
Notes on Programming
Standard ML of New Jersey

(version 110.0.6)

Riccardo Pucella

Department of Computer Science
Cornell University

Last revised:
January 10, 2001

ii

Preface

The impetus behind these notes was the desire to provide a cohesive description of
Standard ML of New Jersey, an interactive compiler and environment for Standard
ML. The goal is to end up with a complete user guide to the system, inclduing the
libraries, the tools and the extensions, as well as a tutorial on how to write “real”
applications, centered around the use of the module system and the compilation
manager. Other reasons include the desire to provide hands-on examples of how to
use some maybe poorly understood features or features with an interface different
from what one may be used to. Examples of such features include sockets, the
input and output subsystem, the readers approach to text scanning and the use of
continuations to handle non-local control-flow. All in all, this would be a repository
for snippets of SML and SML/NJ programming lore.

These notes are not a tutorial introduction to Standard ML. There exists excel-
lent introductory material, available both commercially or freely over the Internet.
These notes complement this literature by focusing on the Standard ML of New
Jersey environment. The first part of these notes does given an overview of the
language, but a quick one and without highlighting some of the subtleties of the
language. Better writers than I have written better introductory material and I urge
you to read those first. References are given in the chapter notes of Chapter 1. I
go in somewhat more details when describing the Basis Library, since some of the
underlying ideas are fundamental to the overall programming philosophy. Unfor-
tunately, that chapter is long, boring and reads more like a reference manual than
a tutorial. Throughness and precision at odds with readability. With luck, enough
sample code and tutorial material is interspersed to lighten the mood. In the course
of the notes, I take the opportunity to describe more advanced topics typically not
covered in introductory material, such as sockets programming, signals handling,
continuations, concurrency. Some of these subjects are discussed in advanced pro-
gramming language courses, which not every one has taken or plan to take. Some
of these subjects are hardly discussed and one needs to rummage technical papers
or source code.

These notes are quite obviously a work in progress. As such, any comments or

iii

iv PREFACE

suggestions will be more than welcome. This version includes chapters 1 through
7. Planned chapters for the end of spring of 2001 include:

Chap. 8 : ML-Lex: A Lexical Analyzer Generator

Chap. 9 : ML-Yacc: A Parser Generator

Chap. 10 : Input and Output

Chap. 11 : Sockets

Chap. 12 : Regular Expressions

Chap. 13 : SML/NJ Extensions

Chap. 14 : Continuations

In the long run, chapters on the foreign function interface, CML, eXene, reader-
based lexing and parsing, prettyprinting and programming reactive systems are
planned, as well as sample applications including a matrix package, an interactive
theorem prover, a tool to generate simple language front ends, a graphical gameà
la MineSweeper, and a simulation. Suggestions on content will also be welcome.

Notation

In the text, sample code is written initalics. Types are written using more mathe-
matical notation, namely tuple types are given asint×int, and function types asint
→int.

Acknowledgments

Contents

Preface iii

1 Introduction 1
1.1 Standard ML . 1
1.2 Standard ML of New Jersey . 2
1.3 History of the system . 3
1.4 Availability and resources . 4
1.5 Installation . 5
1.6 Getting started . 6
Notes . 12

I Standard ML 15

2 The Core Language 17
2.1 Basic types and expressions . 17
2.2 Tuples and records . 19
2.3 Declarations . 20
2.4 Pattern matching . 23
2.5 Functions . 27
2.6 Polymorphism . 32
2.7 Recursion . 34
2.8 Lists . 38
2.9 Equality . 38
2.10 References . 40
2.11 Exceptions . 41
Notes . 42

v

vi CONTENTS

3 The Module System 45
3.1 Structures . 45
3.2 Signatures . 50
3.3 Functors . 58
3.4 Programming with modules . 62
Notes . 62

4 The Basis Library 65
4.1 Overview . 65
4.2 Basic types . 68
4.3 More on strings . 86
4.4 Aggregate types . 92
4.5 Input and output . 102
4.6 System functions . 106
4.7 Time and dates . 112
4.8 Compatibility with SML’90 . 118
Notes . 120

II Standard ML of New Jersey 123

5 The Interactive Compiler 125
5.1 Controlling the runtime system 125
5.2 Controlling the compiler . 129
5.3 Prettyprinting . 135
5.4 Heap images . 144
5.5 Unsafe operations . 151
Notes . 155

6 The Compilation Manager 157
6.1 Overview of CM . 158
6.2 Group hierarchies . 161
6.3 Tools . 164
6.4 A simple configuration tool . 170
6.5 Technicalities . 177
Notes . 177

7 The SML/NJ Library 179
7.1 Overview . 179
7.2 Types and data structures . 180

CONTENTS vii

7.3 Arrays and vectors . 186
7.4 Sets and maps . 191
7.5 Hash tables . 196
7.6 Sorting . 202
7.7 Formatting . 206
7.8 Handling command-line arguments 212
7.9 Miscellaneous functionality . 216
Notes . 223

Bibliography 225

A SML/NJ Grammar 235

viii CONTENTS

List of Figures

4.1 The structureGeneral . 68
4.2 The structureBool . 69
4.3 The structureOption . 69
4.4 The signatureCHAR . 72
4.5 The signatureSTRING . 74
4.6 The signatureINTEGER . 77
4.7 The signatureWORD . 80
4.8 The signatureREAL . 82
4.9 The signatureMATH . 85
4.10 The signatureSUBSTRING. 87
4.11 The structureStringCvt . 89
4.12 The structureList . 93
4.13 The structureListPair . 95
4.14 The structureVector . 96
4.15 The structureSubvector. 97
4.16 The structureArray . 99
4.17 The structureArray2 . 101
4.18 The structureTextIO . 103
4.19 The structureOS . 106
4.20 The structureOS.FileSys . 107
4.21 The structureOS.Path. 109
4.22 The structureOS.Process. 111
4.23 The structureUnix . 111
4.24 The structureCommandLine . 112
4.25 The structureTime . 113
4.26 The structureDate . 115
4.27 Formatting characters forDate.fmt 116
4.28 The structureTimeZone. 117
4.29 The structureTimer . 118
4.30 The structureSML90 . 119

ix

x LIST OF FIGURES

5.1 The structureSMLofNJ . 126
5.2 The structureSMLofNJ.SysInfo. 127
5.3 The structureIntervalTimer . 127
5.4 The structureSMLofNJ.Internals. 127
5.5 The structureCleanUp . 128
5.6 The structureGC . 129
5.7 The structureCompiler . 130
5.8 The structureControl . 131
5.9 The structurePrint . 132
5.10 The structureInteract . 134
5.11 The structureCompiler.PrettyPrint 135
5.12 The structureSimpleXML. 136
5.13 A passage from Shakespeare . 137
5.14 The structureUnsafe . 152
5.15 The structureUnsafe.Object . 153
5.16 The structureUnsafe.CInterface 154

6.1 The Hello World program . 158
6.2 The structureCM . 160
6.3 The structureCM.Tools . 166
6.4 The signatureLOOKUP TABLE 171
6.5 The structureNaiveLookupTable. 171
6.6 The functorCfgFun . 172
6.7 The structureInstallMLConfig 175

7.1 The structureLibBase. 180
7.2 The structureAtom . 181
7.3 The structureCharMap . 181
7.4 The structureFifo . 182
7.5 The structureQueue. 183
7.6 The structureSplayTree. 184
7.7 The structurePropList . 184
7.8 The signatureUREF . 186
7.9 The structureBitVector . 187
7.10 The structureBitArray . 189
7.11 The structureDynamicArray . 189
7.12 The signatureORD SET . 192
7.13 The signatureORD MAP . 195
7.14 The signatureHASHKEY . 197
7.15 The structureHashString . 197

LIST OF FIGURES xi

7.16 The structureHashTable . 198
7.17 The signatureMONO HASHTABLE 200
7.18 The signatureMONO HASH2TABLE 201
7.19 The signatureLIST SORT . 202
7.20 The signatureARRAYSORT . 204
7.21 The signatureMONO ARRAYSORT 204
7.22 The functorBSearchFn. 205
7.23 The structureFormat . 206
7.24 The structureScan . 209
7.25 The structureListFormat . 210
7.26 The structureRealFormat. 211
7.27 The structureGetOpt . 213
7.28 The structureIterate . 217
7.29 The structureListXProd . 218
7.30 The structureIOUtil . 219
7.31 The structurePathUtil . 219
7.32 The structureRandom. 220
7.33 The structureTimeLimit . 221
7.34 The structureParserComb . 222

xii LIST OF FIGURES

List of Tables

4.1 Character class tests . 73

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

These notes describe Standard ML of New Jersey (SML/NJ), an interactive compil-
er, programming environment and associated tools for the programming language
Standard ML (SML). The compiler is being developped in collaboration between
Bell Laboratories, Princeton University and Yale University. This chapter provides
an introductory overview of the language and the environment.

1.1 Standard ML

The programming language SML has its roots as a meta-language for defining
proof tactics in interactive theorem provers. Over the years, the language evolved
into a full-fledged programming language, with excellent features for both small-
scale and large-scale programming. Several properties make SML an interesting
language. Consider the following:

• SML is mostly functional. It is based on the model of evaluating expres-
sions as opposed to the model of executing sequences of commands found
in imperative languages. The ability to treat functions as first-class values
allows so-called higher-order programming, a very powerful programming
technique. In contrast with purely functional languages, SML allows the
use of imperative constructs such as variables, assignment and sequencing
of side-effecting operations.

• SML is strongly and statically typed. Each expression in the language is as-
signed a type describing the values it can evaluate to, and type checking at the
time of compilation ensures that only compatible operations are performed.
This process eliminates many of the bugs during preliminary stages of pro-
gramming an application, and greatly facilitates tracking changes to the code

1

2 CHAPTER 1. INTRODUCTION

during revisions and upgrades. SML provides the common basic types such
as integers, floating points and strings, as well as compound types such as
tuples, records, lists and arrays to create complex data objects. New types
can be easily defined, and moreover can be made abstract, where the repre-
sentation of the values cannot be seen or examined outside of a prescribed
region of the code.

• SML extends this basic notion of types with parametric polymorphism. A
function gets a polymorphic type when it can operate uniformly over any
value of any given type. For example, reversing a list can be done uniformly
for all lists, irrespectively of the type of value stored in the list.

• SML provides an easy-to-use exception mechanism for handling exception-
al conditions. At any point in the code, an exception can be raised, with
the effect of aborting the current operation and returning control to the last
exception handler defined for that exception. Exceptions can carry arbitrary
values, including functions.

These basic features of the language are complemented by advanced facilities
for the management of large-scale programs. SML boasts a state-of-the-art module
system, based on the notions of structures (containing the actual code), signatures
(the type of structures) and functors (parametrized structures).

A concrete instance of the use of the module system is the definition of the Ba-
sis Library, a set of standard modules providing basic facilities such as input and
output, mathematical operations, string and list processing, and basic operating
system interfaces. The Basis Library is supported by all compliant implementa-
tions of SML.

In addition to those key features of the language, SML provides facilities that
ease the programming burden. Although the language is statically typed, the pro-
grammer rarely needs to write down type annotations in the code, as most types can
be inferred by the compiler. Moreover, the management of memory is automatic,
with a garbage collector in charge of reclaiming memory when data is not used
anymore. This eliminates most problems surrounding stray pointers in languages
with explicit memory management, such as C and C++.

1.2 Standard ML of New Jersey

SML/NJ is an interactive compiler for SML. It is interactive in that the compiler
sports a toplevel loop which compiles declarations and expressions entered by the
user. Such entries are compiled to native machine code, and then executed. Com-
piled code can be exported to a file and turned into an executable. This process

1.3. HISTORY OF THE SYSTEM 3

contrasts with most compilers for traditional languages, which are usually batch-
oriented: the compiler is invoked on a set of files and produces object-code in a file.
It is also in contrast with interpreters for various languages, where the expression
are not compiled to native code and executed, but rather stepped through by the
evaluator. SML/NJ provides a convenient blend of efficiency and flexibility.

SML/NJ provides libraries of modules beyond the Basis Library, modules im-
plementing commonly used data structures such as hash tables, dynamic arrays and
search trees, algorithms such as sorting, and packages such as regular expressions,
HTML parsing and prettyprinting.

SML/NJ supplies tools for managing projects. The compilation manager CM
keeps track of dependencies between the various modules making up a project and
is the preferred way of managing the compilation of an application. Roughly s-
peacking, an application can be defined by a file listing the various components of
the application. CM provides all the benefits of the Unix toolsmakeandmakede-
pend, but specialized to SML and automatically tracking dependencies between
modules. CM also allows for hierarchical descriptions of application components,
somethingmakeis known to have problems with.

The tools ML-Lex and ML-Yacc are the SML/NJ versions of the popularlex
andyacc tools (orflex andbison) for Unix. ML-Lex is used to generate lexical
analysers from descriptions of the tokens to recognize, and ML-Yacc generates
parsers from descriptions of a grammar.

Other tools exist for more specialized compiler-writing activities, such as ML-
Burg, a code-generator generator. ML-RISC, not properly speaking a tool, is a
backend for code generation used by SML/NJ itself. Moreover, as we shall see
later in these notes, SML/NJ is itself quite suited for writing tools.

SML/NJ supports a powerful library for concurrent programming, CML, which
is based on a notion of very lightweight threads and first-class synchronous op-
erations, providing power and flexibility at very low overhead cost. EXene is a
graphical interface toolkit for X-Windows implemented in CML.

1.3 History of the system

The SML/NJ project was started in 1986 by David MacQueen at Bell Laborato-
ries and Andrew Appel at Princeton University. Initially a project to build a SML
front end for research purposes, it evolved into a complete and portable program-
ming environment for SML, with the purpose of being employed as a “language
laboratory” for programming language research. In order to back claims efficien-
cy and to motivate the implementation of useful optimizations, the decision was
made to write all supporting library code in SML. The only part of the system not

4 CHAPTER 1. INTRODUCTION

implemented in SML is the runtime system (written in C), in charge mostly of the
memory allocation, the garbage collection and communication with the underlying
operating system.

With the convergence towards satisfying the 1997 revision of SML, version
110 came out in January 1998. Various patches to the release version corrected
bugs and updated libraries. At the time of writing, the current patch release version
is 110.0.6. Release version 110 is the standard stable version for general use. In-
ternal infrastructure changes and experimental features are being tested in a series
of working versions not intended to be stable or generally usable. At the time of
writing, the current working version is 110.29, with major changes in the interme-
diate representation language. Eventually, once the working versions converge to a
workable and stable system, release 111 will come out incorporating the improve-
ments.

1.4 Availability and resources

SML/NJ is freely available for many platforms, including most modern versions
of Unix (Solarix, Irix) and the Microsoft Windows operating systems (95,NT,98).
The MacOS port at this present time is not complete. It should be available in the
next release of the system1. The system can be downloaded from the main SML/NJ
web site:

http://cm.bell-labs.com/cm/cs/what/smlnj

The site also contains online documentation and links to related sites. The
source code is freely available. SML/NJ is distributed under the following license:

STANDARD ML OF NEW JERSEY COPYRIGHT NOTICE, LICENSE
AND DISCLAIMER.

Copyright (c) 1989-1997 by Lucent Technologies

Permission to use, copy, modify, and distribute this software and it-
s documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both the copyright notice and this permission notice and warranty dis-
claimer appear in supporting documentation, and that the name of Lu-
cent Technologies, Bell Labs or any Lucent entity not be used in ad-
vertising or publicity pertaining to distribution of the software without
specific, written prior permission.

1A MacOS port of version 0.93 was available

1.5. INSTALLATION 5

Lucent disclaims all warranties with regard to this software, including
all implied warranties of merchantability and fitness. In no event shall
Lucent be liable for any special, indirect or consequential damages or
any damages whatsoever resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of this
software.

1.5 Installation

Depending on the operating system, SML/NJ can be installed in one of three ways.
For Microsoft Windows operating systems (Windows 95, Windows NT 4.0, and
later), the software is available as a self-extracting software installer which can be
obtained from SML/NJ’s web site. In fact, the site refers to the main repository for
the software, namely the ftp site

ftp://ftp.research.bell-labs.com/dist/smlnj/release/110/

The self-extracting installer is the file110-smlnj.exe . For Linux systems
supporting the RPM package format, such as RedHat v6.0 and others, a file in
RPMS/smlnj-110.0.6-0.i386.rpm can be found in the release directory,
and easily installed using the following command (run as an administrator):

rpm -if smlnj-110.0.6-0.i386.rpm

Finally, for all other Unix systems, installation has to proceed more or less
manually. This is also the way to go if one wants the source of the compiler. To
install the system manually, one first needs to download the following files from
the ftp site:

110-cm.tar.Z Compilation Manager
110-config.tar.Z Main configuration
110-ml-burg.tar.Z ML-Burg tool
110-ml-lex.tar.Z ML-Lex tool
110-ml-yacc.tar.Z ML-Yacc tool
110-runtime.tar.Z The runtime system
110-smlnj-lib.tar.Z The SML/NJ library

along withoneof the following files, the one corresponding to the system being
installed (more than one file can be downloaded in case of doubt, as the system
will attempt to install the right one).

6 CHAPTER 1. INTRODUCTION

110-bin.alpha32-unix.tar.Z Binaries for Unix on Alpha
110-bin.alpha32x-unix.tar.Z Binaries for Unix on Alpha 32x
110-bin.hppa-unix.tar.Z Binaries for Unix on Hppa
110-bin.mipseb-unix.tar.Z Binaries for Unix on MIPSb
110-bin.rs6000-unix.tar.Z Binaries for Unix on RS6000
110-bin.sparc-unix.tar.Z Binaries for Unix on Sparc
110-bin.x86-unix.tar.Z Binaries for Unix on Intel x86
110-bin.x86-win32.tar.Z Binaries for Windows on Intel x86

Finally, the following files are not required, but may still be useful:

110-cml.tar.Z Concurrent ML
110-eXene.tar.Z eXene
110-sml-nj.tar.Z Source code for SML/NJ compiler
110-smlnj-c.tar.Z C-Calls library

All of the appropriate files should be downloaded in a directory, say/usr/local/smlnj .
Untar the file110-config.tar.Z using for example

zcat 110-config.tar.Z | tar -xvf -

This creates a subdirectoryconfig/ . If you want to install anything beyond
the default, such as CML or eXene, edit and modify the fileconfig/targets
according to the instructions in the file. Once that is done, execute the following
command from directory/usr/local/smlnj/ :

config/install.sh

It all goes according to plan, you should end up with a successful installation in
/usr/local/smlnj/ . You will want to add a path to/usr/local/smlnj/bin/
in yourPATHenvironment variable.

1.6 Getting started

To start SML/NJ, typesml at the command shell on either Microsoft Windows or
Unix systems. Under Windows, you can alternatively click the “Standard ML of
New Jersey” icon in the Start Menu (under the Programs/Standard ML of New Jer-
sey menu, assuming a typical installation). Doing this should launch the interactive
compiler and produce a banner line such as:

Standard ML of New Jersey, Version 110.0.6, October 31, 1999
-

1.6. GETTING STARTED 7

The “-” is called the (primary) prompt, and indicates that the compiler is ready
to process input. The SML language is expression-based, meaning that the compu-
tational model is that of evaluating expressions. Evaluating an expression can be as
simple as computing a given value (for example, the number of different ways you
can pickk object from a bag containingn objects), or have complex side effects
(for example, printing information to the terminal, or creating a user interface).
Although expressions which correspond to whole applications are very complex,
SML provides mechanisms to help manage the complexity, in the form of both data
and functional abstractions.

We begin by looking at simple expressions. The simplest expression is a con-
stant, such as1, 2, 3, or true or false, or 3.141592. To evaluate an expression at
the prompt (we also use the term “evaluate an expression at top level”), you simply
enter the expression to evaluate, followed by a “;” (semicolon) and pressing RE-
TURN. The semicolon indicates to the compiler that you have finished entering the
expression and that it should start evaluating. If a semicolon is not entered, but RE-
TURN is pressed, the compiler will present a new prompt (the secondary prompt,
by default “=”) and again ask for input, which will be considered a continuation of
the previously entered expression. In this way, expressions spanning multiple lines
can be easily entered.2 In any case, let’s evaluate some simple expressions:

- 1;
val it = 1 : int
- true;
val it = true : bool
- 3.141592;
val it = 3.141592 : real

Although it is not clear from the above interaction, SML/NJ is a compiler, albeit
an interactive one. When you enter an expression to evaluate, SML/NJ compiles
the expression to machine code and then executes it. It turns out that for constants,
evaluation is trivial: a constant simply evaluates to itself.

Studying the above interaction, you notice that the compiler has returned more
information than just the resulting value of the evaluation. Every value in SML
belongs to a type3, which is really a set of values. Thus values1, 2 belong to
the typeint of integers,true and falsebelong to the typebool of booleans, and
3.141592belongs to the typereal of floating-point numbers.

More complex expressions can be built using operations and syntactic forms.
The expressionif exp1 thenexp2 elseexp3 conditionally evaluatesexp2 or exp3

if exp1 evaluates totrue or falserespectively. For this to make sense, the compiler
needs to enforce the fact thatexp1 evaluates to eithertrue or false, in other words

2To unclutter the examples, I will often not show the seconday prompt from the sample outputs
in these notes.

3We often use the term “a value has a type” over the more accurate “belongs to”.

8 CHAPTER 1. INTRODUCTION

that the expressionexp1 belongs to typebool. This is part of the process called
type checking. Every syntactic form and operation specifies the type of the expres-
sions they are made up from. Before evaluating, SML/NJ will check that those
constraints are satisfied. For example, a conditional expression requires a boolean
condition, the addition operation expects integers arguments, and so on. Thus,

- if true then 0 else 1;
val it = 0 : int

is type correct, and can be compiled and executed, while

- if 0 then 0 else 1;
stdIn:34.1-34.19 Error: case object and rules don’t agree [literal]

rule domain: bool
object: int
in expression:

(case 0
of true => 0

| false => 1)

fails to type check and the compiler returns a compile-time type error. The error
message specifies that the compiler was expecting the condition to be have boolean
type, but instead was found to be an integer, producing a type mismatch.

It is important to note that type checking does not execute code. This helps
explain various restrictions. For example, when type checking a conditional ex-
pressionif exp1 then exp2 elseexp3, the system does not execute the code to
decide what is the resulting type. Therefore, it does not know which branch is to
be chosen, and must determine the type of the result based on the fact that either
branch can be executed. Since an expression can only belong to one type, it must
be enforced that both branches have the same type, that is thatexp2 andexp3 both
belong to the same type. Thus,

- if true then 0 else 1;
val it = 0 : int

as we saw before is type correct, since both0 and1 belong to typeint, but

- if true then 0 else false;
stdIn:35.1-35.26 Error: types of rules don’t agree [literal]

earlier rule(s): bool -> int
this rule: bool -> bool
in rule:

false => false

fails to type check.
Basic operations are provided for values of various types. The arguments to

operations are evaluated before the operation is performed. Arithmetic operations
on integers are as expected:

- 3+4;
val it = 7 : int

1.6. GETTING STARTED 9

Note that negative number are written as∼5, the - sign being reserved for the
subtraction operation. Other operations such as>, >=, <, <= and= take two
integers and return a boolean indicating if the specified relationship holds or not:

- 3>4;
val it = false : bool

Values can be bound to identifiers, which makes it easier to refer to those val-
ues. A value is bound using the declarationval id = exp, whereid is an identifi-
er andexp is an arbitrary expression. Note the distinction between a declaration
(which binds identifiers to expressions) and expressions (which evaluate to values).

- val x = 1;
val x = 1 : int
- val pi = 3.141592;
val pi = 3.141592 : real
- val y = if (3>4) then 0 else 1;
val y = 1 : int

Identifiers that have been bound to values can subsequently be used in expres-
sions to stand for that value. Given the above interaction,

- x + y;
val it = 2 : int
- if (x=0) then pi else 1.0;
val it = 1.0 : real

and so on. If you bind a value to an identifier to which a value has already been
bound, the new binding shadows the old binding, and the new binding will be used
from this point on. As a special case of this, whenever an expression is evaluated
at toplevel and not explicitely bound to some identifier, it is automatically bound
to the identifierit. Therefore, the value of the last evaluated expression can always
be accessed. For example,

- 3 + 4;
val it = 7 : int
- it * 2;
val it = 14 : int

It is possible to declare local bindings, which are bindings valid only for the
evaluation of a given expression. The expressionlet decls in exp endevaluates the
expressionexp under the bindings specified bydecls. After exp is evaluated, the
bindings are forgotten. Pay attention to the different values of the identifiera in the
following code:

- val a = 10;
val a = 10 : int
- a;
val it = 10 : int
- let val a = 30 in a + 1 end;
val it = 31 : int
- a;
val it = 10 : int

10 CHAPTER 1. INTRODUCTION

Multiple declarations can be used, and are processed in turn. The following
example illustrates this, as well as illustrating the use of multiple input lines:

- let
= val x = 1
= val y = x + 3
= in
= x + y
= end;
val it = 5 : int

To define new operations, you use function declarations, of the formfunid (x1 :
t1, x2 : t2, . . .):t = expwhereid, x1 and so on are identifiers,t1, t2, . . . , t are types,
andexp is an expression. The expressionexp can refer to the argument names
x1, x2, This declaration defines a functionid which when applied to argument
of the given types, evaluates the expression and returns a result of typet. Calling
a function is done by supplying a value to its parameters, as inf (e1, . . . , en). Note
that just like for operations, the argumente1, . . . , en of the function are evaluated
before the function itself is applied. For example, consider a simple function to
double its one argument:

- fun double (x:int):int = x * 2;
val double = fn : int -> int
- double (10);
val it = 20 : int

The type of a function is reported using an arrow notation. The type of the function
doubleis int→int, meaning that it expects an argument of typeint and returns a
value of typeint.

Functions can be recursive, that is the function can call itself. For the sake of
example, we can write the following recursive version of the power function, to
computexy givenx andy:

- fun power (x:int,y:int):int = if (y=0) then 1 else x * power (x,y-1);
val power = fn : int * int -> int
- power (3,5);
val it = 243 : int
- 3 * 3 * 3 * 3 * 3;
val it = 243 : int

Mutually recursive functions need to be written together, with an attachingand.
Consider the classical example of the even and odd predicates on natural numbers:

- fun even (x:int):bool = if (x<=0) then true else odd (x-1)
= and odd (x:int):bool = if (x<=0) then false else even (x-1);
val even = fn : int -> bool
val odd = fn : int -> bool
- even (10);
val it = true : bool
- odd (10);
val it = false : bool
- even (9);
val it = false : bool
- odd (9);
val it = true : bool

1.6. GETTING STARTED 11

Since function declarations are declarations, functions can be declared locally,
inside alet expression.

It can become tedious to enter all declarations by hand at the top level. SML/NJ
defines a primitive operationusethat reads the declarations and expressions from
a file and processes them as if entered at the prompt. Simply create a file with your
favorite editor, sayfoo.sml , and type in declarations, such as

fun double (x:int):int = 2 * x;
fun square (x:int):int = x * x;
fun power (x:int,y:int):int = if (y=0) then 1 else x * power (x,y-1);

and read it in using theuseoperation.

- use "foo.sml";
[opening foo.sml]
val double = fn : int -> int
val square = fn : int -> int
val power = fn : int * int -> int
val it = () : unit

You probably will need to provide the full path to the file. Under Unix or Windows,
the path can be written asthis/is/a/path , while under Windows one can
additionally use the notationthis \\is \\a\\path 4. The reason why you may
have to specify an explicit path is because it may not be obvious what working
path SML/NJ is currently using. SML/NJ provides all the needed functionality to
navigate the file system, which we will cover when discussing the Basis Library
(see Chapter 4). For now let us identify some useful functions, without worrying
about the details. To get the current working directory, you can call the function
OS.FileSys.getDir5 with a () argument, as in:

- OS.FileSys.getDir ();
val it = "/home/riccardo/work/research/working/Smlnj/started" : string

The functionOS.FileSys.chDirwith a string argument is used to change the current
working directory, as in:

- OS.FileSys.chDir "/home/riccardo/work/sml";
val it = () : unit

If the specified directory does not exist, an error is reported

- OS.FileSys.chDir "foo";

uncaught exception SysErr: No such file or directory [noent]
raised at: <chdir.c>

4The double\\ is used instead of a single\ because\ has a special meaning as a character in
strings.

5The dot-notation indicates the use of the module system (see Chapter 3).

12 CHAPTER 1. INTRODUCTION

Finally, for other effects, it is possible to directly call the underlying shell and
execute a command there. You can call the functionOS.Process.systemwith a
string argument describing the command to execute, and SML/NJ will attempt to
execute it, returning when the command completes. For example, under Unix, to
get a listing of the current directory, you can write:

- OS.Process.system "ls";
#paper.tex# foo.sml paper.dvi paper.ps paper.tex˜
foo.ps paper.aux paper.log paper.tex
val it = 0 : OS.Process.status

Under Windows, you should pass in the command”dir” instead of”ls” to get a
similar effect.

To help navigating the file system at top level, it is helpful to have shorter m-
nemonic abbreviations for the above functions. You can prepare a filedefs.sml
that youuseevery SML/NJ session and that contains the following declarations:

fun cd (s:string):unit = OS.FileSys.chDir (s);
fun pwd ():string = OS.FileSys.getDir ();
fun ls ():int = OS.Process.system "ls";

(again, under Windows, you should replace”ls” by ”dir”) and you can from then
on callcd ”foo” , pwd ()andls () to respectively change the current working direc-
tory, get the current working directory and get a listing of the current directory.

Notes

The original definition of Standard ML appeared as [74] and had an accompany-
ing commentary [73] discussing the design and proving formal theorems about
the semantics of the Definition. The 1997 revision appeared as [75] and greatly
simplified various aspects of the language, removing features deemed problematic.

The design and early implementations of SML/NJ are described in [7] and [8].
The SML/NJ compiler uses a continuation-passing style intermediate representa-
tion pioneered by Steele in [101], and the details (as of 1992) are described by
Appel in [5]. The intermediate representation was essentially untyped, and in 1995
Shao and Appel applied and extended the work of Leroy on representation analysis
[58] with ideas from Morrisett [?] to produce an improved compiler that used types
at later stages of the compilation process [99].

As I remarked, the original ML language was developped as a meta-language
for writing proof search procedures in interactive theorem provers. LCF [40] was
the first such, and actually introduced ML in the first place. Nowadays, theorem
provers such as HOL [41], Isabelle [86] and NuPRL [23] all use a dialect of ML
as their meta-language. In fact, HOL has recently been upgraded to use Standard
ML.

1.6. GETTING STARTED 13

Other compilers and environments for SML are available. Up until recently,
Harlequin Ltd sold MLWorks, a commercial SML environment. A lightweight
byte-code interpreter called MoscowML is also available. A compiler called ML-
Kit [14] was developped at Diku to provide a reference implementation of SML
by directly translating the semantics of the Definition. The compiler is currently
used as a testbed for the study of the very interesting notion of region-based mem-
ory management, which allows the system to efficiently reclaim memory with-
out requiring the use of a garbage collector [108]. Finally, the TIL project [105]
at Carnegie-Mellon University is working on a type-based compiler that carries
type information down to the lowest levels of the compilation process. Subsequent
work by Morrisett and others at Cornell University on Typed Assembly Language
(TAL) showed how types can be pushed down to the level of the assembly language
[82, 80]. Until recently, a compiler from ML to Java called MLJ was under devel-
opment [?]. Finally, an optimizing compiler called ML-Ton is being developed
by Stephen Weeks [?]. This compiler uses whole-program analysis to generate ex-
tremely efficient machine code. The price to pay for such efficiency is that separate
compilation is not supported.

Several dialects of ML derive from the original ML aside from SML. Most
proeminent is Leroy’s Objective Caml (OCaml) [63], a descendant of Caml [24]
developped at INRIA. OCaml provides an efficient native code compiler, and a
portable byte-code interpreter. OCaml also has support for object-oriented pro-
gramming, based on the work of Rémy and Vouillon [92].

Since the introduction of the polymorphic type discipline, many languages
have picked up on the idea. A relevant branch of developpment is that of purely
functional languages, languages which do not allow side-effects such as assign-
ment and exceptions. Such languages are also typically based on a lazy evaluation
mechanism, where parameters to functions are not evaluated until they are needed
by the body of the function. In contrast, SML is strict (or eager). Lazy ML was a
lazy purely functional version of ML developped by Augustsson and Johnsson in
the early 80’s [10, 11]. Modern lazy languages that are not based on ML but bor-
rowing the basic polymorphic type discipline include Miranda6 [109] and Haskell
[88].

The recent working versions of SML/NJ considerably modified the internal
workings of the compiler. A fully-typed intermediate language called FLINT de-
velopped at Yale by Shao and others [98] is being integrated. Similarly, the code
generation backend is being reimplemented using George’s ML-RISC, a power-
ful library [36] that uses the full power of the SML module system to factor out
commonalities between code generation for various architectures.

6Miranda is a trademark of Research Software Limited

14 CHAPTER 1. INTRODUCTION

Part I

Standard ML

15

Chapter 2

The Core Language

In this chapter, we give a brief description of the core language of SML. The core
language is the small-scale part of SML, in charge of expressing types and com-
putations. Managing the name space and separating programs into independent
communicating units is the province of the module system described in Chapter 3.

As we noted in the introduction, SML is a mostly functional language, based on
the notion of expression evaluation. A program is really an expression to be evalu-
ated, returning a value. The expression may be simply to compute a mathematical
value such as the roots of a polynomial, or factoring an integer, or it can be large
and have visible side-effects, such as printing data or displaying a user interface for
interaction with the user. A program is usually not made up of a single expression,
but consists of a set of function definitions that are used by a main expression, as
well as type and value declarations. In contrast, a program written in a traditional
imperative language is a set of procedures made up of sequences of commands,
used by a main procedure that is invoked when the program is executed.

We will presently describe the syntax and operations for writing expressions,
as well as the associated type information. We then introduce more complex fea-
tures such as compound types and functions, as well as imperative features such as
references and exceptions.

2.1 Basic types and expressions

Expressions are ways to express computations, and computations act on values.
Every value has a type, such as integer or real, denoting what type of value it is.
Formally, a type can be viewed as a set of values, and the type of a value simply
indicates which set the value belongs to. Generalizing, every expression has a
type, namely the type of the value it evaluates to. We start our description of the

17

18 CHAPTER 2. THE CORE LANGUAGE

language by talking about the basic values and their types. Evaluation in SML is
eager. When an operation is applied to arguments, the arguments are first evaluated
to values, and the operation is applied to the values so obtained. Syntactic forms
have their own evaluation rules. In addition, any expression can be annotated with
a type, as inexp:ty, or (exp):ty, whereexpis an expression andty is a type, which
the compiler can then check.

The simplest value is() (pronounced unit), and it has typeunit. The only value
of typeunit is (). Although seemingly useless, unit-valued expressions are typically
used only for their side-effect — for all intents and purposes, they do not return a
value.

Other basic values are booleans. A boolean is a valuetrueor falseof typebool.
Boolean expressions can be built using the syntactic formsandalsoand orelse,
which are short-circuiting:e1 andalsoe2 evaluatese1 to a valuev, and ifv is false,
the whole expression evaluates tofalse; it v is true, e2 is evaluated. Theorelse
form evaluates similarly. The operationnot is also available. The syntactic formif
e1 thene2 elsee3 is used to branch on the value of a boolean expressione1: if e1

evaluates totrue, thene2 is evaluated otherwisee3 is evaluated. Bothe2 ande3 are
required to be expressions of the same type.

Integers have typeint. Negating an integer is done by applying the∼ operation
to an integer expression. Thus,−5 is written∼5. Other common operations on
integers are available: addition (+), subtraction (-) and multiplication (*), all infix
operations. Division is not implemented for integers, since in general division
produces a real number. An integer division operationdiv (also infix) is available
and discards the decimal portion of the result of the division. One can also compare
integers with the operations=, <,<=, >, >=, resulting in a boolean value. SML
does not impose prescribed sizes for integers, but SML/NJ uses 31-bit integers
that can represent integer in the range∼1073741824to 1073741823. Chapter 4
gives alternatives if larger integers are desired. Users used to languages such as
C providing bit-twiddling operations on integers will note that such operations are
not available for SML integers.

Floating point numbers have typereal. They can be written as3.141592or
as3141592e∼6. They can also be negated by the operation∼, and the standard
operations such as+ , -, * and/ (division) are available. A special real valueNaN
exists, to represent results of computations which do not define a real number (for
example, the square root of a negative number). The special valueinf represents
∞, for example as the result of dividing a non-zero number by zero. Real numbers
can be compared by<,<=,> and>=, but cannot be compared for equality using
=.1. Various operations are available for approximating equality tests in the Basis

1In the previous versions of the language, it was indeed possible to test reals for equality.

2.2. TUPLES AND RECORDS 19

Library 4. A final point to mention is that reals and integers are not interchange-
able: if an integer is for example added to a real, a type error occurs. No automatic
coercion of either an integer to a real or a real to an integer is performed. Coer-
cion functions are available through the Basis Library, but they must be applied by
the programmer. Although seemingly an annoying restriction, this prevents many
hard-to-find problems and fits in the general safety-first approach underlying the
language.

Characters have typechar, and are written#”a” . Operationsord andchr for
converting a character to an integer (its ASCII value) or an integer to a character
are provided.

Strings have typestring, and are written in quotes, as”this is a string” . Top
level operations on strings includesizeto return the length of a string,ˆ to concate-
nate two strings (an infix operation), and others. Many more operations, such as
subscripting to extract a character from a string and so on are available through the
Basis Library.

2.2 Tuples and records

It is often useful to create values which package many values. Compound types
include tuples, records and lists.

A tuple is a finite sequence of values packaged as one value. The type of a tuple
indicates the type of the elements in the sequence. An example of a tuple is(true,3),
which is a tuple of typebool ×int, made up of a boolean and an integer. The
order is important:(3,true)is a different tuple, with a different typeint ×bool. An
arbitrary number of values can be packaged in this way, leading to correspondingly
long tuple types. One way to extract a value from a tuple is to use the selection
operations#1, #2, . . ., which extract the element at the corresponding position in
the tuple. For example,

- #2 (1,3.0,true);
val it = 3.0 : real

Section 2.4 will discuss an often better alternative to access tuple elements, via
pattern matching. Note that a tuple consisting of one element is equivalent to that
element alone. Moreover, a tuple of no elements is just the unit value. The syntax
reflects this correspondance.

The elements of a tuple are accessed by position, which is why ordering is
important. An alternative way to package values is to use records, which allow the
elements to be accessed by name. A record is defined as a set of fields, such as
{x=3.0, y=1, z=true} which has type{x:real, y:int, z:bool}. Notice how the name
of the fields is part of the type. The order of the fields is not important, but their

20 CHAPTER 2. THE CORE LANGUAGE

name is. Two records with different field names but the same type of elements
are still different records, as their type reflects. The value of a field is accessed by
using the name of the field. Accessing fieldy of a record is done by applying the
field selector#y to the record, as in :

- #y {x=3.0,y=1,z=true};
val it = 1 : int

In Section 2.4, we will see another way of accessing fields of records through
pattern matching. The similarity between tuples and records is not accidental. A
tuple (x1,. . .,xn) can be seen as a record{1=x1,. . .,n=xn} which explains the
reliance of tuples on ordering since the ordering guides the naming of the fields,
and the use of#1,. . . to access tuple elements. By the above correspondance, we
have that the empty record is the unit value, since the unit value is also the empty
tuple.

2.3 Declarations

Until now, we have seen how to construct basic expressions to build and handle
various values. In this section, we show how to associate names with values, and
how to define new types.

Value declarations

The simplest way to associate a name with a value at top level is to use the value
declaration syntax, such as:

- val x = 3;
val x = 3 : int

This binds or associates the value3 with the identifierx. Any expression usingx
from that point on will evaluate as if using the value3. If a general expression is
specified, it is evaluated to a value and the value is then bound to the identifier:

- val y = 3+3;
val y = 6 : int

When an existing identifier is bound again by a declaration, it shadows the previous
definition. The most recent value bound to an identifier is always used.

Multiple declarations can be written as a single declaration, as in:val x = 1 val
y = 2. Such declarations are sequential.

One often needs to declare temporary identifiers to help evaluate an expression,
for example when a given subexpression occurs often. Thelet syntactic form al-
lows one to declare local bindings used in the evaluation of some expression. For
example, the expression(3+4) * (3+4) - (3+4) can be written more succintly as:

2.3. DECLARATIONS 21

let
val a = 3+4

in
(a * a) - a

end

Multiple declarations can appear as well:
let

val a = 3+4
val b = 8*8

in
(a*a)-b

end

Although type inference usually takes care of deriving the type of the bindings,
as we shall see in the following sections, it is sometimes necessary to help the
type inference algorithm along with type annotations. This especially occurs in the
context of polymorphic values occuring in declarations (see Section 2.6). We saw
earlier that we can annotate any expression with its type, as in:

let
val a = 3+4 : int

in
(a * a) - a

end

It is also possible to annotate the binding itself with a type, as in:
let

val a : int = 3 + 4
in

(a * a) - a
end

Although the difference may seem trivial, it becomes useful in the presence of
function bindings (see Section 2.5).

Type declarations

Although types often do not need to be specified due to the action of type infer-
ence, there are cases when types need to be written down. For example, to resolve
polymorphic declarations (see Section 2.6), or in type specifications in signatures
(see Chapter 3). Since types can sometimes grow large, it is useful to be able to
name a type, the same way we can name a value usingval. One defines a type
abbreviation with the declaration:

- type type pair_of_ints = int * int;
type pair_of_ints = int * int

Note that this only defines a type abbreviation. Any value of typeint ×int can
be used where apair of ints is expected and vice versa. Moreover, unless explicit
type annotations are used, the type inference engine will usually not report types
as the defined abbreviation. For example, even after the above declaration,

22 CHAPTER 2. THE CORE LANGUAGE

- val a = (3,3);
val a = (3,3) : int * int

A type annotation however can be used to force the use of the type abbreviation.

- val a : pair_of_ints = (3,3);
val a = (3,3) : pair_of_ints

We have seen the basic types provided by the language as well as compound
types for packaging value. But we have not yet created new types. We presently
describe two ways of doing so.

The most straightforward way of defining a new type is to use a datatype dec-
laration. A datatype declaration defines a type with a given name and specifies
data constructors, which are used to create values of the type. The simplest use of
datatypes is to construct something like enumeration types, for example

- datatype color = Red | Blue | Yellow;
datatype color = Blue | Red | Yellow
- val elmoColor = Red;
val elmoColor = Red : color
- val groverColor = Blue;
val groverColor = Blue : color

This declaration defines a typecolor whose values areRed, BlueandYellow. The
type color is a new type and values for this type can only be created by using
the constructors specified in the declaration. By convention, constructor names
usually start with an uppercase character. Another use of datatypes is to define
types which are unions of other types. For example, suppose we wanted to define
a type of elements that can either be integers or reals. One can declare

- datatype int_or_real = I of int | R of real;
datatype int_or_real = I of int | R of real

Values of this type can be created by either applying theI constructor to an integer
or theR constructor to a real. The only problem at this point that we have no way
of using these values! In the next section, we will see how to deconstruct such
values via pattern matching.

Another extremely useful way of defining new types is to use the abstract types
facility. An abstract type is a type which representation is known only to a few
values. Outside of these values, the type is abstract, i.e. there is no way to access
the representation of values of that type. The type system ensures that the type can
only be used in the allowed way. An abstract type can be defined in SML using an
abstypedeclaration, which is used just like adatatypedeclaration. For example:

abstype abs_color = Red | Blue | Yellow
with

val elmoColor = Red
val groverColor = Blue

end

2.4. PATTERN MATCHING 23

This is just like a datatype definition, except that we specify a range of decla-
rations in which the constructors are visible. The constructors are the “represen-
tation” of the type, that is described how the values can be built (and later decon-
structed via pattern matching). This representation is hidden outside of theabstype
construct. Only the name of the type and the declared values are exported. Looking
atelmoColoryields:

- elmoColor;
val it = - : abs_color

The value cannot be shown, since the type is abstract. Abstract types enforce
an extremely high level of safety, in that access to the internals of the value of a
type is carefully controlled. This abstract type construction is less useful for large-
scale programs, where the module system provides a more flexible abstract type
facility.

Local declaration

The last kind of declaration we will describe is that of local declarations. Local
declarations are similar in spirit tolet expressions, but at the level of declarations.
They allow the declaration of values that can be used by other declarations without
themselved being revelead. For example,

- local
val a = 3
val b = 10

in
val x = a + b
val y = a * b

end;
val x = 13 : int
val y = 30 : int
- x;
val it = 13 : int
- a;
stdIn:139.1 Error: unbound variable or constructor: a

As in the case of abstract types, the module system (through signature thinning)
provides a more flexible way of handling local declarations in the case of large-
scale programs.

2.4 Pattern matching

In the previous sections, we have seen various ways to construct values of dif-
ferent types, and ways to construct new types. We have not focused very much
attention on how to take apart values of either compound types or datatypes. We

24 CHAPTER 2. THE CORE LANGUAGE

have seen, for example, fields selectors for tuples and records. We now describe
pattern matching, a facility for handling all case of data deconstruction, including
datatypes and many others. Pattern matching is a powerful mechanism for han-
dling structured data. The idea revolves around the idea of a pattern: a pattern
is a partial specification of the form of a data element. Variables can appear in a
pattern, and cause bindings to occur for the corresponding elements in the matched
object. Patterns can be used in various places. Let’s examine them. First, we can
use pattern matching at value declaration sites. For example,

- val (x,y) = (4,5);
val x = 4 : int
val y = 5 : int

Here,(x,y) is a pattern with pattern variablesx andy. It is matched by the tuple
(4,5). If one attempts to match a value with an incompatible pattern, an error is
reported:

- val (x,y) = (3,4,5);
stdIn:43.1-43.20 Error: pattern and expression in val dec don’t agree [tycon mismatch]

pattern: ’Z * ’Y
expression: int * int * int
in declaration:

(x,y) =
(case (3,4,5)

of (x,y) => (x,y))

Patterns can also contain litterals such as integers and booleans, which are matched
exactly by themselves2. For example,

- val (3,x) = (3,5);
stdIn:44.1-44.18 Warning: binding not exhaustive

(3,x) = ...
val x = 5 : int
- val (4,x) = (3,5);
stdIn:45.1-45.18 Warning: binding not exhaustive

(4,x) = ...

uncaught exception nonexhaustive binding failure
raised at: stdIn:45.1-45.18

Patterns can be arbitrarily complicated, for example
- val (x,_,((3,a),b)) = ({i=10,j=20},k=(3,4,5),((3,true),false));
stdIn:1.1-45.45 Warning: binding not exhaustive

(x,_,((3,a),b)) = ...
val x = {i=10,j=20} : i:int, j:int
val a = true : bool
val b = false : bool

This example shows various features of pattern matching: one can match com-
plex values (asx matching{i=10,j=20}), and the use of as a wildcard, always
matching but causing no binding. Pattern matching for records has some specific
functionality. The general pattern matching declaration for records looks like

2In fact, only litterals for types which admit equality are allowed in patterns. See Section 2.9.

