120)

∇2f(x, y) = 4I ∇2h(x, y) = 2I, ⇒ ∇2L(x, y, µ) = (4 + 2µ)I.
(11.121)

Moreover, for all feasible (x, y) ∈ R2 we know that ‖(x, y)‖ = 1 such that

f(x, y) = 2h(x, y)− x = −x

{
> −1 for(x, y) 6= (1, 0)T

= −1 for(x, y) = (1, 0)T

and therefore the solution is (x∗, y∗) = (1, 0)T with f(x∗, y∗) = −1. As
Lagrange multiplier, we obtain µ∗ = −3

2 . Now, consider a feasible point
(xk, yk) 6= (±1, 0)T and µk < −1. Let dk be the solution of the SQP sub-
problem. Then there exist a multiplier µqp, such that the KKT-conditions
of the subproblem are satisfied. Assume that dk = 0, then it follows by

0 = ∇f(xk, yk)+∇2L(xk, yk, µk)dk+µ
k
qp∇h(xk, yk) = (4+2µqp)

(
xk
yk

)
−

(
1
0

)
.

that (xk, yk)
T = α(1, 0)T , which cannot be true since we chose a feasible

point (xk, yk) 6= (±1, 0)T and thus dk 6= 0. Since f is quadratic, the second
order Taylor approximation is exact which yields

f((xk, yk)+dk)−f(xk, yk) = ∇f(xk, yk)
Tdk+

1

2
dTk∇2f(xk, yk)dk = ∇f(xk, yk)

Tdk+2‖dk‖2.

228



By the KKT-conditions, we can substitute ∇f(xk, yk) by its representation
in terms of ∇2L(xk, yk, µk) and ∇h(xk, yk), i.e. we obtain

f((xk, yk) + dk)− f(xk, yk) = −(µqp∇h(xk, yk) +∇2L(xk, yk, µk)dk)
Tdk + 2‖dk‖2

= −µqp∇h(xk, yk)
Tdk − (4 + 2µk)‖dk‖2 + 2‖dk‖2

= −µqp h(xk, yk)− 2(1 + µk)‖dk‖2 .

Because h(xk, yk) = 0, µk < −1 and dk 6= 0, it follows thatf(xk + dk) −
f(xk) > 0. As h is also quadratic the second order Taylor approximation is
here also exact and we have

|h((xk, yk) + dk)| − |h(xk, yk)| = |h((xk, yk) + dk)| ≥ h((xk, yk) + dk)

= h(xk, yk) +∇h(xk, yk)
Tdk +

1

2
dTk∇2h(xk, yk)dk = ‖dk‖2 > 0 .

and therefore we finally get

P1((xk, yk)+dk;α)−P1((xk, yk);α) = f((xk, yk)+dk)−f(xk, yk)+α(|h((xk, yk)+dk)|−|h(xk, yk)|) > 0 .

A way out that is often used in practical SQP algorithms is to apply a
so-called Second Order Correction (or SOC) step, which is defined by

dSOC := −∇h(xk)(∇h(xk)
T∇h(xk))

−1h(xk + dk)

This additional step is relatively small (in comparison to dk) but improves
the feasibility of the new iterate xk + dk + dSOC significantly. In particular,
we have

h(xk + dk + dSOC) = O(‖dk‖3) compared to h(xk + dk) = O(‖dk‖2) .

Under some suitable assumptions, the new step dk + dSOC produces an
Armijo step size tk = 1 in the region of local convergence, such that by the
small size of the correction step dSOC the fast local convergence is again
attained.

11.3.11 Trust-Region Method

In the following we will briefly discuss trust-region SQP methods. One main
disadvantage of line-search SQP methods (see Theorem 11.50 and Theorem
11.52) is the need for positive definite matrices Bk. In Chapter 1, where we
discussed the general trust-region methods, we noticed that this assumption
is not essential for this class of methods. Hence, it is a natural idea to search
suitable trust-region adaptions of the local SQP method.
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Figure 29: The intersection of the linearization of a nonlinear constraint and
a spherical trust-region. In the left figure, the trust-region is large enough
such that there exists an intersection (and hence a nonempty feasible for the
trust-region QP). In the right figure, this is not the case, hence the QP is
inconsistent. The Figure is taken from [?]. fig:tr-sqp1

One obvious trust-region generalization of the basic SQP subproblem
(applied to (11.96)) is

min
d∈Rn

gTk d+
1

2
dTBkd subject to ATk d = −hk , ‖d‖ ≤ ∆k . (11.122) simple-tr-sqp

But there exists one critical difficulty with this approach. If the trust-region
is too small and hk 6= 0, then this SQP subproblem does not have any
feasible points d (see also Figure 29). The critical radius ∆crit is given by

∆crit = min ‖d‖ subject to ATk d = −hk .

We are therefore looking for some suitable alternatives that ommit this prob-
lem. Here we present two alternatives, the first one is the S`pQP method,
the second one is a composite-step method.
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11.3.12 S`pQP Method

In this approach, we try to minimize the exact `p-penalty function of the
QP subproblem. Hence instead of (11.122) we consider the problem

min
d∈Rn

P̃p(d;α) := fk+g
T
k d+

1

2
dTBkd+α‖hk+ATk d‖p subject to ‖d‖ ≤ ∆k .

(11.123) slpqp-1

This problem is always feasible and as long as α and ∆k are large enough
and hk +Akd = 0 is consistent, the solution of (11.123) is the SQP direction
dk. Furthermore, if we choose a polyhedral norm, i.e. ‖ · ‖1 or ‖ · ‖∞, then
(11.123) is again equivalent to a quadratic subproblem (see Exercise or [?]).

R. Fletcher proposed the use of the `1-penalty function, i.e. the S`1QP
method in a paper in 1981 (see also [?] or [?]) as trust-region variant of the
basic SQP method. The corresponding extension to the general NLP then
yields the subproblems

min
d∈Rn

P̃1(d;α) := fk + gTk d+
1

2
dTBkd+ α‖hk +ATk d‖1 + α

m∑
j=1

|(gj(xk) +∇gj(xk)Td)+|

subject to ‖d‖ ≤ ∆k .

11.3.13 Composite-step Method

Another possibility concerns the separation of the step computation into
two stages. First, we compute a normal step nk which aims to improve
the feasibility of the current iterate, i.e. it moves xk in the direction of the
feasible set (according to the linearized constraints and the trust-region, see
also Figure 30). The target of the second step tk, the tangential step, is
then to reduce the value of the objective function within the trust region
and without loosing the feasibility that we obtained by the normal step nk,
i.e. we get the condition

hk +ATk (nk + tk) = hk +Aknk ⇒ ATk tk = 0

11.3.14 Filter Methods

One of the first filter methods was implemented in the SQP solver filterSQP,
which was developed by Fletcher and Leyffer [?]. In filterSQP the SQP
method is combined with a trust-region and a filter approach. Filter meth-
ods provide an alternative to penalty function methods to promote global
convergence as they allow the full Newton step and one does not need to find
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Figure 30: The left-hand figure shows the largest possible normal step, the
right-hand figure illustrates a shorter normal step n, and the freedom this
then allows for the tangential step - any point on the dotted line is a potential
tangential step. The Figure is taken from [?]. fig:tr-sqp2

a suitable penalty parameter [?]. The difference of a filter method compared
to a penalty function method can briefly be explained as follows:

Solving a Nonlinear Programming Problem of the form

minimize f(x)
subject to c(x) ≥ 0

comprises two targets: the minimization of the objective function f(x) and
of the constraint violation, which could be measured for example by h(x) :=
‖ (c(x))−‖. Using a penalty function these two objectives are combined
into one single function and the second one is weighted with an increasing
penalty parameter as feasibility has to be achieved in the solution. Instead
of combining it, filter methods treat the NLP as a biobjective optimization
problem [?], where either the objective function value f(x) or some measure
of the infeasibility of x has to be decreased sufficiently, compared to a test
set of previously determined iterates called the filter.

Next, we explain the software package filterSQP and the filter method
used therein more explicitly. filterSQP solves NLPs of the form [?]

minimize f(x)

subject to lbx ≤ x ≤ ubx
lbc ≤ c(x) ≤ ubc

(11.124) nlp-filter
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by solving a sequence of quadratic approximations of (11.124) in the current
iterate xk within a trust-region that is determined by the condition ‖d‖∞ ≤
ρ, with ρ denoting the trust-region radius. The QPs thus have the form

minimize qk(d)

subject to lbx ≤ xk + d ≤ ubx
lbc ≤ c(xk) +∇c(xk)Td ≤ ubc
‖d‖∞ ≤ ρ ,

(11.125) qp-filter

where qk(d) := ∇f(xk)
Td+ 1

2d
T∇2

xxL(xk, λk)d corresponds to the quadratic
approximation of the Lagrangian function L(x, λ) of (11.124). In contrast
to other solver filterSQP uses the exact Hessian ∇2

xxL(xk, λk). The QPs
(11.125) are solved by bqpd, which is a robust QP solver that is based on a
null-space active set method (for more information see [?]).

The solution dk of (11.125) gives a next trial iterate xk+1 = xk + dk and
it is tested, if xk+1 can be accepted by the filter. The filter consists of a
list of pairs (f(x`), h(x`)) of previous iterates x`, that are not dominated by
any other pair. The concept of domination was adopted from multiobjective
optimization and is defined in [?] as follows:

Definition 11.53. A pair (f(x`), h(x`)) is said to dominate another pair
(f(xk), h(xk)) if and only if both f(x`) ≤ f(xk) and h(x`) ≤ h(xk).

Concerning the basic filter SQP algorithm (Algorithm 1 in [?]), the trial
iterate xk+1 will be accepted by the filter, if the pair (f(xk+1), h(xk+1)) is
not dominated by any other pair of the current filter. Algorithmic extensions
of the basic filter SQP algorithm that are incorporated in filterSQP concern
a Second Order Correction (SOC) step, an upper bound on the constraint
violation, the elemination of blocking entries from the filter, a sufficient
reduction test and a North-West and South-East corner rule. However, we
will not further discuss these extensions here but refer the interested reader
to [?].

If the trial point xk+1 is accepted by the filter, it is chosen to be the new
iterate. The pair (f(xk+1), h(xk+1)) is then added to the filter and pairs
(f(x`), h(x`)) that are dominated by (f(xk+1), h(xk+1)) are removed from
the filter. If xk+1 is rejected by the filter, then the trail step dk is discarded,
the trust-region radius is reduced and the QP (11.125) is solved again.

Reducing the trust-region radius, though, might cause an infeasible QP,
if the current iterate is not feasible for (11.124). Therefore, filterSQP incor-
porates a feasibility restoration phase, which aims to minimize the constraint
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Figure 31: A typical filter, all pairs (f(x), h(x)) that are below and left of
the envelope (dashed line) are exceptable to the filter. Figure taken from
[?]

violation by applying a trust region SQP method to solve the problem

minimize
∑

j∈J (cj(x))+

subject to cj(x) ≤ 0 j ∈ J ⊥ ,
(11.126) restoration-filter

where the sets J and J ⊥ partition the nonlinear constraints into those ones
that cannot be satisfied for the current QP (that is cj(xk) + ∇cj(xk)Td >
0, j ∈ J ) and those that can be satisfied. For more details about the
restoration phase and filterSQP in general, we refer to [?] and [?].

11.3.15 Convergence

It can be shown (see e.g. in [?, ?]), that under the assumptions that the
iterates xk lie in a compact set X, the functions f and c are twice continu-
ously differentiable the filter methods and the Hessians Hk remain bounded,
filter methods have the following global convergence properties :

1. The restoration phase fails to find a filter acceptable point for which
the QP is consistent for some ρ ≥ ρ
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Figure 32: filterSQP Algorithm taken from [?].

2. The algorithm terminates with a first-order stationary point x∗, i.e.
x∗ satisfies the KKT-condition.

3. There exists a feasible accumulation point that is either stationary or
the MFCQ fails to hold.

Concerning the fast local convergence properties of filter-SQP methods,
S. Ulbrich proved q-quadratic convergence in [?] under the assumption of
the LICQ and the SOSC.

11.4 Interior-Point Methods (IPM)

In the first two sections of this chapter we will focus on the nonlinear in-
equality constrained optimization problem

min f(x)

subject to g(x) ≥ 0 .
(11.127) icnlp

Hence the feasible region is given by X = {x ∈ Rn : g(x) ≥ 0}. Moreover, we
define the set of “strictly feasible” points strict(X ) := {x ∈ Rn : g(x) > 0}.
Note, that this set differs from the set of points that lie in the interior of the
feasible set, i.e. in int(X ) (consider e.g. the example g1(x) = x2, m = 1).
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Just as a reminder, the KKT-conditions of (11.127) are given by

∇x L(x∗, λ∗) = ∇f(x∗)−∇g(x∗)λ∗ = 0
g(x∗) ≥ 0
λ∗ ≥ 0

gi(x
∗)λ∗i = 0 i = 1, . . . ,m

(11.128) ecnlp-kkt

11.4.1 Barrier Methods

We first start with the theoretical and historical background of classical in-
terior point methods. These are given by barrier methods. The idea to
solve constrained optimization problems by transforming them into an un-
constrained problem via penalty or barrier functions was already considered
in the 1960th. However, they became regarded as unreliable due to several
drawbacks.

11.4.2 The Barrier Function

In contrast to penalty methods, where a solution of the constrained problem
is found by solving a sequence of unconstrained problems where infeasibility
of a current iterate xk is penalized via a penalty term, barrier methods use a
barrier function B(x, π), that consists of the objective function f(x) and an
interior function (or barrier term) that prevents the algorithm to produce
infeasible iterates, i.e. the sequence (xk) stays feasible during the whole solu-
tion process. Moreover, inside the feasible region, a suitable barrier function
should resemble the original objective function. Desirable properties of the
interior function I(x) are thus:

1. I(x) depends only on the constraint functions.

2. I(x) preserves the continuity properties of g(x) at all points in intX .

3. For any sequence of points in intX converging to a point on the bound-
ary of the feasible region, I(x)→ +∞.

Two suitable examples for I(x) are

• the inverse interior function

Iinv(x) :=

m∑
j=1

1

gi(x)
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• and the logarithmic interior function

Ilog(x) := −
m∑
j=1

ln(gi(x)).

