2D Continuous FT




How do frequencies show up n an image?

- Low frequencies correspond to slowly varying information (e.g.,
continuous surface).

- High frequencies correspond to quickly varying information (e.g.,
edges)

Original Image Low-passed




2D Frequency domain

Large horizontal and
vertical frequencies
correspond sharp
grayscale changes in
both directions

Large vertical
frequencies correspond
to horizontal lines ————

v

. \ wX
Small horizontal and
vertical frequencies Large horizontal
correspond smooth frequencies correspond
grayscale changes in to vertical lines

both directions




2D spatial frequencies

- 2D spatial frequencies characterize the image spatial
changes in the horizontal (x) and vertical (y) directions
- Smooth variations -> low frequencies
- Sharp variations -> high frequencies




2D Continuous Fourier Transform

- 2D Continuous Fourier Transform (notation 2)

f(u,v) = I f(x,y)e_ﬂ”(”x”y)dxdy

f(x,y)= j £ (u,v) e dudy =

2
dudyv Plancherel’ s equality

f@u,v)

[ {17y ey = ]

—00 —00 —00 —00




Delta
- Sampling property of the 2D-delta function (Dirac’ s delta)

| 8Ge=x,,3=3,)f (e, p)dxdy = £ (%, 3,)

- Transform of the delta function
F{6(x,y)} = I j S(x, v)e T dxdy = 1

7 s .. shifting
F{5(x_X09y_yO)} = _[ _“5(35_350»)’_)’0)3 TR ey = @A) property

—00 —Q0




Constant functions

- Inverse transform of the impulse function

F ' {6u,v)} = j j S(u,v)e’ " dudy =7 =1

—00 —00

- Fourier Transform of the constant (=1 for all x and y)

k(x,y)=1 Vx,y

F(u,v)= j J e W dxdy = 5 (u, v)

—00 —00




Trigonometric functions

- Cosine function oscillating along the x axis
- Constant along the y axis

s(x,y)=cos(27x fx)

F{cos(2z fx)} = T T cos(27 fx)e 7 dxdy =

]

o0

e—j2zt(ux+vy)dxdy

|:eJ27f(fx) 4+ o /27 :|

OO

% I —j27x(u—f)x +e—]27z(u+f)x:| —]Zﬂvydxdy_

—00 —
OO

_]272'vydyj —j27x(u—f)x +e—j27r(u+f)x:|dx — 11'[ |:e—j27r(u—f)x +e—j27r(u+f)x:|dx —

N | —

[5(u f)+5(u+f)]




e
Vertical grating




e
Double grating




Smooth rings




e
Vertical grating




2D box

2D sinc
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-
2D CTFT of the box

Il X=sx=X,-Y=sys=<Y
f(xy)= o
0 otherwise

F(a)x,a)y) = }}f(x,y)exp{—j2n(ﬁx+fyy)}dxdy

=_}exp{_ j2rl fxx)}dx-_}exp{—jzn(ﬁy)}dy=

X Y

+
-X

(exp ~j2nf.X) exp(j2ﬂfo)) _ (exp(jZthxX)—exp(—jZthxX)) _
—jaf J2mf,

exp( j2rf.x)

21ﬂf exp(—jz.ﬂffyy)

y

-Y

xp(j27f X) = exp(o/22f X)) | 1 G ons x) -
= f 2; f, i
-2X sin(27£,X) =2Xsinc(27fX)
2nf X

2nf X =2km — f, =§ Zeros of the sinc at multiples of k/X




CTFT properties
= Linearity af (x,y)+bg(x,y) < aF(u,v)+bG(u,v)
= Shifting fx—x,,y—x,) < e /7y, v)
= Modulation e/ ) £ (x YY) <> Flu—u,,v—v,)

= Convolution f(x,»)*eg(x,y)<= F(u,v)G(u,v)

= Multiplication  f(x, ¥)g(x,y) < F(u,v)*G(u,v)

= Separability Jy)=f(0)f () = Fu,v)=Fu)F )




I
Separability

1.Separability of the 2D Fourier transform

- 2D Fourier Transforms can be implemented as a sequence of 1D
Fourier Transform operations performed independently along the two
axis