2.4. PATTERN MATCHING 25

- val {first=x,second=y} = {first=3,second=4};
val x = 3 : int
val y = 4 : int

Note again that order for records is not important, so the pattern{second=y,first=x}
would also match the given value. A convenient abbreviation when one wants to
completely match a field (as in the above example), is to omit the binding variable,
in which case the name of the field is used as a binding name:

- val {first,second} = {first=3,second=4};
val first = 3 : int
val second = 4 : int

Moreover, if one is interested only in matching part of a record, one can use the
ellipsis notation to refer to the fact that other fields may be present but one does
not care about them. For example,

- val {second=y,...} = {first=3,second=4};
val y = 4 : int

There are some restrictions on when such notation can be used however, due to the
nature of the type checking engine. Roughly, the type checking engine needs to
know the full type of the record being matched for the ellipsis notation to be used
successfully.

Finally, pattern matching can be used to access elements of datatypes. Recall
our simple example of the previous section

datatype int_or_real = I of int | R of real

One can use data constructors in patterns, which are matched by a value which has
been constructed by the corresponding constructor. For example,

- val a = I 3;
val a = I 3 : int_or_real
- val (I i) = a;
stdIn:51.1-51.14 Warning: binding not exhaustive

I i = ...
val i = 3 : int
- val (R i) = a;
stdIn:52.1-52.14 Warning: binding not exhaustive

R i = ...

uncaught exception nonexhaustive binding failure
raised at: stdIn:52.1-52.14

Note that a match failure is raised by attempting to match a value with the wrong
constructor.

Pattern matching for value declarations can also be used inlet expressions, as
in

26 CHAPTER 2. THE CORE LANGUAGE

- let
val (x,y) = (4,5)

in
x + y

end;
val it = 9 : int

A special construct allows the construction of an expression that performs a
case analysis based on the result of pattern matching. Acaseexpression has the
following form:

case exp
of pattern_1 => exp_1

| pattern_2 => exp_2
...

| pattern_n => exp_n

The idea is straightforward: we evaluate the expressionexp, then attempt to match
it to one of the patterns, in the given order. When a successful match occurs, the
variables contained in the pattern are bound to their matching values, and the corre-
sponding expression is evaluated and gives the result of the overallcaseexpression.

A common example of the case expression is to provide alternatives depending
on the value of an expression. Using the fact that litterals match only themselves,
one can for example write:

case x
of 0 => "zero"

| 1 => "one"
| _ => "out of range"

Notice the last pattern, which is a catch-all, since it always succeeds. A more
complex example is the following, which returns the first non-zero element of a
2-tuple of integers:

case x
of (0,x) => x

| (x,_) => x

Here, the order of the patterns is important. If the first pattern matches, then the
first non-zero cannot appear in the first position. Conversely, if the first pattern
does not match, its first element cannot be zero, and we return it.

Another common case is to evaluate according to the value of a datatype. Re-
calling ourint or real datatype example, the following expression returns a string
depending on the structure of a value of the type:

case x
of I _ => "integer"

| R _ => "real"

It may happen that the case patterns do not cover all cases, that is, there can be
values that do not match any of the patterns. In that case, SML reports a warning

2.5. FUNCTIONS 27

stating at compile-time that the matching is incomplete, and at runtime, if an un-
matched expression occurs, an exception is raised (see Section 2.11). It is normally
a good idea to ensure that matching is always complete. On the other hand, an ac-
tual error is reported if the patterns are redundant, that is, if because of previous
patterns, one of the case patterns can never be matched. The simplest such example
of this is:

case x
of _ => 0

| _ => 1

Clearly, this expression always yields 0 no matter whatx is bound to. The second
match can never be attempted. Redundant matches may occur due to complex
pattern interaction:

case x
of (_,0) => 0

| (_,x) => x
| (0,_) => 1

Again, the last pattern can never be matched, because any 2-tuple of integers
matches either the first or the second pattern.

It is possible in a pattern to both match a value and decompose it further at the
same time. A pattern of the form

x as pattern

both matches the overall pattern and binds the matching value tox, and further
attempts to match the value in the pattern to the “subpattern”pattern. For example:

- val (x as (y,z),w) = ((3,4),5);
val x = (3,4) : int * int
val y = 3 : int
val z = 4 : int
val w = 5 : int

2.5 Functions

Until now, we have looked at expressions in isolation, figuring out basic ways of
combining things together. In this section, we examine a powerful way of abstract-
ing and reusing expressions, namely functions and function application. A function
is roughly speaking a parametrized expression: it is an expression that needs to be
supplied arguments before being evaluated. The process of evaluating a function
after specifying the arguments is called function application. In contrast to most
other languages which provide a way to parametrize expressions or sequences of
commands, SML allows functions to be created dynamically and passed around in
data structures. These features make SML a functional, or higher-order, language;
it is also known as having first-class functions.

28 CHAPTER 2. THE CORE LANGUAGE

A function is created as follows: the expressionfn (x:t) => expevaluates to a
function expecting a value of typet which will be bound tox and used to evaluate
exp. As a matter of practice, we mention the type of the argument explicitely in the
function, although it can be omitted, and the type of the function inferred from its
definition. The expressionexpin the above is called the body of the function. Let
us look at an example. Consider the function that adds 1 to its input, which is an
integer. The function is simplyfn (x:int) => x + 1, that is it expects an integer and
returns it with 1 added. Evaluating this function:

- fn (x:int) => x + 1;
val it = fn : int -> int

A function is just a value, which actually cannot be represented (hence the funny
way of display the result, as a valuefn). The type of the function is also given,
int→int, namely a function expecting an integer and returning an integer. How can
we use such a function? We can apply it to an integer:

- (fn (x:int) => x + 1) 3;
val it = 4 : int
- (fn (x:int) => x + 1) 10;
val it = 11 : int

Clearly, this is not optimal, having to write the function to apply everytime. How-
ever, since functions are just values, we can use the value declarations of the pre-
vious section to give a name to the function:

- val add1 = fn (x:int) => x + 1;
val add1 = fn : int -> int
- add1 3;
val it = 4 : int
- add1 100;
val it = 101 : int

Function declarations are so common that a special syntax exists3:

- fun add1 (x:int):int = x + 1;
val add1 = fn : int -> int

There is actually a slight difference between the two forms, which affects recursion,
to which we will return in Section 2.7

Functions can actually perform pattern matching on the argument. The form:

fun f (x:t1):t2 => (case x
of pat_1 => exp_1

| ...
| pat_n => exp_n)

3When using thisfun syntax, we also specify the result type of the function, for documentation
purpose. We would have done it forfn expressions as well, except that the syntax does not provide
any convenient place to attatch this information, aside from the body itself, as infn (x:int) =>
(x+1):int, which is not very useful if the body of the function is very large.

2.5. FUNCTIONS 29

can be written directly as:

fun f pat_1 = exp_1
| ...
| f pat_n = exp_n

Notice that the name of the function must appear at every case alternative. One
disadvantage of this form over the explicitcaseform is that it does not provide
a way to attach type information simply. For this reason, in these notes we will
always write an explicitcaseexpression, except for very simple functions.

Since parameters to functions are actually patterns, this shows how to write
functions with multiple arguments: instead of passing a single value, pass a tuple
of values, and use pattern matching to bind the individual values in the tuple. For
example, the function:

- fun foo (x:int,y:int,z:int):int = x + y + z;
val foo = fn : int * int * int -> int
- foo (3,4,5);
val it = 12 : int

Not only can tuples be used to pass multiple arguments to functions, they can
be used to return multiple results. Consider the following function that returns the
sum and product of two numbers:

- fun sum_prod (x:int,y:int):int * int = (x+y,x*y);
val sum_prod = fn : int * int -> int * int
- sum_prod (3,4);
val it = (7,12) : int * int

We saw that records are just like tuples, with a different way of accessing the
individual elements. Records can also be used to pass arguments to functions, and
to allow the values to be passed by keyword! For example, consider the following
functionfull name:

- fun full_name {first:string,last:string}:string = firstˆ" "ˆlast;
val full_name = fn : {first:string, last:string} -> string
- full_name {last="Pucella",first="Riccardo"};
val it = "Riccardo Pucella" : string

Passing the arguments by keyword frees the user of the function from remembering
the order in which the arguments must appear (they still have to remember the key-
words though). This is especially useful when dealing with functions with many
arguments of the same type. Using records in that context allow a certain amount
of documentation to be included in the type of the function.

Let us now focus on the notion of functions being first-class. Why can it be
useful to pass functions as arguments to other functions? Assume we have 2-tuples
of integers, and we would like to transform both integers in the tuple by a given
function, sayadd1or times2. Define:

30 CHAPTER 2. THE CORE LANGUAGE

- fun add1 (x:int):int = x + 1;
val add1 = fn : int -> int
- fun times2 (x:int):int = x * 2;
val times2 = fn : int -> int

Now let’s write a function to transform 2-tuple elements by the previous functions:

- fun tuple_add1 (x:int,y:int):int * int = (add1 (x), add1 (y));
val tuple_add1 = fn : int * int -> int * int
- fun tuple_times2 (x:int,y:int):int * int = (times2 (x), times2 (y));
val tuple_times2 = fn : int * int -> int * int
- tuple_add1 (10,15);
val it = (11,16) : int * int
- tuple_times2 (10,15);
val it = (20,30) : int * int

Clearly, we can do this for any function transforming integers into integers, that
is any function of typeint→int. One obvious generalization is to simply write a
function that applies a function passed as a parameter to the components of a tuple:

- fun tuple_apply (f:int->int,(x,y):int * int):int * int = (f (x),f(y));
val tuple_apply = fn : (int -> int) * (int * int) -> int * int
- tuple_apply (add1,(3,4));
val it = (4,5) : int * int
- tuple_apply (times2,(10,15));
val it = (20,30) : int * int

Actually, in the above example, we don’t actually need to name the functions
to pass totuple apply. Since we can construct function values directly usingfn, we
can simply construct one “on the fly”:

- tuple_apply (fn (x:int) => x * 3 + 2, (10,15));
val it = (32,47) : int * int

Being able to construct functions on the fly and pass them around does raise
serious and interesting questions. The main question is always: what happens to
the free variables of the function? A free variable in a function is a variable for
which there is no binding in the function. For example, if we sayfn x => x + y,
theny is free in the function. What happens if we call a higher-order function like
tuple applywith such a function containing a free variable? Which value does the
free variable evaluate to?

There can be two answers to this question: (1) the variabley evaluates to
whichever binding fory is valid at the time when the function is applied, or (2) the
variabley evaluates to whatever binding fory was valid when and where the func-
tion was defined. Languages implementing solution (1) are said to be dynamically-
scoped, those implementing solution (2) are said to be statically-scoped. SML is a
statically-scoped language. Consider the following example:

- val foo = let val y = 3 in fn (x:int) => x + y end;
val foo = fn : int -> int
- let val y = 1000 in tuple_apply (foo,(10,20)) end;
val it = (13,23) : int * int

2.5. FUNCTIONS 31

When functionfoo is defined, the variabley is bound to3. When functionfoo is
applied (in the body oftuple apply), the variabley is bound to1000. Since SML
is statically-scoped, the value fory is taken to be the one present at the time of
definition, that isy evaluates to3.

Suppose we foresee that we will need to apply the same functionf to many
different tuples. Using the previoustuple apply function, we will need to pass
around this functionf at everytuple applycall. What we can do however is write
a new function that will takef as an argument and create a new function that will
applytuple applywith thatf as an argument. In code,

- fun tuple_apply2 (f:int -> int):(int * int) -> (int * int) =
fn (x:int,y:int) => tuple_apply (f,(x,y));

val tuple_apply2 = fn : (int -> int) -> int * int -> int * int

Notice the type of the function: it is a function that expects a function from integers
to integers and returns a function from tuples of integers to tuples of integers (recall
that→ associates to the right, so the type is(int→int)→((int * int) →(int * int)) .
Basically, callingtuple apply2with a given integer transformation function creates
a specializedtuple applyfunction that exclusively appliesf to tuples:

- val tuple_apply_times2 = tuple_apply2 times2;
val tuple_apply_times2 = fn : int * int -> int * int
- tuple_apply_times2 (3,4);
val it = (6,8) : int * int

Of course, anonymous functions can also be passed totuple apply2:

- val tuple_square = tuple_apply2 (fn (x:int) => x * x);
val tuple_square = fn : int * int -> int * int
- tuple_square (7,8);
val it = (49,64) : int * int

This technique of specializing a function to one of its arguments is important
enough to deserve its own name, currying. To curry a function of two arguments
means to turn it into a function expecting the first argument and returning a new
function of the remaining argument. This generalizes straightforwardly to func-
tions with more than two arguments. Currying is supported by syntax as well. The
above example fortuple apply2can be written as:

- fun tuple_apply2 (f:int->int) (t:int*int):(int->int) = tuple_apply (f,t);
val tuple_apply2 = fn : (int -> int) -> int * int -> int * int
- val tuple_add1 = tuple_apply2 add1;
val tuple_add1 = fn : int * int -> int * int
- tuple_add1 (3,4);
val it = (4,5) : int * int

Consider the example of addition. Define a functionaddto add two integers (using
+ directly is messy because it is defined as an infix operation):

- fun add (x:int,y:int):int = x + y;
val add = fn : int * int -> int

32 CHAPTER 2. THE CORE LANGUAGE

The curried form of the function is:

- fun add’ (x:int) (y:int):int = x + y;
val add’ = fn : int -> int -> int

Notice the difference in the type of the two functions. The curriedadd’, when
passed a value, returns a new function that is specialized to add that value:

- add’ 3;
val it = fn : int -> int
- it 5;
val it = 8 : int

We did not even bother binding the result ofadd’ 3, we just use the defaultit
binding. Since function application associates to the left, we can combine multiple
applications as:

- add’ 10 20;
val it = 30 : int

sinceadd’ 10 20is (add’ 10) 20, andadd’ 10evaluates to a function, which is then
applied to20.

When it is advantageous to curry? When a function is used often with a given
value for an argument, it is sometimes simpler to curry the function definition to be
able to quickly create a function specialized to that argument. Moreover, a curried
function can do non-trivial processing when it receives its first argument, and by
partially applying the curreied function, we don’t need to incur the cost at every
function call. We will see examples of this later in the notes. Currying is also often
used in combinator libraries to get the right compositional behavior. The efficiency
of implementation of currying is an issue. For SML/NJ, function application is
optimized for the case where the argument is passed in a tuple or a record. Other
systems optimize the curried case (for example, OCaml).

Although already powerful, functions in SML are made even more powerful
by polymorphism and recursion, which we address in the following two sections.

2.6 Polymorphism

Polymorphism is a type discipline that allows one to write functions that can act
on values of multiple types in a uniform way. The simplest example of such is the
identity function, which is the function that simply returns its argument. In older
typed languages, writing an identity function requires you to write many identity
functions, one for each type of value. Of course, the body of all those functions is
the same. In SML, one can simply write:

- fun identity (x:’a):’a = x;
val identity = fn : ’a -> ’a

2.6. POLYMORPHISM 33

The ’a is called atype variable, which always start with’ in SML. In effect, this
says that identity is a function that expects a value of any type, but for whatever
type of value it receives, it returns that same type — hence the use of the same type
variable as an argument type and as a result type. One can verify that the above
function works as expected:

- identity (4);
val it = 4 : int
- identity (true);
val it = true : bool

Another example of a polymorphic function is obtained by attempting to gener-
alize the notion of currying given at the end of the last section. Recall that currying
a binary function transforms it into a function of one argument returning another
function of one argument. One can write a function to generically curry a binary
functionf as follows:

- fun curry2 (f:’a * ’b -> ’c) = fn (x:’a) => fn (y:’b) => f (x,y);
val curry2 = fn : (’a * ’b -> ’c) -> ’a -> ’b -> ’c

Clearly, looking at the definition ofcurry2, one sees that the function is indepen-
dent of the type of the arguments to the functionf. In effect,curry2nevers “looks”
at the arguments eventually passed tof. This “independence” is reflected in the
type of curry2: (’a ×’b →’c) →’a →’b →’c. That is, given a function of type
’a ×’b →’c, a binary function of arbitrary and possibly different types returning
a value of another arbitrary and possibly different type, it returns a new function
of type ’a →’b →’c as one expects. For the sake of completeness, here’s how to
uncurry a given curried function:

- fun uncurry2 (g:’a -> ’b -> ’c):(’a * ’b -> ’c) =
fn (x:’a,y:’b) => g x y;

val uncurry2 = fn : (’a -> ’b -> ’c) -> ’a * ’b -> ’c

We can generalize currying and uncurrying to functions of arity greater than 2:

- fun curry3 (f:’a * ’b * ’c -> ’d):(’a -> ’b -> ’c -> ’d) =
fn (x:’a) => fn (y:’b) => fn (z:’c) => f (x,y,z);

val curry3 = fn : (’a * ’b * ’c -> ’d) -> ’a -> ’b -> ’c -> ’d
- fun uncurry3 (f:’a -> ’b -> ’c -> ’d): (’a * ’b * ’c -> ’d) =

fn (x:’a,y:’b,z:’c) => f x y z;
val uncurry3 = fn : (’a -> ’b -> ’c -> ’d) -> ’a * ’b * ’c -> ’d

A form of polymorphism also occurs in datatype definitions. It is possible
to parametrize a datatype definition using type variables. Suppose we wanted to
define a data structure containing either one value or two. For integers, one can
simply write a definition:

datatype one_or_two_ints = OneInt of int | TwoInts of int * int

But nothing in the definition is really specific to integers, and one can parametrize
the declaration as follows:

34 CHAPTER 2. THE CORE LANGUAGE

datatype ’a one_or_two = One of ’a | Two of ’a * ’a

Notice the introduction of the type variable’a to parametrize the declaration. Con-
sider a function to return the number of elements in a value of that type:

- fun howMany (x:’a one_or_two):int =
(case (x)

of (One _) = 1
| (Two _) = 2);

val howMany = fn : ’a one_or_two -> int
- howMany (One 3);
val it = 1 : int
- howMany (Two (true,false));
val it = 2 : int

This function is clearly polymorphic over the parameter of theoneor two type.
Again, this comes about from the fact that the actual values stored in the datatype
are never really considered. Compare with the following function

- fun sum (x:int one_or_two):int =
(case x

of One a => a
| Two (a,b) => a + b);

val sum = fn : int one_or_two -> int

This function cannot polymorphic over the parameter type. Indeed, since we add
the elements of the datatype, the values stored in the datatype better be of the type
compatible with+ , that is integers. The type checker ensures this is the case.

SML provides a polymorphic datatype similar tooneor two which turns out
to be very useful for describing optional values:

datatype ’a option = SOME of ’a | NONE

where intuitively a valueSOME (v)of type t option indicates the presence of a
value v of type t, andNONE indicates no value. We will return to this type in
Chapter 4.

2.7 Recursion

Just like polymorphism, recursion can appear in two contexts, for functions and for
types. Let us start with recursion for functions. A function is said to be recursive if
it calls itself. If many functions call each other, they are said to be mutually recur-
sive. In functional languages, recursion is used to model loops as found in more
traditional imperative languages. Consider for example the following function to
sum all integers from 0 to a given number:

- fun sumUpTo (n:int):int =
(case (n)

of 0 => 0
| n => n + sumUpTo (n-1));

val sumUpTo = fn : int -> int

2.7. RECURSION 35

This recursive function contains all the elements of a general recursive function:
it contains a base case (summing all elements up to 0 is just 0), which does not
involve recursion, and a case which involves a recursive call. To ensure termina-
tion, we must make sure that we make progress towards the base case, that is in
this case, the argument in the recursive call decreases towards 04. One sees that to
evaluate saysumUpTo (4), one roughly ends up evaluating:

sumUpTo (4)
4 + sumUpTo (3)
4 + 3 + sumUpTo (2)
4 + 3 + 2 + sumUpTo (1)
4 + 3 + 2 + 1 + sumUpTo (0)
4 + 3 + 2 + 1 + 0

which yields the expected result 10. More complicated recursive functions can of
course be written. A common example is to compute thenth Fibonacci number.
Recall that the Fibonacci numbers make up the series:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

which occurs with surprising frequency in nature and in art. One can generate any
Fibonacci number in the sequence by adding the previous two Fibonacci numbers
in the sequence. This leads to the following easy function:

- fun fib (n:int):int =
(case (n)

of 0 => 0
| 1 => 1
| n => fib (n-1) + fib (n-2));

val fib = fn : int -> int

If one attempts to compute the value of, say,fib (5)using the above idea of evaluat-
ing things successively, one quickly encounters a problem with this definition: it is
highly inefficient, sincefib gets computed many times with the same value, every
time triggering a complete computation.

There are various ways of correcting this problem, but we’ll focus on a par-
ticular one for pedagogical reasons. We can turn the function into a so-called tail
recursive function, also called an iterative function. A tail recursive function is a
recursive function that performs the recursive call as its last evaluation step. First,
let’s rewrite thesumUpTofunction as a tail recursive function. The idea is instead
of adding the current value to the recursive call, we pass in an extra parameter
to the function that contains the result accumulated until now. To hide this extra
parameter to the external interface of the function, we define a local function:

4Notice that if we callsumUpTowith a negative integer, the call never terminates.

36 CHAPTER 2. THE CORE LANGUAGE

fun sumUpTo’ (n:int):int = let
fun sumUpToIter (n:int,acc:int):int =

(case n
of 0 => acc

| _ => sumUpToIter (n-1,acc+n))
in

sumUpToIter (n,0)
end

Let us see howsumUpTo’ (4)evaluates:

sumUpTo’ (4)
sumUpToIter (4,0)
sumUpToIter (3,4)
sumUpToIter (2,7)
sumUpToIter (1,9)
sumUpToIter (0,10)
10

Notice that we do not construct a longish expression that gets evaluated at the
end as in thesumUpTocase. For Fibonacci numbers, we use a similar idea, but
pass in two extra arguments to the iterative function, namely the last two fibonacci
numbers computed.

fun fib’ (n) = let
fun fib_iter (0,a,b) = b

| fib_iter (n,a,b) = fib_iter (n-1,a+b,a)
in

fib_iter (n,1,0)
end

It often happens that one needs a number of functions that need to call each
other. These are called mutually recursive functions. Nothing of what we have seen
until now allows us to express such functions. Mutually recursive functions can be
declared by using theand syntax. The simplest example of mutually recursive
functions is the pair of functionsevenand odd, to determine if a given natural
number is even or odd:

- fun even (n:int):bool =
if (n=0) then true else odd (n-1)

and odd (n:int):bool =
if (n=0) then false else even (n-1);

val even = fn : int -> bool
val odd = fn : int -> bool

This pattern generalizes to more than two mutually recursive functions in the obvi-
ous way.

Recursion highlights a subtle difference betweenfun andval declarations of
functions. Functions declared byfun are naturally recursive:fun f (x:t):t = e can
refer to itself ine. If we defineval f = fn (x:t) => e, due to the evaluation rules
for value declaration,fn (x:t) => e is evaluated before the binding forf is done,
and any call tof in e will be interpreted as a call to whatever binding forf existed
before the current binding forf is performed. One can get a recursive function

2.7. RECURSION 37

back using aval recdeclaration:val rec f = fn (x:t) => e, wheref can appear in
e and be correctly interpreted. Afun declaration is in fact equivalent to aval rec
declaration.

The other context where recursion appears is in the form of recursive datatypes.
A recursive datatype is a type that refers to itself. Consider the problem of repre-
senting lists of elements, that is an arbitrary but finite number of elements of the
same type. The idea is to use a linked-list representation: a list is either empty, or
it contains an element followed by the rest of the list. We can express this using a
parametrized recursive datatype

datatype ’a mylist = Empty | Element of ’a * ’a mylist

(we use the type namemylistso that this does not conflict with the primitive notion
of lists in SML, presented in the next section). A sample list is built as:

- Element (10,Element (20,Empty));
val it = Element (10,Element (20,Empty)) : int mylist

Functions acting on recursive datatypes are naturally recursive. Consider the
problem of counting the number of elements in a list: an empty list has no elements,
otherwise it has one more element than the rest of the list. The definition is thus
simply:

- fun length (l:’a mylist):int =
(case l

of Empty => 0
| Element (x,xs) => 1 + length (xs));

val length = fn : ’a mylist -> int

Notice that again sincelengthdoes not care what the type of the elements is, the
result type is polymorphic in the parameter type of lists. In contrast, the function
to sum the elements of a list should only work for integer lists and indeed:

- fun sum (l:int mylist):int =
(case l

of Empty => 0
| Element (x,xs) => x + sum(xs));

val sum = fn : int mylist -> int

A frequent operation on lists is to transform a list into another list by trans-
forming every element into some other element, possibly of a different type. This
operation, typically calledmap, is defined by taking as arguments a function to ap-
ply to every element, and the list to transform. The functionmapis also typically
written in curried form.

- fun map (f:’a->’b) (l:’a mylist):’b mylist =
(case l

of Empty => Empty
| Element (x,xs) => Element (f (x), map f xs));

val map = fn : (’a -> ’b) -> ’a mylist -> ’b mylist

38 CHAPTER 2. THE CORE LANGUAGE

2.8 Lists

Lists turn out to be important enough to warrant the status of primitive type in
SML. Their definition is essentially that of themylist type in the previous section:

datatype ’a list = nil | :: of ’a * ’a list

wherenil represents the empty list and:: is actually an infix operator which is right
associative. The list of the first four integers can be written1::(2::(3::(4::nil))) or
simply 1::2::3::4::nil . With this notation, the functionmap takes the following
form

fun map (f:’a -> ’b) (l:’a list):’b list =
(case (l)

of nil => nil
| x::xs => (f (x))::(map f xs))

(map is actually a built-in function). To simplify the use of lists, an alternative
syntax is available:[x1,. . .,xn] is equivalent tox1::(· · ·::(xn::nil))

Although pattern matching is typically used to deconstruct a list, one can also
use the explicit operationshd andtl (for head and tail), which respectively return
the first element of a list and the list made up of all but the first element. Operations
on lists includelengthwhich computes the length of a list,revwhich reverses a list,
that is constructs a new list with the elements of the original list in the reverse or-
der, and@, an infix operation to append two lists, where[x1,. . .,xn]@[y1,. . .,ym]
evaluates to[x1,. . .,xn,y1,. . .,ym] . Various operations on lists use higher-order
functions, to which we will return in Chapter 4, when we describe the list support
in the Basis Library.

2.9 Equality

Equality is treated specially in SML. Equality is defined for many types (that is,
one can test whether two values are the same for some definition of “same”) but not
all. As we noted, we cannot test reals for equality using= . What about compound
types, such as tuples, records and lists? What about functions?

A type is said to admit equality if it has a well-defined equality operation.
For ease of use, SML overloads the= symbol to mean equality: the definition
of = is different for different types, but the same symbol is used. Among the
primitive types, integers, booleans, strings and characters admit equality. Reals do
not. Tuples and records admit equality if all their component types admit equality,
and two tuples or two records are equal if their components are equal. Functions
do not admit equality. Datatypes admit equality if every constructor’s parameter
admits equality, and two values are equal is they have the same constructor and

2.9. EQUALITY 39

their parameters are equal. Consequently, lists admit equality if the underlying
element type admits equality, and are equal is they have the same length and the
same elements.

What happens to type inference though? What happens if we write a polymor-
phic function that uses equality? A polymorphic function should work at all types,
but as we’ve seen, equality is not defined at all types. Consider a function taking a
list and a value and returning true or false depending on whether it finds the value
in the list. The function is a straightforward recursive walk over the list. However,
if we try to assign it the expected polymorphic type, we fail:

- fun find (l:’a list,y:’a):bool =
(case l

of nil => false
| x::xs => (x=y) orelse find (xs,y));

stdIn:36.18-36.23 Error: operator and operand don’t agree [UBOUND match]
operator domain: ’’Z * ’’Z
operand: ’’Z * ’a
in expression:

x = y
stdIn:36.31-36.42 Error: operator and operand don’t agree [UBOUND match]

operator domain: ’a list * ’a
operand: ’’Z list * ’a
in expression:

find (xs,y)
stdIn:34.4-36.42 Error: case object and rules don’t agree [UBOUND match]

rule domain: ’’Z list
object: ’a list
in expression:

(case l
of nil => false

| x :: xs =>
(case (x = y)

of true => true
| false => find <exp>))

This fails to type check for a simple reason. In reality, although we do not care what
type of value is stored in the list, we want to ensure that whatever type is stored,
equality is defined for that type. SML introduces a new kind of type variable which
ranges only over types which admit equality, written”a . Using such a type in the
function satisfies the type checker:

- fun find (l:’’a list,y:’’a):bool =
(case l

of nil => false
| x::xs => (x=y) orelse find(xs,y));

val find = fn : ’’a list * ’’a -> bool

Integers admit equality, so we can usefind on integer lists:
- find ([1,2,3,4,5],3);
val it = true : bool

Reals, on the other hand, do not admit equality. Therefore, the type checker will
complain if you attempt to applyfind on a list of reals:

40 CHAPTER 2. THE CORE LANGUAGE

- find ([1.0,2.0,3.0,4.0,5.0],3.0);
stdIn:87.1-87.33 Error: operator and operand don’t agree [equality type required]

operator domain: ’’Z list * ’’Z
operand: real list * real
in expression:

find (1.0 :: 2.0 :: <exp> :: <exp>,3.0)

2.10 References

All the values we have looked at until now are immutable: once the value is created,
it is not possible to modify it. If we create a tuple(3,4,5)and wish to change its
second component to say a7, we need to construct a new tuple. Oftentimes, it
makes sense to have a variable whose value can actually change. Such variables
are calledreferencesin SML, and have a distinct type’a ref, to indicate that the
reference is to a value of type’a. A reference is created by the constructorref
which expects an argument, the initial content of the reference. For example,

- val a = ref (0);
val a = ref 0 : int ref

The valuea is a reference to an integer, initially 0. Reading off the value in the
reference is done through the! operation (called dereferencing) applied to the
reference. Updating the value of a reference is done with the infix:= assignment
operation:

- !a;
val it = 0 : int
- a:= 3;
val it = () : unit
- !a;
val it = 3 : int

Notice that the assignment operator is unit-valued. The operation is used for its
side effect of changing the value in the reference.

Because of such side effects, we are justified in introducing a new syntactic
form calledsequencing. Evaluating(e1;. . .;en) evaluates in sequencee1, thene2,
and so on up toen, and returns the result of evaluatingen. Clearly, since the
values ofe1 up toen−1 are discarded,e1 up toen−1 are only useful for their side
effects. Aside from updating references, side effects also include input and output
operations, which we will see in Chapter 4 and??.

References admit equality: two references are equal if they are the same ref-
erence, not if they contain the same value (although clearly, two equal references
must hold the same value!). Thus equality for references is similar to pointer e-
quality in languages such as C.

References are used infrequently in common SML programming. Most uses of
references as temporaries can be replaced by appropriate parameter-passing. For
example, suppose we wanted to count the number of times a given element appears

2.11. EXCEPTIONS 41

in a list. A traditional approach consists of looping through all the elements of the
list, incrementing a variable as you go, as in

fun count (el, list) = let
val cnt = ref 0
fun loop [] = ()

| loop (x::xs) = (if (x = el) then cnt := (!cnt) +1 else ();
loop (xs))

in
loop (list);
!cnt

end

However, it is much simpler to simply pass the current count through the loop, as
in

fun count2 (el, list) = let
fun loop ([],cnt) = cnt

| loop (x::xs,cnt) = if (x=el) then loop (xs,cnt+1) else loop (xs,cnt)
in

loop (list,0)
end

2.11 Exceptions

The final feature of the core language we look at is the exception mechanism. Rais-
ing an exception is a way to abort a computation and to return to a previous point in
the evaluation. Some exceptions are built into the language or the standard library,
such as the exception raised when a value does not match any of the patterns of
a caseexpression, or exceptions raised to signal the overflow of arithmetic opera-
tions. Exceptions can also be defined by the programmer. Exceptions are declared
by

exception MyException of string
exception MyException2

An exception can optional carry a value, whose type is specified in the declaration.
Every exception has typeexn. Theexceptiondeclaration can be seen as adding a
new constructor to the extensibleexndatatype.

At any point in the evaluation of an expression, it is possible to signal or raise
an exception by using the syntactic formraise. In the example above, one could
sayraise MyException ”some error”. The value carried by the exception (if any)
must be indicated at theraisepoint.

An exception can be intercepted or handled by wrapping an exception handler
around an expression. The syntactic form

exp handle exn-pattern_1 => exp_1
| ...
| exn_pattern_n => exp_n

42 CHAPTER 2. THE CORE LANGUAGE

is used to define exception handlers. If during the evaluation ofexpan exception
matching one of the handler patterns is raised, the evaluation ofexpis aborted and
the result of evaluating the correspondingexpk is returned. Pattern matching for
exceptions is just like pattern matching for datatypes.

If during the evaluation of an expression an exception is raised for which no
handler has been defined, then the whole program aborts and anuncaught exception
error is reported at top level.

The definition of SML predefines the exceptionsMatchandBind. Other stan-
dard exceptions are defined by the Basis Library.

Notes

There exists excellent introductions to Standard ML, both commercially and freely
available. The books by Paulson [87] and Ullman [110] have been revised to cover
the 1997 revision of SML. A new book by Hansen and Rischel [43] is available.
Harper’s tutorial notes [44] are available from CMU, as well as Gilmore’s notes
[37]. Felleisen & Friedman’s book [29] is unique and delightful. Older material
prior to the 1997 revision of SML can still be useful, which include books by Reade
[91] and Sokolowski [100]. Again, the official reference is the Definition [75].

The type inference algorithm used by SML was first reported by Milner in [71],
who independently rediscovered earlier work by Morris [78] and Hindley [49]. The
algorithm is based on Robinson’s unification algorithm [95].

The remark concerning the power of functions comes about from the work on
Church’sλ-calculus [22], a system for reasoning about computations via functions.
It is equivalent computationally to Turing machines, and it is the Church-Turing
thesis that all computable functions can be expressed within it. Church original
calculus was untyped, and typed versions are useful for studying languages such as
SML. The main reference for the (untyped)λ-calculus is Barendregt’s book [12].

Various topics in this chapter concerning the use of functions, such as higher-
order functions and currying are described at length in any textbook on functional
programming. Good introductions include the books by Abelson and Sussman [1]
and by Bird and Wadler [13], which are otherwise very different in their emphasis.

Polymorphism is typically studied in the context of the polymorphicλ-calculus
of Reynolds [94]. The polymorphicλ-calculus was independently developped by
Girard, from a logical standpoint [39]. An interesting consequence of type infer-
ence in the presence of polymorphism is described by Koenig [57]: the type infer-
ence algorithm can report the presence of some non-terminating functions. Indeed,
if the inferred result type of a function is a type variable that does not appear in the
types of the arguments of the function (and if the function does not raise exceptions

2.11. EXCEPTIONS 43

or apply continuations), then we know that the function never terminates no matter
what the input. For example, consider the infinite loop functionfun loop () = loop
() which has typeunit→’a. This characteristic of type inference is a consequence
of the Reynolds parametricity theorem [?].

In the text, we modified thefib function by turning it into a tail recursive func-
tion to improve its efficiency. Another approach would have been memoization,
which in effect caches previous computations so that applying a function to a
known input yields the value directly, without having to recompute it. Memo-
ization is described in functional programming textbooks, and in [52].

Tail recursion implements an iterative process in the presence of an optimiza-
tion called tail-call elimination in the compiler. Tail-call optimization is a well-
known optimization in the compiler literature, but is suprisingly hard to charac-
terize formally, because most language formalizations are not low-level enough to
address the issues of memory management. One approach in that direction is given
in [81]. One can convert any function to a tail recursive form via a transformation
into continuation-passing style, or CPS, [79, 32, 33]. CPS representations have
been used as intermediate representation for compilers for functional langages; see
for example [101] or [5].

Some of the earliest languages were based on lists, most notably Lisp [68, 69,
102]. Modern functional languages often use a special notation for constructing
and handling list called comprehension [111], derived from the set comprehension
notation used in mathematics.

The equality operation is an example of an overloaded function, that is an oper-
ation that is defined at multiple types, with a different implementation for different
types. It is a form of polymorphism, sometimes called ad-hoc, different from para-
metric polymorphism, which requires that the same implementation work for dif-
ferent types. User-defined overloaded function can be incorporated in a fully-typed
setting using type classes [112]. The programming language Haskell implements
overloading through type classes. Adding type classes does complicate the type
system and the type inference engine. For references, see [?].

The interaction of polymorphism and references has always been problematic.
To ensure type soundness, Tofte introduced weak type variables [107] that restrict-
ed the type of polymorphic references. MacQueen generalized the idea in SML/NJ,
an analysis of which can be found in [?]. Leroy [59] also provided a solution to the
soundness of polymorphic references. In 1995, Wright showed that the full gener-
ality of polymorphic references was rarely needed, and one could get by with the
simpler value polymorphism [117]. His proposal was adopted in the 1997 revision
of SML.

The exception mechanism is described in [72], based on ideas from Mycroft
and Monahan. Its unification with the data type mechanism is described in [3].

44 CHAPTER 2. THE CORE LANGUAGE

It has been mentionned that theabstypemechanism can be supplanted by an
appropriate use of the module system. Indeed, the ML2000 project (in charge of
designing the next generation of the ML language) will most likely abandon the
use ofabstypeon such a basis. ML2000 will also introduce new features, most
notably object-oriented features and greater type flexibility. Although still under
developpment, the ML2000 design goals are available as [42] (as of the end of
1999). Two experimental platforms for the design of ML2000 are OCaml [63] and
Moby [31].

One view of currying is that it is an indication by the programmer of how
function evaluation can be staged. Staging refers to the fact that when a function
receives some of its argument, some useful computation can often already occur,
before the next argument is needed. The technique of partial evaluation [?] can be
used to automatically figure out staging information.

Chapter 3

The Module System

The SML language is made up of two sublanguages: the core language, covered
in the previous chapter, which is in charge of the actual code, and the module lan-
guage, which is in charge of packaging elements of the core language into coherent
units for modularity and reuse. Although when experimenting with the language or
prototyping functions one can restrict oneself to the core language, programming
applications pretty much requires the use of the module system. To emphasize this
aspect, the remainder of these notes will make use of the module system in a fun-
damental way. SML/NJ provides a compilation manager, which we will describe
in Chapter 6, to help the compilation of module-based programs, in the form of
automatic dependency tracking, separate compilation and selective recompilation.

3.1 Structures

The basic element of the SML module system is the structure (which we sometimes
refer to as a module). A structure is a package of possibly both types and values into
a single unit. Without the possibility of declaring types in a structure, a structure
would be much like a record. It turns out that allowing types dramatically changes
the rules of the game.

To illustrate the discussion, let us declare a structure defining a type for stacks
along with associated stack operations. Stacks are often used as introductory ex-
ample since they are not completely trivial and yet are easy to understand. They
are useful in that they can be seen as building blocks for other data structures,
and moreover by having them as a default example, you can rather easily compare
different languages basic modularity constructs.

45

46 CHAPTER 3. THE MODULE SYSTEM

structure RevStack = struct
type ’a stack = ’a list
exception Empty
val empty = []
fun isEmpty (s:’a stack):bool =

(case s
of [] => true

| _ => false)
fun top (s:’a stack):’a =

(case s
of [] => raise Empty

| x::xs => x)
fun pop (s:’a stack):’a stack =

(case s
of [] => raise Empty

| x::xs => xs)
fun push (s:’a stack,x:’a):’a stack = x::s
fun rev (s:’a stack):’a stack = rev (s)

end

This code declares a structureRevStackof reversible functional stacks. The struc-
ture declares a type’a stackrepresenting a stack of values of type’a, with a value
emptyrepresenting an empty stack, and operationsisEmpty, top, pop, pushandrev.
The stacks are functional: pushing a value onto a stack or popping off a value from
a stack gives a new stack, leaving the original stack untouched. Imperative stacks,
on the other hand, would be implemented in such a way that pushing a value onto
the stack would be a destructive operation, modifying the stack in place. The stacks
implemented byRevStackare reversible, as they allow an operationrevwhich gives
a new stack containing the elements of the original stack in the reverse order. The
use of such a reversing facility will become clear as this chapter progresses.

To access the elements of theRevStackstructure, one uses the dot notation. For
example, to create a new stack of integers, one can write at top level:

- val s : int RevStack.stack = empty;
val s = [] : int RevStack.stack

(Notice the explicit type annotation. The valueRevStack.emptyis an unconstrained
polymorphic value, something which is not allowed at top level1). This creates a s-
tacksof typeint RevStack.stack. A name such asRevStack.emptyor RevStack.stack
is said to be fully qualified (or simply qualified).

A structure is in fact declared by a declaration of the formstructure〈name〉
= 〈struct-exp〉, where〈struct-exp〉 is a structure expression. An expressionstruct
〈decls〉 end is the basic structure expression, and structure identifiers can also be
used as structure expressions. Thus, the following declaration is legal:

structure AlsoRevStack = RevStack

1Creating such a value at top level does not cause an error, but rather a warning. On the other
hand, the compiler instantiates the type variable to a fresh type, rendering the value all but useless.

3.1. STRUCTURES 47

and indeed one can check that stacks created byAlsoRevStack.emptycan be used
by RevStackoperations and vice versa. Although seemingly not very useful, such
simple structure declarations interact with signature ascription to yield a flexible
mechanism to manage name visibility (see Section 3.2).

Another type of structure expression is alet expression, of the formlet 〈struct-
decl〉 in 〈struct-exp〉 endwhere〈struct-decls〉 can contain both structure, signature
and functor declarations, as well as core language declarations, and〈struct-exp〉 is
a structure expression.

A final type of structure expression, functor application, will be explored in
Section 3.3.

Any type of declaration is allowed inside a structure,2 including types, ex-
ceptions, values, functions, and even other structures. A structure within another
structure is often called a substructure. Substructures can be accessed through a
generalization of the dot notation. For example, to access the innermost binding of
x in:

structure Foo = struct
structure Bar = struct

val x = 0
end

end

one uses the expressionFoo.Bar.x.
Local declarations are also available at the module system level. The general

form of a local declaration islocal 〈struct-decl〉 in 〈struct-decls〉 end, where again
〈struct-decls〉 can contain both module system declarations (structures, signatures
and functors), as well as core language declarations.

An interesting, powerful and often abused declaration form is theopendecla-
ration. As the name implies,open Stakes a structures (or a structure expression
that evaluates to a structure) and opens it up, by behaving as though the declara-
tions inside the structureSwhere declared at the point whereopenwas written. In
effect, this makes the bindings declared inSdirectly available. For example, if we
declare the structure

structure A = struct
val x = 10
val y = 20

end

then opening it at top level yields:
- open A;
opening A

val x : int
val y : int

- x+y;
val it = 30 : int

2Except for signature declarations and for functor declarations, at least for SML. SML/NJ does
support the declaration of functors inside structures. This extension is explored in Section??.

48 CHAPTER 3. THE MODULE SYSTEM

The convenience ofopenat top level is clear — it lifts every declaration to top
level, so that one does not need to figure out or remember where the bindings were
actually defined. But the potential for abuse and more importantly the software en-
gineering drawbacks should be equally clear. Practically, it is very easy through a
carelessopento silently shadow an important binding, especially when the opened
structure is large. From a software engineering standpoint,open is problematic
since it comes very hard to track dependencies between different modules when
some of those modules have been opened. As we will note in Chapter 6, the Com-
pilation Manager, which automatically tracks dependencies between modules for
the purpose of managing recompilation, does not handleopenat toplevel, since
opencan by itself also introduce new structures into the top level environments (by
opening a structure which contains substructures, for example).

A restrained use ofopencan be useful however. As we noted,openis a declara-
tion (and indeed behaves as such), and therefore can be used wherever a declaration
is permitted, including in the declarations part oflet andlocal expressions. Return-
ing to the structureA above, we can evaluate (assuming an environment whereA
has not been opened):

- let open A in x + y end;
val it = 30 : int
- x+y;
stdIn:19.3 Error: unbound variable or constructor: y
stdIn:19.1 Error: unbound variable or constructor: x

This does not directly address the problems of accidental shadowing of impor-
tant identifiers or the difficulty of tracking the original source of bindings, but it
does at least somewhat contain these effects to a controllable region of code.

One common use ofopen inside a structureA using functions from a struc-
tureWithAVeryLongNameis as a simple shortcut: it is indeed easier and faster to
simply openWithAVeryLongNameinsideA and call the required functions direct-
ly than it is to qualify every function call withWithAVeryLongName. Problems of
course arise ifWithAVeryLongNamedeclares bindings with the same name as some
bindings inA. A convenient way out of this dilemma avoiding the use ofopenalto-
gether is to locally rename the structureWithAVeryLongName, by definingA along
the lines of:

structure A = struct
structure W = WithAVeryLongName
...

end

and simply qualify every access to names inWithAVeryLongNamewith a W in-
stead ofWithAVeryLongName. There can be no accidental shadowing of identifiers
(unless of courseW is already declared inA, in which case one would hopefully

3.1. STRUCTURES 49

choose a different name thanW) and it is always clear where the binding is o-
riginally declared, as the qualifier indicates. This trick of local renaming is used
extensively throughout these notes, and is preferred over most uses ofopen.

