
Formal verification of nonlinear hybrid systems
with Ariadne

Luca Geretti and Tiziano Villa

15 October 2020

1 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

The Ariadne library in a nutshell

� Developed by a joint team led by the University of Verona

� Written in C++, with additional Python bindings

� Managed as a CMake project with minimal dependencies

� Supported under Linux and macOS, using Clang or GCC

� Website: http://www.ariadne-cps.org

� Repository: https://github.com/ariadne-cps/ariadne

2 / 38

http://www.ariadne-cps.org
https://github.com/ariadne-cps/ariadne


Computability Representation Finite-time evolution Infinite-time evolution Conclusions

The Ariadne Golden Four requirements

1. Define rigorous mathematical semantics for the analysis of
continuous and hybrid systems.

2. Numerical soundness in all operations.

3. Allow arbitrary accuracy by handling nonlinear behavior
directly.

4. Allow proving and disproving of properties of a system.

3 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Outline

1 Computability of hybrid automata

2 Representation of functions and sets

3 Finite-time evolution

4 Infinite-time evolution

5 Conclusions

4 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Computing on continuous spaces

“Classical” computability theory

� is a function on the natural numbers f : Nn 7→ Nm

computable by a Turing Machine?

What happens for functions on continuous spaces?

� e.g. function on the reals f : Rn 7→ Rm

� how do we represent inputs and outputs?

� how are computations performed?

� which classes of functions are computable? And which are
not?

5 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Computable Analysis
A different notion of computability

� Introduced by Klaus Weihrauch and co-workers

� Computation is performed by Turing Machines acting on
infinite streams of data

� Data streams encode a sequence of approximations to some
quantity

� A function is computable in this theory if:

given a data stream encoding a sequence of approximations
converging to the input
it is possible to calculate a data stream encoding a sequence of
approximations converging to the output

� Finite computations are obtained by terminating when a given
accuracy criterion is satisfied:

I computable functions can be approximated to any desired
accuracy

6 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

A simple problem

Let p(x) be a polynomial with rational coefficients:
is p(x) = 0 ?

� Classical computability: if x is a rational, then the problem is
decidable.

� Computable analysis: if x is a real number, then the problem
is semi-decidable:

I when p(x) 6= 0 we can find a sufficiently accurate x̃ to give a
negative answer

I when p(x) = 0, no matter how accurate x̃ is, we cannot
exclude the possibility that p(x) 6= 0, and thus we cannot give
a positive answer

7 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

The fundamental theorem

Only continuous functions are computable, with respect to a given
representation for the data and to the corresponding topology

� a necessary (but not sufficient) condition:

I if a function is discontinuous, then it is uncomputable
I a continuous function may be uncomputable

� The choice of the representation is essential:

I we can make a function computable by requiring more
information on the inputs, and/or less information on the
outputs

8 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Are hybrid automata computable?

Theorem (Collins 2011)

For any coherent semantics of evolution, the finite-time reachable
set of a hybrid automaton is uncomputable.

� Discrete transitions can cause discontinuities in both space
and time, even for simple systems

� By the fundamental theorem of computable analysis, this
means that the reachable set of hybrid automata is, in
general, uncomputable.

9 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Can we recover computability?

� By imposing restrictions on dynamics, reset functions, guards
and invariants we can regularize the evolution to make it
approximable either from above or from below

. . . however . . .

� the conditions for approximation of the reachable set from
above are different from the ones for approximation from
below

� we can only obtain a semi-decidable problem

10 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Upper and lower semantics
Definitions

Theorem

Given a Hybrid Automaton with continuous dynamics and reset
functions:

Upper semantics if guards and invariants are closed, then the
finite-time reachable set is approximable from above;

Lower semantics if guards and invariants are open, then the
finite-time reachable set is approximable from below.

11 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Upper and lower semantics
An example

Consider a location l0 with invariant x ≤ a and a transition that
leaves l0 when x ≥ b

a < b a = b a > b

Upper: No Transition Upper: Transition Upper: Transition

Lower: No Transition Lower: No Transition Lower: Transition

12 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Approximations to the reachable set

Given a hybrid automaton H and an initial set I , it is possible to
compute two approximations of the reachable set Re up to a given
time t (including the infinite-time case):

� an outer approximation O of the states reached by H starting
from I such that:

Re ⊂ O

� for a given ε > 0, an ε-lower approximation Lε of the states
reached by H starting from I such that:

∃ x ∈ Re s.t. ||x − Lε|| ≤ ε

Lε is an overapproximation of a subset of Re.