Fuv)= [ [ fx,y)e " dxdy =

—00 —00

T ]9 f(x, y)e—jZﬂuxe—jMdedy — T e—j27zvydyT f(x, y)e—j2m¢xdx _

—00 —00

= j F(u,y)e *™dy = F(u,v)

1D FT along | 1D FT along
2DFT | —> the rows 1 thecols




I
Separability

- Separable functions can be written as

2.The FT of a separable function is the product of the FTs of
the two functions f(xy)=rf(x)g(»)

Fuw)= [ [ £y dsdy -

I h(x)g J2””xe_j2””ydxdy = J.g(y)e_jz”wdyj. h(x)e_ﬂ””xdx =

|| 8'—.8

(v)
G(v




Discrete Time Fourier Transform
(DTFT)

Applies to Discrete domain signals and time
series - 2D




Fourier Transform: 2D Discrete Signals

m Fourier Transform of a 2D discrete signal is defined as

F(u,v)= i i fIm,nle />t

mM=—00 N=—00

1
<u,v<-—

where —
2 2

» Inverse Fourier Transform

1/2 1/2 .
flm,n]= j j F(u,v)e’ 7™ dudy

—1/2-1/2




Properties

- Periodicity: 2D Fourier Transform of a discrete a-periodic
signal is periodic
- The period is 1 for the unitary frequency notations and 21t for
normalized frequency notations.
- Proof (referring to the firsts case)

Flu+ky+)= > > flm,nle o 2{(wek (D)
M=—00 B=—00

) o4
_ Z Z f m n]e—J27T(um+vn e—]2frkm —j27ln

Arbitrary m=—c0 n
integers

— Z Z f m n —]27r(um+vn)

m=—0o0 n=—00

= F(u,v)




Fourier Transform: Properties

= Linearity, shifting, modulation, convolution, multiplication,
separability, energy conservation properties also exist for the
2D Fourier Transform of discrete signals.




e
DTFT Properties

m Linearity  af[m,n]+bg[m,n] < al'(u,v)+bG(u,v)

= Shifting f[m — My, 1 — no: = e—j27r(umo+vno)F(u, V)

= Modulation ejzﬂ(uomwon)f:man] < F(u —uoaV—Vo)
= Convolution f[mJl] * g[m, n|< F(U,V)G(%V)

= Multiplication ~ f[m,n]g[m,n] < F(u,v)* G(u,v)

m Separable functions f[m,n]= f[m]f[n] < F(u,v)=Fu)F(v)

o0 O

» Energy conservation > D | fImn]| = : I|F(u,v)|2 dudv

m=—00 p=—00 —00 —00




Fourier Transform: Properties

m Define Kronecker delta function

1, form=0 andn:O}

0, otherwise

olm,n] :{

m Fourier Transform of the Kronecker delta function

o0 o0

F(U,V) _ Z Z |:5[m, n]e—jZﬁ(um+vn):| _ e—j27z(u0+v0) :1

m=—o0 n=—0u0




Impulse Train

m Define a comb function (impulse train) as follows

comb,,  [m,n]= ZZ&'m kM ,n—IN]

k=—00 [=—00

where M and N are integers




2D Discrete Fourier Transform (DFT)




Outline

- Circular and linear convolutions
- 2D DFT

- 2D DCT

- Properties

- Other formulations

- Examples




Circular convolution

- Finite length signals (N, samples) — circular or periodic
convolution

- the summation is over 1 period c[k]= f1k]® g[k] = Zf[” 1e[k —n]
- the result is a N, period sequence

- The circular convolution is equivalent to the linear convolution
of the zero-padded equal length sequences

fIm]* glm] < F[k]G[k]

Sflm] g[m] ‘ ‘ SIm]* g[m]
<III>m*<II >m:'I I>m
Length=P Length=Q Length=P+Q-1

For the convolution property to hold, M must be greater than or equal to P+Q-1.