Let us conclude this section by introducing at another running example for this
chapter. Consider the problem of implementing (functional) queues, that is data
structures which allow one to push values at one end and get values out at the
other, in a first-in first-out order. Whereas in the case of stacks, one could keep
a simple list of the values in the stack, things are not as clean for a queue. The
problem is that lists are very effective at allowing one to add and remove elements
from the beginning of the list, but not from the end of the list. Nevertheless, it
is possible to do so. In the following implementation of queues, we enqueue an
element at the end of the list, and dequeue from the head:

structure Queue1 = struct
type ’a queue = ’a list
exception Empty
val empty = []
fun isEmpty (q:’a queue):bool =

(case q
of [] => true

| _ => false)
fun enqueue (q:’a queue,e:’a):’a queue =

(case q
of [] => [e]

| (x::xs) => x::enqueue (xs,e))
fun head (q:’a queue):’a =

(case q
of [] => raise Empty

| (x::xs) => x)
fun dequeue (q:’a queue):unit =

(case q
of [] => raise Empty

| (x::xs) => xs)
end

The problem with this implementation of course is one of efficiency: walking
down the whole list at every insertion can be costly if the queue is long. The
problem is not solved if we enqueue at the head and dequeue at the rear. It turns
out that by using a pair of stacks, one can very easily implement a queue. The
idea is to have a stack in which to insert the element and a stack from which to
remove the elements. The only problematic case to consider is when the “out”
stack is empty, yet there are still element in the queue (in the “in” stack). If a
dequeueor aheadcall occurs at that point, we simply take the “in” stack, reverse
it, and install it as the new “out” stack. Although this reversing operation can be
expensive (linear in the size of “in” stack), an amortized analysis of the running
time of such a queue gives every individual operation running in constant time.
Here is the corresponding code (we maintain the invariant that the “out” stack is
never empty, except when the whole queue is empty):

50 CHAPTER 3. THE MODULE SYSTEM

structure Queue2 = struct
structure S = RevStack
type ’a queue = (’a S.stack * ’a S.stack)
val empty = (S.empty,S.empty)
fun isEmpty ((inS,outS):’a queue):bool =

S.isEmpty (inS) andalso S.isEmpty (outS)
fun enqueue ((inS,outS):’a queue,x:’a):’a queue =

if (S.isEmpty (outS))
then (inS,S.push (outS,x))

else (S.push (inS,x),outS)
fun head ((inS,outS):’a queue):’a =

if (S.isEmpty (outS))
then raise Empty

else S.top (outS)
fun dequeue ((inS,outS):’a queue):’a queue =

if (S.isEmpty (outS))
then raise Empty

else let
val _ = S.top (outS)
val xs = S.pop (outS)

in
if (S.isEmpty (xs))

then (S.empty,S.rev (inS))
else (inS,xs)

end
end

One feels that bothQueue1andQueue2have fundamentally the same interface,
although in truthQueue1andQueue2give different types toqueue, and moreover
Queue2provides access to a substructureS. In the next section, we formalize this
vague notion of interface and discuss the further problem that the queues inQueue1
andQueue2are not abstract, that is that one can differentiate betweenQueue1and
Queue2queues from the fact that the former uses a simple list while the latter uses
a pair of stacks.

3.2 Signatures

In a sense similar to the fact that values have a type, we can ascribe to structures
a so-called type, called a signature. A signature is a set of types for values in
the structure, along with types and possibly signatures for substructures. Whereas
structures contain declarations of the formval x = 42, signatures contain specifica-
tions of the formval x : int, and so on. A signature looks like:

sig
val x : int
val y : string

end

The principal signature of a structure is the signature that specifies the exact inter-
face for the structure. Here is the principal signature forRevStack, which we name
REVSTACK:

3.2. SIGNATURES 51

signature REV_STACK = sig
type ’a stack
exception Empty
val empty : ’a stack
val isEmpty : ’a stack -> bool
val push : ’a stack * ’a -> ’a stack
val pop : ’a stack -> ’a stack
val top : ’a stack -> ’a
val rev : ’a stack -> ’a stack

end

(by convention, signature names are all caps) Substructures are specified in
signatures by giving their own signature, as in the principal signature of structure
Fooon Page 47:

sig
structure Bar : sig

val x : int
end

end

The main use of signatures is not only informative, but prescriptive: we can use
explicit signatures to control the visibility of information outside a structure. This
is called signature ascription. In effect, what is visible from outside a structure is
all the bindings specified by the signature. By default, if no signature is given, the
principal signature is inferred and used, which means everything is visible. If a
signature specifying less information is given, it will be used. In order to formalize
this, we introduce the concept of signature matching. A structureA is said to
match a signatureS if all the bindings specified byS are provided byA, with the
same types (or more general types). As a sanity check, a structure always matches
its principal signature. StructureRevStackmatches the signatureREVSTACK, but
also the following signature:

signature STACK = sig
type ’a stack
exception Empty
val empty : ’a stack
val isEmpty : ’a stack -> bool
val push : ’a stack * ’a -> ’a stack
val pop : ’a stack -> ’a stack
val top : ’a stack -> ’a

end

Hence a signature may specify less declarations than a structure that matches it.
Many structures may match a given signature, where every such structure can

be a different implementation of the interface described by the signature. In the
previous section, we saw two implementations of functional queues, both matching
the following signature:

52 CHAPTER 3. THE MODULE SYSTEM

signature QUEUE = sig
type ’a queue
exception Empty
val empty : ’a queue
val isEmpty : ’a queue -> bool
val enqueue : ’a queue * ’a -> ’a queue
val head : ’a queue -> ’a
val dequeue : ’a queue -> ’a queue

end

The visibility of the declarations inside a structure can be controlled by ascrib-
ing an explicit signature to a structure. For example, revisiting the definition of
RevStackin the previous section:

structure Stack : sig
exception Empty
type ’a stack
val empty : ’a stack
val push : ’a stack * ’a -> ’a stack
val pop : ’a stack -> ’a stack
val top : ’a stack -> ’a

end = struct
type ’a stack = ’a list
exception Empty
val empty = []
fun isEmpty (s:’a stack):bool =

(case s
of [] => true

| _ => false)
fun top (s:’a stack):’a =

(case s
of [] => raise Empty

| x::xs => x)
fun pop (s:’a stack):’a stack =

(case s
of [] => raise Empty

| x::xs => xs)
fun push (s:’a stack,x:’a):’a stack = x::s
fun rev (s:’a stack):’a stack = rev (s)

end

or more succintly:

3.2. SIGNATURES 53

structure Stack : STACK = struct
type ’a stack = ’a list
exception Empty
val empty = []
fun isEmpty (s:’a stack):bool =

(case s
of [] => true

| _ => false)
fun top (s:’a stack):’a =

(case s
of [] => raise Empty

| x::xs => x)
fun pop (s:’a stack):’a stack =

(case s
of [] => raise Empty

| x::xs => xs)
fun push (s:’a stack,x:’a):’a stack = x::s
fun rev (s:’a stack):’a stack = rev (s)

end

or even more succintly:

structure Stack : STACK = RevStack

and it is as though the declaration ofrev inside the structure has been forgotten!
Though it can still be used throughRevStack. The original structureRevStackis
unaffected, and still provides all the declarations described by its own signature.
Thus,RevStack.revis legal,Stack.revis not, and would cause a compile-time error.
On the other hand, althoughStackhas different access permissions thanRevStack,
they in fact refer to the same structure! Thus, accessibility of a value in a structure
depends on the signature assocaited with the name through which the structure is
accessed. To showcase the fact that the structures are shared, consider the following
simplified example of a structureA with two declarations:

structure A = struct
val a = ref (0)
val b = true

end

which has a principal signature:

sig
val a : int ref
val b : bool

end

and consider the structure obtained by “forgetting”b:

structure B : sig val a : int ref end = A

Our claim thatA andB represent “views” of the same underlying structure can
be verified by seeing how modifying the value ofA.a:=1 will be witnessed byB.a
changing as well. In fact, this term “view” of an underlying structure is an accurate

54 CHAPTER 3. THE MODULE SYSTEM

description that will be used often. In general, a new view on a structure is obtained
by ascibing a signature on an existing sturcture. On the other hand, rebinding a
structure to astruct/end body, even one that has been bound previously, always
creates an independent structure. For example, if we define

structure C = struct
val a = ref (0)
val b = true

end

thenA.aandC.aare independent — chaning one will not affect the other. Although
again, one must be careful: the following code restaures a dependency between two
seemingly disparate entities:

structure D = struct
val a = A.a
val b = true

end

but here again, there is a visible “link” to the jointness of part ofD and part ofA,
namely the reference toA in D.

Up until now, we have been using a type of signature matching called transpar-
ent signature matching, although that may not have been evident in the examples
we have been looking at. Succintly, transparent matching says that types defined
in signatures implicitely carry their underlying representation types. Consider this
simple example:

structure R = struct
type hidden = int
val a = 10

end

which has the following inferred principal signature

sig
type hidden
val a : int

end

and clearly the following is legal:E.a+1, sinceE.ahas typeint. However, consider
the following view ofE:

structure F : sig
type hidden
val a : hidden

end = E

This time, F.a gets typehidden, but F.a+1 is still legal: althoughF.a has type
hidden, the type-checker knows that “under the hood” the typehiddenis the same
as int, and the above expression type-checks. This is transparent matching: the
underlying type ofhiddenis transparently seen throughhidden. One problem with
transparent matching is that the signature does not contain enough information for

3.2. SIGNATURES 55

us to easily determine the actual types involve during type checking. One needs to
refer to the implementation (i.e. the structure) to get the full picture. This flies in
the face of having a signature define the interface that tells the whole picture.

What one often wants is a way to define truly abstract types at the module level,
that is modules containing types for which the signature contains all the required
information, and only such. This agrees well with most accounts of viewing sig-
natures as interfaces, and greatly increases the effectiveness of signatures to help
during integration of independently programmed components: requiring all the in-
formation about a module to be centrally described in a signature helps reduce the
amount of hidden dependencies one has to worry about.

To implement such a view of types in signatures, SML defines an operator:>
for so-called opaque signature matching, where all the information to be used in the
view is taken from the signature to be matched. Consider the following variation
on the previous examples:

structure G :> sig
type hidden
val a : hidden

end = E

Because of opaque matching (notice the use of:>), the type-checker does not
see thathiddenis implemented asint, and thereforeG.a+1 will fail with a type
error. Indeed, the only value of typehiddenis G.a, and since no operation can be
performed on values of typehidden, we cannot do anything with it, not even print
it!

It is easy to see how such an opaque matching operation supplants in function-
ality theabstypemechanism of Section 2.3. In fact, opaque signature matching can
even supplant transparent signature matching. We can specify in the signature the
implementation types of the types we want to make transparent. Consider:

structure H :> sig
type hidden = int
val a : hidden

end = E

Although opaque matching is used, we explicitely carry through the interface the
underlying type ofhidden. SoH.a+1 again type-checks. So opaque matching can
subsume transparent matching, at the cost of extra annotations in the signature. We
believe the modularity benefits are great enough that for the rest of these notes, we
shall use opaque matching (almost) exclusively. We will return to such issues in
Section 3.4.

As a final word on the subject of signature matching, consider the following
slight variation ofH above:

structure I :> sig
type hidden = int
val a : hidden

end = G

56 CHAPTER 3. THE MODULE SYSTEM

This fails to signature match! The problem is thatG, which is a view ofE with
hiddenabstract opaquely, does not match the signature given: since typehiddenis
abstract inG, it is not possible to “reveal” it as being anint. The signature contains
more information than the structure (or the view) itself! It is irrelevant that the
underlying structure isE. The viewG is what is being used to define viewI, and
only what is accessible through viewG is legal.

A generalization of type abbreviation is the “where type” construct, that can
annotate types inside already defined signatures. Consider the signatureHIDDEN
considered previously:

signature HIDDEN = sig
type hidden
val a : hidden

end

we can “instantiate” the implementation of the abstract type by

signature HIDDEN_IMPL = HIDDEN where type hidden = int

And in fact, “where type” specifications can be attached to any signature expression

structure H’ :> HIDDEN where type hidden = int = E

In fact, type abbreviations in signatures is just a “sugared” form of “where
type” specification. Indeed, a signature:

sig
type hidden = int
val a : hidden

end

is equivalent to:

sig
type hidden
val a : hidden

end where type hidden = int

Another useful construct isinclude, which allows a signature to be inlined into
another signature:

signature HIDDEN2 = sig
include HIDDEN
val b : hidden

end

Finally, we mention type sharing, which becomes extremely useful when we
consider functors in Section 3.3. A type sharing annotates a specification, and can
be used to specify the relationship of a type to other types. The difference with
wheretypes is thatwheretypes annotate signatures, not specificartions. Consider
the following signature:

3.2. SIGNATURES 57

sig
type s
type t

end

If we want to enforce thats and t always refer to the same underlying type, then
we can simply add a sharing specification:

sig
type s
type t sharing type t = s

end

Of course, in this case, the same effect can be achieved by the signature:

sig
type s
type t = s

end

The fact is that type sharing turns out to be most useful when used with structure
specifications. For example, if we declare the signature above with nameTEST:

signature TEST = sig
type s
type t

end

then we can express that substructuresA andB share the same types in the follow-
ing signature using a type sharing annotation:

sig
structure A : TEST
structure B : TEST sharing type B.s = A.s

end

In fact, sharing specifications for substructures are permitted a special form, re-
ally an abbreviation, which is often convenient. The sharing specification in the
following example:

sig
structure A : TEST
structure B : TEST sharing A = B

end

is just an abbreviation for:

sig
structure A : TEST
structure B : TEST sharing type B.s = A.s

and type B.t = A.t
end

There are many restrictions and subtleties in getting sharing properties to be-
have correctly. For example, sharing is not transitive. It is possible to specify that
structureA and structureB are shared, and that structureB and structureC are
shared, but not have structureA and structureC shared.

58 CHAPTER 3. THE MODULE SYSTEM

3.3 Functors

Nowhere is the use of signatures to provide interfaces to structures more useful
than in the definition of functors, which are the subject of this section.

A functor is a parametrized structure: it allows the definition of a structure
which depends on another structure, provided externally. Of course, we could
have the dependent structure simply access an external structure directly, but that
has two drawbacks: from a software engineering perspective, the drawback is that
looking at the code for the dependent structure does not reveal anything about what
is needed from the external structure, short of carefully analyzing the code; from a
program architecture perspective, it makes the code less reusable, since we cannot
easily reuse the dependent structure code with a different external structure without
going in and manually change all the references to the external structure (although
one could use the abbreviation approach to alleviate this problem). To make this
discussion more concrete, consider the example from earlier in this chapter, about
implementing queues from stacks. Our implementation ofQueue2uses the struc-
tureRevStackexplicitely to manage the stacks making up the queue.

Assume now that we have another implementation of reversible stacks, say
RevStack2(we will see one such later). If we wanted to implement queues using
that alternative definition of stacks, we would need to either change the code in
Queue2, or duplicate and rename the code to useRevStack2. Either way, not a
pleasing prospect. The real trouble is in fact more subtle: which assumptions
does theQueue2implementation make on the functionality provided by reversible
stacks? We can rather easily read off which functions and valuesQueue2expects
RevStackto provide, but what about their types? Moreover, what ifQueue2relied
on two external structuresA andB, what about the relationship between the types
in A andB as used inQueue2?

What we need to get this to work is a single place where we can “encapsu-
late” all the dependency information thatQueue2expectsRevStackto provide. But
we have already seen such a mechanism for specifying information about what a
structure provides: a signature! Clearly, we can write (or derive) a signature for
what functionalityQueue2expects, as well as the types expected andRevStackcan
be used as an external implementation if it matches the signature. Moreover, any
other structure matching the signature could be used in place ofRevStack.

In order to help implement this approach to modular programming, SML pro-
vides functors, which are a convenient way of achieving this effect. A functor is
declared through

functor FooFun (X: sig-exp) = struct-exp

wheresig-expis a signature. Instantiating such a functor, giving it a structure will

3.3. FUNCTORS 59

bindX to that structure in the body of the functor, and create the appropriate struc-
ture. Instantiating a functor is akin to applying a function. Consider the following
functor definition for building a queue from a reversible stack implementation:

functor Queue2 (S:REV_STACK) = struct
type ’a queue = (’a S.stack * ’a S.stack)
val empty = (S.empty,S.empty)
fun isEmpty ((inS,outS):’a queue):bool =

S.isEmpty (inS) andalso S.isEmpty (outS)
fun enqueue ((inS,outS):’a queue,x:’a):’a queue =

if (S.isEmpty (outS))
then (inS,S.push (outS,x))

else (S.push (inS,x),outS)
fun head ((inS,outS):’a queue):’a =

if (S.isEmpty (outS))
then raise Empty

else S.top (outS)
fun dequeue ((inS,outS):’a queue):’a queue =

if (S.isEmpty (outS))
then raise Empty

else let
val _ = S.top (outS)
val xs = S.pop (outS)

in
if (S.isEmpty (xs))

then (S.empty,S.rev (inS))
else (inS,xs)

end
end

Instantiating the functor is a simple matter:

structure QueueSt = QueueStFun (RevStack)
structure QueueSt2 = QueueStFun (RevStack2)

Note that we have just used the functor to create queue structures based on re-
versible stacks, one using the originalRevStackimplementation, and one using
an unspecifiedRevStack2implementation. For the unashamed purpose of getting
more experience writing functors, let us write theRevStack2implementation. To
start with, let us first write a structureStack2containing an alternative implemen-
tation of stacks, to which we will add reversibility through the use of yet another
functor.

The implementation ofStack2relies on the observation that we can represent
a stack by a function which returns an element and a function that will return the
next element of the stack. With this view in mind, consider the following code:

60 CHAPTER 3. THE MODULE SYSTEM

structure Stack2 : STACK = struct
datatype ’a stack = St of (unit -> (’a * ’a stack))
exception Empty
val empty = St (fn () => raise Empty)
fun isEmpty (s:’a stack):bool = let

val St (f) = s
in

(f (); false) handle _ => true
end
fun push (s:’a stack,x:’a):’a stack =

St (fn () => (x,s))
fun top (s:’a stack):’a = let

val St (f) = s
val (x,_) = f ()

in
x

end
fun pop (s:’a stack):’a stack = let

val St (f) = s
val (_,s’) = f ()

in
s’

end
end

Recall thatSTACKwas defined on page??. It is not quite what we need,
since we need a reverse operation on functional stacks. In a very general way, we
can write a functor to turn any functional stack into functional reversible stack, as
follows:

functor RevStackFun (structure S:STACK): REV_STACK = struct
type ’a stack = ’a S.stack
exception Empty = S.Empty
val empty = S.empty
val isEmpty = S.isEmpty
val push = S.push
val pop = S.pop
val top = S.top
fun rev (s:’a stack):’a stack = let

fun pop_all (s:’a stack):’a list = if (S.isEmpty (s))
then []

else (S.top (s))::pop_all (S.pop (s))
fun push_all (l:’a list,s:’a stack):’a stack =

(case l
of [] => s

| e::es => push_all (es,S.push (s,e)))
in

push_all (pop_all (s),S.empty)
end

end

Finally, we can instantiateRevStack2by a suitable functor application:

structure RevStack2 = RevStackFun (structure S = Stack2)

Note that the signature of the functor argument is ascribed to the argument at
functor instantiation, guaranteeing that the functor cannot access elements of the

3.3. FUNCTORS 61

argument structure which are not specified in the signature. Note also that we can
also specify a signature for the result of the functor:

functor QueueStFun (S:REV_STACK) : QUEUE = struct
...

end

and similarly, we can specify opaque matching for the result using:> instead of:
to specify the functor result signature.

The above declaration takes care of functors parametrized with a single argu-
ment. What if we need a structure parametrized via two or more different struc-
tures? The problem, and its solution, is akin to the similar phenomenon that occurs
for functions in the Core language. Recall that we have defined functions to take
single argument. We managed to pass multiple arguments to a function by pass-
ing in a single tuple of values, that is a package containing multiple values. We
can apply a similar trick to “pass” multiple structures to a functor: by wrapping
those structures into a single structure! Again, let us be concrete, and consider
the following somewhat artificial example. Suppose we wanted to parameterize a
structure through two substructuresA andB considered independent. As we men-
tioned above, we can simply have the functor expect a structure containing those
two substructures, and at the time of functor application, we can simply create the
packaging structure directly:

functor FooFn (Arg : sig
structure A : A_SIG
structure B : B_SIG

end) = body using Arg.A and Arg.b

and

structure Foo = FooFn (struct
structure A = A
structure B = B

end)

This pattern is so common that an appropriate abbreviation has been introduced in
the Definition to handle this: we can simply forget about the surrounding structure
and pass in the specification of the elements of the structure directly. Thus, the
above example can be rewritten:

functor FooFn (structure A : A_SIG
structure B : B_SIG) = ...

structure Foo = FooFn (structure A = A
structure B = B)

An added benefit of this notation is that we can seemingly parameterize a structure
over any value or type, not just a full structure (of course, it all gets wrapped in a
structure, but one forgets after a while...). For example:

62 CHAPTER 3. THE MODULE SYSTEM

functor BarFn (type foo
val a : foo) = ...

which, again, is simply an abbreviation for the less impressive:

functor BarFn (Arg : sig
type foo
val a : foo

end) = ... <using Arg>

It is instructive to see how the abbreviation is implemented, i.e. what it ab-
breviates. Returning to the above example, the Definition specifies the following
rewrite (the added stuff is in italics):

functor FooFn (uid : struct
structure A : A_SIG
structure B : B_SIG

end) = struct
local

open uid
in

<body>
end

end

The use ofopen in the rewrite explains why we do not need to be bothered by
the fact that we never specify a name for the automatically generating packaging
structure. This is one of the few uses ofopenupon which we will not frown.

This dual way of defining functors is slightly disconcerting at first, if not down-
right confusing. If you see a functor with more than one argument, it must use the
second form. If a functor has one argument, either form may be used: if thestruc-
ture keyword appears, it uses the second form, otherwise it uses the first form.
Because of this duality, for the sake of consistency, in these notes, we shall use the
second form exclusively, although it is slightly more verbose in the single-argument
case. On the other hand, it does provide for slightly more explicit documentation.

3.4 Programming with modules

Notes

The original version of the module system was described by MacQueen in [64],
and was inspired by a design [66] for an earlier functional language, HOPE [20]
(in fact, from the associated specification language CLEAR [19]). The original
module system (implemented in the SML’90 version of the language) did not have
opaque signature matching or type abbreviations in signatures, and included a no-
tion of structure sharing distinct from the type sharing discussed in Section 3.2.
In essence, in SML’90, every structure had a unique static identity, and structure

3.4. PROGRAMMING WITH MODULES 63

sharing allowed one to specify not only that types in two structures were the same,
but also that actual values in two structures were the same. Structure sharing was
found difficult to teach and only marginally useful, so it was dropped in the SM-
L’97 revision of the language. Type sharing, much more useful and necessary to
get functorization to work properly, was kept. Dropping structure sharing turned
out to greatly simplify the theory of the module system. Although the original ver-
sion of the module system (as implemented in SML/NJ) did not provide opaque
signature matching, it had anabstractiondeclaration (an alternative tostructure)
which played a similar role. It was less general than what is now present, since it
was not possible to opaquely specify the signature of a functor. Theabstraction
declaration was not part of SML’90.

These changes have mostly been the result of extensive work on the theory of
module systems, which was aimed at understanding the static semantics of mod-
ules, that is the meaning and propagation of the types. Important work include
the initial work of MacQueen on dependent types [65], the work of Harper and
Mitchell [48], and subsequently work by Leroy [60] and Harper and Lillibridge
[47], and more recently Russo [96].

One benefit of such theoretical studies was to provide a basis for investigat-
ing extensions to the module system. For example, SML/NJ provides higher-order
functors, that is functors that can be part of structure declarations and functor bod-
ies [67]. We will examine higher-order functors in more detail in Chapter??. Other
extensions considered in the literature include first-class modules [47, 97], recur-
sive modules [25, 27], dynamically replaceable modules [38] and modules with
object-oriented style inheritance [76].

Other important work focused on investigating the relationship between mod-
ule systems and object systems. That modules and objects served fundamentally
different purposes was recognized among others by Szyperski [103] and systems
incorporating both modules and objects include OCaml [63] and Moby [31]. For
the latter, the integration was designed so as to clearly delineate the roles of both
modules and objects. For example, Moby does not provide any privacy annota-
tion on class members, such a hiding role being releguated to the module system
through signature ascription. Still to be investigated is the relationship between
module systems and mixins [18], as well as component systems [104]. A prelimi-
nary design of a module system based on a notion of components can be found in
[89].

Turning to different module systems, OCaml has a module system similar in
essence to SML, based on the work of Leroy [60, 61]. Differences include the
fact that signature matching is implicitely opaque. Transparency can be achieved
through type abbreviations in signatures. Other functional language also have
powerful module systems, a good example of which being the Units system of

64 CHAPTER 3. THE MODULE SYSTEM

MzScheme [34], a compiler for Scheme [56].
The roots of module-based programming abstractions can be traced back to

Modula-2 [115], ideas of which survive in such languages as Modula-3 [83], Oberon
[116] and Component Pascal [84]. Modules in such languages are more static and
do not emphasize the role of types in the same way as SML modules do.

We saw in the previous chapter that polymorphism is studied in the abstract us-
ing the polymorphicλ-calculus. Module systems are studied using another variant
of theλ-calculus, calledF<: (pronounced F-sub) [21], a polymorphicλ-calculus
with subtyping and dependent types. Subtyping is useful to reason about signature
matching, while dependent types (types which may depend on the value of expres-
sions) are useful to model the fact that structures (which are expressions) can define
types. Dependent types can easily make type checking undecidable, and for vari-
ous reasons a technical requirement called the phase distinction is often imposed.
Roughly speaking, a module system supports a phase distinction if it is possible to
reason about the type of an expression without having to reason about the value of
other expressions, even in the presence of dependencies [48].

Chapter 4

The Basis Library

Like any language that attains a certain level of standardization, SML supports a
standard library providing basic support for basic type conversions, list, vector and
array operations, as well as input and output, date and time operations, and various
levels of system calls. This library, called the Basis Library (or simply the Basis) is
supported by most implementations of SML, and greatly help writing code portable
across implementations.

In this chapter, we provide an overview of the Basis, and a tutorial on the uses
and conventions followed by the system. It is useful to know those conventions.
They allow one to quickly find a specific functionality, and if followed in one’s own
code, they allow the code to use the operations of the Basis directly on one’s data.
This will become clear when we discuss, for instance, stream readers in Section
4.3.

Throughout these notes, I will often present interfaces to structures available
through various libraries. A general convention is followed to present such inter-
faces: when many different structures implement the same signature, I give the
signature a name and present its declaration, as in:

signature FOO = sig ... end

when a single structure is available implementing a given interface, I will often
directly the structure name and implemented signature, as in:

structure Foo : sig ... end

4.1 Overview

The Basis is a collection of modules predefined in the compiler’s environment.
Roughly half of the library is concerned with providing operations on values of

65

66 CHAPTER 4. THE BASIS LIBRARY

various types, including integers, reals, strings, lists, vectors and arrays. The han-
dling of substrings in strings is much refined by the introduction of asubstring
type that does not copy its elements from the underlying string. Conversion of val-
ues to and from strings is supported through a standard interface that can be used
by user-defined types, and the interface interacts nicely with the input and output
subsystem.

The second half of the library addresses system programming: implementa-
tion of basic input and output primitives, with support both stream and imperative
implementations; system calls including handling for dates, times, processes, file
system operations; and for Posix-compliant systems, a Posix interface compatible
with the input and output operations elsewhere in the library. A tentative compo-
nent of the library, the support for sockets, will be discussed in detail in Chapter
??.

Some general remarks are in order before diving into the details of the provided
structures, having to do with various conventions set down by the designers of the
Basis, and which we will ourselves follow in the remainder of these notes.1. Most
of the conventions have to do with naming. The name of value variables (val and
fun bindings) are in mixed upper and lowercase, with a leading lower case. Type
identifiers are all lower case, with underscores separating words. Signature identi-
fiers are all upper case, with underscores separating words. Structure and functor
identifiers are mixed upper and lower case, with the initial letter of words capital-
ized. Datatypes constructors use the convention for signature identifiers (except in
a few specific cases), and exception identifiers use the convention for structures.

Various conventions apply not only to the form of names, but to the use of
names. There has been an effort to consistently use the same name for similar op-
erations in different contexts. For example, many data structures allow amapand
an app operation (see Section 4.4); any data structure where such operations are
defined will name these operationsmapandapp (for example,List.map, List.app,
Vector.map, Vector.app, etc.) Many structures define types with an associated com-
parison function: for a typeT, the comparison function

val compare : T * T -> order

returns a value of typeorder (defined in structureGeneral, but exported to top-
level) defined as follows:

datatype order = LESS | EQUAL | GREATER

1Particularly, these conventions are followed by the SML/NJ Library, to which we will return in
Chapter 7.

4.1. OVERVIEW 67

with the obvious interpretation. From this comparison function, the relational op-
erators>,>=,< and<= are derived with their expected semantics. For exam-
ple, x>y if and only if compare (x,y) = GREATER, and so on. If moreoverty
is an equality type (see Section 2.9), the operators= and<> can be derived as
well. Types which have a clear linear ordering are provided with acomparefunc-
tion and the appropriate relational operators, whereas abstract types (for example,
OS.FileSys.fileid) provide simply acomparefuction, which can be used with an
implementation of ordered binary trees.

On a related note, many structures define types with various conversion func-
tions to and from other types. When it is clear which type is being converted
(when, for example, the structure declares a single type), we use the naming con-
vention toT and fromT to name conversion functions to typeT and from typeT.
For example, in theWORDsignature, we find the conversion functions

val fromInt : Int.int -> word
val toInt : word -> Int.int

When a structure defines multiple types, we use the naming conventionT toTT and
TT fromT , for conversions between typesT andTT.

A special case of conversion function occurs for many data structures: conver-
sion to and from strings. We will study such conversions in Section 4.3, where we
introduce a generalization of string conversions based on character readers.

As a final convention, functions which perform side-effects are unit-valued,
that is they return a value of typeunit.

The structure General

We can now start our description of the actual content of the Basis. The first struc-
ture of interest isGeneral, which provides exceptions, types and functions that are
useful throughout the Basis. The signature ofGeneralis given in Figure 4.1. All
the declarations inGeneralare available at top-level. Most of the functions (!,:= ,
o) and types (unit,exn) we have seen back in Chapter 2, where they were consid-
ered primitives. We can focus here on the remaining functions. Two functions for
handling exceptions are provided:exnNamethat returns a string corresponding to
the name of the exception given as an argument andexnMessage, returning a string
with an implementation-specific message corresponding to the exception given as
an argument. The message contains at least the name of the exception as returned
by exnName. The functionbeforeis a convenient notation for the following ex-
pression:

let
val x = a

in
b ; x

end

68 CHAPTER 4. THE BASIS LIBRARY

structure General : sig
eqtype unit
type exn
exception Bind
exception Chr
exception Div
exception Domain
exception Fail of string
exception Match
exception Overflow
exception Size
exception Span
exception Subscript
val exnName : exn -> string
val exnMessage : exn -> string
datatype order = LESS | EQUAL | GREATER
val ! : ’a ref -> ’a
val := : (’a ref * ’a) -> unit
val o : ((’b -> ’c) * (’a -> ’b)) -> ’a -> ’c
val before : (’a * unit) -> ’a
val ignore : ’a -> unit

end

Figure 4.1: The structureGeneral

which first evaluatesa thenb, and returns the value ofa. Clearly, in such a context,
b is evaluated solely for its side-effects, since its value is discarded. In a similar
vein, ignore is a function that evaluates its argument and returns(). The result of
the computation is discarded and thus the argument toignore is evaluated simply
for its side-effects. Because of the call-by-value nature of SML, the definition of
ignore is simply

fun ignore _ = ()

4.2 Basic types

Having given a general overview of the Basis and described the general structures,
we are ready to dive into the first half of the library, concerned with the handling
of various types of values. We focus on simple values in this section, on strings in
the next section, and on aggregate data structures in the next.

The Basis adds a great many operations that can handle values of basic types
to the ones given in Chapter 2. In fact, the basic operations of Chapter 2 are simply
top-level bindings for some of the declarations in the appropriate structures of the
Basis.

4.2. BASIC TYPES 69

structure Bool : sig
datatype bool = datatype bool
val not : bool -> bool
val fromString : string -> bool option
val scan : (char, ’a) StringCvt.reader -> ’a -> (bool * ’a) option
val toString : bool -> string

end

Figure 4.2: The structureBool

structure Option : sig
datatype ’a option = NONE | SOME of ’a
exception Option
val getOpt : (’a option * ’a) -> ’a
val isSome : ’a option -> bool
val valOf : ’a option -> ’a
val filter : (’a -> bool) -> ’a -> ’a option
val join : ’a option option -> ’a option
val map : (’a -> ’b) -> ’a option -> ’b option
val mapPartial : (’a -> ’b option) -> ’a option -> ’b option
val compose : ((’a -> ’b) * (’c -> ’a option)) -> ’c -> ’b option
val composePartial : ((’a -> ’b option) * (’c -> ’a option)) -> ’c -> ’b option

end

Figure 4.3: The structureOption

Booleans

Figure 4.2 gives the signature forBool, the booleans structure. Aside from the
functionnot, seen in Chapter 2, it provides string conversion functions. Since these
appear in most structures for basic types, we will not mention them in descriptions
such as these, aside from here. The functionsfromStringandtoStringconvert back
and forth between boolean values and the string ”true” and ”false” (ignoring case
and initial whitespace). Thescanfunction is a more general form offromStringthat
can read booleans from any suitable source of characters. We return to scanning in
Section 4.3.

Options

Recall from Chapter 2 that options are values of the formSOME (v)or NONE, and
are used to represent values which can be present or not. TheOption structure,
whose signature is given in Figure 4.3, defines the option type and common oper-
ations that can usefully deal with option values. Note that most of these functions

70 CHAPTER 4. THE BASIS LIBRARY

are easy to write directly, but are provided for convenience. The option is defined
as a datatype:

datatype ’a option = NONE | SOME of ’a

The functionsgetOpt, isSomeand valOf can be used to decompose option
values: getOpt (opt,a)returnsv if opt is SOME (v), a otherwise; isSome (opt)
returnstrue if and only if opt is SOME (v); valOf (opt)returnsv if opt is SOME
(v) and raises theOption exception otherwise. AlthoughvalOf is provided, it is
usually bad as a matter of style to use it to extract the value of an optional value. It
is usually better to pattern-match the optional value. The reason for this is related to
the convention behind the use of optional values and exceptions: exceptions should
be used for truly exceptional cases, while optional values should be used when not
having a result is quite reasonable. Therefore, havingvalOf raising an exception
for that case is counter-conventional. All of these functions are also available at
top-level (as is the type definition itself). To show that these functions are indeed
easy to define, consider the definition ofgetOpt

fun getOpt (SOME v,_) = v
| getOpt (NONE,a) = a

The remaining functions are combinators that manipulate option values. The
curried functionfilter f a takes a boolean-valued functionf and returnsSOME (a)
if f a is true andNONEotherwise. The functionjoin eliminates multiple layers of
options:join NONEis NONE, join (SOME (v))is v whenv is itself an option value.
The various map functions apply a given function to option values:map f areturns
NONE if a is NONE, andSOME (f (v))if a is SOME (v); mapPartial f areturns
NONEif a is NONE, and returnsf (v) (which returns an option value) ifa is SOME
(v). The expressionmapPartial f is equivalent tojoin o (map f).

The difference between these two functions is not clear, but there are instances
when one or the other is needed. Fundamentally,mapexpects atotal function f,
that always returns a value;mapPartial is satisfied with apartial function, that is
a function that returns either a value orNONE, and if the function is not defined
on the input (i.e. returnsNONE), it acts as if the input wasNONE. In effect, in
mapPartial, there are two distinct semantical uses of options: one to describe the
optionality of the argumenta, and one to describe the partiality of the functionf.

The final functions are more involved, but follow the above pattern. They are
better understood when viewed as acting on partial functions in the sense defined
above. The functioncompose (f,g) atakes a functionf and a partial functiong:
if g (a) returnsNONE, the overall call returnsNONE; if g (a) returnsSOME (v),
thenSOME (f (v))is returned. In effect, we getf composed withg, with a re-
sult depending on whetherg is defined for the supplied argument. The function

4.2. BASIC TYPES 71

composePartial (f,g) ais similar, but here bothf andg are partial functions. A
definition ofcomposePartialis illustrative:

fun composePartial (f,g) a =
(case g a

of NONE => NONE
| SOME v => (case f v

of NONE => NONE
| SOME v’ => SOME (v’)))

Characters

The signatureCHARgiven in Figure 4.4 is matched by at least one structure in
the Basis, theChar structure, that provides operations on characters. Although
no assumption is made in general as to the encoding of characters, the signature
defines operations assuming that characters are linearly ordered and that there is a
mapping from characters to integers that preserves the ordering. TheCharstructure
required by the Basis specification declares a superset of the ASCII character set.
The optionalWideCharstructure (also matchingCHAR) declares a representation
of characters in terms of a fixed number of bytes.2

Recall from Chapter 2 that characters constants are written#”x” for some char-
acterx. This value is a value of typeChar.char. Thechar type is declared to be
an equality type, that is characters can be compared for equality. Functions for
comparing characters and walking the underlying linear order include:minChar
andmaxChar, returning the minimum and maximum characters in the ordering,
succandpred, returning the next and previous character of a given character in the
ordering, as well as the relational operators<,<=,>,>= and acomparefunction
as described in Section 4.1. Functionsord andchr convert a character to an integer
value and back. The functionchr raises aChr exception if the integer does not
correspond to a character.

The functionscontainsandnotContainstake a string and a character as argu-
ments and check whether the character appears (or not) in the string. Both are
boolean-valued. The functionstoUpperandtoLowerconvert a character to its up-
percase (respectively lowercase) form. They leave the character unchanged if the
character is not a letter.

A wide class of functions in theCHARsignature provide tests for various class-
es of characters, avoiding the need to remember numeric constants. This is a good
idea since numeric constants are non-portable across different character encodings.
Table 4.1 presents the the available functions.

Conversion to and from strings is done using the standardtoString, fromString
andscan. FunctionstoCStringandfromCStringare also provided: the difference

2Release 110 of SML/NJ does not supply aWideCharstructure.

72 CHAPTER 4. THE BASIS LIBRARY

signature CHAR = sig
eqtype char
eqtype string
val minChar : char
val maxChar : char
val maxOrd : int
val ord : char -> int
val chr : int -> char
val succ : char -> char
val pred : char -> char
val < : (char * char) -> bool
val <= : (char * char) -> bool
val > : (char * char) -> bool
val >= : (char * char) -> bool
val compare : (char * char) -> order
val contains : string -> char -> bool
val notContains : string -> char -> bool
val toLower : char -> char
val toUpper : char -> char
val isAlpha : char -> bool
val isAlphaNum : char -> bool
val isAscii : char -> bool
val isCntrl : char -> bool
val isDigit : char -> bool
val isGraph : char -> bool
val isHexDigit : char -> bool
val isLower : char -> bool
val isPrint : char -> bool
val isSpace : char -> bool
val isPunct : char -> bool
val isUpper : char -> bool
val fromString : String.string -> char option
val scan : (Char.char, ’a) StringCvt.reader -> ’a -> (char * ’a) option
val toString : char -> String.string
val fromCString : String.string -> char option
val toCString : char -> String.string

end

Figure 4.4: The signatureCHAR

4.2. BASIC TYPES 73

Function Checks for...
isAlpha letter
isUpper uppercase letter
isLower lowercase letter
isAlphaNum letter or decimal digit
isAscii seven-bit ASCII character
isControl control character (non-printable)
isDigit 0-9
isGraph graphical (printable but not whitespace)
isHexDigit 0-9,A-F,a-f
isPrint printable character (whitespace or visible)
isSpace whitespace (space,newline, tab,CR,vtab,FF)
isPunct punctuation (graphical but not alphanumeric)

Table 4.1: Character class tests

lies in how the escape sequences are converted:toString/fromString/scanuse SML
escape sequences, whiletoCString/fromCStringuse C escape sequences.

Strings

The discussion on characters leads us straight into a discussion of character strings.
Figure 4.5 gives the signatureSTRINGdeclaring the operations on strings. For ev-
ery type of character encoding (that is for every structure matchingCHAR), there
is a corresponding structure matchingSTRING. SinceChar is a required structure
in the Basis, the corresponding structureString is also required. IfWideCharis
available, a structureWideString(strings made up of wide characters) should al-
so be provided. TheSTRINGsignature specifies a substructure matchingCHAR,
which is simply the structure implementing the character encoding that the partic-
ular implementation of strings uses.

Functions in theSTRINGsignature manipulate strings in many ways. The con-
stantmaxSizegives the size of the largest string that can be written for the current
system. The functionsize(also available at top-level) gives the number of char-
acters in the string, whereassubreturns the character at the given position in the
string. Note that string positions (subscripts) range from0 to the size of the string
minus1. An exceptionSubscript(from the structureGeneral) is raised if the sub-
script is out of range. To extract substrings, one can either useextractor substring:
substring (s,a,b)returns a new string made up of theb characters ins starting ata;
extractis a bit more flexible, taking anint optionas a last argument, so thatextract

74 CHAPTER 4. THE BASIS LIBRARY

signature STRING = sig
eqtype string
structure Char : CHAR
val maxSize : int
val size : string -> int
val sub : (string * int) -> Char.char
val extract : (string * int * int option) -> string
val substring : (string * int * int) -> string
val concat : string list -> string
val ˆ : (string * string) -> string
val str : Char.char -> string
val implode : Char.char list -> string
val explode : string -> Char.char list
val map : (Char.char -> Char.char) -> string -> string
val translate : (Char.char -> string) -> string -> string
val tokens : (Char.char -> bool) -> string -> string list
val fields : (Char.char -> bool) -> string -> string list
val isPrefix : string -> string -> bool
val compare : (string * string) -> order
val collate : ((Char.char * Char.char) -> order) -> (string * string) -> order
val < : (string * string) -> bool
val <= : (string * string) -> bool
val > : (string * string) -> bool
val >= : (string * string) -> bool
val fromString : String.string -> string option
val toString : string -> String.string
val fromCString : String.string -> string option
val toCString : string -> String.string

end

Figure 4.5: The signatureSTRING

4.2. BASIC TYPES 75

(s,a,SOME (b))is the same assubstring (s,a,b), butextract (s,a,NONE)returns the
full suffix of sstarting at positiona.

Not only can one extract portions of a string, but one can also concatenate
strings together: the function̂takes two strings and concatenates them together
(the function is available at top-level in an infix form), while the functionconcatis
more general, taking a list of strings and concatenating them together in the order
in which they appear in the list. A functionstr converts a character to the string
made up of only that character.

Other functions handle strings by transforming them. In many ways, the basic
functions for string transformation are reducible toexplodeand implode, which
convert a string to and from a list of the characters. One can then use the full range
of list functions to process the string (see Section??). Simple instances of the kind
of functions one can write that way warrant their own functions (avoiding the need
to perform the conversion explicitely, and potentially allowing for faster implemen-
tations). The functionmaptakes a function mapping characters to characters and
translates every character in the string according to that function, yielding a new
string. This function is equivalent to:

fun map f = implode o (List.map f) o explode

For the sake of clarity, we can express this as:

fun map f x = implode (List.map f (explode s))

More generally,translatetakes a function mapping characters to strings, and trans-
lates every character in the input string according to the function, concatenating the
results. Again, this can be expressed by:

fun translate f = concat o (List.map f) o explode

The next two functions,tokensandfields, are used to split a string into con-
stituent substrings, given a definition of “delimiting characters” to separate the
constituent substrings. A token is a non-empty maximal substring not containing
any delimiting character, whereas a field is a possibly empty maximal substring
not containing any delimiting characters. The string is scanned from left to right.
The set of delimiting characters is represented by a predicatechar→bool return-
ing true for delimiting characters,falseotherwise. In practical terms, fields can
be empty, while tokens never are. For example, if we assume#”:” as a delim-
iter (that is, using a predicatefn (#”:”:char) => true ‖ => false), then the
tokens of the string”10::20:30::40” are[”10”,”20”,”30”,”40”] and the fields are
[”10”,””,”20”,”30”,””,”40”] .

76 CHAPTER 4. THE BASIS LIBRARY

Comparison functions for strings include the standard functioncompare, and
the relational operators<,<=,>,>= (and since strings are equality types,=), a-
long with a few specific comparison functions. The functionisPrefix s1 s2returns
true if s1is a prefix ofs2, whereascollatederives the lexicographic order on strings
based on the given ordering on characters. For example, thecomparefunction can
be expressed as:

val compare = collate Char.compare

since the standard ordering on strings is derived from the standard ordering on
characters. If we wanted an ordering on strings that was insensitive to the case
of the letters, we would first need to define a corresponding order on characters
insensitive to case:

fun ciCharCompare (c1,c2) = let
val c1’ = Char.toLower (c1)
val c2’ = Char.toLower (c2)

in
Char.compare (c1’,c2’)

end

This ordering is then extended to a lexicographic order on strings:

val ciStringCompare = String.collate ciCharCompare

We can verify this:

- ciStringCompare ("this","ThIs");
val it = EQUAL : order
- ciStringCompare ("def","ABC");
val it = GREATER : order

Finally, conversions functions to and from strings are provided. It may seem
odd that functions to convert strings to strings exist, but the words “strings” takes
on two meanings. The functionfromStringtakes a string as an SML source pro-
gram string, and converts it into a string with all escape sequences converted to the
appropriate characters. For example, we can convert the stringḧi
n¨ (notice, 4 characters) and applyfromStringto convert this string to a string con-
taining the actual character#¨
n¨ (thus, a string of length 3). Conversely,toString takes a string and converts it
into a source string, with all non-printable characters converted to the appropriate
escape sequences. The functionfromCStringandtoCStringwork similarly, but use
C escape sequences rather than SML escape sequences (as we saw in theCHAR
signature earlier in this section). These functions are mostly useful when dealing
with tools to process source code, as we need to read our output

4.2. BASIC TYPES 77

signature INTEGER = sig
eqtype int
val toLarge : int -> LargeInt.int
val fromLarge : LargeInt.int -> int
val toInt : int -> Int.int
val fromInt : Int.int -> int
val precision : Int.int option
val minInt : int option
val maxInt : int option
val ˜ : int -> int
val * : (int * int) -> int
val div : (int * int) -> int
val mod : (int * int) -> int
val quot : (int * int) -> int
val rem : (int * int) -> int
val + : (int * int) -> int
val - : (int * int) -> int
val compare : (int * int) -> order
val > : (int * int) -> bool
val >= : (int * int) -> bool
val < : (int * int) -> bool
val <= : (int * int) -> bool
val abs : int -> int
val min : (int * int) -> int
val max : (int * int) -> int
val sign : int -> Int.int
val sameSign : (int * int) -> bool
val fmt : StringCvt.radix -> int -> string
val toString : int -> string
val fromString : string -> int option
val scan : StringCvt.radix -> (char, ’a) StringCvt.reader -> ’a -> (int * ’a) option

end

Figure 4.6: The signatureINTEGER

78 CHAPTER 4. THE BASIS LIBRARY

Integers

Integers come in many flavors, all of them signaed, all of them matching the sig-
natureINTEGERgiven in Figure 4.6. The following structures are required for
Basis compliance:Int, FixedInt, LargeInt, Position. The structureInt implements
the “default” integer type, since the top-levelint is defined to beInt.int. Structure
FixedInt is the largest fixed integers,LargeInt the largest arbitrary precision inte-
gers, andPositionis the type of file positions (in files and input/output streams, see
Section 4.5). SML/NJ furthermore providesInt32, Int31 (for which Int is just an
abbreviation), andInt8. A structureIntInf for arbitrary precision integers is pro-
vided by SML/NJ, but as part of the SML/NJ Library (discussed in Chapter 7). It
provides most of the functionality specified by theINTEGERsignature.