13 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Approximations to the reachable set

Given a hybrid automaton H and an initial set I , it is possible to
compute two approximations of the reachable set Re up to a given
time t (including the infinite-time case):

� an outer approximation O of the states reached by H starting
from I such that:

Re ⊂ O

� for a given ε > 0, an ε-lower approximation Lε of the states
reached by H starting from I such that:

∃ x ∈ Re s.t. ||x − Lε|| ≤ ε

Lε is an overapproximation of a subset of Re.
13 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Outer approximation O

� Blue: reachable set

This is a sequence of
approximations from above:

� Red + Orange + Yellow
+ Blue: coarse O

� Orange + Yellow +
Blue: finer O

� Yellow + Blue: finest O

A valid, albeit useless, O is the whole continuous space.

14 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Outer approximation O

� Blue: reachable set

This is a sequence of
approximations from above:

� Red + Orange + Yellow
+ Blue: coarse O

� Orange + Yellow +
Blue: finer O

� Yellow + Blue: finest O

A valid, albeit useless, O is the whole continuous space.

14 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

ε-lower approximation Lε

� Blue: reachable set

This is a sequence of
approximations from below:

� Interior of outline of Red:
coarse Lε

� Interior of outline of
Orange: finer Lε

� Interior of outline of
Yellow: finest Lε

A valid, albeit useless, Lε is the empty set.

15 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

ε-lower approximation Lε

� Blue: reachable set

This is a sequence of
approximations from below:

� Interior of outline of Red:
coarse Lε

� Interior of outline of
Orange: finer Lε

� Interior of outline of
Yellow: finest Lε

A valid, albeit useless, Lε is the empty set.

15 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

How to use approximations to verify properties

� S1, S2 are sets
within which a
property is
satisfied

� O ⊂ S1 →
Re ⊂ S1

� ||S2 − Lε|| > ε→
Re 6⊆ S2

If for a given set of accuracy parameters no
answer is found, we can recalculate the
approximations with a finer accuracy.

→ (possibly infinite) sequence of
approximations

16 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

How to use approximations to verify properties

� S1, S2 are sets
within which a
property is
satisfied

� O ⊂ S1 →
Re ⊂ S1

� ||S2 − Lε|| > ε→
Re 6⊆ S2

If for a given set of accuracy parameters no
answer is found, we can recalculate the
approximations with a finer accuracy.

→ (possibly infinite) sequence of
approximations

16 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Switching between representations might be required

� Accurate representations are useful for frequent events (such
as continuous steps of evolution), in order to limit
accumulation of overapproximation error;

� Coarse representations are useful for sporadic events, where
operations such as intersection, joining and splitting are
required and would be inefficient/ineffective on accurate
representations.

17 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Switching between representations might be required

� Accurate representations are useful for frequent events (such
as continuous steps of evolution), in order to limit
accumulation of overapproximation error;

� Coarse representations are useful for sporadic events, where
operations such as intersection, joining and splitting are
required and would be inefficient/ineffective on accurate
representations.

17 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

The role of functions

Functions can be used to represent Hybrid Automata:

� For every discrete location, a function Dyn : Rn 7→ Rn is used
to represent the continuous dynamics.

� Invariants are represented using single-valued functions
Inv : Rn 7→ R that are negative exactly when the invariant is
true.

� Discrete transitions are represented using a function
Act : Rn 7→ R that is positive when the guard of the transition
is true (and negative otherwise), and a reset function
Res : Rn 7→ Rn.

A function along with a finite domain can also specify a region of
space for the evolution of an automaton.

18 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Representing functions in the nonlinear case

We represent f from a function mapping a parameter space into
the state space: p : Rn 7→ Rm, i.e., {pj : Rn 7→ R}m

j=1.

� We want pj =
∑Nj

i=0 cijβij , i.e., a linear combination of terms
in a basis {β} in the parameter space.

� Most common basis: monomials from all cross products, e.g.
x1, x2, x2

1x3, etc. which produce a Taylor Model.
I Other bases for models: Chebyshev, Bernstein

� Coefficients cij may be singleton reals or real intervals.

Finite representation

Since the exact representation of f in general would require infinite
terms, and since we need to overapproximate, we add a uniform
error term e to the expansion for enclosure.

→ Ultimately we have fj ⊂ pj + ej for the j-th component of f .