Convolution

Zero padding SfIm]* glm] < Flk]G[k]

Sm] glm] SIm]* g[m]

JH»m*(L,_»m:(IHI)m

4-point DFT
(M=4)

Flk] G[k] F[k]G[k]




In words

- Given 2 sequences of length N and M, let y[k] be their linear convolution

VKT = fTKI* Ak = S fTnlhlk —n)

- y[K] is also equal to the circular convolution ‘of the two suitably zero padded sequences
making them consist of the same number of samples

clk]= f1k]® Zf[n [k —n]
Ny=N,tN, —1: length of the zero-padded seq

- In this way, the linear convolution between two sequences having a different length (filtering)
can be computed by the DFT (which rests on the circular convolution)
- The procedure is the following
+ Pad f[n] with N, -1 zeros and h[n] with N1 zeros

- Find Y[r] as the product of F[r] and HJ[r] (which are the DFTs of the corresponding zero-padded signals)
- Find the inverse DFT of Y[r]

- Allows to perform linear filtering using DFT




2D Discrete Fourier Transform

- Fourier transform of a 2D signal defined over a discrete finite
2D grid of size MxN

or equivalently

- Fourier transform of a 2D set of samples forming a
bidimensional sequence
- As in the 1D case, 2D-DFT, though a self-consistent

transform, can be considered as a mean of calculating the
transform of a 2D sampled signal defined over a discrete grid

- The signal is periodized along both dimensions and the 2D-
DFT can be regarded as a sampled version of the 2D DTFT




.
2D Discrete Fourier Transform (2D DFT)

« 2D Fourier (discrete time) Transform (DTFT) [Gonzalez]

F(u,v)= Z Z fIm,nle” "™ a-periodic signal

M=—00 N=—00 periodic transform

« 2D Discrete Fourier Transform (DFT)

1 &« —12”(_”” %”j periodized signal
Flk,1]= MN n;)nzz(;f[m,n]e periodic and

sampled transform




S
2D DFT: Periodicity

« AJ[M,N] point DFT is periodic with period [M,N]
— Proof




DFT: Periodicity
- Periodicity

Flu,vl=Flu+mM,v]=Flu,v+nN]=Flu+mM,v+nN]|

flk,01= flk+mM, 1= flk,l+nN]= f[k+mM,l+nN]
- This has important consequences on the implementation and
energy compaction property

- 1D F[N —u]=F[u]
f[k] real—F[u] is Fluy The two inverted periods meet here
Hermitian }L ----------

symmetric

M/2 samples are 1 T .
enough AT T It
1 — — . L >




T
Periodicity: 1D

Jlk] <> Flu] changing the sign of every
2tk other sample of the DFT puts
flkle M < Flu—u] F[0] at the center of the
M jagtk Mk interval [0,M]

Uy =~ e M o= M =g/ = (]

(~1)* fTk] <> Flu— %]

3 Flul  The two inverted periods meet here
1] 1111 NEl il -
0 M/2 M y

It is more practical to have one complete period positioned in [0, M-1]




Periodicity in 2D
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| 4 semiperiodi si incontrano ai vertici | 4 semiperiodi si incontrano al centro




e
Periodicity

fitshift(fft2)




DFT periods
MxN values

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

_— e e Em Em e s o Em o R e o e e o o e o e .

Periodicity: 2D

4 inverte

periods
meet here




Periodicity: 2D
data contain one

Flu,v] centered complete

N-1 ored oom
P ' REMPE ™ DFT periods
flklle M Y > Flu—u,,v—v,] ’ e '
M N |
Uy =——,Vy = — ) | MxN values
2 2 N/2
(—1)k+lf[k]<—>F[u—M,v—E}
2 2
(O,
0)
4 inverted
periods

meet here

_______________________________________________________________________________________________




Angle and phase spectra

Fu,v]=|F[u,v] e "

Flu,v] = [Re{F[u,v]}2 + Irn{F[u,v]}zT/2 modulus (amplitude spectrum)
®[u,v]=arctan Im{F[u,v]} phase

Re{F[u,v]}
P[u,v] = ‘F [u,v:‘z power Spectrum

For a real function

Fl-u,—v]=F[u,v] conjugate symmetric with respect to the origin
F[—u,—v] =|F[u,v]
CD[—L{, _V] = —CD[u, V]




Translation and rotation

f[k,l]ejzﬂ(M N) © Flu—m,v-I]

mk+”1)

Flk=mi=n] < Flun] 00

k=rcosd U=wcosQ
[ =rsind [ =wsin@

flr.8+9, ] Flo,p+3]

Rotations in spatial domain correspond equal
rotations in Fourier domain