The INTEGERsignature specifies functions to convert to and from different
kind of integers:toLargeandfromLargehandle conversions to and fromLargeIn-
t.int values, guaranteed to be the largest representable integers, whereastoInt and
fromInt convert to and from the default integer type. The value ofprecisionspeci-
fies a precision ofSOME vfor fixed precision integers orNONEfor arbitrary pre-
cision integers. The value ofmaxIntandminIntare the representation of the largest
and smallest integer, if applicable. Standard arithmetic operations∼ (negation),+
(addition),- (subtraction) and* (multiplication) are provided. Integer division op-
erations are also provided, in two flavors: adiv/modpair and aquot/rempair. The
operationi div j is the truncated quotient of the division ofi by j, rounded towards
negative infinity, whilei mod j is the remainder of the division ofi by j with the
same sign asj. On the other hand,quot (i,j) is the truncated quotient of the division
of i by j, but rounded towards zero, whilerem (i,j) is the remainder of the division
of i by j of the same sign asi. In practice div andmod are the mathematically
appropriate operations, butquot and rem follow the semantics of most hardware
divide instructions, and thus may be faster than their counterparts. In all integer
division operations,Overflowis raised if the result is not representable, andDiv is
raised if the divisor is0.

Other standard operations includeabs, max, min for respectively the absolute
value of an integer and the maximum and minimum value of a pair of integers.
The functionsign returns 1,-1 or 0 depending on whether the integer is positive,
negative or equal to 0, whilesameSignreturnstrue if and only if the two integers
have the same sign.

Comparison functions are the standard ones:compareand the relational op-
erators (since integers are equality types,= is also defined for integers). Con-
version functions to and from strings are a bit more flexible, as they allow the
use of a different radix or number base for the representation. FunctionstoString
and fromStringuse the decimal representation exclusively, whilescan takes an

4.2. BASIC TYPES 79

extra argument, a radix, taken from structureStringCvt(see Section 4.3), that de-
scribes the number base in which the integer is to be read. Interesting radix val-
ues includeStringCvt.BIN(for binary, base 2),StringCvt.OCT(for octal,base 8),
StringCvt.DEC(for decimal, base 10) andStringCvt.HEX(for hexadecimal, base
16). The functionfmt converts an integer to a string according to the given number
base. Thus,toString i is equivalent tofmt StringCvt.DEC i.

Words

As we saw in Chapter 2, words are unsigned integers with the usual arithmetic
operations, as well as operations acting on the underlying bit representation of
the value. Words potentially give efficient access to the primitive machine word
types. The signatureWORDgiven in Figure 4.7 describes the provided operations.
SML/NJ implements various structures matching signatureWORD, for different
sizes of words:Word32, Word31, Word8respectively implement words of 32, 31
and 8 bits. The structureWord is an abbreviation for structureWord31.

The arithmetic operations provided on words are similar to those in theINTE-
GERsignature, with minor differences. Conversion functions to and from other
word types and integers are provided in many flavors. The valuewordSizegives
the number of bits a word value (soWord8.wordSizeis 8, and so on). The function-
s toLargeWord, toLargeWordXandfromLargeWordconvert to and from values of
typeLargeWord.word. The functiontoLargeWordXconverts while performing sign
extension: iftoLargeWordXis applied to a wordw whose leading bit (the leftmost
bit in the binary representation ofw) is b, so thatw=bX for some string of binary
digits X, then the result of the conversion will bebb...bX. The name “sign exten-
sion” comes from the fact that when the words are viewed as two’s complement
representation for integers, sign extending preserves the sign of the represented in-
tegers. The functionfromLargeWordstores a value modulo2ws wherews is the
word size. The functionstoLargeInt, toLargeIntXand fromfromLargeIntconvert
to and from values of typeLargeInt.int: for toLargeInt, the argument is assumed
to be an integer in the range[0, 2ws − 1] wherews is the word size (Overflow
is raised otherwise), fortoLargeIntX, the word is treated as a two’s complement
signed integer representation. The functionfromLargeIntstores the two’s com-
plement representation of the integer. The functionstoInt, toIntX andfromInt are
similar, but convert to and from values of typeInt.int. For fromInt, the integer is
sign extended prior to conversion if the precision ofInt.int is less thanwordSize.

The arithmetic operations+ ,-,* ,min,maxare provided. The functionsdiv and
modreturn the quotient and remainder of the division of their arguments, viewed
as unsigned binary numbers. None of these raiseOverflow, but div andmodraise
Div if the divisor is equal to0.

80 CHAPTER 4. THE BASIS LIBRARY

signature WORD = sig
eqtype word
val wordSize : int
val toLargeWord : word -> LargeWord.word
val toLargeWordX : word -> LargeWord.word
val fromLargeWord : LargeWord.word -> word
val toLargeInt : word -> LargeInt.int
val toLargeIntX : word -> LargeInt.int
val fromLargeInt : LargeInt.int -> word
val toInt : word -> Int.int
val toIntX : word -> Int.int
val fromInt : Int.int -> word
val orb : (word * word) -> word
val xorb : (word * word) -> word
val andb : (word * word) -> word
val notb : word -> word
val << : (word * Word.word) -> word
val >> : (word * Word.word) -> word
val ˜>> : (word * Word.word) -> word
val + : (word * word) -> word
val - : (word * word) -> word
val * : (word * word) -> word
val div : (word * word) -> word
val mod : (word * word) -> word
val compare : (word * word) -> order
val > : (word * word) -> bool
val < : (word * word) -> bool
val >= : (word * word) -> bool
val <= : (word * word) -> bool
val min : (word * word) -> word
val max : (word * word) -> word
val fmt : StringCvt.radix -> word -> string
val toString : word -> string
val fromString : string -> word option
val scan : StringCvt.radix -> (char, ’a) StringCvt.reader -> ’a -> (word, ’a) option

end

Figure 4.7: The signatureWORD

4.2. BASIC TYPES 81

Comparison functions and string conversion functions are as for integers, in-
cluding the use of number bases of typeStringCvt.radix.

An extra set of operations available on words are logical operations acting on
the bit representations. The functionorb, xorb, andbandnotb return respectively
the bit-wise OR, the bit-wise exclusive OR (XOR), the bit-wise AND and the bit-
wise complement (NOT) of their arguments. As a reminder, here are the relevant
rules for those operations on bits:

OR 0 1
0 0 1
1 1 1

XOR 0 1
0 0 1
1 1 0

AND 0 1
0 0 0
1 0 1

NOT 0 1
1 0

When applied to whole words, these operations operate in a bitwise fash. The
operation<< is a logical shift left, filling in 0’s “from the right”, where each shift
is a multiplication by two (modulo the word size). The operation>> is a logical
shift right, filling in 0’s “from the left”, corresponding to an integer division by
two. The operation∼>> is an arithmetic shift right, where the bit to be filled in
after the shift to the right is the same as the first bit of the word before the shift,
thus performing sign extension in a two’s complement interpretation.

Reals

Floating-point numbers (called reals in Standard ML for historical reasons) are
more complicated than simple integers. The signatureREAL, given in Figure 4.8,
specifies structures implementing floating-point numbers that should follow vari-
ous IEEE standards, as well as non-trapping semantics. The most notable aspect
of floating-point numbers in Standard ML is that the typereal of a floating-point
number is not an equality type. That is not say that floating-point numbers do not
admit comparison, it simply says that the default= operator is not overloaded on
floating-point numbers. The comparison operator== specified in signatureREAL
does compare floating-point numbers for equality but has some surprising proper-
ties undesirable in a general equality operator. The main example of this would be
thatReal.==(0.0,∼0.0) is true, whileReal.==(r/0.0,r/∼0.0) is false.

Various structures matchingREALcan be provided. The required structure is
Real, the default floating-point numbers representation. Optional structuresLarg-
eRealandRealN for various values ofN , the number of bits in the representation
of floating-point numbers, can also be provided.

Descriptions of floating-point numbers is complicated by the fact that we have
special values to represent both positive and negative infinity (+∞ and−∞ respec-
tively), and the special value NaN (stands for Not a Number) to represent results
which are not defined:(+∞) + (−∞), (−∞) − (+∞), 0/0,∞/∞. We simply

82 CHAPTER 4. THE BASIS LIBRARY

signature REAL = sig
type real
structure Math : MATH
val radix : int
val precision : int
val maxFinite : real
val minPos : real
val minNormalPos : real
val posInf : real
val negInf : real
val + : (real * real) -> real
val - : (real * real) -> real
val * : (real * real) -> real
val / : (real * real) -> real
val *+ : real * real * real -> real
val *- : real * real * real -> real
val ˜ : real -> real
val abs : real -> real
val min : (real * real) -> real
val max : (real * real) -> real
val sign : real -> int
val signBit : real -> bool
val sameSign : (real * real) -> bool
val copySign : (real * real) -> real
val compare : (real * real) -> order
val compareReal : (real * real) -> IEEEReal.real_order
val < : (real * real) -> bool
val <= : (real * real) -> bool
val > : (real * real) -> bool
val >= : (real * real) -> bool
val == : (real * real) -> bool
val != : (real * real) -> bool
val ?= : (real * real) -> bool
val unordered : (real * real) -> bool
val isFinite : real -> bool
val isNan : real -> bool
val isNormal : real -> bool
val class : real -> IEEEReal.float_class
val fmt : StringCvt.realfmt -> real -> string
val toString : real -> string
val fromString : string -> real option
val scan : (char, ’a) StringCvt.reader -> (real, ’a) StringCvt.reader
val toManExp : real -> man : real, exp : int
val fromManExp : man : real, exp : int -> real
val split : real -> whole : real, frac : real
val realMod : real -> real
val rem : (real * real) -> real
val nextAfter : (real * real) -> real
val checkFloat : real ->real
val realFloor : real -> real
val realCeil : real -> real
val realTrunc : real -> real
val floor : real -> Int.int
val ceil : real -> Int.int
val trunc : real -> Int.int
val round : real -> Int.int
val toInt : IEEEReal.rounding_mode -> real -> int
val toLargeInt : IEEEReal.rounding_mode -> real -> LargeInt.int
val fromInt : int -> real
val fromLargeInt : LargeInt.int -> real
val toLarge : real -> LargeReal.real
val fromLarge : IEEEReal.rounding_mode -> LargeReal.real -> real
val toDecimal : real -> IEEEReal.decimal_approx
val fromDecimal : IEEEReal.decimal_approx -> real

end

Figure 4.8: The signatureREAL

4.2. BASIC TYPES 83

outline some of the functions in this structure. More complete information can be
found in the official Basis documentation. Note that unless specified otherwise, if
any argument to a function is a NaN, the result will be a NaN.

Aside from the declaration of the typereal, theREALsignature prescribes a
substructureMath that implements additional mathematical operations on the type
of floating-point numbers implemented by the structure. We return to theMath
structure later in this section. . The valuesmaxFinite, minPosandminNormalPos
respectively represent the maximum finite number, the minimum non-zero positive
number and the minimum non-zero normalized number that can be represented.
The valuesposInf andnegInf respectively represent+∞ and−∞.

The operations+ ,-,* and / are the standard operations, along with the ap-
propriate behavior with respect to infinities. For example, we have∞ + ∞ =
∞,(−∞) + (−∞) = −∞, and addition or subtraction of a finite and an infinite
number yields an infinite number of the appropriate sign. Similarly, multiplication
via an infinite number yields an infinite number of the appropriate sign; for in-
stance(+∞)× (−∞) = −∞. Finally,0/0 is a NaN, and an infinity divided by an
infinity (irrespectively of the signs) is also a NaN; dividing a finite non-zero num-
ber by zero or an infinity by a finite number produces an infinity of the appropriate
sign (recall that zero’s are signed). A finite number divided by an infinity is 0 with
the appropriate sign. The operations*+ and*∼ are a combination of the above
to allow for faster implementation on some machines. The expression*+(a,b,c)
evaluates asa*b+c (similarly for *∼), with a behavior derivable from the above
rules with respect to infinite arguments. Operationsmin, maxandabsreturn the
smaller or larger value of two numbers, and the absolute value of one. If exactly
one argument tominor maxis a NaN, the result is the non-Nan argument.

The functionisFinite returnstrue if given a finite number as argument (neither
a NaN nor an infinity), whereas the functionisNanreturnstrue if given a NaN as
an argument.

Various functions are provided for converting floating-point numbers to inte-
gers. The functionsfloor andceil on an argumentr respectively return the largest
integer not larger thanr, and the smallest integer not less thanr. The functiontrunc
rounds its argument towards zero. The functionroundyields the integer nearest to
r (the nearest even integer in case of a tie). If the result cannot be represented as
an integer, the exceptionOverflowis raised, whileDomainis raised on NaN argu-
ments. The functionsrealFloor,realCeilandrealTruncare similar to their previous
counterparts, buit return integer-valued floating-point numbers (for example,1.0 or
∼ 5.0). In case of infinities or NaN, they return their argument unchanged, without
raising any exception.

Comparison functions come in many flavors. We focus on the standard ones.
The functionunorderedreturnstrue if its arguments are unordered, that is if at least

84 CHAPTER 4. THE BASIS LIBRARY

one of the arguments is a NaN. The functions<,<=,> and>= returntrue if the
corresponding relation holds between reals, andfalseon non-ordered arguments.
The function== returnstrue if and only if neither arguments is a NaN and the
arguments are equal, ignoring signs on zeroes. The function!= is equivalent to
not o (op ==). The functioncompareis as expected, given the above description
of the ordering relation. It raises the exceptionIEEEReal.Unorderedon unordered
arguments. The Basis structureIEEEReal, dealing with underlying details of the
IEEE implementation of floating-point numbers, will not be detailed further in
these notes.

Conversion functions to and from strings are typical, including the extra func-
tion fmt as in the case of integers and words. The functionscanreads a floating-
point number from a character source, whilefmt converts a floating-point number
to a string, given a specification of how to display the number. Specifications are
of typeStringCvt.realfmt and include:

SCI arg Scientific noation[∼]dd.dddE[∼]ddd
wherearg is the number of digits to appear
after the decimal point (defaults to 6 isarg is NONE).

FIX arg Fixed-point notation[∼]ddd.ddd
wherearg specifies the number of digits to appear
after the decimal point (defaults to 6 ifarg is NONE).

GEN arg Adaptive notation: either scientific or fixed-point
notation, depending on the value converted, wherearg
specifies the maximum number of significant digits used
(default to 12 ifarg is NONE).

EXACT Exact decimal notation: all digits are provided,
infinities are printed asinf or∼inf.

In all cases, NaN values are returned asnan (for EXACT, the form is slightly
different). By default,fromStringis equivalent toStringCvt.scanString scanand
toStringis equivalent tofmt (StringCvt.GEN NONE).

TheMath substructure of theREALsignature specifies additional mathemati-
cal operations. For the defaultRealstructure, theReal.Mathsubstructure is also
available at top-level, as simplyMath. The signatureMATH is given in Figure 4.9.
As with other floating-point functions, functions inReal.Mathreturn NaN for NaN
arguments, unless specified otherwise.

The valuespi ande represent the constantπ (3.141592653...) and the base
of the natural logarithm (2.71828182846...). The remainder of the functions are
typical: sqrt returns the square root of its argument,sin, cosandtan compute the
corresponding trigonometric functions given their arguments in radians. Radians

4.2. BASIC TYPES 85

signature MATH = sig
type real
val pi : real
val e : real
val sqrt : real -> real
val sin : real -> real
val cos : real -> real
val tan : real -> real
val asin : real -> real
val acos : real -> real
val atan : real -> real
val atan2 : (real * real) -> real
val exp : real -> real
val pow : (real * real) -> real
val ln : real -> real
val log10 : real -> real
val sinh : real -> real
val cosh : real -> real
val tanh : real -> real

end

Figure 4.9: The signatureMATH

are the standard way of measuring angles, but many people are still used to degrees.
Converting from degrees to radians and back is dead easy:

fun degToRad (d) = (360.0 * r) / (2.0 * Math.pi)
fun radToDeg (r) = (2.0 * Math.pi * d) / 360.0

The functionsasinandacoscompute the arcsine and arccosine, the inverses of sine
and cosine, with results normalized to their standard range, namely[−π/2, π/2] for
arcsine and[0, π] for arccosine. The functionsatan andatan2both compute the
arctangent, the inverse of the tangent:atanexpects a single argument, whileatan2
expects two arguments(y,x) and computesatan (y/x)with appropriate behavior
whenx is 0. The idea behindatan2is that the two arguments represent a point(y,x)
in the plane, andatan2computes the angle of the positivex-axis with the point, in
the interval[−π, π].

The exponential functionexp (x)andpow (x,y)returnex andxy respectively,
while ln and log10 return the natural logarithm and the logarithm in base 10 re-
spectively of their argument. Computing the logarithm ofa in an arbitrary baseb
can be computed through

fun log (a,b) = (Math.ln (a))/(Math.ln (b))

Finally, sinh, coshandtanhcompute the corresponding hyperbolic functions.
For all those functions, a value of NaN is returned if the function is not defined

for its argument, for example if a negative number is passed tosqrt, or if a num-

86 CHAPTER 4. THE BASIS LIBRARY

ber with a magnitude more than1.0 is passed to an inverse trigonometric function.
Infinites are returned in various cases (for example, periodically for thetan func-
tion), and conversely some functions are well-defined for infinite arguments (for
example,tanh (posInf)evaluates toπ/2).

4.3 More on strings

In this section, we describe two aspects of strings that are both useful and under-
explained in the existing literature, namely the issue of efficiently handling sub-
strings, and that of managing conversions from strings via the use of character
sources and readers.

Substrings

Handling of substrings is provided by a structureSubstringwith a signature giv-
en in Figure 4.10. In fact, a structure matchingSUBSTRINGshould be provided
for every structure matchingSTRING. The substructure declarationString in SUB-
STRINGdenotes the structure of the underlying type of strings (Substring.String
is equivalent toString, WideSubstring.Stringis equivalent toWideString, etc). For
definiteness, we discuss theSubstringstructure, which corresponds to theString
structure.

The typeSubstring.substringcan be understood as a triple(s,i,n)with sa string,
i the starting position of the substring ins andn the length of the substring. Of
course, implementations are free to implement substrings as they wish. This rep-
resentation helps explain why the use of substrings (as opposed to manipulating
substrings through normal string operations likeString.extractand so on) ought to
be more efficient: no new string is created (and thus no copying performed) until it
is absolutely necessary (i.e. when converting a substring into a string).

The basic functions for substrings handle the extraction of substrings from
strings, the conversion to basic strings and provide basic information. Extract-
ing a substring is the job ofextract, which takes a strings, a starting positioni
and an option value: ifSOME (l), the substring ins starting ati of length l is re-
turned (as a value of typesubstring), if NONE, the suffix ofs starting at position
i is returned. For convenience,substring (s,n,l)is equivalent toextract (s,n,SOME
(l)) andall (s) is equivalent toextract (s,0,NONE), returning the substring corre-
sponding to the whole string. The functionbasereturns basic information on the
substring, that is the original strings, the starting position of the substring ins and
its length. The functionstringcreates a new string by copying the characters in the
substring. FunctionssizeandisEmptyrespectively return the size of the substring

4.3. MORE ON STRINGS 87

signature SUBSTRING = sig
structure String : STRING
type substring
val base : substring -> (String.string * int * int)
val string : substring -> String.string
val extract : (String.string * int * int option) -> substring
val substring : (String.string * int * int) -> substring
val all : String.string -> substring
val isEmpty : substring -> bool
val getc : substring -> (String.Char.char * substring) option
val first : substring -> String.Char.char option
val triml : int -> substring -> substring
val trimr : int -> substring -> substring
val slice : (substring * int * int option) -> substring
val sub : (substring * int) -> char
val size : substring -> int
val concat : substring list -> String.string
val explode : substring -> String.Char.char list
val isPrefix : String.string -> substring -> bool
val compare : (substring * substring) -> order
val collate : ((String.Char.char * String.Char.char) -> order) -> (substring * substring) -> order
val splitl : (String.Char.char -> bool) -> substring -> (substring * substring)
val splitr : (String.Char.char -> bool) -> substring -> (substring * substring)
val splitAt : (substring * int) -> (substring * substring)
val dropl : (String.Char.char -> bool) -> substring -> substring
val dropr : (String.Char.char -> bool) -> substring -> substring
val takel : (String.Char.char -> bool) -> substring -> substring
val taker : (String.Char.char -> bool) -> substring -> substring
val position : String.string -> substring -> (substring * substring)
val span : (substring * substring) -> substring
val translate : (String.Char.char -> String.string) -> substring -> String.string
val tokens : (String.Char.char -> bool) -> substring -> substring list
val fields : (String.Char.char -> bool) -> substring -> substring list
val foldl : ((String.Char.char * ’a) -> ’a) -> ’a -> substring -> ’a
val foldr : ((String.Char.char * ’a) -> ’a) -> ’a -> substring -> ’a
val app : (String.Char.char -> unit) -> substring -> unit

end

Figure 4.10: The signatureSUBSTRING

88 CHAPTER 4. THE BASIS LIBRARY

and whether the substring is empty.

Some functions provide the same functionality as functions in theStringstruc-
ture, but at the level of substrings:subreturns the character at a given position of
the substring (position0 being the first character of the substring),concatreturns a
new string made up of the concatenation of a list of substrings,explodereturns the
list of characters in a substring,isPrefixreports whether a given string is a prefix of
a substring,comparedoes substring comparison using the standard lexicographic
ordering,collatedoes the same but using a lexicographic order derived from a cus-
tom ordering on characters (see Section 4.2),tokensandfieldswork as for strings
(but return substrings), and so doestranslate(which creates a new string). Oper-
ationsfoldl,foldr andappare standard functions for aggregate types, which we’ll
see in more details in the next section when we talk about lists.

The rest of the functions are specific to substrings. To get substrings of sub-
strings, one can usetriml or trimr, which removek characters from the given sub-
string (from the left or the right, resepctively), returning an empty substring if not
enough characters are present. More generally,slicewill extract a substring from a
substring, just as the functionextract, but acting on substrings. The functionsplitAt
applied to a substringssreturns the pair of substrings made up respectively of the
first i characters ofssand the rest, respectively.

A different class of functions to get at substrings of substrings are thesplitl and
splitr functions. They take a predicate on characters, and scan the given substring
from the left and the right respectively, looking for the first character that does not
satisfy the predicate. They return the split of the substring into the span up to that
character (but not including it) and the rest. The pair of substrings returned always
is of the form(left part,right part). The derived functionstakel, dropl, taker and
dropr return appropriate portions of the split. In fact,takel p sis equivalent to#1
(splitl p s), taker is equivalent to#2 (splitr p s)and similarly fordropl anddropr.

The functionpositionalso splits a substringss, but takes another strings as
input and returns the pair(pref,suff) wheresuff is the longest suffix ofsswith the
stringsas a prefix —pref being the first part of the substringss, up to the leftmost
point where the stringscan be found in the substring.

The functionspan is more complicated. Given two substrings of the same
string, it returns the substring made up of the two substrings and every character of
the underlying string in between. The exceptionSpanis raised if the substrings do
not share the same underlying string or if the first substring is not to the left of the
second substring in the underlying string.

4.3. MORE ON STRINGS 89

structure StringCvt : sig
datatype radix = BIN | OCT | DEC | HEX
datatype realfmt
= SCI of int option
| FIX of int option
| GEN of int option
| EXACT
type (’a, ’b) reader = ’b -> (’a * ’b) option
val padLeft : char -> int -> string -> string
val padRight : char -> int -> string -> string
val splitl : (char -> bool) -> (char, ’a) reader ->’a -> (string * ’a)
val takel : (char -> bool) -> (char, ’a) reader ->’a -> string
val dropl : (char -> bool) -> (char, ’a) reader ->’a -> ’a
val skipWS : (char, ’a) reader -> ’a -> ’a
type cs
val scanString : ((char, cs) reader -> (’a, cs) reader) -> string -> ’a option

end

Figure 4.11: The structureStringCvt

String conversions

The structureStringCvt(signature in Figure 4.11) handles the basics of string con-
version, and is the focus that leads us to another convention of the Basis. Notice
before anything else thatStringCvtdefines the constants for number radices and for
the formatting of real numbers. Also, it provides functionspadLeftandpadRight
that insert the supplied character respectively on the left or on the right of the given
string until the target length of the string has been achieved.

As we have seen earlier, the Basis comes with a set of design conventions, ways
of uniformly handling various kind of data. For example, the functioncompare
is provided for types admitting comparisons of their elements, andtoStringand
fromStringare provided for most types to handle conversion to and from strings.
We now introduce a new convention, to handle the reading of values of different
types from generic streams of values. The key ingredient is given by thereader
type declared inStringCvt:

type (’a,’b) reader = ’b -> (’a * ’b) option

A value of type(’a,’b) reader, intuitively, is a function that takes as input a “stream”
of type ’b and attempts to read a value of type’a from it. It returnsSOME (v,ns)
with v a value of type’a read from the stream andns the rest of the stream (after
v has been read off). It returnsNONE if no value of type’a can be read from the
stream. To keep descriptions short, we often talk about an’a reader, to mean a
value of type(’a,’b) reader for some unspecified stream type’b.

90 CHAPTER 4. THE BASIS LIBRARY

An important class of readers are derived from character readers over various
streams. A function that takes a character reader and returns anT readerfor some
typeT is called a scanning function for typeT. Intuitively, scanning functions cre-
ate aT readerby reading off characters from the stream until an appropriate value
of typeT has been built. For a given typeT, a scanning function has type:

(char,’b) reader -> (T,’b) reader.

Most types in the Basis provide such a scanning function, typically calledscan.
For example,Int.scanwhich has type:

(char,’b) reader -> (int,’b) reader.

(Note that this type is sometimes reported by expanding the abbreviation of the sec-
ond reader:(char,’b) reader→’b →(int,’b) option). The main reasons for deriving
general readers from character readers is that this operation is a generalization of
converting a value from a string (indeed, as we shall see,fromStringfunctions are
typically derived fromscanfunctions), and because character readers are the most
common kind of readers. Character readers can be derived easily from any charac-
ter source, which include strings, substrings, and most importantly input streams
(we will return to input stream in Section 4.5).

Time to look at some examples. Although strings are a natural starting point,
they make for a slightly messy example. So let’s start with substrings. TheSub-
stringstructure contains a functiongetcof typesubstring→(char×substring) op-
tion, which one recognizes as the type(char,substring) reader, a character reader.
Indeed, if we apply the reader to a substring, we should get a character along with
the remainder of the substring. This is easily verified:

Substring.getc (Substring.all "hello");
val it = SOME (#"h",-) : (char * substring) option
- Substring.string (#2 (valOf (it)));
val it = "ello" : string

Although strings don’t come equipped with a character reader, we can fashion one
from the above:

fun stringGetc (s) = let
val ss = Substring.all (s)

in
case Substring.getc (ss)

of NONE => NONE
| SOME (c,ss’) => SOME (c,Substring.string (ss’))

end

and indeed,

- stringGetc ("hello");
val it = SOME (#"h","ello") : (char * string) option

4.3. MORE ON STRINGS 91

Scanning functions create new readers from existing readers. For instance, the
functionInt.scantakes a character reader into an integer reader. Consider the func-
tion

val stringGetInt = Int.scan StringCvt.DEC stringGetc

This should give us an integer reader over strings, that is a function to read off
decimal integers from strings. This is again easily verified:

- stringGetInt ("1020hello");
val it = SOME (1020,"hello") : (int * string) option
- stringGetInt (" 1020hello");
val it = SOME (1020,"hello") : (int * string) option
- stringGetInt "foo";
val it = NONE : (int * string) option

As the last line shows, if the reader fails to read for whatever reason, the val-
ue NONE is returned. Notice that the readers created byInt.scanskip over any
leading whitespace, so you don’t have to worry about it. What if you wanted to
explicitely skip whitespaces? (For example, if you were yourself writing a scan-
ning function?). Time to make a diversion back to some of the functions provided
by StringCvt. The functionskipWStake a(char,’b) readerand a stream of type’b
and returns a new stream of type’b; the idea being that the stream produce has all
of its leading whitespaces removed. The reader provided is used to read off the
characters of the stream to remove those whitespaces (defined by theChar.isSpace
predicate).

More generally, the functionssplitl, takelanddropl in StringCvthandle char-
acter streams by taking a predicate on characters, a character reader for the stream,
and a stream, and returning respectively a pair consisting of the string made up of
all the consecutive characters from the stream that matched the predicate and the
rest of the stream, or just the matching string or just the remainder of the stream.
In fact,skipWSis equivalent todropl Char.isSpace.

So let’s recap: a reader takes a stream and returns an element read from the
stream and the remainder of the stream. A scanning function for a given type takes
a character reader and converts it to a reader for that type. To use a reader, one sim-
ply applies it to an appropriate stream. We have seen readers from substrings, and
we have built readers from strings. In the following sections, we will see readers
from lists and vectors. Reading a value from a string via a scanning function is so
common that a function is available inStringCvtto greatly automate the process.
The functionscanStringtakes a scanning function for a typeT and a string, and
scans the string, trying to read a value of typeT using the supplied scanning func-
tion. Note that we do not need to supply a character reader function (to feed to the
scanning function). One is implicitely created to read characters from the string.
Here is a suitable implementation ofscanString:

92 CHAPTER 4. THE BASIS LIBRARY

fun scanString f s = let
val ss = Substring.all
val scan = f (Substring.getc)

in
case (scan ss)

of NONE => NONE
| SOME (v,_) => SOME (v)

end

Notice the result returned byscanString: in the case of a successful scan, it does
not return the remainder of the string after the match. The reason for this it to
get the right result for the variousfromStringfunctions, of whichscanStringis a
generalization. Indeed,fromStringcan easily be obtained by a simple composi-
tion. For instance,Int.fromStringis equivalent toStringCvt.scanString (Int.scan
StringCvt.DEC), Bool.fromStringis equivalent toStringCvt.scanString Bool.scan,
and so on. If one is interested in the rest of the string following the scan, one
can use a translation to substrings directly, or pass the functionstringGetcdefined
earlier to the appropriate scanning function to get a reader over strings.

Reades are general and provide a very convenient mechanism for reading val-
ues from streams. In Chapter??, we will introduce a new type of character source
for which character readers can be defined, namely input streams. On the oth-
er hand, in Chapter??, we will see how to define scanning functions for general
regular expressions, taking character readers into string readers.

4.4 Aggregate types

In Chapter 2, we have seen how lists are an important data type, allowing you to
put together an arbitrary number of values of the same type. In this chapter, we
explore the support of the Basis with respect to a wider class of such aggregate
types, including lists, but also vectors and arrays.

The structureList (whose signature is given in Figure 4.12) provides many
useful functions to handle lists, as well as defining thelist type itself. The exception
Emptyis raised by functions that expect a non-empty list and are given an empty
list as an argument (such ashd or tl). The functionsnull, hd, tl, lenghand@ (for
concatenation) have already been presented in Chapter 2 — they are exported to
top-level from this structure. As usual,@ is infix at toplevel, but must be used
in its prefix form if qualified, e.g.List.@ (l1,l2). Some functions are rather clear
from their name, so thatlast returns the last element of a list,nth thenth element of
the list (counting from0 as the first element),takeanddrop respectively return the
first n elements of the list as a list and the rest of the list after the firstn elements,
rev reverses a list, whileconcattakes a list of lists and concatenates them all in
their given order (so thatList.@ (l1,l2) is equivalent toList.concat [l1,l2]. The

4.4. AGGREGATE TYPES 93

structure List : sig
datatype list = datatype list
exception Empty
val null : ’a list -> bool
val length : ’a list -> int
val @ : (’a list * ’a list) -> ’a list
val hd : ’a list -> ’a
val tl : ’a list -> ’a list
val last : ’a list -> ’a
val getItem : ’a list -> (’a * ’a list) option
val nth : (’a list * int) -> ’a
val take : (’a list * int) -> ’a list
val drop : (’a list * int) -> ’a list
val rev : ’a list -> ’a list
val concat : ’a list list -> ’a list
val revAppend : (’a list * ’a list) -> ’a list
val app : (’a -> unit) -> ’a list -> unit
val map : (’a -> ’b) -> ’a list -> ’b list
val mapPartial : (’a -> ’b option) -> ’a list -> ’b list
val find : (’a -> bool) -> ’a list -> ’a option
val filter : (’a -> bool) -> ’a list -> ’a list
val partition : (’a -> bool) -> ’a list -> (’a list * ’a list)
val foldl : ((’a * ’b) -> ’b) -> ’b -> ’a list -> ’b
val foldr : ((’a * ’b) -> ’b) -> ’b -> ’a list -> ’b
val exists : (’a -> bool) -> ’a list -> bool
val all : (’a -> bool) -> ’a list -> bool
val tabulate : (int * (int -> ’a)) -> ’a list

end

Figure 4.12: The structureList

94 CHAPTER 4. THE BASIS LIBRARY

function revAppend (l1,l2)is equivalent to(rev l1)@l2), useful for some patterns
of recursive functions.

The remaining functions perform operations while walking down a list. We
have already seenmapandapp. The functionmapPartial is similar tomap, but
takes in a function returning an option value, and accumulates only the non-NONE
results into a list. In our previous terminology, it takes a partial function and returns
the accumulated results for the defined elements only. The functionfind takes a
predicatep and searches a list for the first valuev for which p (v) evaluates to
true, and returnsSOME (v); it returnsNONEif such a value cannot be found. The
functionfilter also takes a predicatep and returns the list of all elementsv for which
p (v)evaluates totrue. The functionpartition is even more general, returning a pair
of lists (pos,neg), whereposis the list of elementsv for whichp (v) is true, andneg
is the list of elementsv for which p (v) is false,. The relative order of elements in
posandnegis that of the original list.

Functionsexistsandall (both taking a predicatep) check if at least one ele-
mentv is such thatp (v) is true and all the elementsv are such thatp (v) is true.
The operations are short-circuiting; as soon as an element evaluating totrue is en-
countered,existsreturnstrue, while as soon as an element evaluating tofalse is
encountered,all returnsfalse. The functionexistsis a generalization oforelseand
all is a generalization ofandalso. The functiontabulateis used to construct a list
from a function:tabulate (n,f)returns the list[f(0),...,f(n-1)].

The functionsfoldl andfoldr are the left and right folding operations, returning

f(xn, f(xn−1, ..., f(x1, b)))

and
f(x1, f(x2, ..., f(xn, b)))

respectively when applied to a valueb and list [x1,...,xn]. Clearly, the result is
the same iff is commutative. These functions are deceptively simple, and are
cornerstones of functional programming using lists (and, it turns out, using other
data types). For instance,map is equivalent tofoldr (op ::) [] , filter is equivalent
to foldr (fn (x,r) => if p (x) then x::r else r) []. More complex still, the function
partition is equivalent to:

foldr (fn (x,(pos,neg)) => if p (x) then (x::pos,neg) else (pos,x::neg)) ([],[]).

The key point is that since many operations can be defined as afoldl or afoldr, any
data type for which folding operations can be meaningfully defined can use such
derived operations. For example, vectors and arrays, which we’ll see next, define
folding operations, as do hash tables in the SML/NJ Library (see Chapter 7).

4.4. AGGREGATE TYPES 95

structure ListPair : sig
val zip : (’a list * ’b list) -> (’a * ’b) list
val unzip : (’a * ’b) list -> (’a list * ’b list)
val map : (’a * ’b -> ’c) -> (’a list * ’b list) -> ’c list
val app : (’a * ’b -> unit) -> (’a list * ’b list) -> unit
val foldl : ((’a * ’b * ’c) -> ’c) -> ’c -> (’a list * ’b list) -> ’c
val foldr : ((’a * ’b * ’c) -> ’c) -> ’c -> (’a list * ’b list) -> ’c
val all : (’a * ’b -> bool) -> (’a list * ’b list) -> bool
val exists : (’a * ’b -> bool) -> (’a list * ’b list) -> bool

end

Figure 4.13: The structureListPair

The last function inList is getItem, which views a list as a stream, in the sense
of Section 4.3. Once one sees the type ofgetItem, one recognizes it as a(’a,’a
list) reader, so that given an’a list, getItemis an ’a value reader. This provides
the first “natural” reader for streams which is not character-based. Of course, if
one is given a list of characters, one can use standard character reader functions
and scanning functions. Although it is not the most efficient approach, we could
implementstringGetcas:

fun stringGetc’ (s) = let
val l = String.explode (s)

in
case List.getItem (l)

of NONE => NONE
| SOME (c,l’) => SOME (c,String.implode (l’))

end

Operations involving pairs of lists are common enough to warrant a structure
ListPair in the Basis, with a signature given in Figure 4.13. The fundamental op-
eration on pairs of lists iszip, which takes two lists[x1,x2,...] and[y1,y2,...], and
produces a new list with the corresponding elements paired,[(x1,y1),(x2,y2),...].
The length of the resuling list is the length of the shortest one, the extra elements
of the longer list being ignored. The function is itself easy to implement:

fun zip ([],_) = []
| zip (_,[]) = []
| zip (x::xs,y::ys) = (x,y)::zip(xs,ys)

The functionunzipperforms the inverse operation, taking a list of pairs and split-
ting each pair apart. It is also easy to define:

fun unzip [] = ([],[])
| unzip ((x,y)::r) = let

val (xl,yl) = unzip (r)
in

(x::xl,y::yl)
end

96 CHAPTER 4. THE BASIS LIBRARY

structure Vector : sig
eqtype ’a vector
val maxLen : int
val fromList : ’a list -> ’a vector
val tabulate : (int * (int -> ’a)) -> ’a vector
val length : ’a vector -> int
val sub : (’a vector * int) -> ’a
val extract : (’a vector * int * int option) -> ’a vector
val concat : ’a vector list -> ’a vector
val mapi : ((int * ’a) -> ’b) -> (’a vector * int * int option) -> ’b vector
val map : (’a -> ’b) -> ’a vector -> ’b vector
val appi : ((int * ’a) -> unit) -> (’a vector * int * int option) -> unit
val app : (’a -> unit) -> ’a vector -> unit
val foldli : ((int * ’a * ’b) -> ’b) -> ’b -> (’a vector * int * int option) ->

’b
val foldri : ((int * ’a * ’b) -> ’b) -> ’b -> (’a vector * int * int option) ->

’b
val foldl : ((’a * ’b) -> ’b) -> ’b -> ’a vector -> ’b
val foldr : ((’a * ’b) -> ’b) -> ’b -> ’a vector -> ’b

end

Figure 4.14: The structureVector

Most other functions in theListPair structure can be derived fromzip (although
they may be more efficiently implemented directly). The functionsmapandappdo
as expected, but these operations expect a function taking two elements, one from
each list. In fact,ListPair.map f (l1,l2)is equivalent toList.map f (zip (l1,l2)), and
similarly for app. Moreover, the functionfoldl f b (l1,l2) is equivalent toList.foldl
(fn ((a,b),c)=> f (a,b,c)) b (zip (l1,l2))and similarly forfoldr. The functionsall
p (l1,l2) andexists p (l1,l2)are equivalent toList.all p (zip (l1,l2))andList.exists p
(zip (l1,l2)) respectively.

Vectors, just as lists, are used to implement sequences of elements of the same
type. The difference is that vectors provide more efficient access to elements in
the middle of the sequence, at the cost of a loss of flexibility while constructing
vectors. Just as with lists, vector elements are immutable (unless one constructs a
vector of reference cells explicitely, of course). Arrays, which will be discussed
next, allow one to modify elements in place. Many vector operations are similar
to operations on lists and on strings. Vectors come in fundamentally two flavors,
polymorphic vectors and monomorphic vectors. Polymorphic vectors, defined in
a structureVector whose signature is given in Figure 4.14, define a type’a vec-
tor, a vector of elements of type’a, whereas monomorphic vectors are defined in
specific structures that specify what the type of elements of the vectors is, for ex-
ample structureIntVectordefining a typeIntVector.vectorof integer vectors. The
main reason for the distinction is one of efficiency: the compiler can use a much

4.4. AGGREGATE TYPES 97

Figure 4.15: The structureSubvector

more efficient layout for, say,ByteVector.vectorthan the general’a vector. But
the underlying operations are the same. We discuss here polymorphic vectors.
Monomorphic vectors in SML/NJ includeCharVector, Word8Vector, RealVector.

The valuemaxLenreturns the maximum length of any vector supported by the
implementation. The exceptionSizeis raised if this limit is ever reached (say if
one attempts to create a vector of lengthmaxLen+1). The functionlengthreturns
the length of a vector, whilefromListandtabulatecreate new vectors, respectively
from a list of elements and from a function (as in the case ofList.tabulate). The
function concatconcatenates a list of vectors (in order) into a single vector. The
functionsubreturns the element at the given index in the vector, the index of the
first element being 0. Standard operationsfoldl, foldr, mapandappare provided,
with the expected semantics. As we mentioned earlier, the fact that one can fold
over the elements of a vector means that we can implement a whole panoply of
operations, such as filtering and partitioning operations.

An interesting aspect of vectors is reminiscent of strings, and it is the notion of
a vector slice, akin to a substring. A vector slice is described by a tuple(v,i,opt)
wherev is a vector,i is an index (the starting point of the slice) andopt is an
option value giving the length of the slice asSOME (n)or NONEfor the end of the
vector. A slice can be extracted into its own vector by the functionextract. More
interestingly, functionsfoldli, foldri, mapi andappi are provided to applyfoldl,
foldr, mapandappoperations only to the elements in the given slice. As an extra
generality, the functions passed as an argument to these operations are passed as a
first argument the index of the element. The less generalfoldl, foldr,mapandapp
operations can easily be derived from the general ones. For example,foldl f init v
is equivalent tofoldli (fn (,a,x)=> f (a,x)) init (v,0,NONE). Finally, although no
functiontoList is provided, it can be easily synthesized as:

fun toList (v) = foldlr (op ::) [] vec

After our discussion of readers and streams in Section 4.3, and our remark
about lists being treated as streams through the functionList.getItem, one notices
that no such support exists in the Basis for vectors. Similarly, no such support ex-
isted for strings either, and for the same reason: efficiency. For strings, one could
define readers by going through substrings. Although no structure corresponding
to subvectors exists, they can be easily defined, and provide an interesting exercise.

98 CHAPTER 4. THE BASIS LIBRARY

Let us provide the basic functionality (and give us some insight into the implemen-
tation of theSubstringstructure). We define a structureSubvectorwith a signature
given in Figure 4.15 (note that it could easily be extended to all thatSubstring
defines). The typesubvectoris easily defined as a vector slice:

type ’a subvector = (’a vector * int * int option)

The functionsall andvectorare also clear:

fun all (v) = (v,0,NONE)
fun base (sv) = sv
fun vector (sv) = Vector.extract (sv)

We could push inmap, appand folding functions easily, from themapi, appi and
folding functions on vector slices inVector. We concentrate ongetElem, the reader
for subvectors:

fun getElem (v,i,NONE) = if (i<length (v))
then SOME (sub (v,i),(v,i+1,NONE))

else NONE
| getElem (v,i,SOME (0)) = NONE
| getElem (v,i,SOME (n)) = if (i<length (v))

then SOME (sub (v,i),i+1,SOME (n-1))
else NONE

Using these functions, we can rather easily write the (inefficient)vectorGetElem
function, mimicking thestringGetcfunction:

fun vectorGetElem (v) = let
val sv = Subvector.all (v)

in
case (Subvector.getElem (sv))

of NONE => NONE
| SOME (e,sv’) => SOME (e,Subvector.vector (sv’))

end

Even though this function is of dubious use, it is instructive to show we can build
the infrastructure for streams and readers even for types for which it is not provided.

Finally, we come to arrays. Arrays are, like vectors, sequences of elements
that allow for efficient access to elements “in the middle”, at the same cost in flex-
ibility in constructing arrays. Arrays moreover admit operations to modify array
elements in place, without having to reconstruct a new array. Arrays also come
in both polymorphic and monomorphic forms, and again here we describe poly-
morphic arrays. Monomorphic arrays provided by SML/NJ includeCharArray,
Word8Array, RealArray.

Polymorphic arrays are implemented by a structureArray whose signature is
given in Figure 4.16. The signature is similar to that of polymorphic vectors, in-
cluding most of the same operations, down to the notion of an array slice, the array
equivalent of a vector slice. We discuss here the differences.

4.4. AGGREGATE TYPES 99

structure Array : sig
eqtype ’a array
type ’a vector
val maxLen : int
val array : (int * ’a) -> ’a array
val fromList : ’a list -> ’a array
val tabulate : (int * (int -> ’a)) -> ’a array
val length : ’a array -> int
val sub : (’a array * int) -> ’a
val update : (’a array * int * ’a) -> unit
val extract : (’a array * int * int option) -> ’a vector
val copy : {src : ’a array, si : int, len : int option, dst : ’a array, di :

int} -> unit
val copyVec : {src : ’a vector, si : int, len : int option, dst : ’a array, di

: int} -> unit
val appi : ((int * ’a) -> unit) -> (’a array * int * int option) -> unit
val app : (’a -> unit) -> ’a array -> unit
val foldli : ((int * ’a * ’b) -> ’b) -> ’b -> (’a array * int * int option) ->

’b
val foldri : ((int * ’a * ’b) -> ’b) -> ’b -> (’a array * int * int option) ->

’b
val foldl : ((’a * ’b) -> ’b) -> ’b -> ’a array -> ’b
val foldr : ((’a * ’b) -> ’b) -> ’b -> ’a array -> ’b
val modifyi : ((int * ’a) -> ’a) -> (’a array * int * int option) -> unit
val modify : (’a -> ’a) -> ’a array -> unit

end

Figure 4.16: The structureArray

100 CHAPTER 4. THE BASIS LIBRARY

The main differences take advantage of updatability. The functionarray (n,a)
creates a new array of lengthn with all positions initialized to the valuea. The
function updateupdates the value at indexi of the array to the specified value.
Also, note thatextract returns a vector of the elements in the array slice, not an
array.

The functionscopyandcopyVeccopy the elements of the array slice (or vector
slice respectively) specified by(src,si,len)into arraydst, starting at positiondi (that
is, element at positionsi in src is put at positiondi in dst, and so on). An exception
Subscriptis raised if the source slice is not valid, or if it does not fit at the given
position in the destination array.

The functionsmodifyandmodifyi apply a transformation function to the ele-
ments of the array, replacing them in place. As in themap/mapior app/appi vari-
ation,modifytakes a standard transformation function and applies it to the whole
array, whilemodifyiapplies the transformation function to an array slice, passing
in the index along with the element to be transformed.

As with vectors, converting an array to a list is achieved with the expression
foldr (op ::) [] . We can also derive readers from arrays as we did for vectors,
although they are much less useful. Defining a reader on a stream for which ar-
bitrary elements can be changed leads to unpleasant semantics for functions using
the reader. For instance, one cannot look ahead in a “safe” way.