19 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Representing functions in the nonlinear case

We represent f from a function mapping a parameter space into
the state space: p : Rn 7→ Rm, i.e., {pj : Rn 7→ R}m

j=1.

� We want pj =
∑Nj

i=0 cijβij , i.e., a linear combination of terms
in a basis {β} in the parameter space.

� Most common basis: monomials from all cross products, e.g.
x1, x2, x2

1x3, etc. which produce a Taylor Model.
I Other bases for models: Chebyshev, Bernstein

� Coefficients cij may be singleton reals or real intervals.

Finite representation

Since the exact representation of f in general would require infinite
terms, and since we need to overapproximate, we add a uniform
error term e to the expansion for enclosure.

→ Ultimately we have fj ⊂ pj + ej for the j-th component of f .

19 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Representing functions in the nonlinear case

We represent f from a function mapping a parameter space into
the state space: p : Rn 7→ Rm, i.e., {pj : Rn 7→ R}m

j=1.

� We want pj =
∑Nj

i=0 cijβij , i.e., a linear combination of terms
in a basis {β} in the parameter space.

� Most common basis: monomials from all cross products, e.g.
x1, x2, x2

1x3, etc. which produce a Taylor Model.
I Other bases for models: Chebyshev, Bernstein

� Coefficients cij may be singleton reals or real intervals.

Finite representation

Since the exact representation of f in general would require infinite
terms, and since we need to overapproximate, we add a uniform
error term e to the expansion for enclosure.

→ Ultimately we have fj ⊂ pj + ej for the j-th component of f .

19 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Representing functions in the nonlinear case

We represent f from a function mapping a parameter space into
the state space: p : Rn 7→ Rm, i.e., {pj : Rn 7→ R}m

j=1.

� We want pj =
∑Nj

i=0 cijβij , i.e., a linear combination of terms
in a basis {β} in the parameter space.

� Most common basis: monomials from all cross products, e.g.
x1, x2, x2

1x3, etc. which produce a Taylor Model.
I Other bases for models: Chebyshev, Bernstein

� Coefficients cij may be singleton reals or real intervals.

Finite representation

Since the exact representation of f in general would require infinite
terms, and since we need to overapproximate, we add a uniform
error term e to the expansion for enclosure.

→ Ultimately we have fj ⊂ pj + ej for the j-th component of f .

19 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Advantages and drawbacks of a nonlinear basis

Advantages

� We are not limited to a convex representation;

� We can approximate arbitrarily close by increasing the number
of terms and/or the number of parameters (i.e., curve
segments in the boundary);

� Algebraic operations between sets use results from Interval
Analysis: efficient.

Drawbacks

� Observation of a set is limited: we can efficiently evaluate
only the bounds of the function over a domain

→ We need to iteratively split the function to improve evaluation.

� Splitting is done on the domain space: the larger the
dimension of the domain space, the more overlapping the
resulting split sets.

20 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Advantages and drawbacks of a nonlinear basis

Advantages

� We are not limited to a convex representation;

� We can approximate arbitrarily close by increasing the number
of terms and/or the number of parameters (i.e., curve
segments in the boundary);

� Algebraic operations between sets use results from Interval
Analysis: efficient.

Drawbacks

� Observation of a set is limited: we can efficiently evaluate
only the bounds of the function over a domain

→ We need to iteratively split the function to improve evaluation.

� Splitting is done on the domain space: the larger the
dimension of the domain space, the more overlapping the
resulting split sets.

20 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Sets from Taylor Models: a linear example

Set: [−1, 1]2 7→ R2

x = p0 + 0.25p1 ± 0
y = 0.5p0 + p1 ± 0

Set: [−1, 1]3 7→ R2

x = p0 + 0.25p1 ± 0
y = 0.5p0 + p1 + p2 ± 0
or y = 0.5p0 + p1 ± 1

Its bounding box:
[−1, 1]2 7→ R2

x = 1.25p0 ± 0
y = 2.5p1 ± 0

21 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Sets from Taylor Models: a nonlinear example

Set [−1, 1]2 7→ R2 given by

x = p0 + p1 + p2
1

y = p0 + p1 + p2
0

22 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Sets from Taylor Models: a nonlinear example

Set [−1, 1]2 7→ R2 given by

x = p0 + p1 + p2
1

y = p0 + p1 + p2
0

By splitting along p0, i.e.
p′0 = [−1, 0] and p′′0 = [0, 1]
we obtain partially overlapping
sets.

