Week 4

- 1. More examples
- 2. Nondeterminism, equivalence, simulation (Ch 3)
- 3. Composition (Ch 4)

 $\textbf{InputSignals} = \textbf{OutputSignals} = [\textbf{Nats}_0 \rightarrow \{\textbf{0,1, absent}\}]$

$$x = 0 \ 0 \ 1 \ 1 \ 0 \dots$$

 $s = 0 \ 0 \ 0 \ 1 \ 1 \ 0 \dots$
 $y = 0 \ 0 \ 0 \ 1 \ 1 \ 0 \dots$

 $\forall x \in InputSignals, \forall n \in Nats_0, Delay(x)(n)=0, n=0;$ = x(n-1), n > 0

$$\forall x \in InputSignals, \forall n \in Nats_0,$$

 $Delay_2(x)(n) = 0, n = 0,1;$
 $= x(n-2), n = 2,3,...$

Implement Delay₂ as state machine

We will see later that Delay₂ ~ Delay₁ · Delay₁

Nondeterministic state machines

In deterministic machines guards from state state are disjoint

In nondeterministic machines guards may not be disjoint. What does that mean?

Topics/determinism/example

The same input signal can lead to more than one state response and output signal

Set and function model

```
N = (States, Inputs, Outputs, possibleUpdates, initialState)
```

```
possibleUpdates: States x Inputs \rightarrow P(States x Outputs)
```

where P(States x Outputs) is the set of all non-empty subsets of States x Outputs

Topics/deterministic/possible updates

Always: possibleUpdate(s, absent) = {(s,absent)}

A deterministic machine determines a function

H: InputSignals → OutputSignals

A nondeterministic machine determines a relation
Behaviors = {(x,y) | y is a possible output signal
corresponding to x}

_ InputSignals x OutputSignals

Why non-deterministic machines?

- 1. Topics/determinism/Abstraction
- 2. Topics/determinism/Equivalence
- 3. Topics/determinism/Simulation

```
The matching game

Two (nondeterministic) machines,

A = (States_A, Inputs, Outputs, possibleUpdates_A, s_A(0))

B = (States_B, Inputs, Outputs, possibleUpdates_B, s_B(0))

Suppose input symbol x and
A \text{ moves from } s_A(0) \text{ to } s_A(1) \text{ and produces output y}

Then for same input symbol x
B \text{ can select move from } s_B(0) \text{ to } s_B(1), \text{ to produce y}

and continue the game from states s_A(1), s_B(1)
```

B simulates A if there is a subset $S \subset States_A \times States_B$ such that

- 1. $(initialState_A, initialState_B) \in S$, and
- 2. $\forall (s_A, s_B) \in S, \forall x \in Inputs, \\ \forall (s'_A, y) \in possibleUpdates_A(s_A, x)$

 \exists $(s'_B, y) \in possibleUpdates_B(s_B, x)$ such that

$$(s'_A, s'_B) \in S$$

Theorem Suppose B simulates A. Then,

Behaviors_A \subset Behaviors_B

i.e. if y is a possible output response to x by machine A, y is also a possible output response to x by machine B.

Question Suppose B simulates A and C simulates B. Does C simulate A?

Topics/Composition/Synchrony

- 1. Each component reacts once for every input symbol
- 2. The following happens simultaneously for each component
 - •The input symbol is consumed
 - A state update occurs leading to next state and producing current output
 - •If there is a feedback loop, the output appears at the input port

Topics/Composition/Series-Parallel

Topics/Composition/Playback

Topics/Composition/Playback

Topics/Composition/Composition