We continue the discussion with the logarithmic interior function, since the
use of the corresponding logarithmic barrier function dominates the litera-
ture (due to its close connection to perturbed KKT systems, as we will see
later on, and other reasons). The logarithmic barrier function is a composite
function that is based on the logarithmic interior function and defined as
follows:

B(x, π) := f(x) + πIlog(x) = f(x)− π
m∑
j=1

ln(gi(x)), (11.129) barrierfct

where π > 0 is a scalar barrier parameter. Notice, that the smoothness
properties of f , and gi (i = 1, . . . ,m) are retained, as long as x is strictly
feasible (which, as already said, is not exactly the same as x ∈ int(X )).
An obvious basic interior point algorithm for (11.127) that is based on the
barrier method is given by Algorithm 9 (see [?])

Algorithm 9: Barrier Algorithm

1 Choose initial values for x0 ∈ strict(X ) and π0 > 0.;bm1
repeat

2 Compute a solution xk of the uncontrained problembm2

min
x∈Rn

B(x, πk)

3 Update the barrier parameter πk such thatbm3

πk > πk+1 > 0

(e.g. πk+1 = 0.1πk or πk+1 = π2
k) ;

4 k ← k + 1;bm4

until xk is an .;alg-ipm

A basic convergence result (cf. [?]) is as follows.

Theorem 11.54. Suppose that f and g are twice contiuously differentiable.
Moreover, let λk,i := πk/gi(xk) and assume that

‖∇xB(xk, πk)‖2 ≤ εk
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where εk → 0 as k → ∞ and that xk converges to x∗, at which the LICQ
holds for (11.127). Then x∗ satisfies the KKT-conditions for (11.127) and
(λk) converges to the (unique) associated Lagrange multiplier λ∗.

Proof. Define the set of inactive constraints I⊥g := {1, . . . ,m} \ Ig(x∗) and
let the subscripts Ig and I⊥g

denote the rows of the matrices/vectors whose

indices belong to Ig(x
∗) and I⊥g , respectively. Let λk,i := πk/gi(xk) (i =

1, . . . ,m) and let

A+
Ig

(x) = (∇g(x)TIg∇g(x)Ig)
−1∇g(x)TIg

be the left generalized inverse of g(x)Ig (which exists due to the LICQ and
the continuity of g in a neighbourhood of x∗). Define

(λ∗)Ig = A+
Ig

(x∗)∇f(x∗)

and (λ∗)I⊥g = 0. If I⊥g 6= ∅, then for sufficiently large k we have

‖(λk)I⊥g ‖2 ≤
2πk

√
|I⊥g |

mini∈I⊥g gi(x
∗)
. (11.130) thm1ipm

Since,
εk ≥ ‖∇xB(xk, πk)‖2 = ‖∇f(xk)−∇g(xk)λk‖2,

we furthermore get

‖∇f(xk)−∇g(xk)Ig(λk)Ig‖2 ≤ ‖∇f(xk)−∇g(xk)λk‖2 + ‖∇g(xk)I⊥g (λk)I⊥g ‖2

≤ εk + ‖∇g(xk)I⊥g ‖2
2πk
√
|I⊥g |

min
i∈I⊥g

gi(x∗)
=: ε̃k .

(11.131) thm1ipm

Note, that for k →∞ the scalar ε̃k tends to zero. By the inequality (11.131),
we obtain

‖A+
Ig

(xk)∇f(xk)− (λk)Ig‖2 = ‖A+
Ig

(xk)(∇f(xk)−∇g(xk)
T
Igλk)Ig)‖2

≤ 2‖A+
Ig

(x∗)‖2 ε̃k.

And therefore

‖(λk)Ig − (λ∗)Ig‖2 ≤ ‖(λk)Ig −A+
Ig

(xk)∇f(xk)‖2 + ‖A+
Ig

(x∗)∇f(x∗)−A+
Ig

(xk)∇f(xk)‖2
≤ 2‖A+

Ig
(x∗)‖2 ε̃k + ε̄k,
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where due to the continuity properties of f and g the sequence (ε̄k) converges
to zero for k →∞. This proves that the sequence (λk) converges to λ∗. In
addition, continuity of the gradients and (11.131) implies that

∇f(x∗)−∇g(x∗)λ∗ = 0.

The fact that xk is strictly feasible for all k implies that gi(x
∗) ≥ 0 for all

i ∈ {1, . . . ,m} and moreover λ∗ ≥ 0. Finally, the complementarity condition
is directly satisfied by the definition of λ∗.

1. Another local convergence result concerning a sequence of minimizers
of the logarithmic barrier function, where the existence of at least one
convergent subsequence of (xk) is shown, can be found in [?] (Theorem
3.10).

2. In Algorithm 9 we still have flexibility in the method that we use to
solve the inner problems. This, however, must be done with special
care, since the Hessians of B(x, π) with respect to x are increasingly
ill-conditioned (as the condition number of ∇xxB(x, π) can be proved
to be O(1/πk) - see also [?] and [?]for a further discussion).

3. The simple choice of xk as a starting point for the next inner optimiza-
tion (e.g. Newton’s method) seems to be poor (see [?] for a detailed
discussion). So again this issue has to be handled with special care.

11.4.3 The Central Path

The central path x(π) (also known as the barrier trajectory) is an important
concept in the context of interior point methods. It consists of a sequence of
barrier minimizers xπ. It can be proved, that under suitable assumptions,
the path x(π) is differentiable and converges to the minimizer x∗. In the
following theorem, we summarize some main properties of the central path.

centralpath Theorem 11.55. Let x∗ be a local minimum of (11.127) and assume that
the following conditions hold:

a) x∗ is a KKT-point, i.e. the multiplier set Mλ(x∗) of Lagrange multi-
pliers for x∗ defined by

Mλ(x∗) := {λ ∈ Rm : ∇f(x∗) = ∇g(x∗)λ, λ ≥ 0 and gi(x
∗)λi = 0 ∀ i = 1, . . . ,m}

is not empty;
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b) the MFCQ holds in x∗;

c) there exists a scalar β > 0 such that

sT∇xxL(x∗, λ)s ≥ β‖s‖2, ∀λ ∈Mλ(x∗) and

∀ s ∈ {p ∈ Rn \ {0} : ∇f(x∗)T p = 0, (∇g(x∗))TIg(x∗)p ≥ 0 } .

Assume that the logarithmic barrier method is applied in which πk converges
monotonically to zero as k →∞. Then it holds:

1. there is at least one subsequence of unconstrained minimizers of the
barrier function B(x, πk) that converges to x∗;

2. let (xk) denote such a convergent sequence, then the sequence (λk) of
barrier multipliers defined as λk,i = πk/gi(xk) is bounded;

3. limk→∞ λk =: λ∗ ∈Mλ(x∗);

If, in addition, there exits a vector λ ∈ Mλ(x∗) that satisfies λi > 0
for all i ∈ Ig(x∗) (i.e. strict complementarity), then it also holds

4. λ∗i > 0 for all i ∈ Ig(x∗);

5. for suffienciently large k, ∇xxB(xk, πk) is positive definite;

6. a unique, continuously differentiable vector function x(π) of uncon-
strained minimizers of B(x, π) exists for positive π in a neighbourhood
of π = 0; and

7. limπ→0+ x(π) = x∗.

Proof. See Theorem 3.12 and its proof in [?].

In addition, it can be proved that the order of convergence of (xk) is
directly connected to the order of convergence of (πk).

thmipm-2 Theorem 11.56. Under the assumptions a)-c) of Theorem 11.55 and the
additional assumption of strict complementarity at x∗, there exist κl > 0
and κu > 0 such that

κlπk ≤ ‖xk − x∗‖ ≤ κuπk .

The strict complementarity is a vital assumption in Theorem 11.56. It
can be shown [?], that in the absence of strict complementarity, i.e. if there
exists at least one multiplier λ̄ ∈Mλ(x∗) with at least one index i ∈ Ig(x∗)
with λ̄i = 0, the guaranteed convergence of the sequence (xk) is considerably
worse and given by

κ̃l‖xk − x∗‖2 ≤ πk ≤ κ̃u‖xk − x∗‖2 .
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11.4.4 Perturbed KKT-System

Next, we consider the connection between minimizers of B(x, π) and local
constrained minimizers of (11.127). First, note that if xπ is a local (uncon-
strained) minimizer of the barrier function B(x, π), then

∇xB(xπ, π) = ∇f(xπ)−
m∑
j=1

π

gj(xπ)
∇gj(xπ) = 0.

Introducing so-called barrier multipliers

λπ,i :=
π

gi(xπ)

we can rewrite the first order condition:

∇f(xπ)−
m∑
j=1

λπ,i∇gj(xπ) = ∇f(xπ)−∇g(xπ)λπ = 0 ,

which is exactly the multiplier rule for (11.127). Moreover, it can be proved,
that g(xπ) > 0 for all π > 0 and therefore λπ > 0 for all positive barrier
parameter π. If we express the definition of λπ as

gi(xπ)λπ,i = π i = 1, . . . ,m (11.132) pertcomp

then the resemblence to the KKT-system of (11.127) becomes even more
apparent. The condition (11.132) corresponds to the perturbed complemen-
tarity condition, where zero on the right-hand side is replaced by a positive
parameter π that is sequentially driven to zero, i.e. in the limit π → 0 not
only the multiplier rule and the inequality constraints are satisfied but also
the complementarity condition.

Writing both conditions as a nonlinear system of n + m equations, we
get

Fπ(x, λ) :=

(
∇f(x)−∇g(x)λ
G(x)λ− πe

)
=

(
0
0

)
, (11.133) primaldual1

where G(x) :=diag(gi(x)) and e = (1, 1, . . . , 1) (compare Fπ(x, λ) with the
original KKT-system for (11.127)). It can easily be seen that the pair
(xπ, λπ), as we defined it before, satisfies Fπ(x, λ) = 0. Conversely, any
pair that is a root of Fπ(x, λ), is a stationary point of the barrier function
B(x, π). However, the nonnegativity of gi(x) and λi is not represented in
the condition Fπ(x, λ) = 0, nor are any second order information used or
satisfied for any root of Fπ(x, λ).

241



11.4.5 Primal-Dual Interior Methods

Primal-dual interior methods are based on the perturbed KKT-conditions
(11.133). They became increasingly popular due to the difficulties that
arise when solving the barrier problem with classical unconstrained solution
methods (Newton’s method). In contrast to these methods that aim for the
primal variables x, primal-dual methods are twofold oriented as they aim to
find a primal-dual pair (x, λ) that satisfies (11.133), where λ is treated as an
independent variable. In this case, strict feasibility of the primal-dual KKT-
pair is satisfied, if g(x) > 0 and λ > 0 holds. Applying Newton’s method to
solve the nonlinear equation (11.133), we have to solve the Newton equation(
∇xxL(x, λ) −∇g(x)

Λ∇g(x)T G(x)

)(
∆x

∆λ

)
= −

(
∇f(x)−∇g(x)λ

G(x)(λ− α(x, π))

)
(11.134) primaldualnewton

for the vector (∆x,∆λ), where αi(x, π) := π/gi(x). The success of the
primal-dual interior point methods is due to their effectiveness in following
the central path to the optimum.

thm-ipm3 Theorem 11.57. Suppose π̃ to be a specific value for the barrier parameter
π and assume that π is reduced from π̃ to π̂ (i.e. π̃ > π̂). Then the primal-
dual direction (∆x,∆λ) of (11.134) for π = π̂ is tangent to the primal-dual
trajectory (x(π), λ(π)) at (x, λ) = (x(π̃), λ(π̃)).

Proof. Consider the primal-dual point (x, λ) = (x(π̃), λ(π̃)) that lies on the
barrier trajectory and note that it satisfies the equations

∇f(x(π̃))−∇g(x(π̃))λ(π̃) = 0 ,

λi(π̃) =
π̃

gi(x(π̃))
(i = 1, . . . ,m)

G(x(π̃))λ(π̃) = π̃ e

α(x(π̃), π̂) =
π̂

π̃
α(x(π̃), π̃) .

Therefore the new direction (∆x,∆λ) of (11.134) for π = π̂ satisfies(
∇xxL(x(π̃), λ(π̃)) −∇g(x(π̃))

Λ∇g(x(π̃))T G(x(π̃))

)(
∆x

∆λ

)
= −

(
0

(π̃ − π̂) e

)
.

(11.135) prf-thm-ipm3-1

On the other hand, differentiating the equations for x(π) and λ(π) with re-
spect to π leads to the following equations for the tangent step (x′(π), λ′(π)):(

∇xxL(x(π), λ(π)) −∇g(x(π))

Λ(π)∇g(x(π))T G(x(π))

)(
x′(π)

λ′(π)

)
=

(
0

e

)
. (11.136) prf-thm-ipm3-2
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Comparing (11.135) and (11.136) we obtain that ∆x = (π̂ − π̃)x′(π̃) and
∆λ = (π̂ − π̃)λ′(π̃). Hence the new direction is tangent to the primal-dual
trajectory at (x(π), λ(π)) at π = π̃.

By Theorem 11.57, we can assume that the new primal-dual iterate

xk+1 = x(π̃) + ∆x = x(π̃) + (π̂ − π̃)x′(π̃) (≈ x(π̂) )

λk+1 = λ(π̃) + ∆λ = λ(π̃) + (π̂ − π̃)λ′(π̃) (≈ λ(π̂) )

is a good approximation of the next point on the trajectory (x, λ) = (x(π̂), λ(π̂)).
This property does not hold for the classical barrier method [?].