22 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Accuracy control

Numerical parameters available

Allow to decide if a polynomial term should be added into e

1. Maximum polynomial order

2. Minimum coefficient value

Reconditioning operations

Trade between accuracy and domain space complexity

a. Convert e into an additional parameter → increase n

b. Sweep all terms where a parameter appears into e → reduce n

23 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Accuracy control

Numerical parameters available

Allow to decide if a polynomial term should be added into e

1. Maximum polynomial order

2. Minimum coefficient value

Reconditioning operations

Trade between accuracy and domain space complexity

a. Convert e into an additional parameter → increase n

b. Sweep all terms where a parameter appears into e → reduce n

23 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Representation of sets using a grid

Definition (Grid)

A coordinate-aligned discrete partitioning of a root hyper-rectangle
in the variables space, which identifies cells of different sizes.

Definition (Grid set)

A marking of cells locked to a grid.

24 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Representation of sets using a grid

Definition (Grid)

A coordinate-aligned discrete partitioning of a root hyper-rectangle
in the variables space, which identifies cells of different sizes.

Definition (Grid set)

A marking of cells locked to a grid.

24 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Example of paving a set with a grid set

� The grid set in the second figure is useful for splitting a large
set into smaller, more numerically amenable, subsets

� The grid set on the third figure is the most efficient when
evolution is not considered

� The choice of the root cell (which can be any rectangle
centered anywhere) is essential to the efficiency of the grid set
approximation
I In the third figure we have 28 cells, in the fourth 31
I However, if we want to combine sets, the root cell must be

common to all sets in the reachable set

25 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Example of paving a set with a grid set

� The grid set in the second figure is useful for splitting a large
set into smaller, more numerically amenable, subsets

� The grid set on the third figure is the most efficient when
evolution is not considered

� The choice of the root cell (which can be any rectangle
centered anywhere) is essential to the efficiency of the grid set
approximation
I In the third figure we have 28 cells, in the fourth 31
I However, if we want to combine sets, the root cell must be

common to all sets in the reachable set

25 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Example of paving a set with a grid set

� The grid set in the second figure is useful for splitting a large
set into smaller, more numerically amenable, subsets

� The grid set on the third figure is the most efficient when
evolution is not considered

� The choice of the root cell (which can be any rectangle
centered anywhere) is essential to the efficiency of the grid set
approximation

I In the third figure we have 28 cells, in the fourth 31
I However, if we want to combine sets, the root cell must be

common to all sets in the reachable set

25 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Example of paving a set with a grid set

� The grid set in the second figure is useful for splitting a large
set into smaller, more numerically amenable, subsets

� The grid set on the third figure is the most efficient when
evolution is not considered

� The choice of the root cell (which can be any rectangle
centered anywhere) is essential to the efficiency of the grid set
approximation
I In the third figure we have 28 cells, in the fourth 31
I However, if we want to combine sets, the root cell must be

common to all sets in the reachable set
25 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Grid sets - pros and cons

Pros

� Converts easily from/to a polynomial model;

� Allows a compact internal representation, e.g. markings on a
binary tree or a binary decision diagram;

� Cells can be split/joined by changing the depth of the
markings;

� Union, intersection, difference and inclusion can be performed
very efficiently.

Cons

� They are coarse when using large cell sizes;

� Using small cell sizes is computationally demanding, especially
for a large number of variables.

26 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Grid sets - pros and cons

Pros

� Converts easily from/to a polynomial model;

� Allows a compact internal representation, e.g. markings on a
binary tree or a binary decision diagram;

� Cells can be split/joined by changing the depth of the
markings;

� Union, intersection, difference and inclusion can be performed
very efficiently.

Cons

� They are coarse when using large cell sizes;

� Using small cell sizes is computationally demanding, especially
for a large number of variables.