A variation on arrays, two-dimensional arrays, are also provided in the Basis.
Again, they exist in polymorphic and monomorphic forms. We describe polymor-
phic two-dimensional arrays as provided by the structureArray2, whose signature
is given in Figure 4.17. The functions are similar enough to those inArray that
they should not require too much explanation.

The functionsarray, fromList, sub, updateperform the operations equivalent to
their Array counterparts. New functionsdimensions, nColsandnRowsreturn the
dimensions, number of columns and number of rows of an array, respectively. The
functionsrow andcolumnextract a given row or column into a vector of elements.

Instead of defining a slice, two-dimensional arrays define a region, given by a
record{base,row,col,nrows,ncols}, wherebaseis the underlying two-dimensional
array,(row,col) the point where the region starts, andnrowsandncolsthe number
of rows and columns starting from the point making up the region (as in the case of
slices, a value ofNONEfor nrowsor ncolssignifies until the last row or column).
The functioncopy, in analogy with itsArray counterpart, copies a region of an
array into another array, at the specified destination point.

For functions requiring the traversal of a two-dimensional array, such astabu-
late, app, appi, modify, modifyiand the folding operations, an indication is expect-
ed for the order in which the array is to be traversed. The typetraversaldefines
the possible orders:RowMajorindicates that the array should be traversed row-by-

4.4. AGGREGATE TYPES 101

structure Array2 : sig
eqtype ’a array
type ’a region = {base : ’a array, row : int, col : int, nrows : int option,

ncols : int option}
datatype traversal

= RowMajor
| ColMajor

val array : (int * int * ’a) -> ’a array
val fromList : ’a list list -> ’a array
val tabulate : traversal -> (int * int * ((int * int) -> ’a)) -> ’a array
val sub : (’a array * int * int) -> ’a
val update : (’a array * int * int * ’a) -> unit
val dimensions : ’a array -> (int * int)
val nCols : ’a array -> int
val nRows : ’a array -> int
val row : (’a array * int) -> ’a Vector.vector
val column : (’a array * int) -> ’a Vector.vector
val copy : {src : ’a region, dst : ’a array, dst_row : int, dst_col : int} ->

unit
val appi : traversal -> ((int * int * ’a) -> unit) -> ’a region -> unit
val app : traversal -> (’a -> unit) -> ’a array -> unit
val modifyi : traversal -> ((int * int * ’a) -> ’a) -> ’a region -> unit
val modify : traversal -> (’a -> ’a) -> ’a array -> unit
val foldi : traversal -> ((int * int * ’a * ’b) -> ’b) -> ’b -> ’a region -> ’b
val fold : traversal -> ((’a * ’b) -> ’b) -> ’b -> ’a array -> ’b

end

Figure 4.17: The structureArray2

102 CHAPTER 4. THE BASIS LIBRARY

row, andColMajor indicates that the array should be traversed column-by-column.
The semantics of the traversal functions are as theirArray counterparts, aside from
the issue of the order of traversal.

4.5 Input and output

Having described the types support in the Basis, we can now turn to the second
major role of the Basis, the interoperation with the underlying operating system.
In this section, we focus on the support for textual input and output, although we
will only skim the subject. A much more in-depth description of the input and
output support will be given in Chapter??, where we showcase the flexibility of
the infrastructure.

The structureTextIOprovides support for imperative text-based input and out-
put. It is imperative, because reading an input stream modifies the stream, and
it is text-based in that reading and writing is based on characters and strings. In
Chapter??, we shall see input and output functions based on a functional view of
streams, and input and output functions at the conceptual level of system calls to
the operating system. The signature forTextIOis given in Figure 4.18.

The key types of the structure areinstreamand outstream, the types of im-
perative streams for input and output, respectively. We discuss input and output
operations separately. We note that streams are buffered, meaning that input and
output from the actual device is performed in blocks of an unspecified size. It also
means that even if one calls output functinos multiple times, the output may not be
performed on the device right away, only when the internal buffer fills up. Forc-
ing the buffer content to the device before the buffer is full is commonly called
flushing. Input streams have a special state called end-of-stream (or end-of-file,
EOF). EOF is reached when the stream cannot supply any more characters. This
may happen because the end of a file has been reached, for example. Note that
EOF state need to be permanent. If a file is updated by another process while the
program is reading from it and is at EOF, a subsequent input may well succeed and
deliver more characters.

Obtaining an input stream for input can be done in various ways: the value
stdIn holds the current standard input stream, by default hooked to the standard
input of the terminal or window where the SML interactive loop is running. The
functionsopenInand openStringcreate an input stream from a file and from a
string, respectively. An input stream opened from a string will serve the characters
from the string in left to right order. Once an input stream is done with, it should
be closed by a call tocloseIn. Various functions for reading characters and strings
are provided. The basic input function isinput, which attempts to read a string of

4.5. INPUT AND OUTPUT 103

structure TextIO : sig
structure StreamIO : STREAM_IO
type vector = StreamIO.vector
type elem = StreamIO.elem
type instream
type outstream
val input : instream -> vector
val input1 : instream -> elem option
val inputN : (instream * int) -> vector
val inputAll : instream -> vector
val canInput : (instream * int) -> int option
val lookahead : instream -> elem option
val closeIn : instream -> unit
val endOfStream : instream -> bool
val output : (outstream * vector) -> unit
val output1 : (outstream * elem) -> unit
val flushOut : outstream -> unit
val closeOut : outstream -> unit
val getPosIn : instream -> StreamIO.in_pos
val setPosIn : (instream * StreamIO.in_pos) -> unit
val mkInstream : StreamIO.instream -> instream
val getInstream : instream -> StreamIO.instream
val setInstream : (instream * StreamIO.instream) -> unit
val getPosOut : outstream -> StreamIO.out_pos
val setPosOut : (outstream * StreamIO.out_pos) -> unit
val mkOutstream : StreamIO.outstream -> outstream
val getOutstream : outstream -> StreamIO.outstream
val setOutstream : (outstream * StreamIO.outstream) -> unit
structure StreamIO : TEXT_STREAM_IO
val inputLine : instream -> string
val outputSubstr : (outstream * substring) -> unit
val openIn : string -> instream
val openOut : string -> outstream
val openAppend : string -> outstream
val openString : string -> instream
val stdIn : instream
val stdOut : outstream
val stdErr : outstream
val print : string -> unit
val scanStream : ((Char.char,StreamIO.instream) StringCvt.reader ->

(’a,StreamIO.instream) StringCvt.reader) -> instream -> ’a option
end

Figure 4.18: The structureTextIO

104 CHAPTER 4. THE BASIS LIBRARY

characters from the input stream. It is unspecified how much of the stream is read.
Alternatively,inputNattempts to read at mostN chars from the stream, maybe less
if EOF is reached. The functioninputAll will attempt to read the whole stream,
until EOF is reached. Finally,input1attempts to read a single character, returning
SOME (c)if one is found,NONEif EOF is reached.

In all of the above cases, the call may block (or anIO.Io exception raised) if
no data is available from the input stream — that is, EOF has not been reached, but
no data is available, because say another process is slowly writing to the stream.
For some types of streams, it may be possible to check if the stream can provide
a certain number of characters without blocking, and that’s whatcanInputtries to
report. It reports how many characters can be read immediately without blocking,
or NONEif blocking occurs immediately (SOME (0)indicates EOF). On a related
note,lookaheadreturns an element from the stream if one is available (orNONEif
at EOF), just likeinput1, but it does not remove the character from the stream, so
that other input operations can retrieve the character. Implementing a lookahead of
more than one character can be done with the underlying functional stream subsys-
tem. This will be covered in Chapter??. The functionendOfStreamreturnstrue if
and only if the stream is at EOF. Finally,inputLinereturns a line from the stream,
namely the string of characters up to and including the first newline character. If
EOF is reached before a newline, a newline character is appended at the end of the
string anyways. If at EOF,inputLinereturns the empty string.

Output works in a similar way. The valuesstdOutandstdErr hold the current
output and error streams respectively, typically hooked to the terminal or window
holding the SML interactive loop. The functionsopenOutandopenAppendopen a
file for output, respectively overwriting it or appending to it.

The actual output is performed by the functionsoutput and output1, which
send a string or a single character to the specified output stream. The function
outputSubstringcan be used to send a substring of a string, and should be more
efficient than the equivalentoutput o Substring.string.

Because output is buffered, it may be necessary to useflushOutto flush the
stream. The functionprint sends its argument tostdOutand flushes the stream
automatically. It is also exported to toplevel for convenience. Finally, as in the
case of input, output streams should be closed throughcloseOutwhen done with.

It is straightforward to use the functions we have seen. Consider the following
example, implementing a simple query-reply loop: an input string is queried from
the user, it is processed, a reply is output. Since we don’t want to pin down where
the input is taken from or where the output is sent, or even what processing is
performed, we parametrize the routine by all of those bits of information:

4.5. INPUT AND OUTPUT 105

fun queryReply (ins,outs,process,prompt) = let
fun loop () = (case TextIO.inputLine (ins)

of "" => ()
| s => let

val result = process (s)
in

TextIO.output (outs,s);
TextIO.output1 (outs,#"\n");
TextIO.flushOut (outs);
loop ()

end)
in

loop ()
end

Finally, it seems logical that input streams should provide the perfect back-
drop for the readers and steams approach we have seen in Section 4.3. Because
of various trickiness dues to the nature of imperative I/O, to which we will return
in Chapter??, using an imperative stream as a reader stream is done via a func-
tion scanStreamsimilar in spirit toscanString. The functionscanStreamtakes a
scanning function (which you may recall converts a character reader into a value
reader for some type) and an input stream, and attempts to read a value from the
stream using the reader. If successful, the value read is returned and the stream is
in a position after the value read. If no value can be successfully read,NONE is
returned and the stream is left untouched.

As a technicality, notice that the scanning function must work onStreamIO.instream
types, which we discuss in Chapter??. Since all the scanning functions we have
seen until now are polymorphic over the character source, we are unaffected by
this restriction for the time being.

To illustrate this, let us generalize the previous query-reply function to take a
scanning function as an argument, and processing the provided value instead of
just a string:

fun queryReply’ (ins,outs,process,scan) = let
fun loop () = (case TextIO.scanStream scan ins

of NONE => ()
| SOME (v) => let

val result = process (v)
in

TextIO.output (outs,result);
TextIO.output1 (outs,#"\n");
TextIO.flushOut (outs);
loop ()

end)
in

loop ()
end

with type:
val queryReply’ : TextIO.instream * TextIO.outstream * (’a -> string)

* ((char,’b) StringCvt.reader ->
(’a,’b) StringCvt.reader) -> unit

106 CHAPTER 4. THE BASIS LIBRARY

structure OS : sig
eqtype syserror
exception SysErr of (string * syserror option)
val errorMsg : syserror -> string
val errorName : syserror -> string
val syserror : string -> syserror option
structure FileSys : OS_FILE_SYS
structure Path : OS_PATH
structure Process : OS_PROCESS
structure IO : OS_IO

end

Figure 4.19: The structureOS

An interesting question: can we recuperate the originalqueryReplyfrom the
above? We need to pass in a scan function for strings! One possibility is to provide
a scanner until a newline, to mimic whatinputLineis doing:

fun scanTilNL cr s =

4.6 System functions

The structureOS (signature in Figure 4.19) is the starting point for a largely op-
erating system independent model for handling resources from the underlying op-
erating system, such as the file system, directory paths, and processes. TheOS
structure defines the exceptionSysErrthat is used to report operating system error
conditions. An exception raised of the formSysErr (msg,opt)contains a system-
dependent string describing the error, as well as an optionalsyserrorvalue, an
abstract type representing a symbolic “name” for the error. FunctionserrorName
andsyserrorconvert between symbolic names and system-dependent names.

Four substructures hang off theOSstructure:FileSys, Path, Processand IO.
We beg off in these notes describingOS.IO, which provides support for polling I/O
devices through explicit I/O descriptors.

TheOS.FileSyssubstructure, whose signature is given in Figure 4.20, handles
interactions with the file system. They raise the exceptionOS.FileSysin case of
error. In general, functions which end up reading or writing files require that the
appropriate permissions be set for those files and the directory that contains them.

Directory handling accounts for a a large part of the structure. The function
chDir changes the current working directory to the specified directory (support for
writing paths will be describe next, when we look at theOS.Pathsubstructure),
while getDir returns the current working directory. The initial working directory

4.6. SYSTEM FUNCTIONS 107

structure FileSys : sig
type dirstream
val openDir : string -> dirstream
val readDir : dirstream -> string
val rewindDir : dirstream -> unit
val closeDir : dirstream -> unit
val chDir : string -> unit
val getDir : unit -> string
val mkDir : string -> unit
val rmDir : string -> unit
val isDir : string -> bool
val isLink : string -> bool
val readLink : string -> string
val fullPath : string -> string
val realPath : string -> string
val modTime : string -> Time.time
val fileSize : string -> Position.int
val setTime : (string * Time.time option) -> unit
val remove : string -> unit
val rename : old : string, new : string -> unit
datatype access_mode

= A_READ
| A_WRITE
| A_EXEC

val access : (string * access_mode list) -> bool
val tmpName : unit -> string
eqtype file_id
val fileId : string -> file_id
val hash : file_id -> word
val compare : (file_id * file_id) -> order

end

Figure 4.20: The structureOS.FileSys

108 CHAPTER 4. THE BASIS LIBRARY

is very much system dependent. A new directory can be created bymkDir, and
conversely can be removed byrmDir.

Getting a list of the files in a directory can be done via the directory stream
functions. A directory stream is an abstract value which yields the names of the
files in the directory one at a time. A directory stream on some directory is created
by openDir, and should be closed bycloseDir. The next filename in the stream is
returned byreadDir. Note that the pseudo-directory ”.” and ”..” are filtered out, and
thatreadDir returns the empty string”” after the last file name has been returned.
The functionrewindDir resets the directory stream so that the next filenameread-
Dir returns is the first one. One can use these functions to write a function which
reads a whole directory at once, returning a list of filenames:

fun listDir (s) = let
fun loop (ds) = (case OS.FileSys.readDir (ds)

of "" => [] before OS.FileSys.closeDir (ds)
| file => file::loop (ds))

val ds = OS.FileSys.openDir (s)
in

loop (ds) handle e => (OS.FileSys.closeDir (ds); raise (e))
end

Notice how we have mostly protected the above code from exceptions raised inside
its body by intercepting the exceptions, closing the directory stream, and re-raising
the intercepted exception. This is a general pattern that arises when we use so-
called modal functions, that is functions which switch in and out of a mode (for
instance,openInandcloseIn, or openOutandcloseOut).

The remaining functions deal with just those filenames. PredicatesisDir and
isLink check if the filename given represents a directory or a symbolic link (for
systems that support them). In the case of a symbolic link,readLinkreads off the
linked-to filename. FunctionsfullPathandrealPathextract the underlying path to a
filename, wherefullPathreturns the absolute path, andrealPathacts asfullPath if it
is given an absolute path, and otherwise returns a path relative to the current work-
ing directory. The key point behindrealPathis that the resulting path is canonical
(see later in this section, when we describe substructureOS.Path).

Time functionsmodTimeandsetTimerespectively access and change the mod-
ification time of the given file. ForsetTime, if a time is specified, it is used as the
new modification time, otherwise the current time is set in. For information on
time support, see Section 4.7. The functionfileSizereturns the size (in bytes) of the
given file.

A file (not a directory) can be deleted usingremove. Attempting to delete a file
on which streams are currently open lead to unspecified behavior. A filename can
be changed byrename, taking in theold name and thenewname.

As the above functions raise exceptions if the permissions on the accessed files
are not set correctly, it is useful to have a way to check such permissions. The pred-

4.6. SYSTEM FUNCTIONS 109

structure Path : sig
exception Path
exception InvalidArc
val parentArc : string
val currentArc : string
val validVolume : isAbs : bool, vol : string -> bool
val fromString : string -> isAbs : bool, vol : string, arcs : string list
val toString : isAbs : bool, vol : string, arcs : string list -> string
val getVolume : string -> string
val getParent : string -> string
val splitDirFile : string -> dir : string, file : string
val joinDirFile : dir : string, file : string -> string
val dir : string -> string
val file : string -> string
val splitBaseExt : string -> base : string, ext : string option
val joinBaseExt : base : string, ext : string option -> string
val base : string -> string
val ext : string -> string option
val mkCanonical : string -> string
val isCanonical : string -> bool
val mkAbsolute : (string * string) -> string
val mkRelative : (string * string) -> string
val isAbsolute : string -> bool
val isRelative : string -> bool
val isRoot : string -> bool
val concat : (string * string) -> string
val toUnixPath : string -> string
val fromUnixPath : string -> string

end

Figure 4.21: The structureOS.Path

icateaccesschecks if the given file has the given permissions, where a permission
is a value in a datatypeaccessmodeand is eitherA READ, A WRITEor A EXEC
(for read, write and execute permission, respectively).

The functiontmpNamegenerates a temporary filename which is not the name
of a currently existing file.

For uniquely identifying files, the Basis provides the notion of a file identifier:
given a path to a file system object,fileId returns afile id for that object. The
guarantee is that different paths yielding the same fileid mean that the path point
to the same underlying objcet. Given a fileid, hashreturns a corresponding hash
value in the form of a word. Finally,compareis the ordering function on fileid’s,
in some arbitrary underlying linear ordering of the fileid’s. Note that fileid’s are
not guaranteed persistent over underlying file system operations, such as mounting
and unmounting file system devices.

As the above functions (and some inTextIO) need to work with paths to files,

110 CHAPTER 4. THE BASIS LIBRARY

and as different operating systems have different conventions for dealing with path-
s, we describe the system independent facilities provided inOS.Path, whose sig-
nature is given in Figure 4.21. Some definitions are in order: an arc is a directory
or a file relative to its own directory. Arc separator characters are used to separate
arcs in paths. The character#”/” is the arc separator in Unix,#” \\” in DOS. The
special arcsparentArcandcurrentArccorrespond in Unix and DOS to”..” and”.”
respectively. A path is a list of arcs, with an optional root. An absolute path has
a root, while a relative path does not. A canonical path contains no occurence of
either of the empty arc, the current arc (unless it is the only arc in the path) and can
contain parent arcs only at the beginning and only if the path is relative. Intuitive-
ly, canonical paths do not contain useless arcs. Finally, paths have an associated
volume, which is”” under Unix and”A:” , ”C:” and so on under DOS.

We will skip a lot of details, and address the important functions in this struc-
ture. More detail can as usual be found in the official Basis documentation. The
basic functionality is given byfromStringandtoString, which respectively convert
a string into and from a record{isAbs,vol,arcs} representing the path:isAbsis true
if the path is absolute,vol is the volume whilearcsis the list of arcs. The functions
getVolume, andgetParentrespectively return the volume of a path and the parent
directory of an entity pointed to by the path.

At the level of directories and files, the functionsplitDirFile splits a path into
a directory part and a filename, whilejoinDirFile does the converse. The functions
dir andfile access the appropriate portions ofsplitDirFile.

In much a similar fashion,splitBaseExtsplits a path into a base part and an
extension part, whilejoinBaseExtdoes the converse andbaseandext access the
appropriate portions ofsplitBaseExt.

The predicatesisCanonical, isRelative, isAbsoluteandisRootcheck the given
path for the specified property.

UsingmkCanonicalone can convert a path to canonical form, whilemkAbso-
lute (p,abs)will append the absolute pathabs to the relative pathp, unlessp is
already absolute. Conversely,mkRelative (p,abs)returns a path which when taken
relative to the absolute pathabs is equivalent top. Finally, the functionconcat
concatenates two paths and requires the second path to be relative. In all these
functions, it is an error to consider paths on different volumes.

The substructureOS.Processprovides functions dealing with processes in a
system-independent way. Its signature is given in Figure 4.22. The typestatus
represents the status or result of a process’s execution, and two special values of
that type are defined:successandfailure. To execute a command from the under-
lying operating system, one callssystemwith a string argument to be interpreted
by the underlying operating system or shell. The function blocks until the invoked
process terminates, and it returns the status of the process. The callexit exits the

4.6. SYSTEM FUNCTIONS 111

structure Process : sig
eqtype status
val success : status
val failure : status
val system : string -> status
val atExit : (unit -> unit) -> unit
val exit : status -> ’a
val terminate : status -> ’a
val getEnv : string -> string option

end

Figure 4.22: The structureOS.Process

structure Unix : sig
type proc
type signal
val executeInEnv : (string * string list * string list) -> proc
val execute : (string * string list) -> proc
val streamsOf : proc -> (TextIO.instream * TextIO.outstream)
val reap : proc -> OS.Process.status
val kill : (proc * signal) -> unix

end

Figure 4.23: The structureUnix

process currently executing the program (or the compiler ifexit is invoked at the
interactive loop), passing a status back to the operating system. Calls toexit will
flush all open output streams, close all open files, and execute all the actions reg-
istered to execute at exit-time. To register such an action, one callsatExit, passing
it a unit→unit function. Exceptions raised by that function will be trapped and
ignored when it invoked during an exit. To exit the process without triggering the
atExit actions or flushing buffers, one may use theterminatefunction. Finally, the
functiongetEnvlooks up the value of the given environment variable as an option
value, returningNONEif it cannot be found.

Other process-related functions can be found in theUnix structure, whose sig-
nature is given in Figure 4.23. Although it is inspired by Unix functionality, its
functions should be useful in non-Unix settings.3 The main function inUnix is
execute, which takes a command and a list of arguments and asks the underlying
operating system to execute the command as a separate process. Note that under
Unix at least, the call is not routed through the shell, so there is no search per-
formed, and the full path to the command is required. The result of the call is

3Unfortunately, SML/NJ currently only provides a structureUnix on Unix systems.

112 CHAPTER 4. THE BASIS LIBRARY

structure CommandLine : sig
val name : unit -> string
val arguments : unit -> string

end

Figure 4.24: The structureCommandLine

a value of typeproc used to refer to that running process. UsingstreamsOf, one
can obtain a pair of input and output streams hooked into the standard input and
output of the process referred to byproc. Using reap will cause a suspension of
the current process until the system process corresponding toproc has terminated,
yielding its status. The semantics of Unix require that processes that have termi-
nated be reaped, so a programming usingexecuteshould eventually invokereapon
any process it creates.

Finally, the structureCommandLine, whose signature is given in Figure 4.24,
provides two functions for getting at the command used to invoke the currently
running program (which is typically the interactive compiler itsefl). The function
namereturns the name of the command, whileargumentsreturns a list of the ar-
guments. Note that some of the command line arguments may been “consumed”
by the runtime system, and may not appear in the list. For SML/NJ for example,
command line arguments of the form@SML... prefix runtime system directives
(which runtime system to use, which heap image, initial cache size, etc), which
never filter to the executed program.

4.7 Time and dates

The structureTimeprovides an abstract notion of time and operations for manip-
ulating it. Its signature is given in Figure 4.25. Time can be used in two distinct
ways, and the library supports them both: time can be an absolute measure, as in
the notion of “the current time”, or time can be an interval, as in “how much time
has elapsed since...”. The distinction is artificial however, as absolute time can be
seen as a time interval starting from some fixed point arbitrarily denoted time 0.
Functions in theDatestructure, which we will see later in this section, can convert
this notion of absolute time with respect to some time 0 into an actual date and
time. Given this duality, we shall frame our discussion using the interpretation of
time as intervals.

Time is represent by an abstract typetime. The valuezeroTimedenotes the
empty time interval (and thus is the common reference point for specifying absolute

4.7. TIME AND DATES 113

structure Time : sig
eqtype time
exception Time
val zeroTime : time
val fromReal : LargeReal.real -> time
val toReal : time -> LargeReal.real
val toSeconds : time -> LargeInt.int
val toMilliseconds : time -> LargeInt.int
val toMicroseconds : time -> LargeInt.int
val fromSeconds : LargeInt.int -> time
val fromMilliseconds : LargeInt.int -> time
val fromMicroseconds : LargeInt.int -> time
val + : (time * time) -> time
val - : (time * time) -> time
val compare : (time * time) -> order
val < : (time * time) -> bool
val <= : (time * time) -> bool
val > : (time * time) -> bool
val >= : (time * time) -> bool
val now : unit -> time
val fmt : int -> time -> string
val toString : time -> string
val fromString : string -> time option
val scan : (char, ’a) StringCvt.reader -> ’a -> (time * ’a) option

end

Figure 4.25: The structureTime

114 CHAPTER 4. THE BASIS LIBRARY

time). The functionnow returns the “current time”, that is the time interval since
the fixed zero time point indicated byzeroTime. Further functions for creating
and reading time values includetoRealand fromReal, which convert a fractional
number of seconds into and from a time value, whiletoSeconds, toMilliseconds,
toMicrosecondsandfromSeconds, fromMilliseconds, fromMicrosecondsconvert a
number of seconds (respectively, milliseconds or microseconds) into and from a
time value.

Arithmetic operations on time intervals are provided:+ denotes a time interval
which is the sum of the durations of its arguments, while- denotes a time interval
which is the difference of its arguments. Since time values are required to be
positive,t1 must be less thant2 in - (t1,t2). A Timeexception is raised otherwise.
Note thattime is an equality type, and moreover provides the standard comparison
operatorscompare,<,<=,> and>=.

Conversion to and from strings follow the usual pattern. The functionfmt con-
verts a time value to a string representing the time interval in seconds, with as
argument an integer denoting the number of decimal digits to keep in the fractional
part. Conversely,scanis a standard scanning function, turning a character read-
er into a time value reader (see Section 4.3). The time value scanned is taken as
a (possibly fractional) number of seconds, as in thefromRealcall. The function
toStringis equivalent tofmt 3andfromStringis derived fromscanin the usual way
(it is equivalent toStringCvt.scanString scan).

Turning time values into actual dates and times is done via theDate struc-
ture, whose signature is given in Figure 4.26. Dates are represented through an
abstract type which for all intents and purposes should be though of as a record
{year,month,day,hour,minute,second,offset} whereyear, monthand day give the
date (monthtakes its values from a datatypemonthwith valuesJan,Feb,...), while
hour,minuteandsecondprovide the time andoffsetis an optional value that indi-
cates time zone information: a value ofNONE indicates that the time is taken in
the current time zone, while a value ofSOME (t)corresponds to a time zone at time
t west of UTC (Universal Time Coordinates, also known as Greenwich Mean Time
or GMT).

The functiondate takes a record in the above form and converts it to adate
value, possibily canonicalizing it (hours in excess of 24 carry over into days, and
so on). The functionsyear, month, day, hour, minute, secondandoffsetreturn the
corresponding fields of the abstract time value — again, because of canonicaliza-
tion the values retrieved may be different from what was passed in. The additional
functionsweekdayreturn the day of the week corresponding to the date (given as
a value from the datatypeweekday), while yearDayreturns the day of the year the
date represents, with January 1 being day 0, February 1 being day 31, and so on.
The functionisDst returnsNONE if the system has no information about daylight

4.7. TIME AND DATES 115

structure Date : sig
datatype weekday

= Mon | Tue | Wed| Thu| Fri | Sat | Sun
datatype month

= Jan| Feb| Mar| Apr| May| Jun| Jul
| Aug | Sep| Oct| Nov| Dec

type date
exception Date
val date : {year : int, month : month, day : int, hour : int, minute : int,

second : int, offset : Time.time option} -> date
val year : date -> int
val month : date -> month
val day : date -> int
val hour : date -> int
val minute : date -> int
val second : date -> int
val weekDay : date -> weekday
val yearDay : date -> int
val offset : date -> Time.time option
val isDst : date -> bool option
val localOffset : unit -> Time.time
val fromTimeLocal : Time.time -> date
val fromTimeUniv : Time.time -> date
val toTime : date -> Time.time
val toString : date -> string
val fmt : string -> date -> string
val fromString : string -> date option
val scan : (char, ’a) StringCvt.reader -> ’a -> (date * ’a) option
val compare : (date * date) -> order

end

Figure 4.26: The structureDate

116 CHAPTER 4. THE BASIS LIBRARY

exists
%% the percent character
%c the character c, if c is not one of the format characters listed above

Figure 4.27: Formatting characters forDate.fmt

savings time (DST),SOME (true)if DST is in effect, andSOME (false)if it is not.

Functions for converting to and from time values (as defined in theTimestruc-
ture) are provided. The functionlocalOffsetreturns the offset corresponding to
the current time zone (this is typically taken from the underlying operating sys-
tem). FunctionsfromTimeLocaltakes a time value and converts it to a date in
the local time zone, interpreting the time value as the time interval since the time
Time.zeroTime, while fromTimeUnivconverts it to a date in the UTC time zone.
Presumably,fromTimeLocalreturns a date with an offset ofNONEwhile fromTime-
Univ returns a date with an offset ofSOME (0). The callfromTimeLocal (Time.now
()) returns the current date and time, whilefromTimeLocal (Time.zeroTime)returns
the date corresponding to the common point for absolute time. Conversely, the
functiontoTimeconverts a date value to a time value, that is the time elapsed from
Time.zeroTimeto the corresponding date, raising theDate exception if the date
cannot be represented as a time value.

Comparison of dates is done through the standardcomparefunction, while
conversion to and from strings is done via functionsfmt andscan. The function
fmt takes a format string and a date and converts the date to a string according
to the format. Format characters allowed in the format string are given in Figure
4.27. The functiontoString is an abbreviation fofmt, hardwired to convert dates
into strings of the form”Wed Mar 08 19:06:45 1995”with exactly 24 characters.
The functionscanis a standard scanning function, converting a character reader
into a date value reader, where the date is parsed exactly as the format produced by
toString(including possibly some initial whitespace). The functionfromStringis
equivalent toStringCvt.scanString scan, as usual.

TheDatestructure is reasonably straightforward to use, although the handling
of time zones takes some time to get used to. Mostly, this is due to people often
counting offset from UTC in the range -11 to +11, and not 0 to -23, as is being
done here. Two easy ways of getting out of this are possible. First, one can define
a simple function from standard time offset to the Basis time offset and back, and
second one may define standard time zones abbreviations for oft-used time off-
sets. Let’s do both. Consider a structureTimeZonewith functionsfromStdOffset
andtoStdOffsetto convert standard offsets to the Basis time offsets and back, and

4.7. TIME AND DATES 117

structure TimeZone = struct
exception TimeZone

fun fromStdOffset (NONE) = NONE
| fromStdOffset (SOME (v)) = SOME (if v > 0 andalso v <= 12

then 24 - v
else if (v <= 0 andalso v >= 12)

then ˜ v
else raise TimeZone)

fun toStdOffset (NONE) = NONE
| toStdOffset (SOME (v)) = SOME (if v > 12

then 24 - v
else ˜ v) (* raise TimeZone? *)

val EST = SOME (...)
val GMT = SOME (...)
val ...

end

Figure 4.28: The structureTimeZone

abbreviations such asESTfor Eastern Standard Time, and so on. The structure is
given in Figure 4.28.

The final structure from the Basis we consider is theTimerstructure (signature
in Figure 4.29), which provides functions to measure the passage of real time. Two
types of timers are defined: real timers and cpu timers. A real timer keeps track
of real time, while a cpu timer keeps track of time spent by the currently running
process, that is the user time (time the process has had the CPU), the system time
(time the process has been active in the kernel) and the GC time (time the process
has spent on garbage collection). Once a timer is created, it starts keeping track of
time, and can be queried for its current time count.

The functionsstartRealTimerandstartCPUTimerreturn real and cpu timers
respectively, which start keeping track of time, starting from time 0. The func-
tionscheckRealTimerandcheckCPUTimerquery the provided timer and return the
time it is keeping track of. The functionstotalRealTimerand totalCPUTimerre-
turn special timers, which keep track of elapsed time since a system-dependent
initialization (typically, the start of the process itself).

As an example, consider the following functiontimedFn:

fun timedFn (f) a = let
val ct = Timer.startRealTimer ()
val result = f a

in
(result,Timer.checkRealTimer (ct))

end

118 CHAPTER 4. THE BASIS LIBRARY

structure Timer : sig
type cpu_timer
type real_timer
val startCPUTimer : unit -> cpu_timer
val checkCPUTimer : cpu_timer -> {usr : Time.time, sys : Time.time, gc :

Time.time}
val totalCPUTimer : unit -> cpu_timer
val startRealTimer : unit -> real_timer
val checkRealTimer : real_timer -> Time.time
val totalRealTimer : unit -> real_timer

end

Figure 4.29: The structureTimer

which takes a function of type’a →’b and creates a new function of type’a →(’b
×Time.time), which behaves like the original function, but moreover returns the
time it took for the function to execute. We used real time in the example, but it is
trivial to modify the function to keep track of cpu time.

4.8 Compatibility with SML’90

A final structure from the Basis that we cover is useful when porting programs
written for SML’90. TheSML90structure (whose signature is given in Figure 4.30)
provides the bindings for types and values that were available at top-level with
older versions of SML. The SML’90 version of the language defined a minimal
library nowhere near the complexity of the current Basis. TheSML90structure
defines the types and values that were available in the old basis but that do not exist
in the current one. For example, the list functionmapwas available in the old basis,
but is still present in the new Basis, and so is not implemented inSML90. Some
differences between previous versions of SML and the SML’97 update involve
semantic changes that cannot be isolated in theSML90structure. One example is
that thereal type was an equality type in previous versions of SML, while it is
not so in SML’97. Similarly, arithmetic operations would raise specific exceptions
in previous versions of SML, and this behavior cannot be captured in theSML90
structure. Older programs relying on such features will need to be modified to take
the new semantics into account

The SML90structure can be divided into three parts: math functions, string
functions and I/O functions. The structure also defines exceptions, most of which
are aliases for existing exception from elsewhere in the Basis. The math functions
in SML90includesqrt, exp, ln, sin, cos, arctan, and most of these are equivalent to
functions in theMathstructure of the Basis. The string functionsord, chr, explode

4.8. COMPATIBILITY WITH SML’90 119

structure SML90 : sig
type instream
type outstream
exception Abs
exception Quot
exception Prod
exception Neg
exception Sum
exception Diff
exception Floor
exception Exp
exception Sqrt
exception Ln
exception Ord
exception Mod
exception Io of string
exception Interrupt
val sqrt : real -> real
val exp : real -> real
val ln : real -> real
val sin : real -> real
val cos : real -> real
val arctan : real -> real
val ord : string -> int
val chr : int -> string
val explode : string -> string list
val implode : string list -> string
val std_in : instream
val open_in : string -> instream
val input : (instream * int) -> string
val lookahead : instream -> string
val close_in : instream -> unit
val end_of_stream : instream -> bool
val std_out : outstream
val open_out : string -> outstream
val output : (outstream * string) -> unit
val close_out : outstream -> unit

end

Figure 4.30: The structureSML90

120 CHAPTER 4. THE BASIS LIBRARY

andimplodeare also equivalent to functions in the Basis. Note that SML’90 did not
have a specific type for characters. Typically, strings with a single character were
used as a representation for that character. Hence, the type ofexplodein SML90is

val explode : string -> string list

while theexplodefunction in the Basis structureStringhas type:

val explode : string -> Char.char list

The most extensive part of theSML90structure is the input/output facilities. It
provides the basic facilities for opening and closing files, along with the input and
output of character strings. The input and output is stream-based and buffered. As
we shall see in Section 4.5 (and in more detail in Chapter??), the Basis provides a
much more extensive subsystem, able to deal both with imperative and with stream-
based I/O.

The typesinstreamandoutstreamare the abstract types corresponding to stream-
s of input and output created from files. The streamsstd in andstd out are created
when the compiler is first started and are bound to the standard input and output
streams of the process that launched the compiler. For input, the functionopenin
opens a file whose name is passed as an argument and returns aninstreamon the
given file; input (s,n)returns a string of at mostn characters read from the supplied
input streams; lookaheadreturns the next character in the stream, or an empty
string if the end of the file has been reached;endof streamreturns true if the end
of the file has been reached. Note that all these operations are blocking: if the end
of the file has not been reached, but not all the required characters are available,
the call blocks until the characters become available. The functionclosein closes
the given input stream. Corresponding functions exist for output:openout returns
anoutstreamfor output to the given file;outputsends a given string to the given
output stream;closeout closes the output stream.

The exceptionIo is used to indicate errors, such as trying to read from or write
to a close stream, or trying to open a file for input and failing (say because the file
does not exist), or trying to open a file for output and failing (say because the user
does not have write permissions to the directory in which the file is to be created).

Notes

The official documentation to the basis will be published in [35] and a draft version
is available online from the SML/NJ web site. Most of the discussion in these
notes summarize the descriptions in the official documentation. Gilmore’s notes

4.8. COMPATIBILITY WITH SML’90 121

[37] provide a nice overview of some relevant aspects of the Basis Library in his
tutorial notes for programming in SML’97.

Some of the issues about conventions in the Basis could be automatically en-
forced by a more powerful type system, such as one based on type classes [112].

In pre-SML’97, real numbers actually formed an equality type. The current
implementation of reals is based on the IEEE standards [53] and [54] and the notes
[55]. TheMathstructure is based on its C library<math.h> counterpart. .

Some structures were left out of the discussion, namelyPackRealandByte.
These described in the official documentation. They are mostly useful for with low-
level programming. Note that the release version of SML/NJ does not implement
PackReal.

The use of folding functions to implement list-based processing functions (and
in general, other iterative structures) is well-known in the functional programming
community, and has lead to a whole theory of such functions. Refer, for example,
to the work of Meijer et al. [70].

TheOS.IOsubstructure implements polling as per the Unix SVR4 interface.
The best reference for such notions as canonical dates, and deriving weekdays

from dates, and converting from time to date and back is the book by Dershowitz
and Reingold [26].

A great number of structure we have not discussed are implemented on Posix
systems, dealing exclusively with providing access to Posix functionality. Such
functionality is used for example to build the IO infrastructure on Posix systems,
and in fact is the only way to access the terminal to do cursor addressing.

The IO subsystem is described in much more detail in Chapter??. Sockets are
described independently in Chapter??.

122 CHAPTER 4. THE BASIS LIBRARY

Part II

Standard ML of New Jersey

123

Chapter 5

The Interactive Compiler

What we have discussed until now in these notes is Standard ML, the language,
along with its extensive Basis Library. In this chapter and the ones following, we
begin an in-depth description of Standard ML of New Jersey, an implementation of
that language, a compiler and an environment. We explore the aspects of that envi-
ronment, interacting with the compiler and the support tools, as well as the SML/NJ
library, which complements the Basis Library in its support for data structures and
utility functions.

In this chapter, the focus is on the interaction with the compiler. The compiler
runs an interactive loop, waiting for the user to enter code, which the system com-
piles and executes. We saw in Section 1.6 the basics of starting and terminating
the interactive compiler, using the interactive loop, and reading error messages and
such. Here, we focus on more in-depth issues such as controlling and customizing
details of the system and the compiler, accessing aspects of the compiler such as
the evaluation stream and the prettyprinter, as well as managing heap images and
generating standalone programs.

5.1 Controlling the runtime system

In this section, we look at the facilities for tweaking the settings in the system. It
provides a deeper look at theSMLofNJstructure, which defines facilities specific
to the runtime system of SML/NJ. We will return to some of the functionality in
this structure later in this chapter, as well as in later chapters (specifically, Chapter
??). The signature ofSMLofNJis given in Figure 5.1.

We already saw a description of most of the functions inSMLofNJ. The func-
tion exnHistoryreturns, for a given raised exception, a list of strings describing
where the exception was raised in the code, and through which handler it has

125

126 CHAPTER 5. THE INTERACTIVE COMPILER

structure SMLofNJ : sig
structure Cont : CONT
structure IntervalTimer : INTERVAL_TIMER
structure Internals : INTERNALS
structure SysInfo : SYS_INFO
structure Susp : SUSP
structure Weak : WEAK
val exportML : string -> bool
val exportFn : (string * ((string * string list) ->

OS.Process.status))
-> unit

val getCmdName : unit -> string
val getArgs : unit -> string list
val getAllArgs : unit -> string list
datatype ’a frag
= QUOTE of string
| ANTIQUOTE of ’a
val exnHistory : exn -> string list

end

Figure 5.1: The structureSMLofNJ

passed. Thefrag datatype will be discussed in Chapter?? along with theSusp
andWeaksubstructures, while theCont substructure is the subject of Chapter??.
We focus here on the remaining substructures.

The structureSMLofNJ.SysInfoprovides information on the current system,
that is the system hosting the currently executing runtime system. Its signature is
given in Figure 5.2. Its main functions aregetOSKindwhich returns an element of
type os kind describing the operating system (UNIX, WIN32, MACOS, ...), while
getOSNamereturns the actual name of the operating system andgetOSVersionits
version. The functionsgetHostArchandgetTargetArchreturn a string respectively
describing the architecture of the system running the compiler and the architecture
for which the compiler is generating code. Unless one is cross-compiling, these
values are the same. Cross-compiling is interesting, but beyond the scope of these
notes.

The structureSMLofNJ.IntervalTimer(signature in Figure 5.3) allows one to
set the granularity of the timers (for example, those created by theTimerstructure
of the Basis, see Section 4.7). The functiontick returns the current granularity,
that is the smallest interval of time that the timers can measure. The function
setIntTimerchanges this granularity to the specified time value, or disables timers
altogether ifNONEis given as an argument.

The substructureSMLofNJ.Internalsprovides access to the true core of the
system. Its signature is given in Figure 5.4. The valueprHook is a hook for the

5.1. CONTROLLING THE RUNTIME SYSTEM 127

structure SMLofNJ.SysInfo : sig
exception UNKNOWN
datatype os_kind
= UNIX
| WIN32
| MACOS
| OS2
| BEOS
val getOSKind : unit -> os_kind
val getOSName : unit -> string
val getOSVersion : unit -> string
val getHostArch : unit -> string
val getTargetArch : unit -> string
val hasSoftwarePolling : unit -> bool
val hasMultiprocessing : unit -> bool

end

Figure 5.2: The structureSMLofNJ.SysInfo

structure IntervalTimer : sig
val tick : unit -> Time.time
val setIntTimer : Time.time option -> unit

end

Figure 5.3: The structureIntervalTimer

structure SMLofNJ.Internals : sig
structure CleanUp : CLEAN_UP
structure GC : GC
val prHook : (string -> unit) ref
val initSigTbl : ’a -> unit
val clearSigTbl : ’a -> unit
val resetSigTbl : ’a -> unit

end

Figure 5.4: The structureSMLofNJ.Internals

128 CHAPTER 5. THE INTERACTIVE COMPILER

structure CleanUp : sig
datatype when= AtExportML| AtExportFn| AtExit| AtInit| AtInitFn
val atAll : when list
val addCleaner : (string * when list * (when -> unit)) -> (when list * (when ->

unit)) option
val removeCleaner : string -> (when list * (when -> unit)) option
val clean : when -> unit

end

Figure 5.5: The structureCleanUp

top-levelprint function, allowing it to be rebound: in effect,print calls whatever
function is stored in this reference cell (initially set toTextIO.print). Substructures
of interest includeCleanUpandGC.

The substructureSMLofNJ.Internals.CleanUp(signature in Figure 5.5) allows
the user to control actions perform at certain key events in the life of a SML pro-
cess, such as process exit or heap initialization. In Section 4.6, we already saw
how to register actions to be performed at exit time. This structure completes the
picture, by providing more events of interest to attach actions to. The datatype
whendenotes events of interest, with valuesatExportFn, atExportML, atExit, a-
tInit, atInitFn, the last two corresponding to the event of starting to execute code
in a loaded heap image generated byexportMLandexportFnrespectively (export-
ing heaps will be described in Section 5.4). The valueatAll contains a list of all
allowable events. A cleaner is a function invoked at some event: it is defined by
a name (of typestring), and an action to be performed when an event occurs (of
typeevent→unit). The action is passed the event that triggered it. Typical actions
include closing files that have been left open, and such. To add a new cleaner to the
system, one callsaddCleanerwhich takes a name for the cleaner, a list of events
it is registered to react to, and the cleaner action proper. The function returns an
option value, with any existing cleaner with the same name, if one exists. Such
an already existing cleaner is removed when a new one is installed. To remove
a cleaner without installing a new one, we can useremoveCleanerpassing in the
cleaner name. To manually invoke the cleaners associated with an event, one can
call cleanpassing in the event value to simulate. Of course, cleaners get invoked
automatically when the associated event actually happens.

Although a cleaner gets removed when a cleaner of the same name is installed,
using higher-order functions, one can easily combine cleaners instead of removing
old ones:

5.2. CONTROLLING THE COMPILER 129

structure GC : sig
val doGC : int -> unit
val messages : bool -> unit

end

Figure 5.6: The structureGC

fun combineCleaner (name,when,f) =
case SMLofNJ.Internals.CleanUp.addCleaner (name,when,f)

of NONE => ()
| SOME (name’,when’,f’) => SMLofNJ.Internals.CleanUp.addCleaner....

(* idea: add new cleaner of the same name, with a combined
action... *)
(* let w = when’ - when in ... addClearner (n,w,f) then combine... *)

This is not an especially recommended approach, but shows once again how higher-
order functions can be very useful.

The substructureSMLofNJ.Internals.GCprovides a very simple interface to
the garbage collector. The signature is given in Figure 5.6. The functiondoGC
invokes the garbage collector manually, passing in the highest generation to con-
sider while collecting (SML/NJ uses a generational garbage collector). In effect,
doGC (0)performs a quick garbage collection of the allocation space, whiledoGC
(1000)performs a major collection, scavenging all garbage. The more thorough
the collection, the longer garbage collection will take. The functionmessagesen-
ables or disables garbage collection messages. By default, messages are enabled
for heaps created byexportMLand disabled for heaps created byexportFn— thus
interactive systems show garbage collection messages (as SML/NJ itself does), but
not standalone applications.

5.2 Controlling the compiler

In the previous section, we have seen the customization facilities provided by
SMLofNJfor the system in its generality, that is facilties that affect every heap
image. In this section and the next ones, we focus on the compiler itself.

The SML/NJ compiler is accessible through the top-level structureCompiler
(at least, the so-called visible compiler is). This allows user programs, such as CM,
the possibility of manipulating the compiler. Figure 5.7 gives the signature for this
structure, and we will focus on various specific parts of the structure, as most of it
involves the compilation process itself which, though fascinating in its own right,
is beyond the scope of these notes. The substructures of interest to us areControl,
PrettyPrint, PPTableandInteract.