11.4.6 Formulation of the Primal-Dual Equations

As the classical barrier methods, primal dual interior point methods have a
two-level structure of inner and outer iterations (or minor and major itera-
tions). The inner iterations correspond to the Newton iterations for a given
value π, i.e. the solution of (11.134). Under the assumption of strict com-
plementarity and a suitable constraint qualification, these inner iterations
converge at a q-quadratic rate [?]. Moreover, using suitable termination cri-
teria for the inner loop, the combined sequence of inner iterates converges to
the solution x∗ of (11.127) q-superlinearly, if π is reduced appropriately. (See
also [?] for local convergence results of primal-dual interior point methods.)

The key factor for the efficiency of a primal-dual interior point method
is an efficient method for solving the linear system (11.134). One common
approach is to use block elimination to obtain a smaller condensed system.
Eliminating the (2, 2) block of (11.134) yields (remember: g(x) > 0)

∆λ = −(λ− α(x, π))−G(x)−1Λ∇g(x)T∆x (11.137) ipmelim1

and thus

∇xxL(x, λ)∆x−∇g(x)[−(λ−α(x, π))−G(x)−1Λ∇g(x)T∆x] = −(∇f(x)−∇g(x)λ)
(11.138) ipmelim2

or

Hc(x, λ)∆x = [(∇xxL(x, λ)+∇g(x)G(x)−1Λ∇g(x)T ]∆x = −(∇f(x)−∇g(x)α(x, π)) .
(11.139) ipmelim3

Note that the condensed primal-dual matrix Hc(x, λ) is symmetric and equal
to the barrier Hessian at any minimizer of the barrier function. Therefore,
this matrix is positive definite at point on the trajectory for sufficiently
small π (see Theorem 4.2). Moreover, since the right-hand side is equivalent
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to the negative gradient od the barrier function, (11.139) resembles the
classical Newton barrier equation. Furthermore, like the barrier Hessian,
Hc(x, λ) becomes increasingly ill-conditioned as π → 0. However, this ill-
conditioning is usually harmless [?] and the system can be solved e.g. using
an ordinary Cholesky factorization.

Another strategy to solve (11.134) is to symmetrize and subsequently

factorize the system. Multiplying the second block of equations with Λ−
1
2

gives ∇xxL(x, λ) −∇g(x)Λ
1
2

Λ
1
2∇g(x)T −G(x)

( ∆x

−Λ−
1
2 ∆λ

)
= −

(
∇f(x)−∇g(x)λ

Λ−
1
2G(x)(λ− α(x, π))

)
.

(11.140) primaldualsymm

In contrast to Hc(x, λ), if strict complementarity holds at the solution and
the gradients of active constraints are linearly independent, the matrix of
(11.140) remains well-conditioned as π → 0.

11.4.7 Globalization Strategies

One of the most popular choices to promote global convergence, i.e. conver-
gence from any starting point , is to use a line-search method applied to a
penalty or a merit function. In the case of primal-dual interior point meth-
ods, a (decrease in a) suitable merit function should encourage the iterates
to “move towards the trajectory”.

For convex problems, the steplength t > 0 is usually be chosen such that
the iterates remain strictly feasible, i.e. g(x + t∆x) > 0 and λ + t∆λ > 0,
and some norm of the KKT-residual is sufficiently reduced, i.e.

‖Fπ(x+ t∆x, λ+ t∆λ)‖ < σ ‖Fπ(x, λ)‖.

For nonconvex problems we consider the merit function

Mπ(x, λ) := f(x)−π
m∑
j=1

ln(gj(x))−π
m∑
j=1

(
ln

(
gj(x)λj

π

)
+ 1− gj(x)λj

π

)
,

which is the classical barrier function B(x, π) augmented by a weighted term
that measures the distance of the iterate (x, λ) to the trajectory (x(π), λ(π)).

The main property of Mπ(x, λ) is that it is minimized with respect to
both variables x and λ at the points (x(π), λ(π)) on the trajectory. Hence a
decrease of Mπ(x, λ) implies a progress towards the primal-dual trajectory.
i.e. a minimizer of B(x, π).
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At any point (x(π), λ(π)) on the trajectory we have Mπ(x, λ) = B(x, π),
since the additional term vanishes. Moreover, since (x(π), λ(π)) is an un-
constrained minimizer of Mπ(x, λ), the first and second oder necessary con-
ditions hold in (x(π), λ(π)):

i) ∇Mπ(x(π), λ(π)) = 0

ii) ∇2Mπ(x(π), λ(π)) ∈ R(n+m)×(n+m) is positive semidefinite.

The minimization of Mπ(x, λ) can for example be done using a line-search
algorithm or e.g. a trust region method based on finding an approximate
solution of the subproblem

min
s ∈ Rn

q(s) = ∇MT
π s+

1

2
sTQ(x, λ)s subject to ‖s ‖T ≤ ∆ , (11.141) pd-tr-sub

where

Q(x, λ) =

(
∇xxL(x, λ) + 2∇g(x)G(x)−1Λ∇g(x)T −∇g(x)

∇g(x)T −Λ−1G(x)

)
,

i.e. Q(x, λ) is ∇2Mπ(x, λ) with α(x, π) replaced by λ and πΛ−1 replaced by
G(x). Furthermore, ‖s‖T :=

√
sTTs with T =diag(I,Λ−1G(x)) (i.e. T is

block diagonal).
Another strategy that is used in the solver IPOPT [?] to ensure global

convergence is based on the concept of a filter.

11.4.8 Treatment of Equality Constraints

In contrast to the previous discussion in this chapter, in this section we will
discuss a solution approach for the general NLP

min f(x)

subject to h(x) = 0
g(x) ≥ 0 .

(11.142) ipnlp

11.4.9 A Barrier-SQP Approach

The motivation for the barrier method was to eliminate the inequality con-
straints of (11.127) by using a barrier function which implicitly forces the
algorithm to produce strictly feasible iterates for (11.127). As an analogue
for the mixed constraints, we treat the inequalites of (11.142) as we have
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done before for (11.127) and keep only the equality conditions as constraints.
This approach then yields the equality constrained problem

(Pπ) min B(x, π)

subject to h(x) = 0 ,
(11.143) ipecnlp

where B(x, π) is given by (11.129). Hence to solve (11.142) we need to
solve a sequence of equality constrained subproblems (Pπk) for a decreasing
sequence of barrier parameter (πk) converging to zero. As described Section
3.2 these problems can be solved using an SQP approach. The associated
KKT-conditions of (11.143) are

∇f(x)−
m∑
j=1

π

gj(x)
∇gj(x) = ∇h(x)µ

h(x) = 0 .

Again introducing a new Variable λ (the multiplier for the inequality con-
straints of (11.142)) which are implicitly defined by an additional equation

gi(x)λi = π i = 1, . . . ,m

gives the system

Fπ(x, λ, µ) =

 ∇f(x)−∇g(x)λ−∇h(x)µ
G(x)λ− π e

h(x)

 = 0 . (11.144) ipF

A special form of the SQP approach that we discussed in Section 3.1 is the
Lagrange-Newton method. Here Newton’s method is applied to the corre-
sponding nonlinear system of the KKT-conditions of an equality constrained
problem.

Applying Newton’s method to the system Fπ(x, λ, µ) = 0 yields the
Newton equation ∇xxL(x, λ, µ) −∇g(x) −∇h(x)

Λ∇g(x)T G(x) 0
∇h(x)T 0 0


 ∆x

∆λ
∆µ

 = −

 ∇f(x)−∇g(x)λ−∇h(x)µ
G(x)λ− π e

h(x)


(11.145) ipsqpnewton

This system can e.g. be solved via an iterative method: By the second block
of equations, we obtain

∆λ = G(x)−1[−(G(x)λ− πe)− Λ∇g(x)T∆x] . (11.146) iprhs
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If we substitute ∆λ in (11.145) by the right-hand side of (11.146), then we
get(
∇xxL(x, λ, µ) +∇g(x)G(x)−1Λ∇g(x)T ∇h(x)

∇h(x)T 0

)(
∆x

−(µ+ ∆µ)

)
= −

(
∇f(x)−∇g(x)α(x, π)

h(x)

)
,

(11.147) ipsqpnewton2

where α(x, π) is defined as before. The solution ∆x of this system (11.147)
solves the quadratic subproblem

min (∇f(x)−∇g(x)α(x, π))T∆x+ 1
2∆xT (∇xxL(x, λ, µ) +∇g(x)G(x)−1Λ∇g(x)T )∆x

subject to h(x) +∇h(x)T∆x = 0 ,
(11.148)

A corresponding SQP method can be globalized using a line-search approach
applied to an SQP merit function or a trust-region method. The limit points
of such derived sequences of iterates satisfy the first and second order nec-
essary condition for a fixed value of π.

11.4.10 A Penalty-Barrier Approach

Combining the barrier approach for the inequality constraints (i.e. B(x, π))
with the penalty method for the equality conditions (i.e. P (x;π)), we obtain
a penalty-barrier function

ΦPB(x;π) := f(x)− π
m∑
j=1

ln(gi(x)) +
1

2π
‖h(x)‖22 .

It can be shown, that under suitable assumptions and for π small enough a
sequence (xπ) of unconstrained minimizers of ΦPB(x, π) defines a differen-
tiable penalty-barrier path that converges to x∗.

For xπ to be a minimizer of ΦPB(x;π), the first order necessary condi-
tions must hold, i.e. ∇ΦPB(xπ;π) = 0. Introducing new variables λ and µ
that satisfy the defining conditions

G(x)λ = π e and πµ = −h(x) ,

we can rewrite the stationarity condition as the system

Fπ(x, λ, µ) =

 ∇f(x)−∇g(x)λ−∇h(x)µ
G(x)λ− π e
h(x) + πµ

 = 0 , (11.149) ipF

where λ and µ are the multiplier estimates that converge to the KKT-
multipliers λ∗ and µ∗ for (11.142) as π → 0.
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Remark 11.58. Note that in this case the KKT-conditions for (11.142) are
perturbed for both the inequalities and the equalities.

The associated Newton equation is given by ∇xxL(x, λ, µ) −∇g(x) −∇h(x)
Λ∇g(x)T G(x) 0
∇h(x)T 0 πI


 ∆x

∆λ
∆µ

 = −

 ∇f(x)−∇g(x)λ−∇h(x)µ
G(x)λ− π e
h(x) + πµ

 .

(11.150) pbnewton

12 Numerical Methods for Linear Programming
and Graph Theory

12.1 The Simplex Method for Linear Programming Prob-
lems in Finite Space Dimensions

We consider a linear programming problem given by the following equations.
This problem is a special case of convex optimization. Since the cost function
is not strictly convex, there is not necessarily a unique minimizer of the
problem. Since the constraints are linear the Slater condition is satisfied
and the KKT–System is sufficient and necessary for optimality.

min cTx subject to

GTx+ g0 ≥
HTx+ h0 = 0

Here, c ∈ Rn and G ∈ Rn×m and H ∈ Rn×p. If we have linearly dependent
columns we can always eliminate them in a preprocessing step such that
Slater’s condition is satisfied.

A typical linear programming problem is solved in standard form which
is different from the previous equations in the sense that the inequality con-
straints are only one–sided box constraints. Every problem of the previous
form can be rewritten in standard form by introducing slack variables and
thereby extending the size of x. For example, if

Bx ≤ b =⇒ (B, Id)(x, y) = b, y ≥ 0⇔ Bx+ y = b, y ≥ 0.

Some of the initial variables x might not satisfy the constraint x ≥ 0. Those
variables are splitted as follows

x = y+ − y−, y± ≥ 0.
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This adds an additional linear equation to the problem. Hence, we will
derive the Simplex method for a problem in standard form given by

cTx→ min

Ax = b

x ≥ 0

where A ∈ Rp×n as full rank (= p) and b ≥ 0.
From the setting of the problem we immediately conclude hat the feasible

set S and the set of solutions is convex if they are not empty. The set

S = {x ∈ Rn : Ax = b, x ≥ 0} (12.151) 040409:1

is called a convex polyeder and if it is additionally compact a convex polytop.
Using the notation of the previous paragraphs we have that for our problem

∇h = AT ,∇g = Id,Ai = {i : xi = 0}.

Due to the assumption AT has full rank p, and therefore p linearly indepen-
dent rows. If

‖A(x)‖ ≥ n− p

(or the number of inactive indices B+ is less than p) and if

AB+ = (ai)i∈B+ B+ = {i : xi > 0}

is regular, then we can simplify the problem: we combine the equations
xi = 0 with the matrix Ax = b and obtain a system of n equations with a
unique solution x. This situation is called edge of the simplex.

Definition 12.1. x ∈ S is called edge if there exists a set Ã ⊂ A(x) such
that (AT , (ei)i∈Ã) is invertible.

Hence, at an edge x we can extend AT by n − p columns to a regular
matrix. This implies that at an edge x we have at least n−p components of
x equal to zero or only less than p components strictly larger than zero. We
now characterize the edges of the S and assume that A ∈ Rp×n has rank p.
Then, we show that an extremal value is attained at the edges of S. This is
the foundation of the simplex method.

Theorem 12.2. x ∈ S is an edge, if and only if AB+ has full column rank
where B+ = {i : xi > 0}.

249



Necessarily, we have that ‖B+‖ ≤ p.
Proof. Let x be an edge. Then, there exists Ã such that (AT , ei) is

regular. Hence, Ã contains n − p elements. Let P be a permutation such
that P (ei)i∈Ã = (ei)i=p+1,...,n. Then, P (AT , (ei)) = (PAT , P (ei)) and since
P (ei) has rank n−p, we obtain that the matrix consisting of the first p rows
of PAT (has p columns) is regular. Since ATB+ is a subset of PAT ATB+ has
p independent rows or AB+ has p independent columns.