26 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Hybrid evolution of a set

Continuous step

1. From the starting set, given a time step h, construct the flow
set

2. Apply to the whole [0, h] time interval to get the reached set

3. Apply to the h time value to get the finishing set

Discrete step

1. From the flow set, identify the presence of intersections with
guard sets

2. Compute crossing times with the guards

3. Compute intersections with the guards

4. Apply the resets

27 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Hybrid evolution of a set

Continuous step

1. From the starting set, given a time step h, construct the flow
set

2. Apply to the whole [0, h] time interval to get the reached set

3. Apply to the h time value to get the finishing set

Discrete step

1. From the flow set, identify the presence of intersections with
guard sets

2. Compute crossing times with the guards

3. Compute intersections with the guards

4. Apply the resets

27 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Finite-time evolution
A sequence of continuous and discrete steps

28 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Finite-time evolution
A sequence of continuous and discrete steps

28 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Finite-time evolution
A sequence of continuous and discrete steps

28 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Finite-time evolution
A sequence of continuous and discrete steps

28 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Finite-time evolution
A sequence of continuous and discrete steps

28 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Infinite vs finite time evolution

Infinite-time evolution in practice

A sequence of finite-time evolutions, which terminates if no
additional state space can be reached after a while.

Finite time is simple, but may not be usable

Using finite time evolution to verify a system which evolves for
infinite time requires the manual identification of a time interval
that still gives formal guarantees.

� Example: if the behavior is guaranteed to be periodic, analyze
only one period.

In general, to verify some properties of the system we need to
evolve the system for infinite time.

29 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Convergence for infinite-time evolution

To obtain convergence, we have two requirements:

1. Be able to identify when no new state space is reached;

2. Control the growth of the overapproximation error.

We would need a set representation with

� operations like subtraction, intersection, splitting and merging;

� small memory usage, fast operations and good scalability;

� small overapproximation error.

We use Taylor Sets to respect 2., switching temporarily to Grid
Sets for 1.

30 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Convergence for infinite-time evolution

To obtain convergence, we have two requirements:

1. Be able to identify when no new state space is reached;

2. Control the growth of the overapproximation error.

We would need a set representation with

� operations like subtraction, intersection, splitting and merging;

� small memory usage, fast operations and good scalability;

� small overapproximation error.

We use Taylor Sets to respect 2., switching temporarily to Grid
Sets for 1.

30 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Convergence for infinite-time evolution

To obtain convergence, we have two requirements:

1. Be able to identify when no new state space is reached;

2. Control the growth of the overapproximation error.

We would need a set representation with

� operations like subtraction, intersection, splitting and merging;

� small memory usage, fast operations and good scalability;

� small overapproximation error.

We use Taylor Sets to respect 2., switching temporarily to Grid
Sets for 1.

30 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Infinite-time reachability at a glance

1. Identify a bounding set B to constrain evolution;

2. Approximate non-rigorously the evolution (by points) to
identify reasonable lock-to-grid times when the grid set
representation should be updated;

3. Compute the finite-time hybrid evolution of the automaton up
to the next lock-to-grid time;

4. If the reached set is partially outside the bounding set, stop
with failure;

5. If new cells have been found in this iteration, resume from (3);

6. Stop with success.

31 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

The watertank example

� Outlet flow Fout depends on
the water level x(t):
Fout(t) = λ

√
x(t)

� Inlet flow Fin is controlled by
the valve position α(t):
Fin(t) = Kp · α(t)

� The controller senses the
water level and sends the
appropriate commands to the
valve.

32 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

The watertank automaton

open

ẋ = λ
√
x + Kp

α = 1
x ≤ hmax + δ

closing

ẋ = λ
√
x + Kpα

α̇ = −1/T
α ≥ 0

closed

ẋ = λ
√
x

α = 0
x ≥ hmin − δ

opening

ẋ = λ
√
x + Kpα

α̇ = 1/T
α ≤ 1

x ≥ hmax − δ

α ≤ 0

x ≤ hmin + δ

α ≥ 1

33 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Reachability at different accuracies

α

U
p

p
er

S
em

a
n

ti
cs

L
ow

er
S

em
a

n
ti

cs

α

x

coarse

x

fine

34 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Safety verification

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

First iteration:
grid 1/8× 1/80
(x-axis: x(t), y -axis:
α(t)).

Outer reach is not safe, try
lower reach.

Green: safe set Orange: ε-tolerance Red: computed set

35 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Safety verification

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

First iteration:
grid 1/8× 1/80
(x-axis: x(t), y -axis:
α(t)).

Lower reach is not unsafe,
refine grid.

Green: safe set Orange: ε-tolerance Red: computed set

35 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Safety verification

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

Second iteration:
grid 1/16× 1/160
(x-axis: x(t), y -axis:
α(t)).

Outer reach is not safe, try
lower reach.

Green: safe set Orange: ε-tolerance Red: computed set

35 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Safety verification

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

Second iteration:
grid 1/16× 1/160
(x-axis: x(t), y -axis:
α(t)).