130 CHAPTER 5. THE INTERACTIVE COMPILER

structure Compiler : sig
structure Stats : STATS
structure Control : CONTROL
structure Source : SOURCE
structure SourceMap : SOURCE_MAP
structure ErrorMsg : ERRORMSG
structure Symbol : SYMBOL
structure StaticEnv : STATICENV
structure DynamicEnv : DYNENV
structure BareEnvironment : ENVIRONMENT
structure Environment : ENVIRONMENT
structure CoerceEnv : COERCE_ENV
structure EnvRef : ENVREF
structure ModuleId : MODULE_ID
structure SCStaticEnv : SCSTATICENV
structure Profile : PROFILE
structure CUnitUtil : CUNITUTIL
structure CMSA : CMSA
structure PersStamps : PERSSTAMPS
structure PrettyPrint : PRETTYPRINT
structure PPTable : sig
val install_pp : string list -> (PrettyPrint.ppstream -> ’a -> unit) ->
unit
end
structure Ast : AST
structure Lambda : sig
type lexp
end
structure Compile : COMPILE
structure Interact : INTERACT
structure Machm : CODEGENERATOR
structure PrintHooks : PRINTHOOKS
structure Boot : sig
val coreEnvRef : SCEnv.Env.environment ref
end
val version : system : string, version_id : int list, date : string
val banner : string
val architecture : string

end

Figure 5.7: The structureCompiler

5.2. CONTROLLING THE COMPILER 131

structure Compiler.Control : sig
structure MC : MCCONTROL
structure Lazy : LAZYCONTROL
structure CG : CGCONTROL
structure Print : PRINTCONTROL
val debugging : bool ref
val primaryPrompt : string ref
val secondaryPrompt : string ref
val printWarnings : bool ref
val valueRestrictionWarn : bool ref
val instantiateSigs : bool ref
val internals : bool ref
val interp : bool ref
val saveLambda : bool ref
val saveLvarNames : bool ref
val preserveLvarNames : bool ref
val markabsyn : bool ref
val trackExn : bool ref
val indexing : bool ref
val instSigs : bool ref
val quotation : bool ref
val saveit : bool ref
val saveAbsyn : bool ref
val saveConvert : bool ref
val saveCPSopt : bool ref
val saveClosure : bool ref
val lambdaSplitEnable : bool ref
val crossInlineEnable : bool ref

end

Figure 5.8: The structureControl

First, three values inCompilerare useful. The stringbanneris displayed by
the default heap on startup, giving the name and version of the compiler. The value
versioncontains a non-string version of this information (more appropriate if say
your program needs to check the current version of the compiler that you are using)
while architectureis a short identifier for the instruction-set architecture on which
the system is running.

TheCompiler.Controlsubstructure provides convenient flags to control various
aspects of the compiler. Its signature is given in Figure 5.8. Flags are typically giv-
en as boolean references, so that an assignment to the appropriate flag will affect
every subsequent compilation. The flags of interest for us in this structure are the
string referencesprimaryPromptandsecondaryPromptwhich hold the strings rep-
resenting the prompts to be displayed to the user in the interactive loop (”-” and
”=” , respectively). The secondary prompt is displayed when the input continues
past the first line entered. The boolean flagsprintWarningscontrols whether warn-

132 CHAPTER 5. THE INTERACTIVE COMPILER

structure Compiler.Control.Print : sig
val printDepth : int ref
val printLength : int ref
val stringDepth : int ref
val printLoop : bool ref
val signatures : int ref
val printOpens : bool ref
val out : say : string -> unit, flush : unit -> unit ref
val linewidth : int ref
val say : string -> unit
val flush : unit -> unit

end

Figure 5.9: The structurePrint

ing messages from the compiler are displayed. Warnings typically indicate that
although an error has not occurred, some corrective or non-obvious default action
has been taken that the user may not be aware of.

A special case of this, the boolean flagvalueRestrictionWarn, controls whether
the system displays a warning when the compiler fails to generalize a polymorphic
value inside alet binding. The typical corrective action taken is to instantiate the
polymorphic type to a new type not used anywhere else, which means of course
that the polymorphic value is unusable (it will fail to type-check if used anywhere),
but does allows the code itself to compile. . We will return to the boolean flag
quotationin Chapter?? — this flag controls the use of the backquote as a special
quotation character.

The Compiler.Controlstructure also defines further substructures controlling
more specialized aspects of the compiler. We focus now on the printing mecha-
nism in substructurePrint. The signature is given in Figure 5.9. It also provides
a number of reference cells that can be set to different values. The valuesprint-
Depth, printLengthandstringDepthcontrol at which point the display of values by
the compiler is truncated and ellipses (...) are printed. The flagprintDepthcon-
trols how many levels of nesting are displayed for recursive data structures (user-
defined, not including lists), the flagprintLengthcontrols how many elements of
a list are displayed, and the flagstringDepthcontrols how many characters of a
string are displayed. The flagprintLoopspecifies whether to treat loops (involving
reference cells) specially when printing. For example, consider the following code,
which defines a type and a value of that type.

- datatype node = Node of int * node option ref;
datatype node = Node of int * node option ref
- val v = Node (0,ref NONE);
val v = Node (0,ref NONE) : node

5.2. CONTROLLING THE COMPILER 133

Next, we create a loop by having the reference cell inv point to v itself. The
following code does the job:

- let val Node (_,r) = v in r := SOME (v) end;
val it = () : unit

Let us now see how the valuev gets printed at the toplevel. First, using the default
value forprintLoop, which is true (note that we set the print depth to a suitable
value to get non-trivial output):

- Compiler.Control.Print.printDepth := 100;
val it = () : unit
- v;
val it = Node (0,ref (SOME (Node (0,%0))) as %0) : node

We see that the compiler has detected a loop in the output, and use the placeholder
%0 to point out the loop. IfprintLoop is set tofalse, things are not so nice:

- Compiler.Control.Print.printLoop := false;
val it = () : unit
- v;
val it =

Node
(0,

ref
(SOME

(Node
(0,

ref
(SOME

(Node
(0,

ref
(SOME

(Node
...

and the output goes on for quite some time (until the printing depth has been
reached).

The flagssignaturesandprintOpenscontrol the printing of signature bodies
respectively when a structure with that signature is opened. The flaglinewidth
specifies how many characters should fit in a line for the purpose of prettyprinting
values (see Section 5.3 later in this chapter). The flagoutspecifies how the printing
of compiler messages should be performed. The value stored is a record{say :
string→unit, flush : unit→unit}. The fieldsayspecifies how to print to top-level,
and the fieldflushhow to flush the buffer associated with printing to top-level, if
applicable. By default, printing is done on standard output, so the corresponding
would be

{say = fn (s) => TextIO.output (TextIO.stdOut,s),
flush = fn () => TextIO.flushOut (TextIO.stdOut)}

On the other hand, the following suppresses all output from the compiler:

134 CHAPTER 5. THE INTERACTIVE COMPILER

structure Compiler.Interact : sig
exception Interrupt
val interact : unit -> unit
val useFile : string -> unit
val useStream : TextIO.instream -> unit

end

Figure 5.10: The structureInteract

{say = fn _ => (), flush = fn () => ()}

One can write a functionuseSilentlyto usea file but without displaying any output
associated with the loading (aside for explicit printing in the file), as in:

fun useSilently (s) = let
val saved = !Compiler.Control.Print.out
fun done () = Compiler.Control.Print.out := saved

in
Compiler.Control.Print.out := {say = fn _ => (), flush = fn () => ()}
(use (s); done ()) handle _ => done ()

end

Note that we are cheating: we noted in Section 1.6 thatuseshould only be used at
top-level. Here we are using it within the body of a function. It turns out to work
in this case, but future versions of the compiler may change this behavior, breaking
the above code.

The functionssayandflushin Compiler.Control.Printsimply call the functions
stored in the corresponding fields ofout, as a shortcut. User will typically not use
these functions, unless they want their output to be considered compiler-related
and controlled by this compiler flag.

The last substructure ofCompilerwe discuss in this section, not formally con-
cerned with customizing the compiler, isCompiler.Interact, which among others
includes facilities for compiling code other than what is entered at the top-level
loop. Part of the signature ofCompiler.Interactis given in Figure 5.10. The func-
tion interact launches a new interactive loop, whileuseFileis the underlying bind-
ing of the toplevel functionuse. The functionuseStreamis a generalization, com-
piling code from a specified imperative stream. In fact, we can define:

val useFile (s) = let
val ins = TextIO.openIn (s)

in
Compiler.Interact.useStream (ins);
TextIO.closeIn (ins)

end

With useStream, we can write functions such as

5.3. PRETTYPRINTING 135

structure Compiler.PrettyPrint : sig
type ppstream
type ppconsumer
datatype break_style= CONSISTENT| INCONSISTENT
exception PP_FAIL of string
val mk_ppstream : ppconsumer -> ppstream
val dest_ppstream : ppstream -> ppconsumer
val add_break : ppstream -> (int * int) -> unit
val add_newline : ppstream -> unit
val add_string : ppstream -> string -> unit
val begin_block : ppstream -> break_style -> int -> unit
val end_block : ppstream -> unit
val clear_ppstream : ppstream -> unit
val flush_ppstream : ppstream -> unit
val with_pp : ppconsumer -> (ppstream -> unit) -> unit
val pp_to_string : int -> (ppstream -> ’a -> unit) -> ’a -> string

end

Figure 5.11: The structureCompiler.PrettyPrint

fun useString (s) = let
val ins = TextIO.openString (s)

in
Compiler.Interact.useStream (ins);
TextIO.closeIn (ins)

end

allowing for some dynamic control over what can be defined at top-level. Notice
however that the mechanism forusecorresponds to: compile and execute the code.
The result of computing the expression, if any, gets printed to the default output
stream anduseStream(anduseFile) return(). There is no way to directly obtain
the result of the compilation, short of redirecting the output of the compiler (vi-
a sayCompiler.Control.Print.out) and parsing the result by hand. For example,
evaluating

- useString "3+4;";
val it = 7 : int
val it = () : unit

yields the final value(), while the intermediate steps output the result of the com-
piled code. There is no type-safe way to execute dynamically generated code and
get a meaningful value back. As an example of the kind of problem that could
occur, what would such an eval function return for values of a user-defined type?

5.3 Prettyprinting

The Compiler.PrettyPrintstructure, whose signature is given in Figure 5.11, im-
plements functions to define prettyprinters for monomorphic user-defined types,

136 CHAPTER 5. THE INTERACTIVE COMPILER

structure SimpleXml : sig
datatype simple_xml = Word of string

| Tagged of {tag : string,
contents: simple_xml list}

val listOfWords : string -> simple_xml list
val toString : simple_xml -> string

end = struct
datatype simple_xml = Word of string

| Tagged of {tag : string,
contents: simple_xml list}

fun listOfWords (s:string): simple_xml list =
map Word (String.tokens Char.isSpace s)

fun toString (e:simple_xml):string = let
val c = String.concat

in
case e

of Word (s) => sˆ" "
| Tagged {tag,contents} => c ["<",tag,">",

c (map toString contents),
"</",tag,">"]

end
end

Figure 5.12: The structureSimpleXML

which is used to print values of those types in the top-level interactive loop. Gener-
ally, a prettyprinter takes a stream of characters and prints them in an aesthetically
pleasing way, with appropriate indentation and line breaks.

Most examples of prettyprinting are taken from the prettyprinting of program-
ming languages. However, for the sake of simplicity, we illustrate prettyprinting
ona small but hopefully illustrative example. Consider the problem of representing
marked-up text, in a way reminiscent of XML. The structureSimpleXMLin Figure
5.12 gives the implementation I have in mind. The structure defines a datatypesim-
ple xml to represent marked-up text, and utility functions to operate on values of
that type. A value of typesimplexml is either a word or a tagged element, consist-
ing of a tag and a list of contained elements. The representation of the XML-like
text

<SOME>This is text</SOME>

would be written as:

Tagged {tag="SOME",content=[Word "this", Word "is", Word "text"]}

5.3. PRETTYPRINTING 137

local
open SimpleXml
fun speech (l:simple_xml list):simple_xml =

Tagged {tag="SPEECH",contents=l}
fun speaker (s:string):simple_xml =

Tagged {tag="SPEAKER",contents=listOfWords (s)}
fun line (s:string):simple_xml =

Tagged {tag="LINE",contents=listOfWords (s)}
fun stagedir (s:string):simple_xml =

Tagged {tag="STAGEDIR",contents=listOfWords (s)}
val speech1 = speech [speaker "First Clown",

line "A pestilence on him for a mad rogue! a’ poured a",
line "flagon of Rhenish on my head once. This same skull,",
line "sir, was Yorick’s skull, the king’s jester."]

val speech2 = speech [speaker "HAMLET",
line "This?"]

val speech3 = speech [speaker "First Clown",
line "E’en that."]

val speech4 = speech [speaker "HAMLET",
line "Let me see.",
stagedir "Takes the skull",
line "Alas, poor Yorick! I knew him, Horatio: a fellow",
line "of infinite jest, of most excellent fancy: he hath",
line "borne me on his back a thousand times; and now, how"]

in
val hamlet =

Tagged {tag="EXTRACT",
contents=[speech1,speech2,speech3,speech4]}

end

Figure 5.13: A passage from Shakespeare

and so on. The functionlistOfWordshelps constructing such values by parsing a
string into constituent words (note that it does not handle markup tags). Thus, the
above can be produced by:

Tagged {tag="SOME",contents=listOfWords "this is text"}

The functiontoStringconverts a value of typesimplexml to a string representation
in the example above.

Consider the representation of this famous passage from Shakespeare’s Hamlet,
using a fictional tagging scheme for plays, given in Figure 5.13. Displaying the
resulting value at the prompt does not produce the most readable output:

138 CHAPTER 5. THE INTERACTIVE COMPILER

- hamlet;
val it =

Tagged
{contents=[Tagged

{contents=[Tagged
{contents=[Word "First",Word "Clown"],

tag="SPEAKER"},
Tagged

{contents=[Word "A",Word "pestilence",Word "on",
Word "him",Word "for",Word "a",
Word "mad",Word "rogue!",Word "a’",
Word "poured",Word "a"],tag="LINE"},

Tagged
{contents=[Word "flagon",Word "of",

Word "Rhenish",Word "on",Word "my",

...

...
Word "thousand",Word "times;",
Word "and",Word "now,",Word "how"],

tag="LINE"}],tag="SPEECH"}],tag="EXTRACT"}
: SimpleXml.simple_xml

Notice that the top-level reports the valuehamletas a member of thesimpleexp
type. We can displayhamletin a readable form by calling, say,

- print (SimpleXml.toString (hamlet));
<EXTRACT><SPEECH><SPEAKER>First Clown </SPEAKER><LINE>A pestilence on
him for a mad rogue! a’ poured a </LINE><LINE>flagon of Rhenish on my
head once. This same skull, </LINE><LINE>sir, was Yorick’s skull, the
king’s jester. </LINE></SPEECH><SPEECH><SPEAKER>HAMLET
</SPEAKER><LINE>This? </LINE></SPEECH><SPEECH><SPEAKER>First Clown
</SPEAKER><LINE>E’en that. </LINE></SPEECH><SPEECH><SPEAKER>HAMLET
</SPEAKER><LINE>Let me see. </LINE><STAGEDIR>Takes the skull
</STAGEDIR><LINE>Alas, poor Yorick! I knew him, Horatio: a fellow
</LINE><LINE>of infinite jest, of most excellent fancy: he hath
</LINE><LINE>borne me on his back a thousand times; and now, how
</LINE></SPEECH></EXTRACT>

But this is painful to do everytime, and moreover the result is not very readable!
We will eventually solve both problems, but for now, let us attack one problem at a
time: we will write a trivial prettyprinter (that does nothing but convert the output
to a string astoString does), and tell the system about it, to get the interactive
loop to automatically display the value in “readable” form. Then, we improve the
prettyprinter to make the displayedsimplexml value more aesthetically pleasing.

Prettyprinters are defined to work on streams of tokens. A prettyprinter out-
puts to appstream, which is used by appconsumer. The standardppconsumeris
the interactive loop. Given appconsumer, the functionmk ppstreamcreates app-
streamto write to that consummer. The prettyprinting process consists of taking
thatppstreamand sending the strings to be written to it (one can recuperate thep-
pconsumerfor appstreamby callingdestppstream). Let us write our first (trivial)
prettyprinter forsimplexmlvalues. It takes appstreamto send the output to, and a
value to send to it (it is curried for reasons to be seen later):

5.3. PRETTYPRINTING 139

fun ppXml1 ppstream v = let
val s = SimpleXml.toString (v)

in
Compiler.PrettyPrint.add_string ppstream s

end

It simply converts the value to a string and sends the string to theppstream, without
special formatting. As I said, this prettyprinter is trivial — it does not prettyprint at
all. Nevertheless, we can still tell the interactive loop about it to display “readable”
value. The trick is general, in that we can produce custom display methods for
different types at the interactive loop, even if no actual pretty printing is desired.

The interactive loop maintains a table of prettyprinters for various types, and
when asked to print a value, it refers to that table to see if a prettyprinter for the
type of that value is available; if so, it uses it to print the value, otherwise it us-
es the default printer. Thus, we only need to add ourppExp1prettyprinter to
the table to getsimplexml values displayed automatically. A functionCompil-
er.PPTable.installppdoes this: it takes as input a list of strings representing a path
to the type the prettyprinter is for (in our case, since we want a prettyprinter for
SimpleXml.simplexml, this is[”SimpleXml”,”simple xml”]), and the correspond-
ing prettyprinter, of typeppstream→’a→unit, where’a should be the type pointed
to by the path. So, let’s try:

- Compiler.PPTable.install_pp ["SimpleXml","simple_xml"] ppXml1;
val it = () : unit
- hamlet;
val it =

<EXTRACT><SPEECH><SPEAKER>First Clown </SPEAKER><LINE>A pestilence on him for a mad rogue! a’ poured a </LINE><LINE>flagon of Rhenish on my head once. This same skull, </LINE><LINE>sir, was Yorick’s skull, the king’s jester. </LINE></SPEECH><SPEECH><SPEAKER>HAMLET </SPEAKER><LINE>This? </LINE></SPEECH><SPEECH><SPEAKER>First Clown </SPEAKER><LINE>E’en that. </LINE></SPEECH><SPEECH><SPEAKER>HAMLET </SPEAKER><LINE>Let me see. </LINE><STAGEDIR>Takes the skull </STAGEDIR><LINE>Alas, poor Yorick! I knew him, Horatio: a fellow </LINE><LINE>of infinite jest, of most excellent fancy: he hath </LINE><LINE>borne me on his back a thousand times; and now, how </LINE></SPEECH></EXTRACT>
: SimpleXml.simple_xml

Of course, the output is still not very nice, but it is a step up from the datatype
representation we had before (unless of course, one prefers the datatype represen-
tation... it has the advantage of being unambiguous).

As we mentionned, for any type for which atoString function is defined, we
can automatically generate a trivial prettyprinter. This feature is useful, so let us
lift it into a general function:

fun mk_pp (f : ’a -> string) ppstream v = let
val s = f (v)

in
Compiler.PrettyPrint.add_string ppstream s

end

Let us write a slightly improved prettyprinter. This time, we make sure that
words and tags do not wrap around the end of the screen, but rather go on the next
line if they do not fit at the end of a given line. As a first step, let us decouple the
prettyprinter fromtoString, by directly printing every element to the stream.

140 CHAPTER 5. THE INTERACTIVE COMPILER

fun ppXml1’ ppstream v = let
fun pr s = Compiler.PrettyPrint.add_string ppstream s
fun pp (e:SimpleXml.simple_xml):unit =

(case e
of SimpleXml.Word (s) => (pr s;

pr " ")
| SimpleXml.Tagged tag,contents => (pr "<";

pr tag;
pr ">";
app pp contents;
pr "</";
pr tag;
pr ">"))

in
pp v

end

As you can try, this behaves asppXml1, by sending each string independently. The
system still does not handle wraparounds, because we did not tell it how! How is
it usually handled anyways? Time to turn to how in general prettyprinting works.

We have seen theadd string primitive which adds a string to theppstream.
The algorithm for prettyprinting is not allowed to break a line within a string, as
we saw in the above example. Delimiters are used to indicate to the prettyprinting
algorithm where it can break lines. The first type of delimiter is the blank (which
includes CR, LF, FF, and spaces, as defined byChar.isSpace). The prettyprinting
algorithm is allowed to break lines at blanks. A call toadd breakinserts a blank in
theppstream, with an argument(i,j) giving respectively the size and offset of the
blank. The behavior is as follows: if the element following the blank fits on the line
(taking sizei into consideration), then a blank of sizei is printed out. Otherwise,
a newline is performed, and a number of spaces equal to the blank offset is output
before proceeding. Let us rewriteppXml1’replacing every space by a break of size
1 and offset 2 (so that when a line is broken, it gets offset by 2 before being printed
out):

5.3. PRETTYPRINTING 141

fun ppXml2 ppstream v = let
fun pr s = Compiler.PrettyPrint.add_string ppstream s
fun break () = Compiler.PrettyPrint.add_break ppstream (1,2)
fun pp (e:SimpleXml.simple_xml):unit =

(case e
of SimpleXml.Word (s) => (pr s;

break ())
| SimpleXml.Tagged tag,contents => (pr "<";

pr tag;
pr ">";
break ();
app pp contents;
pr "</";
pr tag;
pr ">";
break ()))

in
pp v

end

Install and test the prettyprinter as before:

- Compiler.PPTable.install_pp ["SimpleXml","simple_xml"] ppXml2;
val it = () : unit
- hamlet;
val it = <EXTRACT> <SPEECH> <SPEAKER> First Clown </SPEAKER> <LINE> A

pestilence on him for a mad rogue! a’ poured a </LINE> <LINE> flagon of
Rhenish on my head once. This same skull, </LINE> <LINE> sir, was Yorick’s
skull, the king’s jester. </LINE> </SPEECH> <SPEECH> <SPEAKER> HAMLET
</SPEAKER> <LINE> This? </LINE> </SPEECH> <SPEECH> <SPEAKER> First Clown
</SPEAKER> <LINE> E’en that. </LINE> </SPEECH> <SPEECH> <SPEAKER> HAMLET
</SPEAKER> <LINE> Let me see. </LINE> <STAGEDIR> Takes the skull
</STAGEDIR> <LINE> Alas, poor Yorick! I knew him, Horatio: a fellow </LINE>
<LINE> of infinite jest, of most excellent fancy: he hath </LINE> <LINE>
borne me on his back a thousand times; and now, how </LINE> </SPEECH>
</EXTRACT> : SimpleXml.simple_xml

This is already much better! But there is still more to be done to get a nice expres-
sion display. To get more control over the prettyprinted output, we introduce the
notion of a logical block (or simply a block). Special delimiters{| and |} denote
the starting and ending point of a logically contiguous block of elements. Funda-
mentally, the algorithm will try to break as few blocks as possible onto different
lines.

A starting block delimiter is added to theppstreamby a call tobeginblock
pp bs i, wherepp is again theppstream, bs is the break style (CONSISTENTor
INCONSISTENT) andi is the block offset. The end of the block is indicated by an
endblock call. A block is always indented at least as much as the original point
at which it appears in the output, and moreover each line after the first line of the
block (if any) is offset by an extrai spaces (to which, in turns, the extra space offset
specified by anyadd breakgets added). The break style specifies how the different
elements of the block (break-separated) get output. ACONSISTENTbreak style
means that if the blocks gets printed across multiple lines because it does not fit

142 CHAPTER 5. THE INTERACTIVE COMPILER

on one line, every break in the block is turned into a carriage return, printing each
element of the block on a different line (each indented and offset according to
block offset and break offset). AnINCONSISTENTbreak style allows multiple
block elements on any line.

Let us now adapt oursimplexml values prettyprinter to take blocks into ac-
count. Informally, every tagged element forms a logical block. We set the break
style to INCONSISTENTand prescribe a block offset of 2. We also remove the
break offsets. The break/block offset game is much more a matter of taste than
anything else. We get:

fun ppExp3 ppstream v = let
fun pr s = Compiler.PrettyPrint.add_string ppstream s
fun break () = Compiler.PrettyPrint.add_break ppstream (1,0)
fun begin () = Compiler.PrettyPrint.begin_block ppstream Compiler.PrettyPrint.INCONSISTENT 2
fun stop () = Compiler.PrettyPrint.end_block ppstream
fun pp (e:SimpleXml.simple_xml):unit =

(case e
of SimpleXml.Word (s) => (pr s;

break ())
| SimpleXml.Tagged tag,contents => (begin ();

pr "<";
pr tag;
pr ">";
break ();
app pp contents;
pr "</";
pr tag;
pr ">";
stop ();
break ()))

in
pp v

end

Installing and testing this last prettyprinter forsimplexml values, we get the satis-
fying output:

val it = () : unit
- hamlet;
val it =

<EXTRACT>
<SPEECH> <SPEAKER> First Clown </SPEAKER>

<LINE> A pestilence on him for a mad rogue! a’ poured a </LINE>
<LINE> flagon of Rhenish on my head once. This same skull, </LINE>
<LINE> sir, was Yorick’s skull, the king’s jester. </LINE> </SPEECH>

<SPEECH> <SPEAKER> HAMLET </SPEAKER> <LINE> This? </LINE> </SPEECH>
<SPEECH> <SPEAKER> First Clown </SPEAKER> <LINE> E’en that. </LINE>

</SPEECH>
<SPEECH> <SPEAKER> HAMLET </SPEAKER> <LINE> Let me see. </LINE>

<STAGEDIR> Takes the skull </STAGEDIR>
<LINE> Alas, poor Yorick! I knew him, Horatio: a fellow </LINE>
<LINE> of infinite jest, of most excellent fancy: he hath </LINE>
<LINE> borne me on his back a thousand times; and now, how </LINE>
</SPEECH> </EXTRACT> : SimpleXml.simple_xml

5.3. PRETTYPRINTING 143

Before leaving prettyprinting altogether, let us look at the rest of theCom-
piler.PrettyPrint facilities. The structure defines an exceptionPP FAIL which is
raised for example when you terminate a block that you never opened. The call
add newlineinjects a forced linebreak into theppstream, that is the prettyprinter
will automatically break the line at that point. The callclear ppstreamclears the
content of theppstream, while flushppstreamflushes the currently accumulated
text in the stream, and moreover forces the flushing of the consumer. Given app-
consumer(say, throughdestppstream, to obtain the consumer of another stream),
we can create appstreamover that consumer throughwith pp which creates app-
streamover the consumer and calls the supplied function with it. It is (essentially)
equivalent to

fun with_pp c f = let
val s = Compiler.Print.mk_ppstream (c)

in
f (s);
Compiler.Print.flush_ppstream (s)

end

Finally, the callpp to string prettyprints a value into a string. Going back to our
simplexml values example, writing a prettyprinter for the values displayed by the
interactive loop is nice, but if one wants to output asimplexml value into a string,
one has to use the uglytoString, which among other things, loses all the structure
of the underlying value. However, given a prettyprinter, we can callpp to string
to prettyprint an expression into a string. In effect, we create a consumer to ac-
cumulate the output of the prettyprinter to the string. The functionpp to string
takes as arguments an integer giving the linewidth to use, a prettyprinter of type
ppstream→’a→unit and a value of’a, and prettyprints that value into a string. As
an example, compare

- print (SimpleXml.toString hamlet);
<EXTRACT><SPEECH><SPEAKER>First Clown </SPEAKER><LINE>A pestilence on him for a mad rogue! a’ poured a </LINE><LINE>flagon of Rhenish on my head once. This same skull, </LINE><LINE>sir, was Yorick’s skull, the king’s jester. </LINE></SPEECH><SPEECH><SPEAKER>HAMLET </SPEAKER><LINE>This? </LINE></SPEECH><SPEECH><SPEAKER>First Clown </SPEAKER><LINE>E’en that. </LINE></SPEECH><SPEECH><SPEAKER>HAMLET </SPEAKER><LINE>Let me see. </LINE><STAGEDIR>Takes the skull </STAGEDIR><LINE>Alas, poor Yorick! I knew him, Horatio: a fellow </LINE><LINE>of infinite jest, of most excellent fancy: he hath </LINE><LINE>borne me on his back a thousand times; and now, how </LINE></SPEECH></EXTRACT>val it = () : unit

with

144 CHAPTER 5. THE INTERACTIVE COMPILER

- print (Compiler.PrettyPrint.pp_to_string 60 ppXml3 hamlet);
<EXTRACT>

<SPEECH> <SPEAKER> First Clown </SPEAKER>
<LINE> A pestilence on him for a mad rogue! a’ poured a

</LINE>
<LINE> flagon of Rhenish on my head once. This same

skull, </LINE>
<LINE> sir, was Yorick’s skull, the king’s jester.

</LINE> </SPEECH>
<SPEECH> <SPEAKER> HAMLET </SPEAKER> <LINE> This? </LINE>

</SPEECH>
<SPEECH> <SPEAKER> First Clown </SPEAKER>

<LINE> E’en that. </LINE> </SPEECH>
<SPEECH> <SPEAKER> HAMLET </SPEAKER>

<LINE> Let me see. </LINE>
<STAGEDIR> Takes the skull </STAGEDIR>
<LINE> Alas, poor Yorick! I knew him, Horatio: a fellow

</LINE>
<LINE> of infinite jest, of most excellent fancy: he

hath </LINE>
<LINE> borne me on his back a thousand times; and now,

how </LINE> </SPEECH> </EXTRACT>val it = () : unit

5.4 Heap images

The interactive nature of the compiler is useful for writing short programs and test-
ing functions, as well as providing a manner of command interpreter for programs
can best be seen as a set of utility programs. However, standalone applications,
a model like the one provided by compilers for most other languages, generat-
ing standalone object-code that does not require one to run the compiler again for
execution is very useful. Among other things, it does not require a user of the
application to have the SML/NJ compiler installed on his or her system.

Another problem with the interactive compiler (and it turns out to be a related
problem) is that one may want to define a set of functions (utility functions or
others) available at every invocation of the compiler, without necessarily having to
recompile these utility functions throughuseor something of that ilk every time,
like we did in Section 1.6.

Both the problems of creating standalone programs and customized versions of
the compiler have the same solution, which we address in this section. First, a brief
recap of heap images and how the SML/NJ memory model and compiler works.

The SML/NJ compiler is organized as a runtime system and a heap, with the
heap containing all the data and the code used and generated by the compiler. In
traditional compilers (batch compilers for languages such as C,C++,Pascal, etc),
the code generated by the compiler is immediately sent to a file, called the object
code file. A linker later turns all those object code files into a standalone executable
program. In SML/NJ and other interactive compilers, the code generated is stored

5.4. HEAP IMAGES 145

directly in memory, ready to be used by other code that will be compiled.

The runtime system is needed to provide an environment in which the gen-
erated code can execute. Object code in any language requires such a runtime
system, sometimes in the form of a simple runtime library (such as the one for C,
libc). SML/NJ’s runtime supports garbage collection of the heap and the trans-
lation between SML and the underlying system’s representation for system calls.
The runtime system fundamentally is in charge of running the code in the heap.
When the runtime system is started, it loads an initial heap and starts executing its
code. By default, when SML/NJ starts up (by executingsml), it loads up a default
heap image containing the compiler and starts executing the code in the heap. That
code is simply a loop, querying the user for input, compiling the input, executing
it, and looping for more input. To generate a standalone application (like the com-
piler), we need to create a heap that contains the code for the application and store
it so that the code can be called by simply running the runtime system with a new
heap. Similarly, creating a “customized” version of the compiler and environment
amounts to saving a new heap containing the compieler and the code implementing
the customization. We show how both of these work.

All of this is achieved through two functions in the structureSMLofNJ. The
process of creating a heap image is called exporting a heap. The simplest function
that exports a heap image isSMLofNJ.exportML. This function takes a string argu-
ment (the name of the file in which the heap will be written). and creates a heap
image in the file containing a copy of the current heap, including all the existing
identifier bindings up to the time of export. The result ofexportMLis interesting.
After exporting the heap image, it returns the valuetrue and the rest of the eval-
uation containing the call toexportMLcontinues. Now, when the heap that was
exported is subsequently loaded into the runtime system, the runtime system starts
executing the code in the heap, at the point whereexportML returns, even ifex-
portML was embedded deep in some other expression. The difference is that this
timeexportMLreturnsfalseand the rest of the code that was waiting after the result
of exportMLresumes evaluation (this code is of course stored in the heap and thus
was saved when the heap was exported)1. Since part of the code containing the ex-
ecution is the interactive loop (recall, it is the original piece of code that executes
when the compiler is first invoked), we eventually return to the interactive loop and
the compiler is available as before.

Let us consider a concrete example. Recall that in Section 1.6, we disucssed
how various top-level definitions can help alleviate some of the difficulties remem-
bering where various functions used frequently are located as well as greatly sim-

1This is a concrete example of a continuation, a subject we will discuss in much more detail in
Chapter??.

146 CHAPTER 5. THE INTERACTIVE COMPILER

plifying the navigation through the file system, providing a more “shell-like” expe-
rience. We discussed saving these definitions in a filedefs.sml and tousethis
file every time the compiler is invoked. This is an ideal example for us: we will
create a new heap image for the compiler, one which includes those definitions by
default, removing the need to loaddefs.sml explicitely each and every time.

First, start a fresh instance of the compiler, anduse ”def.sml”to load and com-
pile the definitions into the heap. Then, create a new version of the compiler by
typing

- SMLofNJ.exportML "/home/riccardo/compdefs";
...

where of course you replace”/home/riccardo/compdefs”by the directory and file-
name you want to save the new heap image under (it can be anywhere). When
exportMLis done, you can exit the compiler.

Assuming everything went smoothly (you had access rights to the directory
where you wanted to save the heap image, there was enough disk space, etc...), if
you look into the directory you specified, there should be a rather large file called
compdefs.<something> (or whatever the name was that you chose to save
the file under). The<something> is a representation of the system you are
using, and allows for heap images corresponding to different systems to coexist in
a single installation. This is typically not an issue for the casual user. To use this
heap image, you need to start the runtime system, specifying that this is the heap
image you want to load instead of the default one. To achieve this, use the shell
command:

sml @SMLload=/home/riccardo/compdefs

(where againhome/riccardo/compdefs should be replaced by the appropri-
ate path and filename. This will be assumed from now on.) This starts the runtime
system, but the@SMLloadflag tells the runtime system to load the specified heap
image (note that there is no space before and after the=). At this point, the heap
image has been loaded, the interactive compiler is running, and you have access to
all the definitions that were indefs.sml without having tousethe file. In fact,
any definition you entered prior to theexportMLwill be there. Even better, any
changes you had made to flags controlling the compiler or the runtime system will
be restored.

Certain details are harder to get right. If you notice, the above heap, when run,
start the compiler by simply displaying a valuefalse(the result ofexportML!) and
prompting the user at the interactive loop. The default heap, when run, displays
a banner identifying the compiler, before presenting the interactive loop. It is not
that hard to implement such a feature, but it requires thinking carefully about what
happens at the time of anexportML.

5.4. HEAP IMAGES 147

Consider what we want: we want to display a banner identifying the compiler
when the exported heap is run. The first step is figuring out how to print the banner.
Instead of creating it from scratch, we can simply use the banner printing by the
compiler itself when it is loaded. The appropriate string is found in the structure
Compiler. The stringCompiler.bannercontains the official SML/NJ compiler ban-
ner. All we need to do is print out this banner when the exported heap is loaded.
How can we do that? Recall that when a heap exported byexportML is loaded,
it continues executing the code that was waiting for the result ofexportML, pass-
ing the valuefalse. With this in mind, all we need to do is make sure that after
exportML, we print the banner, in one fell swoop. Consider the following code:

- (SMLofNJ.exportML "/home/riccardo/compdefs2";
print Compiler.banner;
print "\n");

...

Executing this code exports a heap imagecompdefs2 , which when loaded
in the runtime system viasml @SMLload=/home/riccardo/compdefs2
resumes the execution of the code at the point whereexportMLreturns its value.
In this case, sinceexportMLis part of a sequence of operations, the next operation
in the sequence executes, and prints the banner. Then the code finishes evaluating,
returning() (the return value ofprint) and drops the user to the interactive loop, as
desired.

A last small detail remains: we don’t get the same behavior as the default com-
piler, since we have a spuriousval it = () : unit before the interactive loop prompt.
As we have seen, it is the return value ofprint, the last function in the sequence
containingexportML. To do things right, we need to find a way to evaluate the se-
quence (solely for its side-effects) and not display anything as a result. This bit of
SML/NJ trivia can answered with the following code:

- val () = ();

This piece of code performs a successful pattern-match on the result(), but since
no variable gets bound, nothing gets displayed. Compare with the following:

- val (a,b) = (10,20);
val a = 10 : int
val b = 20 : int

Therefore, to get the “original compiler” effect, we can create the heap image
as:

- val () = (SMLofNJ.exportML "/home/riccardo/compdefs3";
print Compiler.banner;
print "\n")

...

148 CHAPTER 5. THE INTERACTIVE COMPILER

Being able to generate a new heap image to customize the environment is use-
ful, but sometimes one may want to change the environment often, or dynamically
decide what customization to perform. In those cases, the method outlined above
is not the most effective. Moreover, since each exported image is around 5MB,
having many different heap images around quickly fills space. We consider a d-
ifferent approach, although still implemented using the above method based on a
model often found under Unix.

In Unix, applications will often define application-specific customizations in
a special file that is examined every time the application is started. For example,
the Unix shellbashreads a file.bashrc that contains customizations that can be
changed by the user.2

Let us create a new compiler heap image which, when loaded, will check if a
file called.smlnjrc exists in the user’s home directory, and if so loads it in (it is
assumed that the file will contains valid SML code) before starting the interactive
loop. Clearly, one can put all the definitions indefs.sml in .smlnjrc , as well
as some indication of what is going on, such as a line

print ".smlnjrc successfully loaded\n";

at the end of the file.
To implement this functionality, we define the function to actually load the file:

fun loadrc (s) =

One could also call the functionuseSilentlydefined in Section 5.2. Again, we
are cheating, by putting a call touseinside the body of a function. In any case, we
settle for the above and can now create a heap image:

- val () = (SMLofNJ.exportML "/home/riccardo/compdefs4";
print Compiler.banner;
print "\n";
loadrc "/home/riccardo/.smlnjrc")

A more involved implementation would probably query environment variables to
extract the user’s home directory (the variableHOMEfor example).

There is a problem however, one that points to some unpleasantness in this
process of creating customized versions of the environment. As we saw in the case
of printing the banner, if we want to truly extend the compiler, we need to make
sure that we reproduce exactly the functionality provided by the compiler at startup.
Printing the banner is one thing performed at startup, but CM, the compilation
manager which we study in detail in Chapter 6, adds wrinkles of its own. CM

2Under Windows, such customizations are often placed in the Registry. There is clear way at this
point in time to access the Windows Registry from SML/NJ.

5.4. HEAP IMAGES 149

examines the command line used to invokesml , checks if the name of a source
file is given as an argument, and if so, loads it. It turns out that to reproduce the
behavior of the compiler, we need code such as

val () = (SMLofNJ.exportML "/home/riccardo/compdefs6";
print Compiler.banner;
print "\n";
CM.processCommandLine ();
loadrc "/home/riccardo/.smlnjrc")

But of course, these features are highly version dependent and may change without
notice. A good place to get a feel for the behavior of the system at startup is to look
at the source code, in the scripts that build both the compiler and CM.

The ability to export a heap image which is a snapshot of the current heap has
been successful in dealing with one of the problems, that of customizing the com-
piler with default declarations or behaviors (and indeed, most of the customization
flags we encountered earlier in the chapter). Let us now turn to the other problem
we mentioned at the beginning of this section, that of generating standalone code
that does not require the user to go through the compiler to execute the application.

Suppose for the sake of argument that we have an application compiled in the
heap, with an entry point function calledmain, of typeunit→unit. That is, to exe-
cute the application, one invokesmain (), and the call returns when the application
terminates. One way to generate an executable is to export a heap image as above,
where the code executed at startup is simply a call tomain:

- val () = (SMLofNJ.exportML "sampleapp1";
main ())

...

This works nicely, in that if a user invokessml @SMLload=sampleapp1 , the
application runs, and the application packager can create a little script that calls
the above, and the only thing really needed is the runtime system and the heap
image itself. We encounter two problems if we do things this way however. The
first problem is that after the application executes, that is when the call tomain
returns, instead of nicely terminating the process, the user is dropped back into the
interactive loop! We can remedy this by explicitely killing the SML/NJ process
after the call tomain (say, passing in a status returned bymain, which we now
assume has typeunit→OS.Process.status):

- val () = (SMLofNJ.exportML "sampleapp2";
OS.Process.exit (main ()))

...

But the second problem does not go away: although the exported heap image
does not use the compiler (unless the application explicitely calls compiler-specific
portions, which it probably does not), the exported heap image still contains a copy
of the full SML/NJ compiler and environment, making the exported heap image

150 CHAPTER 5. THE INTERACTIVE COMPILER

huge, and wasting space and time. For example, using this approach, the typical
HelloWorld program

fun main () = (print "Hello, world!\n";
OS.Process.success)

generates an executable image of size close to 5MB, clearly excessive.
To solve this problem, we use a different heap export mechanism, the function

SMLofNJ.exportFn. Just likeexportML, exportFnexports a heap image, but rather
than dumping a copy of the current complete heap image, it also takes as argument
a function to be called when the heap is later loaded into the runtime system. When
the function returns, the runtime system will terminate, thus never invoking the in-
teractive loop, similarly to what we did above, although without us having anything
special to do about it. But the more interesting thing that happens is that before ex-
porting the heap, the system removes from the heap anything that does not have
anything to do with the function mentioned in theexportFncall, only keeping in
the heap the minimum required to execute the function. Thus, if the called function
does not invoke the compiler, by never say referring to theCompilerstructure, the
compiler is removed from the heap and not exported. This results in drastically
smaller heap images, much faster to load and execute. On the other hand, because
the heap has been so reduced in size prior to theexportFncall, the interactive com-
piler cannot continue executing after anexportFn, and in factexportFnterminates
the process as well.

The function expected byexportFnhas typestring×string list→OS.Process.status.
When the heap is loaded, the function gets called with the name of the command
used to invoke the program (the one that ends up loading the heap) and a list of
the command line arguments — the same arguments passed to the functionmain
in C programs. The result value is used as the result passed back to the operating
system when the process finishes. In effect,exportFn (”foo”,main) is equivalent to

fun exportFn = (SMLofNJ.exportML "foo";
OS.Process.exit (main (SMLofNJ.getCmdName (),

SMLofNJ.getArgs ())));

except for that additional business of clearing the heap before performing the ex-
port. Note the functionsSMLofNJ.getCmdNameand SMLofNJ.getArgs, used to
get at the command line arguments. We could have also used functions in the
CommandLinestructure of the Basis, for portability, although we are talking about
exporting heap images, an intrinsically non-portable process. As a note, recall that
getArgsdoes not pass in command lines arguments starting with@SML, which are
directives to the runtime system. Thus, the function specified byexportFnalso will
not receive those arguments. A call toSMLofNJ.getAllArgswill however return the
complete list of arguments provided to the process, including any runtime system
directive.

5.5. UNSAFE OPERATIONS 151

In the rest of these notes, we will write most of our larger examples which are
meaningful as standalone applications in a way suitable for use withexportFn. We
will typically not mention this use ofexportFnas the last step of the coding process,
but we will always provide a structureMain matching the following signature:

sig
val main : string * string list -> OS.Process.status
val shell : string -> OS.Process.status

end

wheremain is the starting point function, passed toexportFn, andshell is a helper
function for testing the application from SML/NJ’s interactive loop, expecting a
string representing an invocation of the application as it would be done from the
shell. Using the string functions we saw in Section 4.2, it is a simple matter to
defineshell:

fun shell (s) = let
val l = String.tokens Char.isSpace s

in
main (hd (l), tl (l))

end

For most applications, part of the initial work performed inmain is to parse and
interpret the command line arguments. To help with such an endeavor, the SM-
L/NJ Library provides a moduleGetOptto process command line arguments. This
library is described in more detail in Section 7.8.

5.5 Unsafe operations

As mentioned in the introduction, SML is a safe language, in the sense that the
type system imposes a discipline that prevents errors that would cause programs
to fail at run time. For example, a language such as C allows the conversion of an
arbitrary integer into a pointer, and allows it to be dereferenced accordingly. No
check is made to ensure that the pointer is valid or points to a valid part of memory.
Typically, it does not, and thus a program using such a “feature” will die a horrible
death at the hands of a segmentation fault.

On the other hand, the flexibility of being able to view values of a given type as
values of another type can be useful, especially when dealing with very low-level
data, or performing very low-level system programming, or simply when inter-
facing with low-level libraries written in other languages. The top-level structure
Unsafe, whose signature is given in Figure 5.14, provides access to unsafe func-
tionality. It goes without saying that such functionality should not be used lightly.
Indeed, it is extremely easy to corrupt the heap with such functions, resulting in a
crash of the system, nullifying the advantages of the SML type system.

152 CHAPTER 5. THE INTERACTIVE COMPILER

structure Unsafe : sig
structure CInterface : CINTERFACE
structure Object : UNSAFE_OBJECT
structure Vector : UNSAFE_VECTOR
structure Array : UNSAFE_ARRAY
structure CharVector : UNSAFE_MONO_VECTOR
structure CharArray : UNSAFE_MONO_ARRAY
structure Word8Vector : UNSAFE_MONO_VECTOR
structure Word8Array : UNSAFE_MONO_ARRAY
structure Real64Array : UNSAFE_MONO_ARRAY
val getHdlr : unit -> exn cont
val setHdlr : exn cont -> unit
val getVar : unit -> ’a
val setVar : ’a -> unit
val getPseudo : int -> ’a
val setPseudo : (’a * int) -> unit
val boxed : ’a -> bool
val cast : ’a -> ’b
val pStruct : Object.object ref
val topLevelCont : unit cont ref

end

Figure 5.14: The structureUnsafe

Let us examine the interesting functions inUnsafe. The functionsgetHdlr and
setHdlrprovide access to the current exception handler (an exception continuation,
see Chapter??). Throwing an exception to that continuation will have the same ef-
fect as raising the exception. On a related note, the reference celltopLevelCont
contains the current continuation for the top level. Throwing a unit to the continu-
ation in the cell returns to the toplevel loop, aborting the current expression being
evaluated. The functioncastbypasses the type system, converting the type of a
value without changing the underlying representation of the value. Various sub-
structures are accessible through theUnsafestructure, handling unsafe versions of
various kinds of vectors and arrays (unsafe in that there is no range checking on
subscripts and so on), over which we will not go. The two most interesting sub-
structures areObject, a general interface to object representations, andCInterface,
the communication with the underlying native system.

