
slide 1

Based on materials by
Vitaly Shmatikov

Introduction to ML

slide 2

ML

◆ General-purpose, non-C-like, non-OO language
•  Related languages: Haskell, Ocaml, F#, …

◆ Combination of Lisp and Algol-like features
(1958)
•  Expression-oriented
•  Higher-order functions
•  Abstract data types
•  Module system
•  Exceptions

◆ Originally intended for interactive use

slide 3

Why Study ML ?

ML is clean and powerful, and has many traits that
language designers consider hallmarks of a good
high-level language:
◆ Types and type checking

•  ML is a statically typed, strict functional
programming language.

◆ Memory management
•  Static scope and block structure, activation records
•  Higher-order functions

◆ Garbage collection

slide 4

History of ML

◆ Robin Milner
•  Stanford, U. of Edinburgh,

Cambridge
•  1991 Turing Award

◆ Logic for Computable
Functions (LCF)
•  One of the first automated

theorem provers

◆ Meta-Language of the
LCF system

slide 5

ML was invented as part of the University of
Edinburgh's LCF project, led by Robin Milner et
al., who were conducting research in
constructing automated theorem provers.
Eventually observed that the "Meta Language"
they used for proving theorems was more
generally useful as a programming language.

LCF – Logic of Computable Functions

slide 6

Logic for Computable Functions

◆ Dana Scott (1969)
•  Formulated a logic for proving properties of typed

functional programs

◆ Robin Milner (1972)
•  Project to automate logic
•  Notation for programs
•  Notation for assertions and proofs
•  Need to write programs that find proofs

–  Too much work to construct full formal proof by hand

•  Make sure proofs are correct

slide 7

The interactive ML interpreter

◆  We'll use the Moscow ML implementation of

ML97 (revision of the ‘80 Standard ML). Like
most ML implementations, it provides a read-
eval-print loop ("repl"), i.e. the interpreter
repeatedly performs the following:

◆ reads an expression or declaration from
standard input,

◆ evaluates the expression/declaration, and
◆ prints the value of expressions, or perhaps the

type and initial value of declarations.

.

slide 8

Basic Overview of ML

◆ Interactive compiler: read-eval-print
•  Compiler infers type before compiling or executing
•  No need for name declarations

◆ Examples
- (5+3)-2;
> val it = 6 : int
- if 5>3 then �Bob� else �Fido�;
> val it = �Bob� : string
- 5=4;
> val it = false : bool

slide 9

The primary advantage of programming in a repl is
immediate feedback.
The read-eval-print cycle is much faster than the
edit-compile-run cycle in a typical compiled
programming environment.
You can quickly and easily experiment with different
snippets of code. If a function doesn't work, you
can try out a different version in a second or two,
and re-run your program.

REPL

slide 10

Basic Types

◆ Booleans
•  true, false : bool
•  if … then … else … (types must match)

◆ Integers
•  0, 1, 2, … : int
•  +, * , … : int * int → int and so on …

◆ Strings
•  �Austin Powers�

◆ Reals
•  1.0, 2.2, 3.14159, … decimal point used to disambiguate

slide 11

Compound Types

◆ Tuples
•  (4, 5, �noxious�) : int * int * string

◆ Lists
•  nil
•  1 :: [2, 3, 4]

◆ Records
•  {name = �Fido�, hungry=true}
 : {name : string, hungry : bool}

type

type

slide 12

Patterns and Declarations

◆ Patterns can be used in place of variables
 <pat> ::= <var> | <tuple> | <cons> | <record> …

◆ Value declarations
•  General form: val <pat> = <exp>

val myTuple = (�Conrad�, �Lorenz�);
val (x,y) = myTuple;
val myList = [1, 2, 3, 4];
val x::rest = myList;

•  Local declarations
let val x = 2+3 in x*4 end;

slide 13

Functions and Pattern Matching

◆ Anonymous function
•  fn x => x+1; like function (…) in JavaScript

◆ Declaration form
 fun <name> <pat1> = <exp1>

 | <name> <pat2> = <exp2> …

 | <name> <patn> = <expn> …

◆ Examples
•  fun f (x,y) = x+y; actual argument must match pattern (x,y)

•  fun length nil = 0
 | length (x::s) = 1 + length(s);

slide 14

Functions on Lists

◆ Apply function to every element of list
fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);

◆ Reverse a list
fun reverse nil = nil
| reverse (x::xs) = append ((reverse xs), [x]);

◆ Append lists
fun append (nil, ys) = ys
| append (x::xs, ys) = x :: append(xs, ys);

Example: map (fn x => x+1, [1,2,3]); [2,3,4]

slide 15

More Efficient Reverse Function

fun reverse xs =
 let fun rev(nil, z) = z
 | rev(y::ys, z) = rev(ys, y::z)
 in rev(xs, nil)
end;

1
2
3 1

2
3 1

2
3 1

2
3

slide 16

Datatype Declarations

◆ General form
datatype <name> = <clause> | … | <clause>
<clause> ::= <constructor> |<constructor> of <type>

◆ Examples
•  datatype color = red | yellow | blue

–  Elements are red, yellow, blue

•  datatype atom = atm of string | nmbr of int
–  Elements are atm(�A�), atm(�B�), …, nmbr(0), nmbr(1), ...