Conversely, let AB+ have full column rank. Then, r = ‖B+‖ ≤ p and
hence ‖A(x)‖ ≥ n − p. Since A has rank p, there exists s = p − r columns
of A such that (AB+ , ai1 , . . . ais) is regular with aij ∈ A(x). Denote by Ā =
A\{i1, . . . , is}. Then, the matrix (AT , (ei)i∈Ā) is invertible: for a permuta-
tion P such that PAT = (AB+ , ai1 , . . . , ais)

T and P (ei)i∈Ā = (ei)‖Ā‖+1,...,n

we have that the first p rows of PAT are invertible.
We obtain the following conclusions.

• S has a most a finite number of edges since the set of subsets of
{1, . . . , n} of column numbers of A is finite.

• For every B+ and x being edge, there exists a set B of p−elements,
such that AB is invertible. Since A has rank p, we can expect at most
p elements.

The next theorem is the basis of the simplex method.

Theorem 12.3. x is an edge of S, if and only if x is an extremal point of
S.

Proof. Let x be an edge. Then, there exists Ã ⊂ A(x), such that
(AT , (ei)i∈Ã) is invertible. Assume that x is not an extremal point of S and
hence x = λx1 + (1 − λx2 with x1 6= x2 and 0 < λ < 1. Hence, xi = 0 and
x1,2 ≥ 0 implies x1,i = x2,i = 0 and therefore A(x) = A(x1) = A(x2). This
implies (AT , (ei)i∈Ã)(x1−x2) = 0 due to the constraints and since this matrix
is invertible, we obtain x1 = x2. Let x be an extremal point of S. Then,
B = (AT , (ei)i∈A(x)) = (b, 0)T . If the rank of B is less than n, then there

exists y ∈ Rn with y 6= 0 and By = 0 and therefore B(x + λy) = (b, 0)T .
This implies A ⊂ A(x + λy). For i 6∈ A we have xi > 0 and hence for δ
sufficiently small xi ± δyi > 0 and therefore x + λy ∈ S for λ sufficiently
small. Hence, x cannot be an extremal point. Hence, rank B is equal to n.
If rank of B is n and since rank A is p and since the first p columns of B
are equal to A we obtain that x is an edge with Ã = A(x) and necessarily
‖A(x)‖ = n− p.
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If S is compact, then every point in S can be written as a convex combi-
nation of the edges. If S is not compact, then there exists directions d such
that x + τd ∈ S for any τ and there again those who are not convex com-
binations of others. Those directions are called extremal directions and we
will latter see that every point in S can be written as a convex combination
of extremal directions and edges.

Definition 12.4. d 6= 0 is called direction in S if for all x ∈ S and τ ≥ 0
we have x+ τd ∈ S. d is called extremal direction if d is a direction and if
additionally the following implication is true

d = σ1d1 + σ2d2, di directions , σi > 0 =⇒ d1 = βd2, β > 0.

Theorem 12.5. The set M of all edges of S is finite and non–empty. The
set of all extremal directions is empty or finite. Then for every x ∈ S we
have the representation

x =
∑

αixi +
∑

τjdj

for xi being edges, dj being directions and τj ≥ 0 and 0 ≤ αi ≤ 1 with∑
αi = 1.

The theorem implies the existence of at least one edge. Furthermore, the
cost functional cTx can be represented with the help of the edges. Hence,
we immediately derive the following result.

Theorem 12.6. Assume that the linear programming problem is in standard
form and let S be non empty. Then, either cTx is unbounded on S or there
exists an edge where cTx is maximal.

Proof. Due to the previous theorem we have that either the set of
extremal directions is empty or finite. If the set of extremal directions is
empty, then the cost functional is given by

cTx =
s∑
i=1

αic
Txi

for the set of edges xi, i = 1, . . . , s which is non–empty. Hence, it suffices
to compute i0 = argmaxi=1,...,sc

Txi. Clearly, we maximize cTx by setting
αi0 = 1. If the set of extremal directions is finite and if there exists a i0 with
cTdi0 > 0 then the problem is unbounded, since we can move along τi0di0
for τi0 → ∞. if all cTdi0 ≤ 0, then we maximize cTx by setting τi = 0 and
proceed as in the case of no extremal directions.
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Now, for the algorithm we go back to the previous findings: for every edge
x we find a set of p elements, such that AB is invertible and {i : xi > 0} ⊂ B.
These sets are called bases and the xi with i ∈ B are called variables of the
base. A base can be assigned to any edge x. The optimal value will always
be attained at an edge, but since it is not unique, it does not necessarily
be obtained only(!) at an edge. In principle, one can proceed as follows:
consider all sets of bases B and solve ABtB = b. If additionally tB ≥ 0, then
x = (tB, 0i 6∈B) is a candidate for optimality. Now, compare all results and
choose the one with largest possible value of the cost functional. However,
the possible set of bases is n over p and this grows like exp(p)np. A more
systematic approach is the simplex method which proceeds from one edge
to the other by using a descent in the cost functional. However, in the worst
case it explores all edges and has therefore exponential complexity.

12.1.1 The Simplex Method

We present the simplex method under the following assumptions and within
the following framework.

• We assume that rank A = p,S = {x ∈ Rn : Ax = b, x ≥ 0} and b ≥ 0.
Furthermore, we assume that S 6= ∅.

• If x is an edge, then B+ contains exactly p elements. In general, we
only have ‖B+‖ ≤ p and can extend B+ until it has p elements. This
case is called degenerated ( “”entartet“”).

• An initial edge x0 is known.

Definition 12.7. Two edges x1 and x2 are called neighbors if ‖B(x1) ∩
Bx2‖ = p− 1.

This implies that only one component changes when moving along neigh-
bors. All others remain positive. Next, we compute cost functional and
matrix in terms of a base of an edge. We have Ax0 = b since x0 is feasible
and write

A = (a1, . . . , an)

and B0 the set of vectors for the edge x0. Due to our assumption we have
that AB0 is regular and we split for a general x

A = (AB0 , AB̄0
) =⇒ xB0 = A−1

B0
b−A−1

B0
AB̄0

xB̄0
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Evaluating the cost functional in the previous expressions yields

cTx0 = cTB0

(
A−1
B0
b−A−1

B0
AB̄0

xB̄0

)
+ cTB̄0

xB̄0
= cTB0

A−1
B0
b+ dTxB̄0

for d = (cT
B̄0
− cTB0

A−1
B0
AB̄0

). Hence, the cost functional at the edge x0 can
be written as a function of n− p variables. Since xB̄0

= 0 at the edge x0 we
obtain the following expressions

cTx0 = cTB0
A−1
B0
b, cTx = cTx0 + dTxB̄0

with xB̄0
≥ 0. This implies in particular the following theorem

Theorem 12.8. Let x0 be an edge of the S with base B0 and set d0
B0

:= 0.

Furthermore, set d0
B̄0

= cB̄0
−AT

B̄0
(A−1

B0
)T cB0 .

x0 is a solution to the linear programming problem

max cTx subject to Ax = b, x ≥ 0

if and only if
d0 ≤ 0.

Given x0 we have for every x the following two equalities

xB0 = A−1
B0
b−A−1

B0
AB̄0

xB̄0

cTx = cTx0 + dTB̄0
xB̄0

.

and the restriction x ≥ 0. Hence, If d0
l > 0 for l ∈ B̄0, then we increase the

functional value by moving from x0 to a new x. At x0 we have that the lth
component x0,l = 0. Hence, we obtain for a new point

x = x0 + tlel.

for some tl the functional value cTx = cTx0 + tld0
l . However, we can only to

that as long as xB0 stays positive. Hence, if (Id,A−1
B0
AB̄0

)el ≤ 0 (need to

add Id to obtain the correct dimension), then xB0 stays positive for all tl.
Therefore, we obtain an unbounded problem.

Theorem 12.9. Let x0 be an edge of the S with base B0 and set d0
B0

:= 0.

Furthermore, set d0
B̄0

= cB̄0
−AT

B̄0
(A−1

B0
)T cB0 .

If for some l(∈ B̄0) d0
l > 0 and (Id,A−1

B0
AB̄0

)el ≤ 0, then the problem is
unbounded.
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Sometimes, we also use (Id,A−1
B0
AB̄0

)el = A−1
B0
Al which is true since

l ∈ B̄0. Hence, it remains to discuss the case where for some k ∈ B0 we have

eTk (Id,A−1
B0
AB̄0

)el > 0.

Now, we cannot increase the component xl arbitrarily. We have to stop as
soon as the kth component of xB0 = 0. This implies a bound on tl which
can be computed explicitly by

0 ≤ xl ≤ min{x0,k/t
l
k : tlk = eTk (Id,A−1

B0
AB̄0

)el > 0, k ∈ B0} = δ

We obtain the new (edge) as

x1,i =


δ i = l,

x0,i − δ((Id,A−1
B0
AB̄0

)el)i i ∈ B0\k,
0 i = k
0 i ∈ B̄0\l


This is again an edge with B1 = B0 ∪ {l}\k and this is a neighbor to

x0. We have that AB1 is regular. Here, xl is base and xk becomes a non–
base variable. This can be efficiently done using Jordan elemination. For
numerical stability we need to use the Pivot element for the exchange of
rows k and l. The strategy is as follows: Obtain an index l such that d0

l > 0.
We choose l such that

l = argmax{d0
j : d0

j > 0}.

Choose an index k such that the quotient x0
k/tlk

, tlk = (eTkA
−1
B0
AB̄0

el is min-

imal with respect to k. This is as discussed above and is valid in the case
of non–degenarcy. In case of degenerate edges we can exchange k and l
without changing the cost functional and without moving to a new edge.
In this case it is possible that the simplex algorithm cycles and does not
converge. There exists strategies to prevent cycling. Under the previous
hypotheses this is not possible since every new iterate is an edge different
from the current one.

Theorem 12.10. Under the assumptions of the previous section the simplex
method converges in a finite number of steps to an optimal solution if it
exists. If cTx is unbounded on S then this is detected within in a finite
number of steps.
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Typically, the problem to find an initial edge x0 of the simplex is difficult.
However, the simplex method itself can be used to find an initial edge. To
this end we consider the problem for 1 = (1, . . . , 1)T ∈ Rn and

−1T y → max

Ax+ y = b, x ≥ 0, y ≥ 0, b ≥ 0

This is a linear programming problem in standard form with (x, y) ∈ R2n.
A initial edge is x0 = (0, b)T . The edge is not degenerated if bi > 0 for all i.
Then, we solve the linear programming problem by the simplex method. If
at the solution (x∗, y∗) satisfies −1T y < 0, then S = {Ax = b, x ≥ 0} = ∅
and the problem is infeasible, since y ≥ 0 and −1T y < 0 implies that there
exists at least one yi > 0 and hence Ax 6= b. If y∗ = 0, then x∗ is a feasible
solution to Ax∗ = b. Furthermore, the simplex has terminated at an edge
(x∗, 0). Hence, if the base does not contain any y∗ variables, then we already
have a base for x∗ and we can start on the original problem. If the base
contains y∗ variables, then the edge is degenerated. If rank (A) = p = then
we can remove y variables at the expense of x variables without changing
the cost functional and proceed as before. For other approaches we refer to
the literature.

12.1.2 Dual Problems and Applications

Using the KKT system we can rewrite the (primal) linear programming
problem

max cTx on S = {x ∈ Rn : Ax = b, x ≥ 0}

as dual problem

min(−µ)T b on SD = {µ ∈ Rp : −c ≤ ATµ}.

For both cases the KKT system is sufficient and necessary and we have
for the Lagrangian

L = −cTx− µT (Ax− b)− ξTx

−c−ATµ− ξ = 0, ξ ≥ 0, Ax = b⇔ −c ≤ ATµ,Ax = b

and the latter is the optimality condition for the dual problem. Clearly, the
dual problem can be rewritten in standard form and the previous theorem
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also covers the existence of an optimal solution to the dual problem. Since
the optimal solution for primal and dual problem satisfy the same KKT
system, necessarily, the multiplier of the one is the variable of the other.
Hence, we have the fundamental theorem of linear programming.

Theorem 12.11. If the feasible set S of the primal problem is not empty
and if cTx is bounded from above on S, then cTx attains its maximum on
S. Then, the feasible set SD of the dual problem is not empty and −µT b
is bounded from below on S and −µT b attains its minimum on S. The
extremal values coincide. The converse is also true.

12.1.3 Summary of main theoretical results on the simplex method
and sketch of the algorithm

• Formulation of the problem.

c̃T x̃→ min

B̃x̃ ≥ b̃
⇔ cTx→ min

Ax = b

x ≥ 0

• Basic assumptions

x ∈ Rn, A ∈ Rp×n, rank(A) = p < n, b ≥ 0

S = {x ∈ Rn : Ax = b, x ≥ 0} 6= ∅

• Definitions
B(x) = {i : xi > 0}, B̄ = {i : xi = 0}

• Theoretical background

Graphical solution. In the original formulation move the lines l,
which are orthogonal to c̃ until they meet the straight lines of the
restrictions.

Mathematical theorem. x is edge, iff x is extrema

Implications. An algorithm has only to search all edges to find the
minimum, iff it exists. There is a condition to determine, if cTx is
unbounded on S.

Assumptions for the Basic Simplex. x0 ∈ S as edge is known. x
is arbitrary edge, then |B(x)| = p. B̄ = {1, . . . , n}\B.
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• Termination criteria.

(1.1) Let x ∈ S be an edge and B = B(x), D = B̄(x). Then x is
optimal, iff λ = cD − (AD)TA−TB cB ≥ 0.

(1.2) Let x ∈ S be an edge. Let l ∈ B = B̄(x). Then cTx is unbounded
on S, iff λ = cl − (A{l})

TA−TB cB < 0 and A−1
B A{l} ≤ 0.