The substructureUnsafe.Object, whose signature is given in Figure 5.15, pro-
vides functions to get at the underlying representation of values of various types. A
complete understanding of the representation of values in compiled code requires
at the very least knowledge of the compiler being used, but we can still make use
of the functions. The structure defines an abstract typeobject for generic SML
values, through which one can interrogate their representation. The functiontoOb-
ject creates such an interrogatable object from a given value of arbitrary type. The

5.5. UNSAFE OPERATIONS 153

structure Unsafe.Object : sig
type object
datatype representation
= Unboxed
| Real
| Pair
| Record
| PolyArray
| ByteVector
| ByteArray
| RealArray
| Susp
| WeakPtr
val toObject : ’a -> object
val boxed : object -> bool
val unboxed : object -> bool
val rep : object -> representation
exception Representation
val toTuple : object -> object vector
val toString : object -> string
val toRef : object -> object ref
val toArray : object -> object array
val toExn : object -> exn
val toReal : object -> real
val toInt : object -> int
val toInt32 : object -> Int32.int
val toWord : object -> Word.word
val toWord8 : object -> Word8.word
val toWord32 : object -> Word32.word

end

Figure 5.15: The structureUnsafe.Object

154 CHAPTER 5. THE INTERACTIVE COMPILER

structure Unsafe.CInterface : sig
exception CFunNotFound of string
val c_function : string -> string -> ’a -> ’b
type c_function
val bindCFun : (string * string) -> c_function
type system_const = (int * string)
exception SysConstNotFound of string
val findSysConst : (string * system_const list) -> system_const option
val bindSysConst : (string * system_const list) -> system_const

end

Figure 5.16: The structureUnsafe.CInterface

functionsboxedandunboxedcheck if the underlying representation of an object
is respectively boxed (is is really a pointer) or unboxed (it is an immediate value).
The functionrep reports more information, returning a flag of typerepresentation,
indicating the representation of the value.

The remaining functions will convert the object to a specified type if compat-
ible with the underlying representation. They raise the exceptionRepresentation
otherwise. The functiontoTupletakes an object which is really a record, tuple,
vector or real array and returns a vector of its fields;toStringtakes an object which
is really a string and returns its string value;toRef takes an object which is really a
reference cell or an array of length 1 and returns a reference cell;toArrayconverts
an object which is really an array;toExnconverts an object which is really an ex-
ception;toRealconverts an object which is really a real number;toInt converts an
object which is really a tagged 31-bit integer (typeInt.int); toInt32 takes an object
which is really a 32-bit integer or a byte vector of length 4 into anInt32.int value;
toWord takes an object which is really a tagged 31-bit value into aword value;
toWord8takes an object which is really a tagged 31-bit value into aWord8.word
value; andtoWord32takes an object which is really a 32-bit value or a byte vector
of length 4 into aWord32.wordvalue.

Most of the uses of the functions inObject, if not for hacking compiler tools,
is to deal with interfacing with the underlying runtime system, through the for-
eign function interface. The foreign function interface for SML/NJ is not as easy
to use as some other environments, but upcoming versions of the system should
greatly improve the situation. However, most improvements will take the form of
additional, easier to use layers over the foundations provided by the interface in
substructureUnsafe.CInterface, whose signature is given in Figure 5.16.

5.5. UNSAFE OPERATIONS 155

Notes

The tradition of interactive compilation seems to originate with Lisp, one of the
original mostly-functional languages. (Another early language that has benefitted
from interactive interfaces was SmallTalk.) SML is in fact in the tradition of Lisp,
except for the fact that SML introduces static typing instead of the dynamic typing
of Lisp. The modern equivalent of Lisp is Scheme [56], which also inherits the
traditional S-expression syntax. Compilers for Scheme are also typically interac-
tive, for instance the PLT compiler project from Rice University, the MIT Scheme
compiler from MIT, Scheme48 from NEC Research Labs. Scheme has also been
adopted by GNU as a macro language, under the name Guile [?].

Runtime systems for languages and compilers are often the least documented
aspect of a system. In the case of SML/NJ, descriptions of early versions of the
runtime system can be found in Appel’s book [5] and paper [4]. The details are
rather dated, but should give an idea of the overall structure of the runtime sys-
tem. Garbage collection is the most complex part of the runtime, and is usually
better described. The current version of SML/NJ uses a generational garbage col-
lector, described mostly in [93]. A good overview of (simple-processor) garbage
collection algorithms can be found in [114].

The prettyprinting mechanism described and used by SML/NJ is due to Oppen
[85]. It is simple to implement, but not very flexible. It is sufficient for most
common uses of prettyprinting, but for more complex jobs, a prettyprinter such as
PPML [77] should be used. A library for prettyprinting based on PPML primitives
is being provided in the SML/NJ Library, and should be documented in a future
version of these notes. Prettyprinting algorithms based on a library of functional
combinators can be found in [51, 113].

The unsafe interface is typically useful when interfacing with very low-level
code, such as when performing calls to the underlying runtime system, or to exter-
nal C functions. The current foreign function interface (FFI) of SML/NJ is not very
well documented, and awkward to use (it requires a recompilation of the runtime
system). For Unix systems, an easy-to-use user library to ease the interfacing of
foreign-code, the C-calls library [50], is available. It still requires a recompilation
of the runtime system to add new code, but it greatly simplifies the communication
of values back and forth from SML to the foreign code. An improved version of
the FFI, based on an Interface Definition Language (IDL) [118], is in the works
[90]. This should bring the system in line with other functional languages imple-
mentations providing such an interface, such [30] and [62].

156 CHAPTER 5. THE INTERACTIVE COMPILER

Chapter 6

The Compilation Manager

Until now, we have been feeding our programs into the compiler in either of two
ways: directly at the interactive loop, or by loading files viause. The drawback of
entering programs directly at the interactive loop is clear. The interactive loop is
useful for testing functions and trying out algorithms and idea, but as a software
engineering tool, it leaves much to be desired. Loading files throughuseis already
much better, but for large projects it is extremely inefficient: every time a project
is loaded viause, all the files in the project are read and compiled. Moreover, if
a change to source file is made, all of the files making up the project need to be
reloaded and recompiled. We do not get incremental compilation.

In the Unix world, selective and incremental recompilation is achieved through
the use of a tool such asmake, which takes a simple file describing the dependen-
cies amongst the files in the project, as well as the tools to invoke, and rebuilds the
appropriate parts of the project that need rebuilding. The idea is to check which
files have changed by looking at the time stamp of the files, and a file is rebuilt if
the time stamp of the target (if it exists) is older than any of the files it depends on.
Note that the user needs to specify by hand the dependencies between the files (al-
though in some instances a tolls such asmakedependcan be used), and the user has
to specify the precedure to rebuild out-of-date files (although appropriate defaults
often exist).

A tool such asmakeis language-independent. It can be used to drive many dif-
ferent compilers, and indeed it could even be used to drive SML/NJ. One problem
is thatmakeis strongly batch-oriented, while SML/NJ is an interactive compiler.
SML/NJ could be used as a batch compiler, but since there is no real support for
compiling code to a file instead of to memory, it would be difficult to do cleanly,
given the current infrastructure.

The approach that has been taken by the SML/NJ developers is to incorporate

157

158 CHAPTER 6. THE COMPILATION MANAGER

signature HELLO_WORLD = sig
val main : unit -> unit

end

structure HelloWorld : HELLO_WORLD = struct
fun helloworld () = print "Hello World!\n"

end

Figure 6.1: The Hello World program

the functionality of amake-like tool directly in the compiler. One advantage of
pushing the building tool inside the compiler and making it SML-specific is that
we can perform much more precise dependency checking and most importantly
automatic dependency checking when the times come to determine which files to
recompile in a project.

The tool we describe in this chapter, the SML/NJ Compilation Manager (CM
for short), should be used for any project larger than a file or two. Handling of
libraries is also done through CM, and indeed most of the code we will see from
now on in these notes will assume that one knows how to use CM.

6.1 Overview of CM

The simplest way to use CM is through a description file (which we call the root
file) that lists the source files that make up a project. CM automatically tracks de-
pendencies between the files listed in the root file. Because dependencies are only
tracked across structures, the SML source files listed in the root file should contain
only structure, signature or functor declarations. This is not a big restriction, since
we already established in Chapter 3 that all the entities in an application should be
at the level of the module system.

To keep the discussion concrete, consider a simple example. Figure 6.1 gives
a structure and a signature for a trivial application, an overgrown Hello World pro-
gram. We assume that structureHelloWorldhas been put in filehelloworld.sml
and signatureHELLO WORLDhas been put in filehelloworld-sig.sml . To
compile the program, instead of doing something along the lines of:

- (use "helloworld-sig.sml"; use "helloworld.sml");
...

we instead create a filesources.cm in the same directory ashelloworld.sml
andhelloworld-sig.sml , containing the following:

Group is

6.1. OVERVIEW OF CM 159

helloworld-sig.sml
helloworld.sml

This file is a CM description file, stating that the application consists of the giv-
en files. (TheGroup annotation is to indicate that the description file defines an
application, as opposed to a library. This has consequences with respect to how
compiled symbols are exported. More on this later.)

To compile a project with such a description file, make sure the compiler’s
working directory is set to the directory containing the filesources.cm (possibly
usingOS.FileSys.chDirto change directories), and type:

- CM.make ();
...

The functionCM.makereads the filesources.cm and in turns compiles the re-
quired files into memory. After the code is compiled, the initialization code of the
structures is executed. The initialization code for a structure includes all the value
bindings in the structure, which must be evaluated when the structure is declared.
If the compiler determines that one of the files does not need to be recompiled,
because it has not changed and none of the other files on which it depends have
changed in any way that affects it, it will not be recompiled. Thus if one immedi-
ately does a:

- CM.make ();
...

we see that the code has not been recompiled.
The functionCM.makecompiles a CM description file which is namedsources.cm

in the current working directory. To compile a CM description file in another di-
rectory or with a different name, one can use the more generalCM.make’func-
tion, which takes a string argument specifying a path and a CM description file.
For example, one could invokeCM.make’ ”path/to/foo.cm”. In general, func-
tions in theCM structure ending with’ require an explicit filename argument,
while the corresponding functions without the’ work on the default description
file sources.cm . It is possible to change the name of the default description file
by callingCM.setroot with the new default.

The functionality of CM is accessed through theCM structure, whose partial
signature is given in Figure 6.2 (the actual signature is more extensive, but we
will only cover the basic functionality here). Let’s give a quick overview of some
of the rest of the functionality. Calls torecompile(and recompile’) perform a
recompilation of the code just likemake, but do not execute the initialization code
of the structures, nor do they introduce new bindings in the environment. Moreover,
the compiled code is not kept in memory, but rather compiled into files, which are
used as a cache.

160 CHAPTER 6. THE COMPILATION MANAGER

structure CM : sig

structure Tools: TOOLS

val version: string
val verbose: bool option -> bool
val debug: bool option -> bool
val keep_going: bool option -> bool
val parse_caching: int option -> int
val show_exports: bool option -> bool
val set_root: string -> unit
val set_path: string list option -> string list

val make’: string -> unit
val make: unit -> unit

val recompile’: string -> unit
val recompile: unit -> unit

val mkusefile’: string * string -> unit
val mkusefile: string -> unit

val sa’: string * string -> unit
val sa: string -> unit

val stabilize’: string * bool -> unit
val stabilize: bool -> unit
val destabilize’: string -> unit
val destabilize: unit -> unit

val autoload’: string -> unit
val autoload: unit -> unit
val autoloading: bool option -> bool
val clearAutoList: unit -> unit
val autoList: unit -> string list

val sweep: unit -> unit
val clear: unit -> unit

val procCmdLine: unit -> unit
end

Figure 6.2: The structureCM

6.2. GROUP HIERARCHIES 161

As we mentionned above,set root changes the default root file name used by
makeand recompile. The operating system environment variableCMROOTalso
controls this default, when CM is initially loaded (when SML/NJ starts).

When it is possible to do so, the functionmkusefile(andmkusefile’) creates a
SML file containing a sequence ofusecommands to load the source files specified
in the root file. The idea is simply to topologically sort the files so that any filef1

that depends on filef2 is loaded afterf2 in the sequence ofusecommands. All the
examples we have seen until now can be easily linearized in that way, and indeed
that will be the case in general. This mechanism breaks down when we consider
export filters and subgroups in Section 6.2, with which one can write programs that
are not linearizable.

As an alternative, one can use the functionsa (and sa’) to produce a SML
program that loads all the source files just as in themkusefilecase, except that the
program manages the namespace the same way CM does (which we will see in
Section 6.2), and moreover attempts to load the binfiles (the object files) when they
exist, avoiding recompilation. The functionsa produces a program which relies
on CM to perform it loading action. On the other hand,mkUseFileproduces a
file which can be used with other SML compilers, provided they support theuse
function.

6.2 Group hierarchies

The examples of the previous section showcase the usefulness of CM to manage the
compilation and recompilation of applications, but fails to even hint at the available
power to express modular structure. By default, every structure defined in a group
is available after aCM.make (). In this section, we introduce the notion of export
filters to specify exactly which structures (signatures, functors) are available after
compilation. Consider the following code:

signature A_SIG = sig
val main : unit -> unit

end

structure A : A_SIG = struct
fun main () = B.bar ()

end

structure B = struct
fun bar () = print "Hello\n"

end

split across files “a-sig.sml”, “a.sml” and “b.sml”. The main entry point is structure
A, while B handles support. To hideB after compilation, we specify an explicit
export filter in “sources.cm”:

162 CHAPTER 6. THE COMPILATION MANAGER

Group
structure A
signature A_SIG

in
a-sig.sml
a.sml
b.sml

end

and indeed, we can try:

- CM.make ();
val it = () : unit
- A.main ();
Hello
val it = () : unit
- B.bar ();
stdIn:21.1-21.6 Error: unbound structure: B in path B.bar

Restricting access to elements is a powerful aspect of modularity, as we saw in
the case of the module system. In some way, we can view the export filter as a kind
of super-signature in a super-module system, with different memory and linking
mechanisms.

Another aspect of modularity, aside from data hiding, is packaging. For ex-
ample, it is clear that if we write a set of modules meant to be accessed by many
applications (for example, the stacks and queues of Chapter 3), one would not want
to always specify the names of the files to be loaded in every CM description file
that happens to need to use stacks and queues. CM supports the notion of subgroup.
That is, it is possible to specify in a CM description file another description file that
will be loaded along with the rest of the source files, compiling its corresponding
files and so on.This process is called importing a group.

One approach to dealing with components is to create a CM description file
for each component, and list in the description file of the main application both the
files of the application itself and the various description files for the components.
It is not even necessary to know the direct path to those description files, as they
will be looked up through theCMPATHenvironment variable. Any library of use
will have its location added to the path (later, we will see an alternative way of
managing libraries, through the use of aliases).

The principal subtlety to be aware of when importing groups is how the export-
ed symbols get managed. Recall that by default, unless an export filter is specified,
every binding in a group gets exported. The generalization of this rule to imported
groups is clear. By default, every binding in an imported group gets exported, un-
less an export filter is specified. The exports of an imported group are handled as if
they were part of the importing group, and treated as such for the purpose of deter-
mining the exports of the importing group. Moreover, a group can define bindings
of the same name as those exported by an imported group, effectively masking the

6.2. GROUP HIERARCHIES 163

underlying definition (of course, the original definition is still available within the
imported subgroup).

The use of imported groups along with export filters can lead to code which is
not compilable without CM, in the sense that no linearization via a sequence ofuse
calls can create an equivalent result. For example, consider two filesf1.sml and
f2.sml which both define structuresA andB. Suppose we have a fileg.sml
which wants to use structureA from f1.sml and structureB from f2.sml .
Clearly, no linear ordering ofusecan have that effect. Using CM, we can cre-
ate CM description filesf1.cm :

Group
structure A

is
f1.sml

andf2.cm :
Group

structure B
is

f2.sml

and finally define a CM description fileg.cm :

Group is
g.sml
f1.cm
f2.cm

to get the desired effect of loading the fileg.sml with the right combination of
A andB. Of course, in general, instead of having filesf1.sml andf2.sml pro-
viding similar structures, we have groupsf1.cm and f2.cm exporting similar
structures. If we want again the fileg.sml to use structureA from groupf1.cm
and structureB from groupf2.cm , we can simply write proxy CM description
files whose only role is to wrap export filters around the original group files, such
as filesf1p.cm :

Group
structure A

is
f1.cm

andf2p.cm :
Group

structure B
is

f2.cm

along with a maing.cm CM description file:

Group is
g.sml
f1p.cm
f2p.cm

164 CHAPTER 6. THE COMPILATION MANAGER

There is a slightly annoying problem with groups as defined above. When a
group loads a subgroup, every binding defined in the subgroup gets exported by
the group, unless an export filter is defined. If the subgroup is used exclusively to
help implement functionality in the group, this can be annoying. This forces one to
write an export filter for the group. Since a heavy use of libraries leads to a lot of
situations like that, we end up writing export filters for every group, or not caring
that the symbols are exported. To balance this situation, a new kind of group, called
a library, is defined. A library description file is a CM description file of the form:

Library
structure A
signature B
...

is
file1.sml
file2.sml
...

A library is required to provide an export filter, unlike groups. A library behaves
just like a group, except when it is imported by a group. The definitions of the
library are accessible from the sources of the importing group, but are not exported
by the importing group by default. They can be exported if the importing group
specifies them in an explicit export filter.

6.3 Tools

Not every file in a project is an SML source file. Some files contain descriptions
that are translated into SML code using various tools which process the descrip-
tions. The standard examples of such tools are ML-Lex and ML-Yacc (described
in Chapters?? and??), which take a declarative description of lexical tokens and
grammar rules respectively and translate them into SML code for lexers and parser-
s. CM can be used to automatically apply the appropriate tools to description files.

CM uses the concept of a tool class to determine how to process a file. A
tool class specifies a particular processor to use, along with a rule for determining
the target file names from the source file names, as well as a set of conditions
under which the processor is invoked. Typically, a condition is of the form “if
one of the targets is out of date or missing”, that is if one of the target files has a
modification date which is earlier than the source file (indicating that the source
file has been modified since the last tool invocation), or if one of the target files is
actually missing.

Builtin tool classes that CM knows include:

6.3. TOOLS 165

SML the class of SML source files (no processor required)
CM the class of CM description files (no processor required)
MLYacc the class of ML-Yacc grammar files (requires ML-Yacc)
MLLex the class of ML-Lex lexer files (requires ML-Lex)
RCS The class of RCS files (requires checkout toolco)

Determining to which tool class a given file belongs to is typically done by looking
at the suffix of the files. Default suffixes include:

.sig, .sml, .fun SML class

.cm CM class

.grm,.y MLYacc class

.lex,.l MLLex class
,v RCS class

It is also possible to explicitely state which tool class a file belongs to in a CM
description file by adding the tool class after the file name, as in:

not-a-grammar.grm : Sml

which will view the file not-a-grammar.grm as belonging to classSml, and
thus not requiring any processing and loadable directly.

In each case where a tool is applied, the files that result from the application of
the tool are considered again for tool application. For example, iff.grm is present
in a CM description file, ML-Yacc is invoked and generates filesf.grm.sig and
f.grm.sml , which are SML source files and thus processed directly by CM.
In contrast, iff.grm,v appears in a CM description file, RCS checkout is in-
voked to create a new version off.grm , which CM recognized as a ML-Yacc
source file requiring the invocation of ML-Yacc to produce againf.grm.sig
andf.grm.sml .

It is fairly straightforward to add new tool classes to CM, without recompiling
CM. On the other hand, the modification needs to be done in CM, since the de-
scription file can only specify a tool class, and CM needs to know about the tool
class to be able to invoke the appropriate tool (as opposed tomake, which does not
require modifyingmaketo use new tools). The substructureCM.Tools(signature
given in Figure 6.3) provides the required functionality.

As we said earlier, tools are associated with classes that describe how to process
various kind of files. A class is described by four components:

1. a name, a string of lowercase letters;

2. a rule, from source name to target names. A source name is typically a file-
name, but really can be anything. A target is a name of something produced
by the tool along with an optional class name stating the class of the target;

166 CHAPTER 6. THE COMPILATION MANAGER

structure CM.Tools = sig
type abstarget = ?.AbsPath.t * class option
type class = string
datatype classification

= CMFILE
| SCGROUP
| SCLIBRARY
| SMLSOURCE
| TOOLINPUT of {make:unit -> unit, targets:abstarget list,

validate:unit -> bool}
datatype classifier

= GEN_CLASSIFIER of fname -> class option
| SFX_CLASSIFIER of string -> class option

type fname = string
type processor = {source:fname, targets:target list} -> unit
type rule = fname * rulecontext -> target list
type rulecontext = rulefn -> target list
type rulefn = unit -> target list
type simplerule = fname -> target list
type target = fname * class option
type validator = {source:fname, targets:target list} -> bool
exception ToolError of {msg:string, tool:string}
exception UnknownClass of class
val addClassifier : classifier -> unit
val addCmClass : class -> unit
val addScGClass : class -> unit
val addScLClass : class -> unit
val addSmlClass : class -> unit
val addToolClass : {class:class, processor:processor, rule:rule,

validator:validator}
-> unit

val classify : ?.AbsPath.t * class option -> classification
val defaultClassOf : fname -> class option
val dontcare : simplerule -> rule
val stdExistenceValidator : validator
val stdSfxClassifier : {class:class, sfx:string} -> classifier
val stdShellProcessor : {command:string, tool:string} -> processor
val stdTStampValidator : validator
val withcontext : simplerule -> rule

end

Figure 6.3: The structureCM.Tools

6.3. TOOLS 167

3. a validator, taking a source name and the target list produced by the rule, and
determining whether the tool need to be invoked.

4. a processor, to actually implement the tool, that is mapping the source name
to targets.

Although member names (both source and target) need not be filenames, they
very nearly always are, and thus to keep the presentation simple I will refer to them
as filenames.

Adding a new tool class to CM is simply a matter of callingCM.Tools.addToolClass,
passing in the class name, the rule, the validator and the processor. Let us get the
types right first:

type fname = string
type class = string
type target = fname * class option

that is filenames and classes are simply strings, and a target is a string with an op-
tional associated class. Validators and processors are functions taking as argument
the source filename and a list of targets. Note that validators and processors are
passed the names as they appear in the CM description file.

type validator : {source : fname, targets: target list} -> bool
type processor : {source : fname, targets: target list} -> unit

Since the relative paths are resolved relative to the directory the description file
appears in, CM temporarily changes its working directory to the directory the de-
scription file appears in , to simplify processing. This temporary working directory
is called the “context”.

The last element required for a tool class is a rule. Rules, as we saw, take a
source filename and generate a list of targets. Their interface is more complicated
than validators and processors, due to additional flexibility: since rules often do
not require the context to be set to work correctly (the name of the targets is often
derived from the name of the source, without actually needing to read the source
file), and since setting up the context can be expensive (for example, on network
drives), the interface to rules allows the programmer to specify whether or not a
context should be set up. The type of a rule is clear:

type rule = fname * rulecontext -> target list

it takes a source filename and a rule context, and returns a target list. The rule
context is used to represent the idea that a context can be setup if desired. It has
type:

type rulefn = unit -> target list
type rulecontext = rulefn -> target list

168 CHAPTER 6. THE COMPILATION MANAGER

If a rule does not care about the context, the second argument to the rule can be
ignored. Otherwise, the rule can pass arulefn function to the rule context to use
therulefn in the appropriate context. For example, a simple rule which says that a
sourcex.src produces a targetx.src.sml does not require a context (since the
target can be determined without access the filesystem), and is easily implemented
as:

fun addSmlRule (fname,rulecontext) = [(fnameˆ".sml",NONE)]

Notice that we did not specify a tool class for the target, relying on the default
behavior for files with a.sml suffix. We could also have specifiedSOME ”Sml”
as a tool class for the target, with the same effect.

Suppose now that we wanted to implement a rule taking a source filex.src
and producing a targety.sml where the namey is taken from the first line of the
file x.sml . Since this requires accessing the file, and the filename (if relative) is as
always given relative to the directory the CM description file appears in , we need
to have CM set up a context for us. The rule therefore must call itsrulecontext
argument. Here is one way of achieving this (note that there is no error processing
in this example):

fun readNameRule (fname,rulecontext) = let
fun doit () = let

val in = TextIO.openIn (fname)
val name = TextIO.readLine (in)
val name = String.extract (name,0,SOME (size (name) - 1))

in
TextIO.closeIn (in);
[(nameˆ".sml",NONE)]

end
in

rulecontext (doit)
end

Some of the messiness in the code has to do with reading the actual name from
the file, namely to remove the trailing newline at the end of the string read in by
TextIO.readLine. Some amount of lexing is typically necessary to do this cleanly (a
simple token reader reading all characters up to the first whitespace, for example):

fun tokenReader (string) = ...

(For the interested reader, more advanced ways of doing such things will be de-
scribed in Chapter??when discussing regular expressions.)

It is typically the case, as witnessed by the above, that a rule either always uses
its context, or never does. Provisions are made inCM.Toolsto handle such cases,
called simple rules. A simple rule has type:

type simplerule = fname -> target list

6.3. TOOLS 169

and a simple rule can be converted to a rule by one of:

val dontcare : simplerule -> rule
val withcontext : simplerule -> rule

A rule created bydontcarenever needs its context, and indeeddontcare fis equiv-
alent tofn (fname,) => f (fname). On the other hand, a rule created bywithcontext
always sets up its context, andwithcontext fis equivalent tofn (fname,c)=> c (f
fname).

TheCM.Toolssubstructure provides functions to create common validators and
processors. Two standard validators are:

val stdTStampValidator: validator
val stdExistenceValidator: validator

that respectively verify time stamp consistency (the source is more recent than the
targets) and the existence of targets. The most common type of processor is a shell
command passed the source name as an argument. Such a processor can be created
by calling

val stdShellProcessor : {command: string, tool:string} -> processor

wherecommandis the shell command to execute, andtool is the name of the tol
used for error reporting. Errors arising from tools should be reported by raising
the exceptionCM.Tools.ToolError, which takes a value of type{msg: string, tool:
string} wheretool is the representation of the tool name andmsgcontains an ex-
planation of the error.

We have seen how to define new tool classes and add them to the Compilation
Manager. At this point, the only way to use such a tool class is to explicitely specify
in a CM description file that such and such name are to be processed by that class,
using the: <class> annotation. To automatically invoke the tool class for various
forms of names, we need to define a classifier for the tool class. In effect, classifiers
are used to try to determine the tool class associated with a name from the form of
the name alone, typically using its suffix or its extension.

Two types of classifiers are defined. The simplest classifier (SFXCLASSIFIER)
is a function taking a suffix of the name to be classified and returningSOME (c),
with c a class name, if the suffix classifies the file as being processed by tool classc,
or NONEif the suffix is not recognized by the classifier. A more general classifier
(GEN CLASSIFIER) takes the whole file as input and again returns aclass option
result. When CM finds a file name in a CM description file (or as a target from
applying a rule), it attempts to discover the tool class of the file by calling every
classifier registered with the system in turn, in some unspecified order, until on the
them returnsSOME (c), at which point it invokes the rule, validator and processor
defined byc on the name.If all the classifiers returnNONE, an error is reported.

170 CHAPTER 6. THE COMPILATION MANAGER

A new classifier is defined by calling eitherSFXCLASSIFIERwith a string
→class optionas an argument, orGEN CLASSIFIERwith a fname→class option
as an argument. For the purist, note thatSFXCLASSIFIERandGEN CLASSIFIER
are in fact data constructors for theclassifierdatatype. A classifier so defined can
be registered with the system by callingaddClassifier, passing in the classifier. The
functiondefaultClassOfwill invoke the classification mechanism described above
on a given file; this can be useful if the classification depends on the classification
of other parts of the name. Note that classification does not change the context
and it is usually a bad idea to go to the filesystem during classification — although
classifying based on the content of a file is a powerful idea.

Since most classifiers simply look for a standard filename suffix,CM.Tools
provides a convenient function to create such a classifier:

val stdSfxClassifier : {sfx: string, class: class} -> classifier

wheresfx is the suffix to look for andclassis the corresponding tool class. If a tool
can handle files with two kind of suffixes or more, a standard suffix classifier for
each recognized suffix can be registered with the system. For example, as we saw,
the tool classMLYacccan process files with extension.y and.grm . This could
be expressed as follows:

addClassifier (StdSfxClassifier {sfx="y",class="mlyacc"})
addClassifier (StdSfxClassifier {sfx="grm",class="mlyacc"})

6.4 A simple configuration tool

Let us add a very simple tool to CM. To simplify the example, we will not imple-
ment the processor as a separate application (such as ML-Lex or ML-Yacc), but
rather as an internal function. This is just for illustration purposes, as most real
uses of the tools facility should refer to external tools — if only for the reason that
we should still be able to apply the tools externally, without running CM. In any
case, we describe a simple tool to configure some files according to configuration
variables, in a way reminiscent ofAutoConffiles under Unix. Here is the idea. We
are given a source file which contains instances of configuration variables of the
form @@xyz@@for xyza sequence of alphanumeric characters. When such a file
is encountered in a CM description file, the system should replace all occurences
of @@xyz@@by a user-specified string, producing a complete source file that
can then be compiled accordingly. Configuration variables are managed from the
toplevel loop of SML/NJ. The user is provided with a structureCfg to handle the
setting of configuration variables.

6.4. A SIMPLE CONFIGURATION TOOL 171

signature LOOKUP_TABLE = sig
type table
val new : unit -> table
val get : table * string -> string option
val set : table * string * string -> unit
val foldl : ((string * string) * ’c -> ’c) -> ’c -> table -> ’c

end

Figure 6.4: The signatureLOOKUP TABLE

structure NaiveLookupTable : LOOKUP_TABLE = struct
type table = (string * string ref) list ref

fun new () = ref []

fun get (t,s) =
(case List.find (fn (s’,_) => s=s’) (!t)

of NONE => NONE
| SOME (_,sr) => SOME (!sr))

fun set (t,s,v) =
(case List.find (fn (s’,_) => s=s’) (!t)

of NONE => t := (s,ref (v))::(!t)
| SOME (_,sr) => sr := v)

fun foldl f b t = List.foldl (fn ((s,sr),r) => f ((s,!sr),r)) b (!t)

end

Figure 6.5: The structureNaiveLookupTable

For reasons made clear later, we create a CM description filemlconfig.cm
that contains the actual implementation of the tool. Here it is in its exceeding
simplicity:

Group is
cfg.sml
mlconfig.sml

The code is logically split into two parts, reflected in the two files: the first (cfg.sml)
is the implementation of the configuration variables lookup table, the second (mlconfig.sml)
is the implementation of the tool proper, which walks over a given source file per-
forming the replacement. We consider these parts in turn.

Our implementation of the lookup table is naive. As we shall see in Chapter
7, SML/NJ has libraries to make this much more efficient and with an eye to-
wards that, we functorize out tool over the implementation of lookup tables. Our

172 CHAPTER 6. THE COMPILATION MANAGER

functor CfgFun (structure T : LOOKUP_TABLE) = struct
val cfgVars = T.new ()
fun set (s,s’) = T.set (cfgVars,s,s’)
fun get (s) = T.get (cfgVars,s)
fun list () = T.foldl (fn ((s,s’),_) => (print (s);

print " = ";
print (s’);
print "\n")) () cfgVars

end

Figure 6.6: The functorCfgFun

structureNaiveLookupTable(in Figure 6.5) is a mapping from strings to strings.
Lookup tables are implemented as imperative maps, where updating a lookup table
is destructive operation on the lookup table. A table is simply a list of association
between strings and references to strings. The fact that the value associated with a
string is a string reference means that the associated value can be updated in place.
The functorCfgFun(Figure 6.6) creates a structure that can be used to access the
configuration variables. To actually construct a structureCfg, we instantiate the
functor:

structure Cfg = CfgFun (structure T = NaiveLookupTable)

The tool proper is implemented in structureMLConfig, which provides a single
entry pointprocessFile. It uses theCfg structure to lookup its variables. Walking
the file is done by reading in each line successively, and looking for configuration
variables. An alternative way would be to suck in the whole file at once (through
TextIO.inputAll) but that requires making sure the file is not too large. Alternatively,
we could suck in whole bufferfulls of the file. I leave this approach as an exercise
for the reader. I focus on the straightforward if less efficient implementation. The
functionprocessFilesimply opens the given file, creates the output file and for each
line of the source file callsprocessLine:

fun processFile (file_in,file_out) = let
val in = TextIO.inputIn (file_in)
val out = TextIO.inputOut (file_out)
fun loop () = (case TextIO.readLine (in)

of "" => ()
| s => (TextIO.output (out,processLine (s));

loop ()))
in

loop ();
TextIO.closeIn (in);
TextIO.closeOut (out)

end

6.4. A SIMPLE CONFIGURATION TOOL 173

Processing a line is done using substring magic. It first finds the leftmost@@,
and the leftmost@@following it, and replaces the content by the string associated
to the corresponding configuration variable:

fun processLine (s) = let
val ss = Substring.all (s)
fun findAtAt (ss) = let

val (pref,suff) = Substring.position "@@" ss
in

if (Substring.isEmpty (suff))
then NONE

else SOME (pref,Substring.triml 2 suff)
end
fun replVarLoop (ss) =

(case findAtAt (ss)
of NONE => [ss]

| SOME (s1,s3) => (case findAtAt (s3)
of NONE => [ss]

| SOME (s1’,s3’) =>
(case Cfg.get (Substring.string (s1’))

of NONE => raise ConfigError
| SOME (s) => s1::Substring.all (s)::replVarLoop (s3’))))

in
Substring.concat (replVarLoop (ss))

end

At this point, it is possible to test what has been done. Create a sample file
test.sml.cfg with content:

structure Test = struct
fun main () = (print "This file was created by @@name@@\n";

print "on @@date@@\n")
end

Compile the configuration tool we wrote above by typingCM.make’ ”mlconfig.cm”.
Set the appropriate configuration variables, such as:

- Cfg.set ("name","Riccardo Pucella");
val it = () : unit
- Cfg.set ("date","August 17, 2000");
val it = () : unit

Finally, invoke the configuration tool on the sample file:
-
- MLConfig.processFile ("test.sml.cfg","test.sml");
val it = () : unit

This should produce a file calledtest.sml in the working directory, with the
configuration variables instantiated to whatever you chose above.

Let us now write the code to install MLConfig as a tool in CM. For technical
reasons, it is not easy to install the tool automatically via CM say by compiling a
module which performs as a side effect the registration of the tool class1. Thus,

1The problem is that by default CM is not aware of itself! So accessing theCM.Toolsstructure
from a file compiled by CM fails.

174 CHAPTER 6. THE COMPILATION MANAGER

although we still describe the process as a module, the module should be compiled
directly at the interactive loop (say viause, one the few such uses we will ever
consider). This is not a very big deal, since anyone serious about this would then
export a new heap image containing the modified CM (see Section 5.4).

With this in mind, we consider a fileinstall-mlconfig.sml consisting
of a simple structureInstallMLConfig, which should be compiled in an environ-
ment containingMLConfigandCfg. The structure is in charge of registering the
tool class corresponding toMLConfig. The code for the structure is presented in
Figure 6.7.

The first step consists of creating a tool class, that is selecting an appropriate
rule, validator and processor. The rule itself is simple: it takes the source file name
and removes the.cfg extension, if it is present, and raises an exception other-
wise. The functionstripCfgExttakes a filename and removes the.cfg extension
(it raises an exceptionConfigError if no extension can be found). It uses substrings
to perform the appropriate lookups. The resulting target is assigned a default tool
class. Note that the rule does not need a context (since it does not access the file
system), so we can create the rule through a call toCM.Tools.dontcare. The valida-
tor used is simply the time stamp validator, since the file should be run though the
configuration tool whenever the source is modified. The processor is simply a call
to MLConfig.processFile, with a suitable arrangement of arguments. Finally, we
can wrap it all up, including a classifier that automatically classifies files according
to the.cfg extension.

To add the tool to CM, it suffices to compile the above module, via say

- use "install-mlconfig.sml";
...

And this registers the tool. Create a sample CM description file for the above
”test.sml.cfg” example, something simple such as the following, saved under the
name ”test.cm” (the name ”sources.cm” may already be taken by the tool in the
directory):

Group is
test.sml.cfg

and compile it usingCM.make’ ”test.cm”. The MLConfig tool should be invoked
properly, and the resulting file ”test.sml” should then be loaded. As an exercise for
the reader, it may be interesting to add some verbose output to the tool to recognize
that it is indeed being run.

The main problem with this approach is clear: the tool must be registered with
CM in order for the description file to make sense to the system. Of course, it
is a simple matter to load the tool, but a user wanting to compile the file needs
to go through the trouble of loading the tool explicitly, via the prompt. A much

6.4. A SIMPLE CONFIGURATION TOOL 175

structure InstallMLConfig = struct

val toolName = "mlconfig"
val class = "mlconfig"

fun stripCfgExt (f) = let
val cfg = Substring.all ("cfg")
val ss = Substring.all (f)
val (l,r) = Substring.splitr (fn c => not (c = #".")) ss

in
case Substring.compare (r,cfg)

of EQUAL => if Substring.size (l) <= 1
then raise ConfigError

else Substring.string (Substring.trimr (l,1))
| _ => raise ConfigError (* not right extension *)

end

fun simplerule (source) = let
val name = stripCfgExt (source)
fun default (f) = (f, NONE)

in
[default (result)]

end

val validator = stdTStampValidator

fun processor = {source,targets} =
(case targets

of [] => raise ToolError {msg="huh?", tool=toolName}
| (out,_)::_ => processFile (source,out)

handle e => raise ToolError
{msg = exnMessage (e),

tool=toolName})

fun sfx (s) = Tools.addClassifier (Tools.stdSfxClassifier {sfx=s,class=class})

val _ = Tools.addToolClass {class=class,
rule=Tools.dontcare simplerule,
validator=validator,
processor=processor}

val _ = sfx ".cfg"

end

Figure 6.7: The structureInstallMLConfig

176 CHAPTER 6. THE COMPILATION MANAGER

better way would be to specify in the description file an external tool to perform
the processing2.

As a matter of practice, and since we are already halfway there, let us trans-
form the above into an external tool, that is a standalone tool that can be invoked
from the operating system command line. Since in such a setting we will not have
access to the interactive loop to set the various configuration variables, we will
instead choose to read the settings from a file.mlconfigrc in the user’s home
directory3. A typical .mlconfigrc file would be:

name = Riccardo Pucella
date = August 17, 2000

Since we took pains to separate the core of the tool from the installation pro-
cess, we can simply create a new CM description file for the external tool,sources.cm ,
which loads inmlconfig.cm implementing the core of the tool, as well as a file
driver.sml to implement the main driver of the tool. Which turns out to be dead
simple. Following our discussion in Section 5.4, we write a structureMain match-
ing signatureMAIN which provides the right interface forSMLofNJ.exportFnto
create an executable.

structure Main = struct

fun readRCFile (f) = ...

fun main (_,[]) = (print "Need to specify a configuration file\n";
OS.Process.failure)

| main (_,file::_) = (readRCFile ("˜/.mlconfigrc");
MLConfig.processFile (file,MLConfig.stripCfgExt (file)) handle ...;
OS.Process.success)

end

We can then compile the code throughCM.make ()and export the tool through
SMLofNJ.exportFn (”mlconfig”,Main.main). This creates a heap imagemlconfig. <something >
in the working directory.

Under Unix, we can create a simple shell scriptml-config to invoke ML-
Config:

#!/bin/sh
sml @SMLload=./mlconfig

We still need to register the tool class with CM. The installation code is just like that
in Figure 6.7, except that the functionprocessornow needs to invoke the external
tool. We can therefore simply define:

2The latest version of CM (currently available through the working versions of SML/NJ) does
indeed provide such a facility. This should make its way into the next release version, at which point
these notes will be updated!

3This is the traditional Unix approach. Under Windows, such settings typically go into the Reg-
istry, but access to the Registry from within SML/NJ is still not available.

6.5. TECHNICALITIES 177

val person = CM.Tools.stdShellProcessor {command="ml-config",
tool="ML-Config"}

Note that making the tool external does not really solve our earlier problem,
that of requiring the user to explicitely install the tool class. But at least the process-
ing can be performed off-line, without requiring CM intervention, so that purely
SML-based code can be distributed.

6.5 Technicalities

Notes

The official documentation for CM is the user’s manual available from the SML/NJ
web page. The details and the theory underlying CM’s approach to hierarchical
modularity can be found in Blume’s thesis [15] and papers [17, 16]. The kind of
separate compilation found in CM is known as cutoff recompilation [2]: even if
a source is modified, if the modification is found to have no effect on other files
(even those formally “depending” on the modified files), the recompilation does
not propagate any further. Implementation-wise, CM uses the hooks provided by
the open compiler of SML/NJ [9].

CM is loosely based on SC, an early incremental compilation manager for SM-
L/NJ [45, 46]. CM can still process SC description files, which are similar to CM
description files but do not include the notion of subgroups or tools. The Unix
programmakewas originally described in [28].

The configuration tool described in Section 6.4 is inspired by the configura-
tion processing performed byAutoConf[?]. The RCS version control system was
originally described in [106], and good references include [?].

One of the main roles of CM is in compiling the SML/NJ compiler itself. This
is trickier than one might expect, as SML/NJ is itself written in SML (except for the
runtime system, written in C). An eye-opening overview of the so-called bootstrap
process can be found in [6].

178 CHAPTER 6. THE COMPILATION MANAGER

Chapter 7

The SML/NJ Library

Back in Chapter 4, we studied the Basis Library, a standard set of modules that
compliant SML’97 implementations should support. The focus of the Basis Library
is on the support for basic types such as integers, words, strings, as well as common
aggregate types such as lists, vectors and arrays. A large part of the Basis deals with
system-independent functionality, such as filesystem access, input and output, and
so on.

The SML/NJ Library is a set of modules distributed with SML/NJ to complete
the Basis Library. It provides support for more specialized data structures, such
as sets, maps and hash tables, with a variety of implementations. It also supports
convenient formatted conversion from various types to strings, sorting functions,
and generic higher-order functions. It also provides a module to handle command-
line arguments in a sane way.

The focus in this chapter is on the so-called “utility” component of the SML/NJ
Library. The “regular expressions” component of the SML/NJ Library will be
described in Chapter??, while other components (HTML, PrettyPrinter, Reactive)
are still under development and will be described in future versions of these notes.

7.1 Overview

To use any module from the SML/NJ library, you simply add the entrysmlnj-lib.cm
in the CM description file of your application. This does mean that projects using
the SML/NJ Library will benefit greatly from using CM. I do not view this as a
great restriction, since one of the goals of these notes is to promote the use of CM.
I will reluctantly note that the SML/NJ Library is auto-loaded at toplevel by default
in most installations (see Section??).

The SML/NJ Library uses the same conventions as the Basis Library with re-

179

180 CHAPTER 7. THE SML/NJ LIBRARY

structure LibBase : sig

exception Unimplemented of string
exception Impossible of string
exception NotFound

val failure : module : string, func : string, msg : string -> ’a
val version : date : string, system : string, version_id : int list
val banner : string

end

Figure 7.1: The structureLibBase

spect to names of structures, signatures, values, types and exceptions (see Section
??). Unfortunately, since the modules in the library often come from differen-
t sources, there is no clear stylistic guidelines or naming conventions enforced
across identifiers.

As I mentionned earlier, the SML/NJ Library provides functionality which can
be divided into the following rather arbitrary categories: basic data structures, ar-
ray operations, maps and sets, hash tables, sorting, output and string formatting,
command-line options handling, and miscellaneous functionality.

A structureLibBase(see Figure 7.1) provides basic versioning information
about the SML/NJ Library, and implements various core exceptions:Unimple-
mentedis raised when an unimplemented feature is being used,Impossibleis raised
to report internal errors, andNotFoundis raised by searching operations . The func-
tion failure raises aFail exception with a standard error format. The valuesversion
andbannerprovide versioning information, respectively as a record and as a string.

7.2 Types and data structures

Similarly to the Basis Library, the SML/NJ Library provides structures for various
types and data structures that can be useful in general applications. As the more
common types have already been defined by the Basis, the types and data structures
provided by the SML/NJ Library are necessarily more specialized.

The most important type defined by the SML/NJ Library is the type of atoms.
An atom is a special kind of string that can be checked for equality very efficient-
ly.1 The downside is that there are no operations like concatenation on atoms. The

1Checking two normal strings for equality typically takes time proportional to the length of the
shortest of the strings.

7.2. TYPES AND DATA STRUCTURES 181

structure Atom : sig

type atom

val atom : string -> atom
val atom’ : substring -> atom
val toString : atom -> string
val sameAtom : (atom * atom) -> bool
val compare : (atom * atom) -> order
val hash : atom -> word

end

Figure 7.2: The structureAtom

signature CharMap : sig

type ’a char_map

val mkCharMap : default : ’a, bindings : (string * ’a) list -> ’a char_map
val mapChr : ’a char_map -> char -> ’a
val mapStrChr : ’a char_map -> (string * int) -> ’a

end

Figure 7.3: The structureCharMap

signature for the structureAtom is given in Figure 7.2. The structure defines an
abstract typeatom, along with constructorsatomandatom’, converting respective-
ly a string or a substring (of typeSubstring.substring) to an atom, and a function
toStringto convert an atom back to a string. The functionsameAtomreturnstrue if
the atoms are the same. Two atoms are the same if their underlying strings are equal
as strings (therefore, case matters when comparing atoms). The functioncompare
is the standard comparison function. Note however that the ordering on atoms is
not the lexicographic ordering on the underlying strings, but rather arbitrarily de-
pends on the implementation of atoms. Finally, the functionhashreturns a word
value that can be used to hash atoms. We will return to hash tables in Section??.

Another useful data structures is the character map, which maps characters
to values. The signature ofCharMap is given in Figure 7.3. It defines a type
’a char map, mapping characters (of typeChar.char) to values of type’a. The
function mkCharMapconstructs a character map, by taking as argument a value
of type {default:’a,bindings:(string×’a) list}. The constructed character map,
with the list bindingscontaining entries(s,v) of type (string×’a) list, maps any

182 CHAPTER 7. THE SML/NJ LIBRARY

structure Fifo : sig

type ’a fifo

exception Dequeue

val empty : ’a fifo
val isEmpty : ’a fifo -> bool
val enqueue : ’a fifo * ’a -> ’a fifo
val dequeue : ’a fifo -> ’a fifo * ’a
val delete : (’a fifo * (’a -> bool)) -> ’a fifo
val head : ’a fifo -> ’a
val peek : ’a fifo -> ’a option
val length : ’a fifo -> int
val contents : ’a fifo -> ’a list
val app : (’a -> unit) -> ’a fifo -> unit
val map : (’a -> ’b) -> ’a fifo -> ’b fifo
val foldl : (’a * ’b -> ’b) -> ’b -> ’a fifo -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a fifo -> ’b

end

Figure 7.4: The structureFifo

character ins into the valuev. Characters not specified in any of the strings in
bindingsget mapped to the value specified bydefault. If a character is specified
in multiple strings, the latest such binding (in the order of occurence of the strings
in the listbindings) is dominant. The functionmapChrtakes a character map and
a character and returns the value corresponding to according to the character map.
The functionmapStrChrsimply appliesmapChr to a character in the specified
string. Thus,mapStrChr cm (s,i)is equivalent tomapChr cm (String.sub (s,i)).