Lower reach is not unsafe,
refine grid.

Green: safe set Orange: ε-tolerance Red: computed set

35 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Safety verification

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

Third iteration:
grid 1/32× 1/320
(x-axis: x(t), y -axis:
α(t)).

Outer reach is safe, system
is proved safe.

Green: safe set Orange: ε-tolerance Red: computed set

35 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Open issues on the topic

� Identify proper values of the numerical parameters and
sensible refinement strategies;

� Identify improved data structures for geometrical
representation;

� Address scalability with respect to the number of variables;

36 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Open issues on the topic

� Identify proper values of the numerical parameters and
sensible refinement strategies;

� Identify improved data structures for geometrical
representation;

� Address scalability with respect to the number of variables;

36 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Open issues on the topic

� Identify proper values of the numerical parameters and
sensible refinement strategies;

� Identify improved data structures for geometrical
representation;

� Address scalability with respect to the number of variables;

36 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Future directions of development

1. Complete the Python interface to cover the dynamics module;

2. Introduce parallelism in the handling of multiple trajectories;

3. Introduce exploration of the numerical parameters space using
operations research approaches;

4. Implement grid sets by developing a parallel BDD library;

5. Interface to known tools and frameworks such as MATLAB
and ROS;

6. Develop verification procedures in the context of robotic
surgery and smart manufacturing.

37 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Future directions of development

1. Complete the Python interface to cover the dynamics module;

2. Introduce parallelism in the handling of multiple trajectories;

3. Introduce exploration of the numerical parameters space using
operations research approaches;

4. Implement grid sets by developing a parallel BDD library;

5. Interface to known tools and frameworks such as MATLAB
and ROS;

6. Develop verification procedures in the context of robotic
surgery and smart manufacturing.

37 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Future directions of development

1. Complete the Python interface to cover the dynamics module;

2. Introduce parallelism in the handling of multiple trajectories;

3. Introduce exploration of the numerical parameters space using
operations research approaches;

4. Implement grid sets by developing a parallel BDD library;

5. Interface to known tools and frameworks such as MATLAB
and ROS;

6. Develop verification procedures in the context of robotic
surgery and smart manufacturing.

37 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Future directions of development

1. Complete the Python interface to cover the dynamics module;

2. Introduce parallelism in the handling of multiple trajectories;

3. Introduce exploration of the numerical parameters space using
operations research approaches;

4. Implement grid sets by developing a parallel BDD library;

5. Interface to known tools and frameworks such as MATLAB
and ROS;

6. Develop verification procedures in the context of robotic
surgery and smart manufacturing.

37 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Future directions of development

1. Complete the Python interface to cover the dynamics module;

2. Introduce parallelism in the handling of multiple trajectories;

3. Introduce exploration of the numerical parameters space using
operations research approaches;

4. Implement grid sets by developing a parallel BDD library;

5. Interface to known tools and frameworks such as MATLAB
and ROS;

6. Develop verification procedures in the context of robotic
surgery and smart manufacturing.

37 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

Future directions of development

1. Complete the Python interface to cover the dynamics module;

2. Introduce parallelism in the handling of multiple trajectories;

3. Introduce exploration of the numerical parameters space using
operations research approaches;

4. Implement grid sets by developing a parallel BDD library;

5. Interface to known tools and frameworks such as MATLAB
and ROS;

6. Develop verification procedures in the context of robotic
surgery and smart manufacturing.

37 / 38



Computability Representation Finite-time evolution Infinite-time evolution Conclusions

References

� Collins, P.; Bresolin, D.; Geretti, L.; Villa, T. “Computing the
evolution of hybrid systems using rigorous function calculus”,
4th IFAC Conference on Analysis and Design of Hybrid
Systems (ADHS’12), June 2012, pg. 284-290, DOI:
10.3182/20120606-3-NL-3011.00046

� Benvenuti, L; Bresolin, D.; Collins, P.; Ferrari, A.; Geretti, L.;
Villa, T. “Assume-guarantee verification of nonlinear hybrid
systems with Ariadne”, International Journal of Robust and
Nonlinear Control, Volume 24, Issue 4, Mar. 2014, pg.
699-724, ISSN: 1049-8923, DOI: 10.1002/RNC.2914

38 / 38


	Computability of hybrid automata
	Representation of functions and sets
	Finite-time evolution
	Infinite-time evolution
	Conclusions