•  datatype list = nil | cons of atom*list
–  Elements are nil, cons(atm(�A�), nil), …
 cons(nmbr(2), cons(atm(�ugh�), nil)), ...

slide 17

Datatypes and Pattern Matching

◆ Recursively defined data structure
datatype tree = leaf of int | node of int*tree*tree

node(4, node(3,leaf(1), leaf(2)),
 node(5,leaf(6), leaf(7))

)

◆ Recursive function
fun sum (leaf n) = n
| sum (node(n,t1,t2)) = n + sum(t1) + sum(t2)

4

5

7 6

3

2 1

slide 18

Example: Evaluating Expressions

◆ Define datatype of expressions
datatype exp = Var of int | Const of int | Plus of exp*exp;
Write (x+3)+y as Plus(Plus(Var(1),Const(3)), Var(2))

◆ Evaluation function
fun ev(Var(n)) = Var(n)
| ev(Const(n)) = Const(n)
| ev(Plus(e1,e2)) = …

ev(Plus(Const(3),Const(2))) Const(5)
ev(Plus(Var(1),Plus(Const(2),Const(3))))
 ev(Plus(Var(1), Const(5))

slide 19

Case Expression

◆ Datatype
datatype exp = Var of int | Const of int | Plus of exp*exp;

◆ Case expression
case e of
 Var(n) => … |
 Const(n) => …. |
 Plus(e1,e2) => …

slide 20

Evaluation by Cases

datatype exp = Var of int | Const of int | Plus of exp*exp;

fun ev(Var(n)) = Var(n)

| ev(Const(n)) = Const(n)

| ev(Plus(e1,e2)) = (case ev(e1) of
 Var(n) => Plus(Var(n),ev(e2)) |

 Const(n) => (case ev(e2) of
 Var(m) => Plus(Const(n),Var(m)) |
 Const(m) => Const(n+m) |

 Plus(e3,e4) => Plus(Const(n),Plus(e3,e4))) |
 Plus(e3,e4) => Plus(Plus(e3,e4),ev(e2)));

slide 21

ML Imperative Features

◆ Remember l-values and r-values?
•  Assignment y := x+3

◆ ML reference cells and assignment
•  Different types for location and contents

x : int non-assignable integer value
y : int ref location whose contents must be integer
!y the contents of cell y
ref x expression creating new cell initialized to x

•  ML form of assignment
y := x + 3 place value of x+3 in location (cell) y
y := !y + 3 add 3 to contents of y and store in location y

Refers to contents (r-value) Refers to location (l-value)

slide 22

Reference Cells in ML

◆ Variables in most languages
•  Variable names a storage location
•  Contents of location can be read, can be changed

◆ ML reference cells
•  A mutable cell is another type of value
•  Explicit operations to read contents or change

contents
•  Separates naming (declaration of identifiers) from
�variables�

slide 23

Bob Bill

Imperative Examples in ML

◆ Create cell and change contents
val x = ref �Bob�;
x := �Bill�;

◆ Create cell and increment
val y = ref 0;
y := !y + 1;

◆ �while� loop
val i = ref 0;
while !i < 10 do i := !i +1;
!i;

x

0
y

1

slide 24

Core ML

◆ Basic Types
•  Unit
•  Booleans
•  Integers
•  Strings
•  Reals
•  Tuples
•  Lists
•  Records

◆ Patterns
◆ Declarations ass name to exp

◆ Functions
◆ Polymorphism
◆ Overloading
◆ Type declarations
◆ Exceptions
◆ Reference cells

slide 25

Related Languages

◆ ML family
•  Standard ML – Edinburgh, Bell Labs, Princeton, …
•  CAML, OCAML – INRIA (France)

–  Some syntactic differences from Standard ML (SML)
–  Object system

◆ Haskell
•  Lazy evaluation, extended type system, monads

◆ F#
•  ML-like language for Microsoft .NET platform

–  �Combining the efficiency, scripting, strong typing and
productivity of ML with the stability, libraries, cross-language
working and tools of .NET. �

•  Compiler produces .NET intermediate language