• Algorithm

Description of the primal simplex method

-1 Reformulate the problem for an edge x to

B = B(x), B̄ = B̄(x), xB = A−1
B b, f(x) = cTBA

−1
B b+(cTB̄−c

T
BA
−1
B AB̄)xB̄

1 Start with x0, i.e. x0
B̄(x0)

= 0 and calculate x0
B, f(x0)

2 Test (1.1) on failure proceed, else x0 is optimum

3 Test (1.2) forall l ∈ B̄(x0), if fails for at least one l proceed, else
cTx is unbounded on S

4 We have ∃l ∈ B̄ : λ0
l < 0 and ∃i ∈ K ⊂ B : A−1

i A{l} > 0

5 Calculate xB = x0
B − A

−1
B A{l}t, set xl = t and xi = 0, i ∈ B̄\{l},

where

t = min
i∈K
{xi/((A−1

B0
)A{l})i : ki ∈ B0, ((A

−1
B0

)A{l})i > 0}

6 A xi is reduced to zero, f is reduced, since f(x) = f(x0) + λ0
l t

7 Use x0 = x and restart with (1)

• Details on the simplex methods Most of the theory and derivations
is taken from [15]. This introduction is based on bases and dictionaries
which is more common then the formulation with edges and optimality
given in the previous chapter.

• An example The main idea of the simplex algorithm is given below.

max cTx = 0, Ax ≤ b, x ≥ 0 (12.152)

For a problem with inequalities we introduce slack variables and rewrite

max cTx = 0, Ax+ w = b, x ≥ 0, w ≥ 0 (12.153)

257



Lets assume that x = 0 is a feasible solution, i.e. w ≥ 0 for this choice.
Lets assume c > 0. Then we have

w = b−Ax (12.154)

and we call x nonbasic (indepedent) variables and w basic (or depedent
variables). The idea is to keep x2, . . . , xn fixed and increase x1. Then
cTx will increase. However, we can only increase x1 as long as w ≥ 0.
Since w depends on x it changes and yields bounds for the possible
increase or decrease of x1. After we finished this for x1 we reformulate
the constraints Ax + w = b. Since this is a linear system we can do
any linear operation without changing the solution. Furthermore we
may replace some terms of cTx by the corresponding expressions in w.
The idea is to reformulate the problem in nonbasic and basic variables.
Then we proceed as before, i.e. change a nonbasic variable subject to
the bounds given by the basic variables. Note that after the first step
one slack variable is set to zero deu to the constraints. Hence we have
the same setting as before but in different variables. We repeat this
process until there is no nonbasic variable in which c̃T x̃ increases.

We have the following notations.

Definition 12.12 (Dictionaries, Bases). Each system of equations en-
countered along the caculations is called a dictionary.

The variables depending and appearing on the left are called basic vari-
ables.

The variables appearing on the right (indepedent variables) are called
nonbasic variables.

General simplex method (primal simplex) The general lp (linear
programming) reads

max cTx

Ax ≤ b
x ≥ 0

(12.155)

with the following dimensions c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n. This
problem can be rewritten introducingm slack variables xn+1, . . . , xn+m
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as

max
n∑
i=1

cixi

bi −
n∑
j=1

aijxj = xn+i i = 1, . . . ,m

xi ≥ 0 i = 1, . . . , n+m

(12.156)

The above setting is the initial dicitonary. As the simplex progresses
it moves from one dictionary to another. Each dictionary has m basic
variables and n nonbasic variables (independent). Let N denote the
set of indices corresponding to the nonbasic variables. Initially, N =
{1, . . . , n} and let B denote the nonbasic variables, i.e. B = {n +
1, . . . , n+m}. Down the road the problem considered reads

max c0 +
∑
i∈N

c̃ixi

xi = b̃i −
∑
j∈B

ãijxj i ∈ B

xi ≥ 0 i ∈ N ∪B

(12.157)

At each iteration one variable leaves the set of nonbasic variables N
and another enters. The variable going to the basic variables is called
entering variable. We choose this variable according to the following
rule: Choose any variable which coefficient c̃i is positive, i.e. pick

k of {j ∈ N : c̃j > 0}. (12.158)

If this set is empty we have an optimal solution. The increase of this
variable will change the basic variables. Since xj = 0 j ∈ N except
j = k the update is given by

xi = b̃i − ãikxk i ∈ B (12.159)

We must ensure that those xi, i ∈ B are nonnegative. Hence we re-
quire

b̃i − ãikxk ≥ 0 i ∈ B (12.160)

We wish to take the largest possible value for the increase of xk by

xk =

(
max
i∈B

ãik

b̃i

)−1

(12.161)
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We discuss the case 0/0 and max < 0 later. Now we can select the
leaving variable (which will be zero afterwards). This variable leaves
the set of dependent (basic) variables and enters the set of independent
(nonbasic) variables, hence it is leaving. It is l ∈ B, s.t. ãik

b̃i
i ∈ B is

maximal.

After selecting k and l we have to rearrange the current dictionary to
obtain the new dictionary. These are matrix operations and is called
pivot.

We can use different strategies to single out k and l, iff the first choice
or the maximization is not unique. We have to consider the degener-
ated cases 0/0 and max < 0.

For the matrix versions and the formulation of the steps to calculate
refer to the literature. We state only the relation with matrix op-
erations. A dictionary has the property that the basic variables are
written as a linear function of the nonbasic variables. We can express
this by

Ax = b =⇒ BxB +NxN = b (12.162)

where xB are the basic variables and xN are nonbasic variables. Since
xB can be written in terms of xN we can invert B and see

xB = B−1 (b−NxN ) = B−1b−B−1NxN (12.163)

The objective function is written as

cTx = cTBB
−1b−

((
B−1N

)T
cB − cN

)T
xN (12.164)

The dictionary can therefore be rewritten in the above formulations.

Comparing with the notation of above we have

c0 = cTBB
−1b

(c̃j)j∈N = cN − (B−1N)T cB

(b̃i)i∈B = B−1b

(ãij)i,j∈B = B−1N

(12.165)

which automatically gives the pivot (e.g. the transformation of one
dictionary to another) since in the above formulas we only have to
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change the underlying sets of basic and nonbasic variables. Note that
B and N corresponds to a matrix partioned like

A = [BN ] (12.166)

The basic solution associated to a dictionary like above is

xN = 0 xB = B−1b (12.167)

• Degeneracy In the previous section we saw that the algorithm is not
well-defined if the denominator is zero. We consider the different cases
in 12.161.

• Case ãik = 0 In this case we can skip the quotient ãik/b̃i since there
is no restriction on xi.

• Case 0/0. In this case we define

0/0 := 0 (12.168)

and proceed as before. This is a reasonable definition due to the
inequality x has to posses.

• Case b̃i = 0. This case can cause difficulties. We call a dictionary
degenerated if b̃i vanish for some i ∈ B. The problems arise when
the dictionary produces a degenerated pivot, i.e. one of the entering
variables is +∞. This can happen, when the numerator is positive (aik)
and the denominator is degenerated. If we have a degenerated pivot
we proceed without changing the current nonbasic variable. Usually
one obtains then (in the next step) a pivot which is not degenerated.
A problem only arise if we cycle, i.e. a sequence of degenerated pivots
appear. We have the following result.

Theorem 12.13. If the simplex method fails to terminate, then it
must cycle.

Remark 12.14. There are choices for the entering and leaving vari-
ables s.t. the simplex terminates in all cases.

• Case max < 0. In this case the problem is unbounded, since we can
increase the nonbasic variable above all bounds without violating any
constraint. Hence the maximization problem has no solution.
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• Finally, we state the fundamental theorem of linear programming.

Theorem 12.15. If there is no optimal solution, then the problem is
either unbounded or infeasible. If an optimal solution exists then a
basic optimal solution exists.

• Dual problems Introducing dual problems yield upper bounds for
the optimal solution. Formally, we multiply every constraint by yi
with yi ≥ 0. We sum up the corresponding inequalities and obtain a
new functional. We choose the coefficients for yi at least as large as in
the objective function for xi. This provides lower bounds for yi. Since
then the objective for xi is bounded above by a sum of yi we obtain
a minimization problem for

∑
d̃iyi. This problem is called the dual

problem.

Remark 12.16. In general a dual optimization problem can alos be
derived from the Lagrangian function. If this function has a saddle
point one can prove KKT. The description of a saddle point can be
done as minmax formulation. Evaluating the terms we obtain the dual
problem for the Lagrangian multipliers. For more details see [13].

Definition 12.17 (Dual problem). Given a linear programming prob-
lem in standard form

max cTx

subject to Ax ≤ b
x ≥ 0

(12.169)

the associated dual problem is

min bT y

subject to yTA ≥ c
y ≥ 0

(12.170)

Straightforward calculations show that the dual of the dual is again
the primal. The next theorem is also straight forward.

Theorem 12.18. If x is feasible for the primal and y is feasible for
the dual problem, then

cTx ≤ bT y. (12.171)
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The next theorem is much harder to prove.

Theorem 12.19. If x is optimal for the primal, then the dual as an
optimal solution y s.t.

cTx = bT y (12.172)

A proof can be found in [15]. Initially in the dictionary we have that
the dual dictionary is the negative transposed of the primal one. A
simplex step in the primal method is performed. We choose an analo-
gous pivot in the dual (neglecting the rules for pivoting given above).
Using the same pivot in both problems we obtain again dictionaries
which are negative transposed. Note that the as long as the primal is
not optimal the dual solution is infeasible. But at any time the values
of the objective function values coincide (between dual and primal).

12.2 Network Flow Problems

This section is mainly taken from [12] and corresponds to the chapter of
network flows given by R. K. Ahuja.

We assume the standard knowledge about graphs and nodes. We just
state that a tree is a connected acyclic (cycle free) graph. Each tree has at
least two leaf nodes. An arc (i, j) is incident to nodes i and j. Adjacence
arcs A(i) to a node i are those arcs who emanate from node i. We consider
a network G = (A, V ) and arc lengths cij associated to each arc (i, j) ∈ A.
By (i, j) we denote an arc from node i to j.

We introduce several algorithms for searching, sorting and finally solving
problems defined on networks.

Dijkstra’s algorithm
Dijkstra’s algorithm finds the shortest path from a source node s to all

other nodes.
We assume

cij > 0

and s is connected to every node in the network by a path (only a technical
assumption).

The algorithm proceeds as follows. Starting at s we move to each node
i connected to s and label this node in order of its distance to s. These
labels d(i) are permanent, iff we know that it is shortest path from s to i.
Otherwise it is temporary. If (s, j) 6∈ A we set d(j) =∞. Initially all labels
are temporary. The minimum temporary label becomes permanet. Then all
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arcs in A(i) are scanned and the distance labels are updated. An update of
the distance label happens only if the new distance is less than the previous
one. Proof of correctness by induction over the set of permanent labels.
The algorithm runs in O(n2). There are improvements possible, for example
during selection of the minimum distance.

Maximum Flows
We consider a network with nonnegative capacities uij for any arc (i, j) ∈

A. We consider a source s and a sink t. We assume for every arc (i, j) ∈ A
(j, i) to be an arc in A, too. This is only technical, since we may set uji = 0.
The problem reads

max v subject to

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =


v i = s

−v i = t

0 else

0 ≤ xij ≤ uij (i, j) ∈ A

We introduce the notion of residual networks. Given a flow x on the
network the residual capacity rij consists of two ingredients. First, we have
uij − xij which is the capacity left on the arc (i, j) and second we have the
flow xji on the arc (j, i) which may be cancelled to increase the flow on (i, j).
Hence,

rij = uij − xij + xji

We call the network with positive residuals the residual graph.
Ford and Fulkerson introduced an algorithm to solve the maxflow prob-

lem using residual graphs. The idea is that for a given flow x we look for a
path from s to t in the residual network. If such a path exists we augment
(increase on s− > t, decrease on t− > s) flow on this path (whic implies that
the residual decreases) and update the residual graph. We proceed until the
network does not contain such a path. In the definition of the residual we
therefore may obtain as much as uij flow. This corresponds to the maximal
possible flow. The introducing of backwards flow xji is necessary in order to
handle arcs where a priori is not clear if they distribute flow in the “correct”
direction. The algorithm is summarized below.

Ford/Fulkerson

0 x := 0

1 while there is a path P from s to t in G(x) (residual graph) do
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2 ∆ := min{rij : (i, j) ∈ P}

3 augment ∆ units of flow along P and update G(x)

4 end do

We have to describe, how to find a path P from s to t in the residual
graph G(x) and to prove that the algorithm terminates with maximum flow.
The labeling algorithm performs a search of the residual network by fanning
out from the source s and building a tree of reachable nodes. It terminates
if t is a leaf. Initially all nodes are unlabeled. In the first step the algorithms
labels all nodes with (s, i) ∈ G(x). Then it checks the adjacent arcs A(i) for
each node i labeled before and so on. If t ∈ A(i) for some i it terminates
with a direct path from s to t. (Note that we have to add a predecessor
index to each labeled node i indicating the node that caused i to be labeled.
This allows us to trace back)

In order to prove maximiality we introduce the following notations. A
set Q ⊂ A is a cutset, iff G′(N,A − Q) is disconnected and no subset of Q
has this property (i.e. Q splits the original network, especially it splits N).
A cutset is called s − t−cutset if s and t belong to different subsets of the
nodes denoted by S and S̄.

For a given flow x we define the flow across a s− t-cutset by

Fx(S, S̄) =
∑
i∈S

∑
j∈S̄

xij −
∑
j∈S̄

∑
i∈S

xji (12.173)

The capacity of a s− t−cutset is defined as

C(S, S̄) =
∑
i∈S

∑
j∈S̄

uij (12.174)

We note that v = Fx(S, S̄) ≤ C(S, S̄). This implies that maxx Fx(S, S̄) ≤
C(S, S̄). However, an even stronger result is obtained and known as max-flow
min-cut theorem, namely

v = max
x

Fx(S, S̄) = min
S,S̄

C(S, S̄) (12.175)

Assume a maximal flow x. Define S the set of labeled nodes in G(x) deter-
mined by the labelling algorithm. Since x is maximal s ∈ S and t ∈ S̄. There
are no more paths to augment we have obtained a cut (S, S̄). Furthermore
rij = 0 for i ∈ S, j ∈ S̄ since we cannot augment flow any more. rij = 0
implies xij = uij and xji = 0. This implies v = Fx(S, S̄) = C(S, S̄) and since
v is a lower bound for C(S, S̄) we obtain equality.
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Theorem 12.20 (Theorem 4.1 in [12]). The maximum flow from s to t
equals the minimum capacity of all s− t−cutsets.

If the Ford/Fulkerson algorithm terminates we a s − t−cutset at hand.
We already have seen, that if x is maximal the algorithm terminates. Each
labeling iteration of the algorithm scans any node at most once, inspecting
each arc A(i). If all arc capacities are integral and bounded by U the capacity
of a cutset (s,N − {s}) is at most nU. Since the labelling increases the flow
at least by one unit in any run, it terminates with at most nU iterations.

There are a lot of different algorithms and theories known for min cost
flow problems. To limit the representation we only discuss results and al-
gorithms related to the Ford/Fulkerson algorithm. There are faster and
more efficient algorithms known. The research on min cost flow problems
is more elaboarted than on max flow problems. The max flow problem is a
part of the min cost flow theory. It is easily obtained by setting the costs
to c = (0, . . . , 0)T , b = 0 and introducing an edge xts with costs cts = −1
and unlimited capacity. The max flow problem can be transformed to this
problem by adding the arc (t, s) with unlimited capacity and maximizing
xts.

We introduce the negative cycle algorithm and the augmenting cycle
property to solve the following problem for fixed c, u and v.

min cTx subject to∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i)

0 ≤ xij ≤ uij (i, j) ∈ A

13 Numerical methods for Optimization in Infi-
nite Space Dimensions

13.1 Preliminiary discussion

We minimize a function f : X → R on a feasible set Xad ⊂ X and a Banach
space X. We denote by f ′(x) ∈ X ′ ≡ X∗ the first derivative of f with respect
to x which is in general an element in the linear space L(X;R) = X∗. X∗ is
the space of linear functionals on X.

All algorithms will generate a sequence of trial points xk ∈ X which
should have the following properties.
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1. Stationary points: We assume that we have first order necessary con-
ditions. Every point satisfying these conditions is called a stationary
point.

2. Global convergence:

We introduce a so–called stationary measure Σ : X → R+ such that
Σ(w) = 0 if w is stationary and Σ(w) > 0 else. An example in the
case of unconstrained minimization is Σ(w) = ‖f ′(w)‖X∗ .
Given a sequence xk of trial points we say that it is globally convergent,
if one of the following properties is satisfied

(a) Every accumulation point of xk is a stationary point

(b) For some continuous stationary measure we have

lim Σ(xk) = 0.

(c) There exists an accumulation point such that xk is stationary

(d) For the continuous stationary measure Σ we have

lim inf Σ(xk) = 0

Exercise 13.1. Show that (b) implies (a) and (c) implies (d).

3. Local convergence and rate of convergence.

Let x̄ be a stationary point. If there exists δ > 0 such that for alll
x0 ∈ X with ‖x0 − x̄‖ ≤ δ and xk → x̄ we have that

‖xk+1 − x̄‖X = o(‖xk − x̄‖)

we call the sequence superlinearly convergent.

If we have
‖xk+1 − x̄‖X = o(‖xk − x̄‖2)

we call the sequence quadratically convergent.

13.2 Descent Methods in Hilbert Spaces

We consider unconstrained problems in a Hilbert space X first11

min
x
f(x) (13.1)

11Many results are also true for Banach spaces but the presentation simplifies in a
Hilbert space since the product <,>X,X′ is given by the scalar product on X due to the
Riesz representation theorem. Hence, in a Hilbert space the product f ′(x)ξ for ξ ∈ X is
well - defined and equivalent to < f ′(x), ξ > .
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for f : X → R a given functional. We want to construct a sequence of
approximations xi such that xi → x∗ and x∗ is a local minimum where

f ′(x∗) = 0.

Hence, the stationary measure is Σ(w) = ‖f ′(w)‖. We consider gradient
based descent methods of the following general type

xi+1 = xi + τisi (13.2)

where τi ∈ R+ a suitable stepsize parameter and si ∈ X is a descent direction
defined below.

descent direction Definition 13.2 (Descent directions). Given a Hilbert space X and f :
X → R twice Frechet differentiable. We say s ∈ X is a descent direction for
f, iff

f ′(x)s < 0 (13.3)

The motivation is as follows: Consider the function φ : R→ R given by

φ(t) = f(xi + ts).

If s is a descent direction then

φ′(0) < 0

and therefore f is decreasing along si. The descent might be very small, but
we have additionally the estimate by Cauchy-Schwarz inequality

φ′(0) = f ′(xi)s ≥ −‖f ′(xi)‖‖s‖.

Hence, one additionally can require for a descent direction to satisfy a
angular condition as follows for some η ∈ (0, 1)

f ′(x)s < −η‖f ′(x)‖‖s‖. (13.4)

It remains to choose τ , for example according to the Goldstein-Armijo
rule.

goldstein-armijo Definition 13.3. Let f : X → R be twice Frechet differentiable and X be a
Hilbert space; let s ∈ X, 0 < β < α < 1 be given. We say τ ∈ R+ satisfies
the Goldstein-Armijo rule at a point x ∈ X, iff

ατ∇f(x)s ≤ f(x+ τs)− f(x) ≤ βτ∇f(x)s (13.5)
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acceptable 

y

xacceptable 

Figure 33: Geometrical interpretation of the Goldstein-Armijo rule. The
graph τ → f(x + τs) has to be inbetween the triangle spanned by the
straight lines τ → α∇f(x)s+ f(x) and τ → β∇f(x)s+ f(x). fig01

A geometrical interpretation of this rule is given in Figure 33.
The Goldstein-Armijo rule is also known in the case α = 0, i.e. as one-

sided estimate on the decrease of f. In this case we have to gurantee that τi
does not tend to zero for i→∞. This will be discussed in Theorem 13.6.

The Goldstein-Armijo linesearch starts with an suitable large τ and de-
creases τ successively until the above equation is satisfied. This is important
to prevent a sequence τi with τi → 0 for i→∞. We prove convergence under
the assumption 13.3.

thm-goldstein Theorem 13.4. Let f : X → R be twice continuously Frechet differentiable.
Let f and ∇f be weakly lower semicontinuous on the Hilbert space X. Let
the sets

{x ∈ X : f(x) ≤M} (13.6)

be bounded in X for each M ∈ R and empty for M sufficiently small. We
assume that τk ≤ c and τk is choosen such that the Goldstein-Armijo rule
is satisfied. Then, the sequence xk generated by the descent method with
descent direction si := −∇f(xi) has a weakly convergent subsequence. Then
the limit point is a stationary point.
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Example 13.5. The assumption on the upper bound of τk is a technical
assumptions only and can easily satisfied by for example c := 1. The bound-
edness of the defined set gurantees that there exists a weakly convergent sub-
sequence. To obtain estimates on f we need that limk f(xk) can be expressed
in terms f(limxk). If we require f to be weakly lower semicontinuous, then
there exists a solution and the problem is well-posed.

Proof. First, note that f is bounded from below since the above set is
empty for M sufficiently small. Second, note that si is a descent direction.
By Taylor’s formula we obtain for arbitrary x0 ∈ X.

f(xi+1) = f(xi + τisi) ≤ f(xi) · · · ≤ f(x0) (13.7)

Hence, {xi} is bounded by the assumption on the above set for M ≥ f(x0).
Then xk has a weakly convergent subsequence which is also denoted by xk.
Let the limit be x∗. By definition of the iterates we know that

xk+1 − xk = τksk = −τk∇f(xk) (13.8)

Hence, ∑N
k=0 ‖xk+1 − xk‖2 =

∑N
k=0−τk∇f(xk) · (xk+1 − xk) ≤ (13.9)

1/β
∑N

k=0 τk
(
f(xk)− f(xk+1)

)
≤ (13.10)

c/β
∑N

k=0

(
f(xk)− f(xk+1)

)
= c/β(f(x0)− f(xN+1)) ≤ p (13.11)

where p := c/β(f(x0) − infx f(x)). Since p is independent of N we obtain∑∞
k=0 ‖xk+1 − xk‖2 ≤ p < ∞ and therefore there exists a subsequence de-

noted by xk such that

0← ‖xk+1 − xk‖2 = ‖ − τk∇f(xk)‖2 (13.12)

It remains to prove that there exists a lower bound on τk. We note that the
whole sequence xk belongs to a bounded set, see first lines of the proof. Then
also the set of all points from the line segement [xk, xk+1] is bounded and
since D2f is continuous, we have that D2f(xk)(·, ·) is uniformly bounded
for all iterates xk and all line segements [xk+1, xk]. We denote this bound
by c and obtain by Taylor’s series

f(xk+1)− f(xk) ≤ ∇f(xk)(xk+1 − xk) + c/2‖xk+1 − xk‖2 (13.13)

By the Goldstein-Armijo rule we have

ατk∇f(xk)sk = α∇f(xk)τksk = α∇f(xk)(xk+1 − xk) ≤ f(xk+1)− f(xk)(13.14)
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Combining both inequalities we observe

ατk∇f(xk)sk ≤ ∇f(xk)(xk+1 − xk) + c/2‖xk+1 − xk‖2 (13.15)

⇔ −ατk‖∇f(xk)‖2 ≤ τk‖∇f(xk)‖2 + c/2‖ − τk∇f(xk)‖2 (13.16)

=⇒ τk ≥ 2(1−α)
c or ∇f(xk) = 0 (13.17)

Hence for ∇f(xk) 6= 0 the sequence of τk is uniformly bounded from below.
This implies that ‖ − τk∇f(xk)‖2 ≥ c‖∇f(xk)‖ and hence by the above
formulas we conclude ‖∇f(xk)‖ → 0.

‖∇f(x∗)‖ ≤ lim
k
‖∇f(xk)‖ = 0 (13.18)

since ‖ · ‖ and ∇f are weakly lower semicontinuous. �
If we do not reuqire the Goldstein–Armijo rule for selecting the stepsize

a different convergence result under additional assumptions on the descent
direction can be established.

thm-mu-1 Theorem 13.6. Let f be twice continuosly Frechet-differentiable and bounded
from below. Let xk, sk, τk be generated by the following algorithm (13.2),
(13.3) and τk such that f(xk + τksk) < f(xk).

Assume additionally that

f ′(xk)sk
‖sk‖

→ 0 =⇒ ‖f ′(xk)‖ → 0

and

f(xk + τksk)− f(xk)→ 0 =⇒ f ′(xk)sk
‖sk‖

→ 0.

Then, lim f ′(xk) = 0. In particular, every accumulation of xk is a sta-
tionary point.

Note that there might be many accumulation points and/or minimia
depending on the initial datum x0.

Proof. Let f∗ = inf f(xk) > −∞ due to the assumption of boundeness.
Since fk = f(xk + τksk) < f(xk) we have that fk → f∗ ∈ R. As in the proof
of Theorem 13.4 we consider

∞ > f(w0)− f∗ =

∞∑
k=0

(f(xk)− f(xk+1)) =
∑
|f(xk + τksk)− f(xk)|.
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Since the left hand side of the equation is bounded we obtain that the right
hand side is absolutely convergent and therefore the terms in the sum gen-
erate a sequence tending to zero: f(xk + τksk)− f(xk)→ 0. By assumption
this implies

f ′(xk)sk
‖sk‖

→ 0

and this in turn
‖f ′(xk)‖ → 0.

This proves the first part.
Now, consider an accumulation point x̄. Then, there exists a subequence

xk such that xk → x̄. We have fk ≥ f(x̄) due to the monotonicity of fk and
the continuity of f. Hence, we apply the first part of the theorem to the
subsequence and obtain lim f ′(xk) = 0. Due to the continuity of f ′ we have
f ′(x̄) = 0. �

Exercise 13.7. 1. Show that the Goldstein–Armijo rule implies the first
and second assumption of the previous theorem.

2. Show that the condition (13.4) implies the first assumption of the pre-
vious theorem.

Example 13.8. We give a short note on the difference to the finite dimen-
sional case in the setting of Theorem 13.4. Let X = Rn and f : X → R be
in C2(X;R). Similar to the above theorem we assume that

LM := {x ∈ X : f(x) ≤M} (13.19)

is bounded for all M ∈ R and empty for M sufficiently small. We con-
clude from the above that f is bounded from below. By construction we
have f(xk) ≤ f(x0) for all k and therefore there exists M such that the
sequence {xk} ⊂ LM and hence ‖xk‖ is uniformly bounded and by the The-
orem of Weierstrass xk → x∗ strongly. This theorem strongly relies on the
finite dimemsion of X. Since xk → x∗ strongly, we do not need any further
assumptions on f or ∇f . Both are assumed to be continuous and hence
limk f(xk) = f(x∗), limk∇f(xk) = f(x∗). Therefore, the proof for the infi-
nite dimensional case carries over to the finite dimensional case without any
changes except for the last line: Here we conclude as described previously by
the continuity of ∇f()

0← ‖∇f(xk)‖ → ‖∇f(x∗)‖ (13.20)
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We now turn to different choices of the descent direction s in (13.2). Of
course, the gradient si := −∇f(xi) always satisfies (13.2). This method is
called steepest descent method. This direction also satisfies the angular
condition 13.4.

13.2.1 Projection Methods For Constrained Problems

13.2.2 Quasi – Newton Methods

Using the finite dimensional case and a quadratic functional f we derive
other algorithms than steepest descent and give motivations for the fre-
quently used Newton-cg or Newton-SOR methods. Let us assume that A is
spd. The steepest descent method with exact minimization for a quadratic
functional reads

xk+1 = xk − σ∇f(xk) (13.21a)

σ = inf f(xk − σ∇f(xk)) (13.21b)

f(xk) :=
1

2
(xk)TAxk (13.21c)

The discussion remains valid also for f(xk) = 1
2(xk)TAxk + bTxk. This can

be rewriten as

xk+1 = (I − σA)xk (13.22)

with σ = (xk)TATAxk/(xk)TATAAxk. The above iteration is known as
scaled Richardson method for iterative solving the linear equation Ax =
0. The scaled Richardson method is a fixed point method and hence it is
convergent to first-order if the spectral radius ρ(I−σA) ≤ 1. Note that there
exists an optimal σ for this method, namely minσ ρ(I −σA). To verify, that
the steepest descent with exact minimization is well-defined and convergent,
we note that yTAy/yT y for y 6= 0 is the Raleigh coefficient and it holds for
positive semidefinite matrices A that 0 ≤ λmin(A) ≤ yTAy/yT y ≤ λmax(A).
Hence, we conclude that σ ≥ 1/λmax(A). Since the extrem eigenvalues of
(I−σA) are given by 1−σλmin,max(A), we obtain |1−σλmax| ≤ 1 and since
0 ≤ λmin/λmax also |1−σλmin| ≤ 1. This yields that the steepest descent with
exact minimization is indeed a convergent method (for A ∈ Rn×n.) As seen in
the above calculations, it is not necessary to compute the exact minimization
to obtain convergence. Further, the method is only of first-order and for A
spd other methods with convergence in finite number of steps (cg) are known.
The relationship between iterative methods for solving linear equations and
descent methods now yield additional descent methods. We briefly discuss
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possible extensions of iterative methods for linear equations and descent
algorithms for minimization.

One well-known method is the Jacobi method, i.e., xk+1 = (I−D−1A)xk.
This corresponds to a descent method with si := −D−1∇f(xi) which yields
a descent if D−1 is positive definite and with σ = 1. There are relaxed
versions possible and teh convergence is guranteed if A is strictly diagonal
dominant. For D positive definite, the method belongs to the family of
(Quasi-)Netwon methods discussed below.

Another method is the one-step method. Translate in the optimization
context we have

xk+1 = xk − σei eTi Axk ≥ 0 (13.23)

and σ = (xk)TAei/aii. Geometrical this method tries to minimize the func-
tional by successively testing all unit directions. The move is only done, if
f(xk) decreases. This method also applies for general nonlinear f and is very
easy to implement. However, the convergence behaviour is very poor. In
the case of A spd there exists a proof of convergence with a rate 1/cond(A).

Considering again the quadratic case withA positive definite, the method
of choice would be the cg algorithm. We now present the general form of a
cg-method for nonlinear optimization problems. The proof of convergence
is similar to the one given for the gradient method.

1. Given an initial x0 ∈ X, X Hilbert space and s0 = f ′(x0) ∈ X. Then
for k = 0, 1, . . .

2. xk+1 = xk − σsk and σ such that sufficient decrease is granted.

3. dk+1 = f ′(xk+1)

4. sk+1 = dk+1 + (dk+1 − dk, dk)/‖dk‖sk

Further extensions are methods of the Newton type. Although the com-
putational cost is higher, they are known as the most powerful methods and
should be the method of choice. For the abstract theorem refer to Theo-
rem 5.20. In the case of unconstrained optimization one might try to apply
Theorem 5.20 to the nonlinear operator equation

f ′(x) = 0 ∈ X ′

The following remarks should be taken into account. First, the good con-
vergence behaviour of the Newton’s method is only valid locally. Second, if
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we try to embed this method into the above context the correct choice for s
would be

sk+1 = −f ′′(xk)−1f ′(xk). (13.24)

By the discussion above, the method defined by (13.24) is a descent method,
iff (f ′(xk), f ′′(xk)f ′(xk))H,H < 0. Translating this to the finite dimenaional
case, we obtain that (f ′′)−1 needs to be positive definite. This of course is
true in the minimum, but might be false in other parts of the domain with the
consequence, that the actual s is not a descent direction. Another problem
might be to obtain sk+1. In the context of pde-constrained optimization we
usually can solve

f ′′(xk)sk+1 = −f ′(xk)

by an iterative process. The question therefore occurs, how exact we have
to solve this equation to obtain a satisfactory overall performance. We do
not discuss further details here and just give two examples of well-known
optimzation methods and an abstract convergence theorem.

The Newton-cg method summarizes the discussion above.

1. Given an initial x0 ∈ X, X Hilbert space. Assume x0 ∈ X is close to
x∗, the local minimizer. Then for k = 0, 1, . . .

2. Solve f ′′(xk)sk = −f ′(xk) with the cg method. Couple the termination
criteria for the cg method to the termination criteria for the overall
method.

3. xk+1 = xk + sk

The inexact and Quasi-Newton methods, in particular the BFGS method,
is given by the following abtract algorithm. Define (w ◦ z)v := (z, v)Xw,
where w, v, z ∈ X and X is an Hilbert space.

1. Given an initial x0 ∈ X, X Hilbert space and H0 ∈ L(X,X) sym-
metric and positive definite12 Assume x0 ∈ X is close to x∗, the local
minimizer. Then for k = 0, 1, . . .

2. Solve Hksk = −f ′(xk)

3. xk+1 = xk + sk

12Note that an operator A : X → X, X Hilbertspace, is called symmetric iff (y,Ax) =
(x,Ay) forall x, y ∈ X. The operator is called positive definite, iff (x,Ax) ≥ 0 for all
x ∈ X.
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4. Update Hk by the BFGS update formula. Let y := f ′(xk+1)− f ′(xk).

Hk+1 = Hk +
y ◦ y

(y, sk)
− Hksk ◦Hksk

(Hksk, sk)

Why using this update formula? Consider the finite-dimensional case, then
(w ◦ z)v = (

∑
i ziviwj)j = (wzT )v. The matrix wzT has rank one. One

can prove that the above is the only rank one update, which keeps the
symmetry and the positive definitness, i.e. Hk+1 is spd. Further, there
exists an explicit update formula for the inverse of Hk+1 in terms of y,Hk

and sk. The update is only valid if (y, sk) is positive.
Finally, we present a convergence theorem (local result) due to Griewank[8].

Theorem 13.9. Assume x∗ ∈ X is a local minimum, f is twice continuously
Frechet differentiable and satisfies the second order optimality conditions

f ′(x∗) = 0 (13.25a)

C‖x∗‖ ≥ f ′′(x∗) ≥ c‖x∗‖ (13.25b)

Further, assume that ‖H0 − f ′′(x∗)‖L(X,X) and ‖x0 − x∗‖ are sufficiently

small. Then the update formula is well-defined, i.e. Hk are spd and the
method is linear(!) convergent. If additionally H0 − f ′′(x∗) is compact 13,
then the method is superlinear convergent.

13.3 Augmented Lagrangian Methods

The reference for this part is the thesis of Maruhn [11] that is based on the
algorithm by Sachs and Sartenaer.

The general setting is X,Y are Hilbert spaces and f : X → R and
c : X → Y are twice continuously Frechet differentiable maps. We want to
find a minimizer of the following problem

min f(x) subject to c(x) = 0 x ∈ X (13.26)

The Lagrange multiplier theorem states that if c′(x∗) is surjective and
x∗ is a minimizer, then there exists a unique λ∗ ∈ Y such that the following
equality holds

∇f(x∗) + c′(x∗)∗λ∗ = 0 (13.27)

13A : X → X is called compact, if AB1(0) is sequentially compact.
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This is the necessary condition for the Lagrange functional

L(x, λ) = f(x) + (λ, c(x)) (13.28)

The formula gives the motivation for augmented Lagrange methods. If
we would knew λ∗ then we can solve (13.27) by for example Newton’s method
or any other nonlinear solver. But for λ 6= λ∗ equation (13.27) does not in-
corporate the information c(x) = 0. A simple idea to improve this situation
is to consider an augemented Lagrangian function which penalizes the con-
straint violation. This approach is also used in general penalty algorithms
discussed below. The new objective function is

Φ(x, λ, r) = f(x)+ < λ, c(x) > +
1

2r
‖c(x)‖2 (13.29)

An algorithm for solving (13.27) tries to minimize Φ (unconstrained
minizimation) and succesively updates λ and r.

Next we discuss various possibilites for updating λ. Obviously λ∗ has to
satisfy (13.27). Hence a choice for updating λ would be

λk+1 := argminλ‖∇f(xk) + c′(xk)
∗λ‖ (13.30)

The minimization can be computed exactly and is given by

λk+1 = −[c′(xk)
∗]#∇f(xk) (13.31)

where A# denotes the pseudo-inverse of the operator A. Unfortunately this
operator might be very expensive to compute. Furthermore, since ‖xk−x∗‖
might be large, there is no need for the exact value of λk+1.

Sachs proposed the following update rule and we will later prove conver-
gence for this particular case.

λk+1 = λk +
1

µk
c(xk) (13.32)

For given x, λ we will denote by λ̄ := λ+ 1
µc(x).

We will use the following equality later

∇xΦ(x, λ, r) = ∇f(x) + c′(x)∗λ+
1

r
c′(x)∗c′(x) (13.33)

∇f(x) + c′(x)∗λ̄ = ∇xΦ(x, λ̄(x, λ, r)) (13.34)

The augmented Lagrange algorithm computes iterates xk ∈ X which
approximately solve the unconstrained optimization problem

min
x

Φ(x, λk, rk) (13.35)
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for given values λk, rk. Further, we the algorithm gives an update rule for
λk and rk. The term “approximately” solve, means

‖∇xΦ(x, λk, rk)‖ ≤ wk (13.36)

for some given tolerance wk with wk → 0 for increasing k.
The general algorithm is given by the following steps

1. Given initial guesses for x0, λ0 and r0 < 1 and w∗, η∗ << 1 and pa-
rameters γ1, τ < 1 and γ2 > 1

2. Solve for xk

min
x

Φ(x, λk, rk) (13.37)

in the sense that

‖∇xΦ(xk, λk, rk)‖ ≤ wk (13.38)

3. Test for convergence: ‖∇xΦ(xk, λk, rk)‖ ≤ w∗, ‖c(xk)‖ ≤ η∗.

4. Update of the multipliers depending on the constraint violation and
goto Step 2.

(a) If ‖c(xk)‖ ≤ γ1ηk update the Lagrange multiplier

Choose λk+1 such that ‖λk+1 − λ̄(xk, λk, rk)‖ ≤ wk
Let rk be unchanged, rk+1 = rk

Decrease wk to wk+1 = rk+1wk.

Decrease ηk to ηk+1 =
√
rkηk

(b) If ‖c(xk)‖ ≥ γ2ηk reduce the penalty parameter

to rk+1 = τrk.

Let λk be unchanged, λk+1 = λk

Decrease wk to wk+1 = rk+1

Decrease ηk to ηk+1 =
√
rk+1

(c) Else do any of the above updates.

We prove the following lemma.

Lemma 13.10.

lim
k
wk = lim

k
ηk = 0 (13.39)
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Proof. By step 4 we observe

0 < rk+1 ≤ rk ≤ · · · < 1 (13.40)

Hence, there exists a limit r∗ ∈ [0, 1]. For the sequence wk we note that
0 < wk < 1 and by step 4

wk+1 = rk+1wk < rk (13.41a)

wk+1 = rk+1 < rk (13.41b)

Hence wk+1 < rk. So if r∗ = 0 then w∗ := limk wk = 0. If r∗ > 0, we first
show that ∃k̃ such that rk = rk̃ for all k ≥ k̃. Having this result at hand we

conclude that Step 4a is executed for all k ≥ k̃ and hence wk+1 = rk̃wk for

all k ≥ k̃. We obtain wk+1 = rl
k̃
wk̃ for k+ 1 = l+ k̃. Therefore, limk wk = 0.

It remains to prove that r∗ > 0 implies ∃k̃ such that rk = rk̃ for all k ≥ k̃.

This equivalent to assume that step 4a is executed forall k ≥ k̃. Assume
this is not the case. Assume that nl is the sequence of indices of all iterates
where step 4b is executed. Then rnl+1 = τrnl = τ l+1rn0 . Since τ < 1 we
have liml rnl+1 = 0 which contradicts r∗ > 0.

Analogoulsy one proves limk ηk = 0. �
We assume the following on the problem to prove global convergence of

the augmented Lagrangian method introduced above.

1. The mapping f : X → R and c : X → Y are twice Frechet differen-
tiable.

2. The iterates xk are enclosed in a compact subset Ω of X. This assump-
tion as posed in a infinite dimensional space is stronger than in finite
dimensions (where bounded and closed implies compact).

3. At any limit point x∗ of xk the operator Dc(x∗) is surjective

4. The convergence tolerances are η∗ = w∗ = 0. This is a technical as-
sumption to prove the convergence.

Further we prove the convergence result with the slightly different Lagrange
update rule in Step 4a.

Choose λk+1 as λk+1 = λ̄(xk, λk, rk) (13.42)

This change does only affect technical difficulties in the proof. For a general
proof see [11] Theorem 3.2.3 page 49.
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Theorem 13.11. Assume that all the above assumptions are fullfiled. Let
x∗ ∈ X denote a limit point of the sequence (xk) and let also xk denote the

sequence converging to x∗. Let λ(x∗) be defined by λ(x) = −
(
c′(x)#

)
∇f(x),

i.e., that is the norm minimizer of minλ ‖∇f(x) + c′(x)∗λ‖X .
Furhter, assume that xk, λk, rk are sequences generated by the algorithm

above.
Then there exists positive constants κ1, κ2 such that

‖λ(xk)− λ(x∗)‖ ≤ κ2‖xk − x∗‖ (13.43a)

‖λ̄(xk, λk, rk)− λ(x∗)‖ ≤ κ1wk + κ2‖xk − x∗‖ (13.43b)

‖c(xk)‖ ≤ κ1wkrk + rk‖λk − λ(x∗)‖+ κ2rk‖xk − x∗‖ (13.43c)

Since xk → x∗ we have λ(xk) → λ(x∗) and λ̄ → λ∗ and by definition
λ(x∗) = λ∗. Further, we obtain

lim
k
∇xΦ(xk, λk, rk) = ∇L(x∗, λ∗) = 0 (13.44)

Proof. By the previous lemma we have limk wk = limk ηk = 0. First, we
conclude that c′(x)(·) is surjective in a neighbourhood of x∗. This is due to
the assumptions 1 and 3. Since xk → x∗ we know that for all k sufficiently
large c′(xk)(·) is surjective. We denote the subsequence again by xk. Hence,
c′(xk)

# exists. By theorem we conclude that c′(·)()# is Lipshitz continuous
in some neighbourhood of x∗. Therefore, c′(·)# is bounded and converges to
c′(x∗)()#. Hence we deal with bounded operators c′,

‖
(
c′(xk)

#
)∗
‖ = ‖c′(xk)#‖ ≤ κ1 (13.45)

For xk we know that

‖∇Φ(xk, λk, rk)‖ = ‖∇f(xk) + c′(xk)
∗λ̄‖ ≤ wk. (13.46)

Now we show, that the update λ̄ is not far from the norm minimizer of the
Lagrange function with respect to λ. Since Id =

(
c′(xk)c

′(xk)
∗)−1

c′(xk)c
′(xk)

∗ =(
c′(xk)

#
)∗
c′(xk)

∗, we have

‖λ̄− λ(xk)‖ = ‖Id λ̄−
(
c′(xk)

#
)∗
∇f(xk)‖ = (13.47)

‖
(
c′(xk)

#
)∗ (

c′(xk)
∗λ̄−∇f(xk)

)
‖ ≤ κ1wk (13.48)

It remains to show that λ(xk) → λ∗ ≡ λ(x∗) and that the constraint viola-
tion tends to zero. First, note that ∇f(·) is continuous and hence bounded
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for k sufficiently large. Furthermore, by theorem we obtain that ∇f(·) is
Lipshitz.

‖λ(xk)− λ∗‖ ≤ ‖
(
c′(xk)

#
)∗
∇f(xk)−

(
c′(x∗)#

)∗
∇f(x∗)‖

≤ ‖
(
c′(xk)

#
)∗
−
(
c′(x∗)#

)∗
‖‖∇f(xk)‖+ ‖

(
c′(x∗)#

)∗
‖‖∇f(xk)−∇f(x∗)‖

≤ κ2‖xk − x∗‖

Next we prove that ∇xΦ vanishes at (x∗, λ∗).

∇xΦ(xk, λk, rk) = ∇f(xk) + c′(xk)
∗λ̄→ ∇xL(x∗, λ∗) (13.49)

since c′, f are continuous and λ̄ is convergent. Since limwk = 0 we have

0 = lim
k
∇Φ(xk, λk, rk) = ∇L(x∗, λ∗) (13.50)

and the necessary first order conditions are satisfied at (x∗, λ∗). Finally,

c(xk) = rk(λ̄− λk) = rk(λ̄− λ∗) + rk(λ
∗ − λk). (13.51)

Now the modified update rule for λk comes into play: λk = λ̄(xk−1, λk−1, rk−1.
Then we can conclude that c(xk) → 0 and therefore (x∗, λ∗) is a Kuhn-
Tucker point. For different update rules one has proceed differently from
here one. We already know that λ̄ → λ∗. Therefore, further technical lem-
mas are needed to prove a convergence for an update rule like step 4a. �

13.4 Penalty algorithms

We consider again the equality constrained problem and try to transform
this in an unconstrained problem. We discuss the conditions necessary for
this approximation. We discuss the setting in Hilbert spaces which will be
clear in the subsequent section.

The problem reads

min f(x) subject to g(x) = 0 (13.52)

and we assume that f is a real valued functional on the Hilbert space X,
g : X → Y is an operator mapping from X into the Hilbert space Y. We
use the notation < ·, · > for the inner product on a Hilbert space. Using
the previous results the first order necessary optimality conditions for the
minimization problem state, that if x0 is a regular point of g(x) and a local
minimum of f, then there exists y∗0 ∈ Y ∗ such that

∇f(x0)+ < y∗0,∇g(x0) >= 0 (13.53)
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This conditions also holds if X,Y are Banach spaces. But in a Hilbert space
we have that Y is isomorph to Y ∗ and we can reformulate the above and
conclude that there exists y0 ∈ Y such that

∇f(x0)+ < y0,∇g(x0) >= 0 (13.54)

This leads to the definition of the classical penalty function

φr(x) := f(x) +
1

2r
< g(x), g(x) > (13.55)

This formulation is not possible for Banach spaces, since g(x) ∈ Y 6= Y ∗.
We consider the associated penalized subproblems

min
x∈X

φr(x) (13.56)

The necessary optimality conditions for (13.56) state that if xr is optimal,
then

∇f(xr) +
1

r
< g(xr),∇g(xr) >= 0 (13.57)

which is equivalent to

∇f(xr)+ < yr,∇g(xr) >= 0 (13.58)

ryr − g(xr) = 0 (13.59)

for yr ∈ Y. The question is now, which assumptions do we need to con-
clude that for r → 0, the optimal solutions xr to (13.56) converge to x0.
Also interesting is to ask, whether we need to solve (13.56) exactly or if a
sufficiently close solution xr will be sufficient.

Theorem 13.12. Let xk be a point satisfying

φrk(xk) ≤ min
x∈X

φrk(x) + εk (13.60)

for rk → 0 and εk bounded. Further assume that f(x) and < g(x), g(x) >
are lower semicontinuous functionals on X.

For any limit point x0 of the sequence xk, it holds that x0 is a global min-
imum for the constrained optimization problem minx f(x) subject to g(x) =
0.

Proof.
�Note that this theorems does not gurantee the existence of a limit

point x0. Usually one additionally assumes that the iterates xk belong to a
compact subset of X. See for example thesis of Maruhn, assumptions in the
book of Spellucci and so forth.

General reference for abstract penalty functions is Burke, SIAM 1991.
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14 Interesting papers and notes

14.1 Zuazua, Controllability of partial differential equations

Example on the pendulum with mass m = 1 and gravitational force g = 1
the system reads

y′′ + sin(y) = v.

Here, v is the control which is supposed to keep the pendulum near the
value y = π and where y is the angle of the arm with respect to the vertical
axis measured clockwise. The basic idea to design a control is to linearize
around the state y = π. In this case sin(y) ≈ π−y and the linearized system
in φ = y − π reads

φ′′ − φ = v

The goal is to drive φ, φ′ to zero using v. This suggest a feedback law for
α > 0

φ = −αφ

since when φ > 0 we have y > π and action opposite to y is required.
However, the resulting equation leads to

φ′′ + (α− 1)φ = 0

and the behavior is understood considering its eigenvalues: if α > 1 then the
roots are complex and the behavior is oscillatory. If α < 1 then the roots
are real but one is positive and the solution diverges to ±∞. The desired
state is therefore never reached! The idea is then to change the feedback to

v = −αφ− βφ′.

In this way we may impose exponential decay on φ for β sufficiently large.
Remark: if we let the control act only at discrete points in time, then even
the control v = ±1 is suitable to stabilize the discrete in time system. This is
called bang-bang control and appears from Pontryagins maximum principle.

Existence of minimizers in the case of the direct method of variations.
Case 1: full space. If H is Hilbert, J : H → R is continuous, convex
and coercive, then J attains its minimum. If J is strictly convex, then the
minimum is unique.
Case 2:K ⊂ H. K closed convex, K bounded or J coercive, then, there
exists a minimum of J over K and the minimum is unique provided that K
is convex.
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Controllability conditions: Problem is x′ = Ax + Bv, x(0) = x0 with
A ∈ RN×N , B ∈ RN×M ,

• Controllability exists under the Kalman rank condition: N = rang(B,AB, . . . , AN−1B).
(equivalent to the invertibability of the Gramian matrix)

• Controllability can be formulated backwards requiring that the initial
’sees’ the terminal state. Kalman rank condition is equivalent to an
observability of the state

|φ0|2 ≤ C
∫ T

0
‖BTφ‖2dt

where φ solves the adjoint equation−φ′ = ATφ, φ(T ) = φ0. (equivalent
is BTφ = 0 then φ = 0.)

• Using optimal control

J(φ0) =
1

2

∫ T

0
|BTφ|2dt− (x1, φ0),+(x0, φ(0))

is strictly convex in φ0 and continuous and coercive. It allows for a
unique minimizer which is the solution to the adjoint system and the
control for the forward system is u = BTφ.

Analogous conditions for solving linear systems: A surjective, iff AT is in-
jective.

14.2 Singler/Boggard: POD Approach to Control Theory

The basic idea of controling a linear system relies on Laplace transform. In
particular, the Laplace transform of f ′(s) is sF (s)− f(0). Hence, if we want
to control a system of the type

x′(t) = Ax(t) +Bu(t)

then we obtain after Laplace transformation

sX(s) = AX(s) +BU(s).

This is an algebraic system and the transfer function is given by

G : U → X
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as
G(U(s)) = (sId−A)−1BU(s).

For things depending also on the observation Cx we obtain

G = C(sId−A)−1B.

Designing controllers can now be done based on approximations of the trans-
ferfunction. The hope is to have good transfer functions to have a good
control, i.e., assume

‖Gr −G‖∞ ≤
∑
k>r

σk.

Then, instead of G we compute Gr and obtain a good control by applying
the inverse to the current system’s state

U(s) = G−1
r x(s)

and transform with the inverse Laplace transform to obtain the original
feedback law.

Different approaches to compute Gr exist: POD and interpolation.
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A Notation
appendix1

1. For h(x) : Rn → Rm we denote by Dh(x) ∈ Rm×n the derivative of
h at x. By ∇h(x) we denote the transposed of Dh(x), i.e., ∇h(x) =
Dh(x)T .

2. A convex optimization problem means f is convex and h(x) is affine
linear.

3. NLO stands for min f(x) subject to h(x) = 0.

4. KKT holds means, there exists λ∗ and x∗ such that the Karush-Kuhn-
Tucker system of equations is satisfied.

5. f(t) = O(t) :⇔ ∃C > 0∃t0∀t ≤ t0 : f(t) ≤ Ct.

6. f(t) = o(t) :⇔ ∀C > 0∃t0∀t ≤ t0 : f(t) ≤ Ct.

Equality(!) constrained problems, ONLY

1. MFCQ = LICQ

2. x∗ local minimum, h affine linear =⇒ KKT holds

3. x∗ local minimum, MFCQ =⇒ KKT holds, set of λ∗ bounded

4. x∗ local minimum, LICQ =⇒ KKT holds, λ∗ unique

5. NLO convex, KKT holds =⇒ x∗ is global minimum of NLO.

6. NLO convex, LICQ: KKT holds in (x∗, λ∗) (unique!) ⇔ x∗ is global
minimum

7. Slater =⇒ modified MFCQ

B Fast Facts on Sobolev Spaces

We recommend the book of Adams [1]. Introduction to Sobolev spaces and
their properties. Spaces will be introduced as subspaces of Lq(Ω) where Ω
is an open, domain in Rn. Further assumptions will be given below.

If α = (α1, α2, . . . , αn) is a n-tupel of nonnegative integers aj we call α
a multi-index and denote by xα the polynomial xα1

1 xα2
2 · · ·xαnn which is of

the degree |α| =
∑

j αj . Similarly, we denote by Dj = ∂/∂xj and by Dα =
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Dα1
1 Dα2

2 · · ·Dαn
n , i.e. a differential operator of order n. Further, D(0,...,0)u =

u and for example

D2
1D

1
2u = (∂x1)2∂x2u = ∂x1∂x1∂x2u (2.1a)

n = 2,
∑

0≤|α|≤2

1 =
∑

(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)

1 = 6 (2.1b)

We define the functional ‖ · ‖m,p where m is a non-negative integer and
1 ≤ p ≤ ∞ by

‖u‖m,p =

 ∑
0≤|α|≤m

∫
Ω

(Dαu)pdx


1/p

(2.2a)

‖u‖m,∞ = max
0≤|α|≤m

‖Dαu‖∞ (2.2b)

Then the space Hm,p(Ω) is the completion of {u ∈ Cm(Ω) : ‖u‖m,p <∞}
subject to the ‖ · ‖m,p norm. On the other hand we can consider a subspace
of Lp(Ω) with the following properties. We call (Dαu :=)v ∈ Lp(Ω) the
weak derivative of u ∈ Lp(Ω) if∫

Ω
uDαφdx = (−1)|α|

∫
Ω
vφdx ∀φ ∈ C∞0 (Ω) (2.3)

Now, we define Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all 0 ≤ |α| ≤
m.}. The relation between these spaces is given by the Theorem of Mey-
ers/Serrin: Hm,p(Ω) ≡ Wm,p(Ω) for 1 ≤ p < ∞ for every domain (open,
connected) Ω ⊂ Rn. The counterexample for p = ∞ is the function Ω :=
{x ∈ R : −1 < x < 1} and u(x) = |x| ∈W 1,∞(Ω) and 6∈ H1,∞. But, H ⊂W
for all (m, p). In the case of boundary values (i.e. spaces Hm,p

0 (Ω)) we need
additional assumptions on Ω to concluded.

Wm,p(Ω) is a Banach space, separable if 1 ≤ p < ∞, reflexive for 1 <
p <∞ and especially for p = 2 it is a Hilbert space with inner product

(u, v)m,p =
∑

0≤|α|≤m

∫
Ω
DαuDαvdx. (2.4)

Let 1 ≤ p, q <∞ and 1− n
p = −n

q and u ∈ H1,p(Rn). Then we have

‖u‖Lr(Rn) ≤ Cµ
(
{u 6= 0}

) 1
r
− 1
q ‖∇u‖Lp(Rn) (2.5)

for all 1 ≤ r < q. For Ω bounded with Lipschitz boundary and p = 2 we
additional obtain

‖u‖L2(Ω) (2.6)
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