We have seen in Chapter?? various implementations of queues. The SML/NJ
Library in fact provides such implementation, for both functional and imperative
queues. Figure 7.4 gives the signature ofFifo, the structure implementing func-
tional (or applicative) queues. I will not go over it in detail, since we have already
discussed queues in Chapter??. The values and functionsempty, isEmpty, en-
queue, headand dequeueare as one expects. If the queue is empty,headand
dequeueraise theDequeueexception defined inFifo. The alternative functionpeek
also looks at the head of the queue, but returns an optional value:SOME (v)if v is
at the head of the queue,NONEif the queue is empty. The functionlengthreturns
the number of elements in the queue, whilecontentsreturns a list of the elements
stored in the queue, in order from the head of the queue to the end. The remaining
functions iterate over the elements of the queue:deleteremoves every element of
the queue for which the supplied predicate returnstrue, whicleapp, map, foldl and

7.2. TYPES AND DATA STRUCTURES 183

structure Queue : sig

type ’a queue

exception Dequeue

val mkQueue : unit -> ’a queue
val clear : ’a queue -> unit
val isEmpty : ’a queue -> bool
val enqueue : ’a queue * ’a -> unit
val dequeue : ’a queue -> ’a
val delete : (’a queue * (’a -> bool)) -> unit
val head : ’a queue -> ’a
val peek : ’a queue -> ’a option
val length : ’a queue -> int
val contents : ’a queue -> ’a list
val app : (’a -> unit) -> ’a queue -> unit
val map : (’a -> ’b) -> ’a queue -> ’b queue
val foldl : (’a * ’b -> ’b) -> ’b -> ’a queue -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a queue -> ’b

end

Figure 7.5: The structureQueue

foldr are the standard higher-order functions, acting on the queue from the head to
the end.

Imperative queues are provided through the structureQueuewhose signature
is given in Figure 7.5. Aside from the fact that the functions act in-place on the
queue provided (they do not return a new queue), most operations are just like for
functional queues above, and we will not describe them again. The one difference
is in constructing new queues. WhileFifo provided a valueemptydefining the
empty queue,Queuedefines a functionmkQueueto create a new empty queue, and
a functionclear to remove all the elements stored in a queue.

An interesting data structure defined by the SML/NJ Library is the splay tree,
which is a form of balanced binary tree. The signature ofSplayTreeis given in
Figure 7.6. It defines a datatype’a splay for splay trees, the typical definition one
expects for binary trees. It also defines two operations that... . Splay trees are
used internally by the SML/NJ Library to implement efficient sets and maps (see
Section 7.4).

The next data structures we talk about in this section are property lists, which
are not properly speaking data structures. A property list is an association list
coupled to an object. A property list constains zero or more entries; each entry
associates with a key (called an indicator) an arbitrary value (called the property)

184 CHAPTER 7. THE SML/NJ LIBRARY

structure SplayTree : sig

datatype ’a splay =
SplayObj of {

value : ’a,
right : ’a splay,
left : ’a splay

}
| SplayNil

val splay : ((’a -> order) * ’a splay) -> (order * ’a splay)
val join : ’a splay * ’a splay -> ’a splay

end

Figure 7.6: The structureSplayTree

structure PropList : sig

type holder

val newHolder : unit -> holder
val clearHolder : holder -> unit
val newProp : ((’a -> holder) * (’a -> ’b)) -> {

peekFn : ’a -> ’b option,
getFn : ’a -> ’b,
clrFn : ’a -> unit

}
val newFlag : (’a -> holder) -> {

getFn : ’a -> bool,
setFn : (’a * bool) -> unit

}

end

Figure 7.7: The structurePropList

7.2. TYPES AND DATA STRUCTURES 185

of a specific type. One can create new indicators and add them to any property list.
The main advantage of a property list is that it can grow and can be used to associate
values of different types to objects. Property lists are contained inside a holder. An
object to which one wants to add properties needs to somehow define a holder.
Typically an object will be a tuple or a record and the holder will be contained in a
field. The structurePropListgiven in Figure 7.7 declares a typeholder to hold the
properties of a value. A new holder is created by callingnewHolder.

The core of the work is done bynewProp, which defines a new property of
type ’b for objects of some type’a. The function takes as arguments a function’a
→holder that extracts the holder of the object, and a function’a →’b to create the
initial value of the property. It returns a record of functions to access the property
on objects of type’a. The returned functiongetFn takes the object and returns
the property value associated to it; it creates the property for the object if it has
not already been created, and initializes it using the initialization function. The
returned functionpeekFnsimilarly gets at the property value, but returns it as an
optional value, withNONEindicating that the property has not been created yet for
that value. The returned functionclrFn removes the property value, allowing it to
be initialized at the nextgetFncall. Clearing all the properties in a holder is done
by callingclearHolderon the holder.

A special kind of property, a boolean-value property type often called a flag,
is given a special treatment through anewFlagfunction, since it is so common. A
flag is automatically initialized tofalse, and thus does not require an initialization
function. There is also no clear function in the record of functions returned by
mkFlag. On the other hand, a returned functionsetFncan be used to change the
setting of a flag.

The final data structures we discuss in this section are the union/find data struc-
tures, or ureferences (urefs). Ureferences are like normal references, except with
the possibility of performing a union of the references. With normal references,
the equality operating, checking so-called pointer equality, returnstrue if and only
if two references cells are actually the same reference cell. Clearly this mean-
s that two such references must contain the same value. Ureferences support all
the reference operations (creation, update, dereference) but in addition support an
operationunion that makes two distinct ureferences equal with respect to pointer
equality of ureferences. Since the two ureferences may contain different values be-
fore the union, and since we would like to preserve the invariant that pointer-equal
ureferences contain the same value (after all, they are supposed to represent the
same cell after a union), we need to chose one of the values to store in the union.

Figure 7.8 presents theUREFsignature, and two implementations,SimpleUref
andUref, with different degrees of cleverness in the implementation. They may
exhibit different degrees of efficiency when multiple unions are performed. The

186 CHAPTER 7. THE SML/NJ LIBRARY

signature UREF = sig

type ’a uref

val uRef: ’a -> ’a uref
val equal: ’a uref * ’a uref -> bool
val !! : ’a uref -> ’a
val update : ’a uref * ’a -> unit
val unify : (’a * ’a -> ’a) -> ’a uref * ’a uref -> bool
val union : ’a uref * ’a uref -> bool
val link : ’a uref * ’a uref -> bool

end

Figure 7.8: The signatureUREF

signature declares a type’a uref for ureferences, along with a constructoruRef
to allocate a new ureference cell with a given initial value, a predicateequal to
test pointer equality of ureferences, whereequal (e,e’)returnstrue if and only if
e ande’ have been unioned. The function!! returns the content of a ureference
cell, while updateupdates its contents. (These functions correspond respectively
to ! and:= for references.) The unioning operation comes in three flavors:union
(e,e’)makeseande’ equal according to theequalpredicate, and the content of the
unioned cell is arbitrarily chosen to be one of the content ofe or e’; the call link
(e,e’)does the same thing, expect that the content of the unified cell is explicitely
taken to be the content ofe’ before the link; finally,unify f (e,e’)applies a function
f to the content ofe ande’ to compute the content of unioned cell. It should be
clear that bothunion and link are expressible in terms ofunify. In all cases, the
unioning operation returnstrue if and only if the content of the ureferences were
different before the union.

7.3 Arrays and vectors

The SML/NJ Library complements the support for arrays and vectors of the Basis
Library (see Section 4.4). For instance, it provides a functorMonoArrayFnwith
the following declaration:

functor MonoArrayFn (type elem) :> MONO_ARRAY where type elem = elem

to construct new monomorphic array structures over an arbitrary element type.2

2The underlying implementation is in terms of polymorphic arrays, so there is no real efficiency
gain.

7.3. ARRAYS AND VECTORS 187

structure BitVector : sig

include MONO_VECTOR

val fromString : string -> vector
val bits : (int * int list) -> vector
val getBits : vector -> int list
val toString : vector -> string
val isZero : vector -> bool
val extend0 : (vector * int) -> vector
val extend1 : (vector * int) -> vector
val eqBits : (vector * vector) -> bool
val equal : (vector * vector) -> bool
val andb : (vector * vector * int) -> vector
val orb : (vector * vector * int) -> vector
val xorb : (vector * vector * int) -> vector
val notb : vector -> vector
val lshift : (vector * int) -> vector
val rshift : (vector * int) -> vector

end where type elem = bool

Figure 7.9: The structureBitVector

A specialized implementation however is provided for bit vectors and bit ar-
rays. As we did in Chapter 4, we focus initially on bit vectors, generalizing later
to bit arrays. A bit vector is an efficient representation of vectors whose elements
are single bits. The signature of structureBitVector is given in Figure 7.9, and is
in fact an extension of theMONO VECTORsignature (Figure??). We describe
here the additional functionality of the structure, referring to Section?? for the
MONO VECTORoperations.

Some of the additional operations are in charge of the conversion to and from
bit vectors. The functionfromStringcreates a new bit vector from a string argu-
ment giving the hexadecimal representation of the content of the bit vector. Each
hexadecimal digit gives a 4-bit pattern in the vector, corresponding to the binary
expansion of the digit (as usual, 1 corresponds to setting the corresponding bit in
the vector). An exceptionLibBase.BadArgis raised if the string contains a non-
hexadecimal character. The resulting vector always has a length of 4 times the
length of the string. For example, callingBitVector.fromString (”0F0F”)will cre-
ate a bit vector of length 16 countaining the bits0000111100001111. The function
toStringpreforms the exact inverse operation, creating an hexadecimal representa-
tion of the content of the bit vector. Note that the bit vector is zero-padded to a
length which is a multiple of 4, prior to the conversion.

188 CHAPTER 7. THE SML/NJ LIBRARY

An alternative way of creating bit vectors is to use the functionbits, which
takes a length and a list of indices (as usual, indices are between 0 andlength-1
inclusively), and creates a new vector of the specified length with the bits at the
given indices set. The exceptionSubscriptis raised if an index in the list is out of
range. The functiongetBitsis the inverse operation, returning the list of indices
corresponding to the set bits of a vector, in increasing order.

The remaining operations allow for specialized handling of bit vectors. The
functionextend0andextend1take a bit vector and a length and return a new vector
which is the original vector extended on the right to the given length by either 0’s or
1’s. If the original vector is already longer than the prescribed length, it is returned
unchanged. An exceptionSizeis raised if the length is less than zero.

The predicateisZerotests if no bits are sets in a bit vector, whileeqBitstests
whether two vectors have the same bits set (that is, that the indices of the set bits
are the same). Two vectors mayeqBitsto true while having different lengths. On
the other hand, the functionequaltests that the same bits are set and also that the
lengths are the same.

The functionsandb, orb andxorb take two bit vectorsa,b and a lengthl and
create a new bit vector of lengthl, with every element of the vector the AND
(respectively OR and XOR, see page??) of the corresponding elements ofa and
b. If necessary,a andb are extended on the right with 0’s. The functionnotbtakes
a bit vector and creates a new bit vector with all the bits of the supplied bit vector
inverted.

The shift functions are slightly counter-intuitive on bit vectors, as opposed say
to theirWord counterparts, because the interpretation of bit vectors as numbers is
not as intuitive. Nevertheless, thelshift function takes a bit vector and an integer
n and creates a new vector by insertingn 0’s on the right of the input vector. The
function rshift takes a bit vector and an integern and creates a new vector by
removingn bits from the left of the input vector. Ifn is greater than or equal to the
length of the input vector, the resulting vector has length 0.

The structureBitArray has a signature given in Figure 7.10. As expected, the
signature is an extension of theMONO ARRAYsignature (Figure??). The majority
of the additional functions behave for bit arrays as they do for bit vectors, so we will
not cover them again. Operations specific to bit arrays includesetBitandclrBit, to
set or reset a given bit in the array (equivalent to the appropriate update operation
provided by theMONO ARRAYsignature). The functionsunionand intersection
take two bit arraysa andb and perform an OR (respectively AND) of the elements
of a andb back into the arraya, conceptually truncating or extendingb on the right
with 0’s as needed. The functioncomplementinverts the bits of an array, in place.

Bit vectors and bit arrays form an important part of the support for vectors and
arrays in the SML/NJ Library. The second important part is the support for so-

7.3. ARRAYS AND VECTORS 189

structure BitArray : sig

include MONO_ARRAY

val fromString : string -> array
val bits : (int * int list) -> array
val getBits : array -> int list
val toString : array -> string
val isZero : array -> bool
val extend0 : (array * int) -> array
val extend1 : (array * int) -> array
val eqBits : (array * array) -> bool
val equal : (array * array) -> bool
val andb : (array * array * int) -> array
val orb : (array * array * int) -> array
val xorb : (array * array * int) -> array
val notb : array -> array
val lshift : (array * int) -> array
val rshift : (array * int) -> array
val setBit : (array * int) -> unit
val clrBit : (array * int) -> unit
val union : array -> array -> unit
val intersection : array -> array -> unit
val complement : array -> unit

end where type elem = bool

Figure 7.10: The structureBitArray

structure DynamicArray : sig

type ’a array

val array : (int * ’a) -> ’a array
val subArray : (’a array * int * int) -> ’a array
val fromList : ’a list * ’a -> ’a array
val tabulate: (int * (int -> ’a) * ’a) -> ’a array
val default : ’a array -> ’a
val sub : (’a array * int) -> ’a
val update : (’a array * int * ’a) -> unit
val bound : ’a array -> int
val truncate : (’a array * int) -> unit

end

Figure 7.11: The structureDynamicArray

190 CHAPTER 7. THE SML/NJ LIBRARY

called dynamic arrays, which are arrays of unbounded length. As is the case for
arrays, they come in two flavors: monomorphic and polymorphic. The operations
provided are the same, only the types are different, with the kind type of differences
encountered with arrays in the Basis Library. The structureDynamicArrayimple-
ments polymorphic dynamic arrays, with the signature given in Figure 7.11. Since
unbounded arrays cannot be effectively represented on a finite memory system, we
achieve this effect by specifying a default value for the arrays. By default, querying
an array position for its element returns the default value, unless that element has
been explicitely updated by the program. Therefore, we conceptually only need to
keep track of which array positions contain values that have been explicitely set,
of which there can only be a finite number at any given time. One consequence of
this fact that every operation which creates an array needs as an argument a default
value for its unassigned elements, or at least needs to specify which default value
it uses.

The structureDynamicArraydeclares a type’a array (incompatible with the
Array.array type), and a functionarray taking an integern and a default valuev,
and creates a new unbounded array whose elements are all initialized tov. The
integern is used as a hint to the potential useful range of indices.3 The function
subArraycreates an array from the subrange of a given array, with the same default
value as the given array, whilefromListcreates an array from a list of elements and
a default value, andtabulatecreates an array from a tabulating function for a given
number of elements, with the rest of the elements given a default value.

The default value of an array can be queried for by the functiondefault. The
function sub looks at a given index in the array, and returns either the last value
stored at that index, or the default value. Storing a new value in an array is done
by the functionupdate, as in the case of normal arrays. Specific to dynamic arrays
are the functionsboundwhich returns (an upperbound on) the largest index of any
value that has been updated in the array, whiletruncatemakes every elements in
the array at an index larger than the supplied integer the default value, effectively
truncating the array.

Monomorphic dynamic arrays are obtained from monomorphic arrays (of sig-
natureMONO ARRAY) by an application of the functorDynamicArrayFn:

functor DynamicArrayFn (A : MONO_ARRAY) : MONO_DYNAMIC_ARRAY

The signature of the resulting monomorphic dynamic array structure is similar to
that of polymorphic arrays, except that the type of the elements is fixed to that
specified by the underlying monomorphic array structure.

3This is purely for implementation efficiency pruposes.

7.4. SETS AND MAPS 191

Note that dynamic arrays do not provide iterators such as folding or map oper-
ations. On the other hand, in a completely call-by-value language, such operations
are slightly nonsensical on unbounded arrays.

7.4 Sets and maps

The next set of data structures we consider include ordered sets and ordered maps.
Ordered sets are data structures that aim at supporting set operations over values of
an ordered type. Sets have the property that they do not allow repeated elements:
adding an item to a set which already contains that item does not change the set.
Furthermore, sets are unordered collections. The restriction to values of ordered
types is to allow efficient implementation of sets; the ordering is not reflected at the
level of the interface with sets. Ordered maps are similar in spirit. They associate
with values of a given ordered type (the key) a value of some other type, thereby
defining a mapping from keys to values.

Many programs benefit from an efficient implementation of sets and maps.
Many programs not aware of the presence of such libraries end up “reinventing the
wheel”, or using simple lists or association lists to achieve the effects of sets and
maps, at the cost of engineering efforts and lack of efficiency: not many program-
mers will go to the trouble of implementing red-black trees to get efficient sets and
maps!

Both sets and maps are implemented as functors parameterized over the key
type. For sets, this is the type of the values that can be stored in a set, while for
maps it is the type of the keys to which values are associated. Different functors
are available for both sets and maps, providing different implementations, each
offering its own pros and cons. It is not the purpose of these notes to discuss in
detail the algorithmic properties of these implementations. I will instead direct you
to the notes at the end of this chapter, which provide references to such details.

As I mentionned, functors for building sets and maps are parameterized over
the key type, via the following signature:

signature ORD_KEY = sig
type ord_key
val compare : ord_key * ord_key -> order

end

where once again our generic comparisong function appears. Any type for which
a suitablecomparefunction can be defined can be used as a key for sets and maps.
For example, strings can be turned into keys as simply as:

structure StringKey = struct
type ord_key = string
val compare = String.compare

end

192 CHAPTER 7. THE SML/NJ LIBRARY

signature ORD_KEY = sig

structure Key : ORD_KEY

type item = Key.ord_key
type set

val empty : set
val singleton : item -> set
val add : set * item -> set
val add’ : (item * set) -> set
val addList : set * item list -> set
val delete : set * item -> set
val member : set * item -> bool
val isEmpty : set -> bool
val equal : (set * set) -> bool
val compare : (set * set) -> order
val isSubset : (set * set) -> bool
val numItems : set -> int
val listItems : set -> item list
val union : set * set -> set
val intersection : set * set -> set
val difference : set * set -> set
val map : (item -> item) -> set -> set
val app : (item -> unit) -> set -> unit
val foldl : (item * ’b -> ’b) -> ’b -> set -> ’b
val foldr : (item * ’b -> ’b) -> ’b -> set -> ’b
val filter : (item -> bool) -> set -> set
val exists : (item -> bool) -> set -> bool
val find : (item -> bool) -> set -> item option

end

Figure 7.12: The signatureORD SET

Fundamentally, both sets and maps are similar, and whatever implementation
works for sets can be used for maps, and vice versa. Thus, the different implemen-
tations for sets are reflected in maps, in a natural way.

The SML/NJ Library provides four different implementations of sets and maps:
one based on a class of binary search trees, one on sorted lists, one on splay trees,
and one on red-black trees. Overall, the red-black trees implementation is the most
efficient.

The signatureORD SETfor sets is given in Figure 7.12 and four functors (pa-
rameterized over anORD KEY signature) create matching structures (note that
these functors use an unnamed parameter approach):

functor BinarySetFn (K:ORD_KEY):ORD_SET
functor ListSetFn (K:ORD_KEY):ORD_SET
functor SplaySetFn (K:ORD_KEY):ORD_SET
functor RedBlackSetFn (K:ORD_KEY):ORD_SET

7.4. SETS AND MAPS 193

TheORD SETsignature implemented by these functors provide the functions
you would expect to find in any implementation of sets, and many others. It defines
a type for both a set and its elements (which is the same type asord key from
the parameter structure to the functor). A valueemptyrepresents the empty set.
The functionsingletoncreates a single element set, whileadd (andadd’) add an
element to a set,4 andaddListadds every element of a list to a set. The function
deletedeletes an element from a set, raisingLibBase.NotFoundif it is not found in
the set. Note that thecomparefunction provided by the functor parameter specifies
when two elements are the same (namely when it returnsEQUAL). The predicate
memberchecks if an element is part of a set,isEmptyif the set is empty, andequal
if two sets are equal. By the principle of extensionality, two sets are equal is they
contain the same elements. The functioncomparecompares two sets according
to the lexicographic order of its elements, themselves ordered based on the order
specified by the functor parameter. The functionisSubsetchecks if the first set is
a subset of the second, i.e. that every element in the first set is a member of the
second. The functionsnumItemsand listItemsrespectively return the number of
items in a set and an ordered list of the elements of a set.

Traditional set operations such asunion, intersectionanddifferenceare avail-
able. The remaining functions are the standard higher-order functions to manage
and iterate over sets:map, app, foldl, foldr. Note thatmap, appandfoldl walk the
elements of the sets in increasing order, whilefoldr walks the set in decreasing or-
der. The functionfilter returns a new set, the subset of the initial set made up of all
the elements for which the supplied predicate evaluates totrue, while existsmerely
checks that a given element exists satisfying the predicate. The functionfind walks
the set in increasing order and returnsSOME (v)for v the first element for which
the supplied predicate evaluates totrue, or NONEif no such element exists.

It is often the case that one needs to extract some element of a set, arbitrarily,
and efficiently. Such a function, often calledchoose, can be derived from the above
functions as follows:

val choose = find (fn _ => true)

As an example, consider implementing sets of strings, as red-black trees. This
can be done simply by:

structure StringSet = RedBlackSetFn (struct
type ord_key = string
val compare = String.compare

end)

4These two functions are defined with only the order of the arguments as a difference. The reason
for such a strange duplication is that the functionadd is often used as an argument to a fold, and
implementations of fold sometimes differ as to the order of the arguments they pass.

194 CHAPTER 7. THE SML/NJ LIBRARY

Because of their widespread use, structures implementing sets of integers and set-
s of atoms are predefined in the library. For integers, the structuresIntBinary-
Set, IntListSet, IntRedBlackSetare provided, while for atoms,AtomBinarySetand
AtomRedBlackSetare provided. The structureAtomSetis a synonym forAtomRed-
BlackSet.

The signatureORD MAP for maps is given in Figure 7.13, and just as in the
case of sets, four functors (parameterized over anORD KEYsignature) can be used
to create a matching structure, one for each underlying implementation (see page
):

functor BinaryMapFn (K:ORD_KEY):ORD_SET
functor ListMapFn (K:ORD_KEY):ORD_SET
functor SplayMapFn (K:ORD_KEY):ORD_SET
functor RedBlackMapFn (K:ORD_KEY):ORD_SET

TheORD MAPsignature implemented by these functors defines a type for both
maps and its keys (the typeord key inherited from the functor parameter). The
valueemptyrepresents the empty map, which can be checked for by the predicate
isEmpty. The functionsingletoncreates a new map containing a single key and its
associated value, whileinsert (and insert’) insert a new key and associated value
in the map. (See the remarks on the functionsadd andadd’ from ORD SET for
a rationale.) To query a map for the values it contains, one can use the function
find, which returns an optional value associated with a given key, orNONE if the
key is not found in the map. The predicateisDomainchecks whether a key is in
the map. The functionremoveremoves a key (and its associated value) from a
map, raisingLibBase.NotFoundif the key is not in the map. The functionfirst
(respectivelyfirsti) returns the first value stored in the map, orNONEif the map is
empty (respectively, the first value and its associated key).

The functionnumItemsreturns the number of values stored in the map. The
functionlistItems(respectivelylistItemsi) returns an ordered list of the values in the
map (respectively an ordered list of the values and their associated key), ordered
by the associated key. Similarly,listKeysreturns an ordered list of the keys in the
map.

The functioncollate, as the name indicates, constructs an ordering between
maps, given an ordering on the values stored in the map. .

The operationsunionWithand intersectWithare used to somehow merge two
maps. The functionunionWith(respectivelyunionWithi) returns a map whose do-
main is the union of the domains of the two supplied maps. For values whose
keys are in both maps, a way to pick the value to put in the new map has to be
devised. The solution is to pass a function taking as arguments the two values cor-
responding to the same key (respectively, the two values and the common key) and
returning a new value. For example, to perform a map union giving precedence to

7.4. SETS AND MAPS 195

signature ORD_MAP = sig

structure Key : ORD_KEY

type ’a map

val empty : ’a map
val isEmpty : ’a map -> bool
val singleton : (Key.ord_key * ’a) -> ’a map
val insert : ’a map * Key.ord_key * ’a -> ’a map
val insert’ : ((Key.ord_key * ’a) * ’a map) -> ’a map
val find : ’a map * Key.ord_key -> ’a option
val inDomain : (’a map * Key.ord_key) -> bool
val remove : ’a map * Key.ord_key -> ’a map * ’a
val first : ’a map -> ’a option
val firsti : ’a map -> (Key.ord_key * ’a) option
val numItems : ’a map -> int
val listItems : ’a map -> ’a list
val listItemsi : ’a map -> (Key.ord_key * ’a) list
val listKeys : ’a map -> Key.ord_key list
val collate : (’a * ’a -> order) -> (’a map * ’a map) -> order
val unionWith : (’a * ’a -> ’a) -> (’a map * ’a map) -> ’a map
val unionWithi : (Key.ord_key * ’a * ’a -> ’a) -> (’a map * ’a map) -> ’a map
val intersectWith : (’a * ’b -> ’c) -> (’a map * ’b map) -> ’c map
val intersectWithi : (Key.ord_key * ’a * ’b -> ’c) -> (’a map * ’b map) -> ’c map
val app : (’a -> unit) -> ’a map -> unit
val appi : ((Key.ord_key * ’a) -> unit) -> ’a map -> unit
val map : (’a -> ’b) -> ’a map -> ’b map
val mapi : (Key.ord_key * ’a -> ’b) -> ’a map -> ’b map
val foldl : (’a * ’b -> ’b) -> ’b -> ’a map -> ’b
val foldli : (Key.ord_key * ’a * ’b -> ’b) -> ’b -> ’a map -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a map -> ’b
val foldri : (Key.ord_key * ’a * ’b -> ’b) -> ’b -> ’a map -> ’b
val filter : (’a -> bool) -> ’a map -> ’a map
val filteri : (Key.ord_key * ’a -> bool) -> ’a map -> ’a map
val mapPartial : (’a -> ’b option) -> ’a map -> ’b map
val mapPartiali : (Key.ord_key * ’a -> ’b option) -> ’a map -> ’b map

end

Figure 7.13: The signatureORD MAP

196 CHAPTER 7. THE SML/NJ LIBRARY

the rightmost map, you could use:

unionWith (fn (x,y) => y) (map1,map2)

The operationintersectWith(respectivelyintersectWithi) creates a new map which
contains keys appearing in both the supplied maps. Again, we need to pass in a
function taking as arguments the two values associated with a common key (re-
spectively, the two values and the common key) and returning a value to associate
with the key in the new map.

The remaining functions, just as in the case of sets, are the strandard higher-
order iteration functions. These functions operate on the values stored in the map,
leaving the keys for the better part alone. Each function comes with an alternate
version with ani appended to the name, indicating that not only the value is to be
passed to any higher-order function, but the associated key as well. The type of the
respective functions should make this clear. The functionsmap, app, foldl, foldr
andfilter perform the expected operations, all in increasing order on the associated
keys (except forfoldr which acts in decreasing order on the keys). The function
mapPartialmaps a partial function (see page??) over the elements of a map: if
the result of the partial function isSOME (v), thenv is the value associated with
the key in the new map, while a result ofNONE indicates that the key and value
should not be added to the new map. In effect,mapPartial f mis equivalent to:

map (Option.valOf (filter Option.isSome (map f m)))

Just as with sets, the SML/NJ Library predifines structures implementing maps
for integer and atom keys. For integers, the structuresIntBinaryMap, IntListMap
and IntRedBlackMapare provided, while for atoms,AtomBinaryMapandAtom-
RedBlackMapare provided. As before,AtomMap is a synonym forAtomRed-
BlackMap.

7.5 Hash tables

Hashing can best be understood as a particularly efficient implementation of the
map data structure. Recall from the previous section that a map associates with ev-
ery key (of a given specified key type) a value. In general, for the implementations
seen in the previous section, looking up the value associated with a given key takes
at worst time logarithmic in the size of the structure.

A hash table attempts to provide a map structure supporting lookup operations
that take constant time. This can be achieved by basically storing the map in an
array, and using a hash functionh that for each key returns the index in the array
where the associated value is stored. In general, depending on the hash function,

7.5. HASH TABLES 197

signature HASH_KEY = sig
type hash_key

val hashVal : hash_key -> word
val sameKey : (hash_key * hash_key) -> bool

end

Figure 7.14: The signatureHASHKEY

structure HashString : sig
val hashString : string -> word

end

Figure 7.15: The structureHashString

there can be more than two keys for which the hash function returns the same index.
A strategy for conflict resolution is needed for such cases. Rather than go into the
details here, I will point you to the notes for this chapter, for references and further
comments.

In the previous section, we saw that maps and sets were parameterized over
ORD KEY, a signature specifying a type for keys with an associated comparison
function. A similar parameterization is used for hash tables, except that the pa-
rameterization is slightly different. The signatureHASHKEY specifies the type
of keys used for a particular hash table, and is given in Figure 7.14. It defines a
type hashkey, as a well as a functionhashVal(the hash function), which returns
an unsigned integer, and a functionsameKeychecking if two keys are equal. A
general comparison function is not needed.

A hash function can be anything that returns an unsigned integer, but a hash
table is more effective (namely, lookup time is kept at a minimum) when the func-
tion is as close to one-to-one as possible. Since strings are often used as keys, a
hash function for strings is provided by the SML/NJ Library. StructureHashString
(signature in Figure 7.15) implements a functionhashStringto compute a simple
but effective hash value. The hash value accumulated character by character, using
the formula:

h = 33h+ 720 + c

Also note that atoms come with a built-in hash function (the functionAtom.hash).
Hash tables come in two forms, like vectors and arrays: polymorphic and

monomorphic. (Note that maps only come in the polymorphic variety.) The poly-
morphic hash tables structure can create hash tables for an arbitrary key type, while

198 CHAPTER 7. THE SML/NJ LIBRARY

structure HashTable : sig
type (’a, ’b) hash_table

val mkTable : ((’a -> word) * ((’a * ’a) -> bool)) -> (int * exn)
-> (’a,’b) hash_table

val clear : (’a, ’b) hash_table -> unit
val insert : (’a, ’b) hash_table -> (’a * ’b) -> unit
val lookup : (’a, ’b) hash_table -> ’a -> ’b
val find : (’a, ’b) hash_table -> ’a -> ’b option
val remove : (’a, ’b) hash_table -> ’a -> ’b
val numItems : (’a, ’b) hash_table -> int
val listItems : (’a, ’b) hash_table -> ’b list
val listItemsi : (’a, ’b) hash_table -> (’a * ’b) list
val app : (’b -> unit) -> (’a, ’b) hash_table -> unit
val appi : ((’a * ’b) -> unit) -> (’a, ’b) hash_table -> unit
val map : (’b -> ’c) -> (’a, ’b) hash_table -> (’a, ’c) hash_table
val mapi : ((’a * ’b) -> ’c) -> (’a, ’b) hash_table -> (’a, ’c) hash_table
val fold : ((’b *’c) -> ’c) -> ’c -> (’a, ’b) hash_table -> ’c
val foldi : ((’a * ’b * ’c) -> ’c) -> ’c -> (’a, ’b) hash_table -> ’c
val filter : (’b -> bool) -> (’a, ’b) hash_table -> unit
val filteri : ((’a * ’b) -> bool) -> (’a, ’b) hash_table -> unit
val copy : (’a, ’b) hash_table -> (’a, ’b) hash_table
val bucketSizes : (’a, ’b) hash_table -> int list

end

Figure 7.16: The structureHashTable

monomorphic hash tables are created by a functor taking as argument a structure
matchingHASHKEY representing the key type.

We discuss polymorphic hash tables first, as they are more general. Most of
our descriptions will carry over verbatim to the monomorphic case. The structure
HashTable(whose signature is given in Figure 7.16) implements polymorphic hash
tables. The type of a hash table is(’a,’b) hash table, mapping keys of type’a to
values of type’b.

The core operations on hash tables includemkTable, which creates a new hash
table. Note that hash tables are fundamentally imperative structures. Because these
are polymorphic hash tables, and that they are not restricted to one specific key
type, we must supply both the hash function and the key equality operation for the
type of keys we want to use on the particular hash table we are creating. The other
arguments supplied tomkTableare a hint as to the size of the hash table (a hash
table that is too large will waste space, while a hash table that is too small will
waste time growing as more elements are added), and an exception to be raised by
lookupandremove. We refer to this exception as the table’s exception.

Adding entries to the table is done throughinsert, which takes the table into
which to insert, and the pair(key,value)to enter in the table. The table is changed

7.5. HASH TABLES 199

as a side-effect. Looking up values associated with keys can be done in two ways,
just like for the maps in Section??. The functionlookupsearches for the value
associated with a given key, and returns that value if it exists; it raises the table’s
exception if the key is not associated to any value. The functionfind is similar,
except that it returns an option value:SOME (v)if v is associated with the given key,
NONEotherwise. Which version to use is largely a matter of preference To remove
associations from the hash table, you can either useremove, which removes the
value associated with a given key, returning that value (raising the table’s exception
if the key has no association), or useclear which removes all the associations from
a hash table.

The remaining functions follow the definitions of the map operations, as hash
tables are just maps. Thus,numItemsreturns the number of values stored in the
hash table, whilelistItems(respectivelylistItemsi) returns a list of the values (re-
spectively, pairs of key and value) in the table, in some arbitrary order. The itera-
tion functionsmap, app, fold, filter and associated operationsmapi, appi, foldi and
filteri (which act on both keys and values) are as for general maps.

Two small differences: theHashTablestructure provides a functioncopy to
create a copy of the hash table (this is sometimes needed as hash tables are im-
perative structures.) You cannot really write such a function yourself, as it is not
possible to get at the hash function and equality predicate of a hash table. Also, the
functionbucketSizesreturns a list of the sizes of the various buckets This can be
useful to gauge the quality of the hash function: a good hash function should keep
the size of the buckets approximately the same.

Monomorphic hash tables are similar to polymorphic hash tables, except that
the type of the keys is fixed. A functor is used to build a monomorphic hash table
given a structure matching signatureHASHKEY, with the following declaration:

functor HashTableFn (Key:HASH_KEY):MONO_HASH_TABLE

The structure obtained by applying the functor matches the signatureMONO HASHTABLE
given in Figure 7.17. The functionality implemented by the structure is virtually
identical as that implemented by theHashTablestructure for polymorphic hash ta-
bles. Differences include: the type of hash tables is simply’a hash table, where’a
is the type of stored values (the type of the key need not be mentioned since it is
fixed by the structure), the constructor functionmkTableonly takes a size hint and
the table’s exception (the equality operation on keys, as well as the hash function,
is fixed by the structure). Moreover, the key information used by the structure is
available in a substructureKey.

A variation on hash tables is available, namely monomorphic hash tables in-
dexed by two keys. An item is inserted under two keys, and can be retrieved by
either key. Just as in the standard monomorphic hash tables case, a functor is used

200 CHAPTER 7. THE SML/NJ LIBRARY

signature MONO_HASH_TABLE = sig
structure Key : HASH_KEY

type ’a hash_table

val mkTable : (int * exn) -> ’a hash_table
val clear : ’a hash_table -> unit
val insert : ’a hash_table -> (Key.hash_key * ’a) -> unit
val lookup : ’a hash_table -> Key.hash_key -> ’a
val find : ’a hash_table -> Key.hash_key -> ’a option
val remove : ’a hash_table -> Key.hash_key -> ’a
val numItems : ’a hash_table -> int
val listItems : ’a hash_table -> ’a list
val listItemsi : ’a hash_table -> (Key.hash_key * ’a) list
val app : (’a -> unit) -> ’a hash_table -> unit
val appi : ((Key.hash_key * ’a) -> unit) -> ’a hash_table -> unit
val map : (’a -> ’b) -> ’a hash_table -> ’b hash_table
val mapi : ((Key.hash_key * ’a) -> ’b) -> ’a hash_table -> ’b hash_table
val fold : ((’a * ’b) -> ’b) -> ’b -> ’a hash_table -> ’b
val foldi : ((Key.hash_key * ’a * ’b) -> ’b) -> ’b -> ’a hash_table -> ’b
val filter : (’a -> bool) -> ’a hash_table -> unit
val filteri : ((Key.hash_key * ’a) -> bool) -> ’a hash_table -> unit
val copy : ’a hash_table -> ’a hash_table
val bucketSizes : ’a hash_table -> int list

end

Figure 7.17: The signatureMONO HASHTABLE

7.5. HASH TABLES 201

signature MONO_HASH2_TABLE = sig
structure Key1 : HASH_KEY
structure Key2 : HASH_KEY

type ’a hash_table

val mkTable : (int * exn) -> ’a hash_table
val clear : ’a hash_table -> unit
val insert : ’a hash_table -> (Key1.hash_key * Key2.hash_key * ’a) -> unit
val lookup1 : ’a hash_table -> Key1.hash_key -> ’a
val lookup2 : ’a hash_table -> Key2.hash_key -> ’a
val find1 : ’a hash_table -> Key1.hash_key -> ’a option
val find2 : ’a hash_table -> Key2.hash_key -> ’a option
val remove1 : ’a hash_table -> Key1.hash_key -> ’a
val remove2 : ’a hash_table -> Key2.hash_key -> ’a
val numItems : ’a hash_table -> int
val listItems : ’a hash_table -> ’a list
val listItemsi : ’a hash_table -> (Key1.hash_key * Key2.hash_key * ’a) list
val app : (’a -> unit) -> ’a hash_table -> unit
val appi : ((Key1.hash_key * Key2.hash_key * ’a) -> unit) -> ’a hash_table

-> unit
val map : (’a -> ’b) -> ’a hash_table -> ’b hash_table
val mapi : ((Key1.hash_key * Key2.hash_key * ’a) -> ’b) -> ’a hash_table

-> ’b hash_table
val fold : ((’a * ’b) -> ’b) -> ’b -> ’a hash_table -> ’b
val foldi : ((Key1.hash_key * Key2.hash_key * ’a * ’b) -> ’b) -> ’b

-> ’a hash_table -> ’b
val filter : (’a -> bool) -> ’a hash_table -> unit
val filteri : ((Key1.hash_key * Key2.hash_key * ’a) -> bool) -> ’a hash_table

-> unit
val copy : ’a hash_table -> ’a hash_table
val bucketSizes : ’a hash_table -> (int list * int list)

end

Figure 7.18: The signatureMONO HASH2TABLE

to construct an implementation, taking as parameters two structures matching the
signatureHASHKEY. The functor is declared as follows:

functor Hash2TableFn (structure Key1 : HASH_KEY
structure Key2 : HASH_KEY): MONO_HASH2_TABLE

The structure obtained by applying the functor matches signatureMONO HASH2TABLE
given in Figure 7.18. The functionality implemented is just as for standard monomor-
phic hash tables, except that most functions expecting a key now expect two keys.
The lookup, find and removefunctions are not available, but there are functions
lookup1andlookup2that perform a lookup operation on the first key and the sec-
ond key respectively (similarly forfind1, find2, remove1andremove2). Note that
the semantics for removal affects insertion as well: if an item is inserted at keys
k1,k2 and an item already is associated with eitherk1 or k2, that item is removed

202 CHAPTER 7. THE SML/NJ LIBRARY

signature LIST_SORT = sig

val sort : (’a * ’a -> bool) -> ’a list -> ’a list
val uniqueSort : (’a * ’a -> order) -> ’a list -> ’a list
val sorted : (’a * ’a -> bool) -> ’a list -> bool

end

Figure 7.19: The signatureLIST SORT

prior to insertion.
As a final remark on hash tables, note that in keeping with maps and sets, a

structureAtomTable(matchingMONO HASHTABLE) is already instantiated in
the SML/NJ Library, implementing hash tables indexed by atoms.

7.6 Sorting

Sorting is the quintessential example of functionality that belongs in a library. The
SML/NJ Library provides basic facilities for sorting lists (based on the MergeSort
algorithm), and for sorting arrays (based on the QuickSort algorithm).

Sorting lists is supported through a signatureLIST SORT, that sorting struc-
tures should implement. The signature is given in Figure 7.19. At the present time,
only one structure in the library implementsLIST SORT, namelyListMergeSort,
based on the MergeSort algorithm.

The signature specifies a functionsort taking a boolean-valued comparison op-
eration as an argument, as well as a list, and sorts the list using the given compar-
ison function. It returns the sorted list. For a comparison functionc, the resulting
list [x1,. . . ,xn] satisfies: ifc (xi,xj) evaluates totrue, theni > j. Note that we do
not specify what happens when two values are deemed equal by the comparison
function.

The functionsortedtakes a comparison operator and a list as arguments, and
checks whether the list is sorted according to the definition of a sorted list given
in the previous paragraph: a list[x1,...,xn] is sorted relative to the comparison
operationc if whenc (xi,xj) evaluates totrue theni > j.

The functionuniqueSorttakes an order-valued comparison operation (that is,
of type’a tuple ’a→orderand a list and produces a sorted list without repetition of
equal elements. That is, if an element is equal to another element (according to the
comparison operation), only one such element is kept. (Which element is kept is
arbitrary.) The resulting list contains no duplicates, and is sorted according to the

7.6. SORTING 203

definition of the previous paragraph:[x1,...,xn] is sorted relative to the comparison
operatorc if when c (xi,xj) evaluates toGREATER, theni > j. The fact that the
resulting list contains no duplicates can be expressed by the property: ifc (xi,xj)
evaluates toEQUAL, theni = j.

Consider the following examples. Sorting a list of integersL in increasing order
is done simply by:

ListMergeSort.sort (Int.>) L

SortingL in decreasing order is similarly simple:

ListMergeSort.sort (Int.<) L

SortingL in increasing order according to the last digit of the number is done by the
following expression. Note that ordering by last digit only defines a partial order,
so a number of resulting lists are considered sorted. The algorithm picks one.

ListMergeSort.sort (fn (x,y) => (x mod 10) > (y mod 10)) L

If L is [46,37,16,8,32,15,20], the result of the above evaluations are respectively
[8,15,16,20,32,37,46], [46,37,32,20,16,15,8]and[20,32,15,46,16,37,8].

The functionality ofuniqueSortrelies heavily on the definition of the compar-
ison operation. Going back to the sorting-according-to-the-last-digit example, we
can easily sort and eliminate duplicate numbers by:

ListMergeSort.uniqueSort (fn (x,y) => let
val x’ = x mod 10
val y’ = y mod 10

in
if (x=y) then EQUAL
else if (x’>y’) then GREATER
else LESS

end) L

However, one may also consider the equivalence classes of numbers with the same
last digit, and decide to keep only one representative from each class, which leads
to the following revised definition:

ListMergeSort.uniqueSort (fn (x,y) => Int.compare (x mod 10, y mod 10)) L

WhenL is [15,5,3,20,43], the above expressions respectively yield[20,43,3,5,15]
and[20,43,5]. Note that it is not possible to specify which value is kept when the
comparison operation deems two values to be equal.

Whereas sorting a list produces a new list, sorting an array is done in-place.5

Since arrays come in two flavors, monomorphic and polymorphic, the SML/NJ

204 CHAPTER 7. THE SML/NJ LIBRARY

signature ARRAY_SORT = sig

type ’a array

val sort : (’a * ’a -> order) -> ’a array -> unit
val sorted : (’a * ’a -> order) -> ’a array -> bool

end

Figure 7.20: The signatureARRAYSORT

signature MONO_ARRAY_SORT = sig

structure A : MONO_ARRAY

val sort : (A.elem * A.elem -> order) -> A.array -> unit
val sorted : (A.elem * A.elem -> order) -> A.array -> bool

end

Figure 7.21: The signatureMONO ARRAYSORT

Library provides facilities for sorting both. We start by describing how to sort
polymorphic arrays.

The signatureARRAYSORTspecifies the functionality of structures for sorting
polymorphic arrays. The signature is given in Figure 7.20. It declares a function
sort to sort an array in-place, given a comparison operationc. In contrast to list
sorting, this comparison function is order-valued. The definition of a sorted array
is similar to that given for lists above: an arrayr containingx1, . . . , xn is sorted
relative toc if when c (xi,xj) evaluates toGREATER, theni > j. The function
sortedsimply checks if an array is sorted according to this definition. The SML/NJ
Library currently provides a single structure matchingARRAYSORT, the structure
ArrayQSort, that implements an engineered version of QuickSort. Note that the
signature defines a type’a array, thatArrayQSorttransparently identifies with the
typeArray.array.

For sorting monomorphic arrays, the idea is similar, except that everything is
achieved through functors. A signatureMONO ARRAYSORT(given in Figure
7.21) specifies structures to sort a given kind ofMONO ARRAY. It provides the
same fucntionality as theARRAYSORTsignature of the previous paragraph. A

5One could sort vectors as well, which as in the case of lists would produce a new vector. This is
because lists and vectors are immutable structures, as opposed to arrays.

7.6. SORTING 205

functor BSearchFn (A : MONO_ARRAY) : sig

structure A : MONO_ARRAY

val bsearch : ((’a * A.elem) -> order) -> (’a * A.array) -> (int * A.elem) option

end

Figure 7.22: The functorBSearchFn

functorArrayQSortFnis provided by the Library, declared as follows:

functor ArrayQSortFn (A:MONO_ARRAY):MONO_ARRAY_SORT

that takes as parameter a structure implementing monomorphic arrays of some
type, and that creates a structure for sorting those arrays, using the engineered
QuickSort algorithm mentionned above.

There is one more facility associated with sorted monomorphic arrays, and that
is the ability to perform a binary search. Recall that one can perform an efficient
search in a sorted array by a divide-and-conquer strategy: say you are searching
for an elementx in the array. Comparex to the valuem in the middle of the array:
if x = m, you are done, ifx < m, recursively search forx in the left-half of the
array, otherwise recursively search forx in the right-half of the array. This leads
to a worst-case search time that is logarithmic in the size of the array. The functor
BSearchFn(given in Figure 7.22) produces a structure implementing a function to
perform such a binary search on the monomorphic arrays provided as a parameter
to the functor.

Thebsearchfunction implemented by the resulting structure is in fact a poly-
morphic search function: it searches for values of type’a. How can this make sense
if the array is monomorphic, and so stores a specific type of value? The answer is
the comparison operation, the first argument tobsearch. The comparison operation
has type’a * A.elem→order (whereA is the monomorphic array structure used as a
parameter to the functor), and thus performs a comparison between a generic value
and the array element. It is up to the comparison function to extract a value of type
A.elemfrom values of type’a to actually perform the comparison. The function
bsearchalso takes as arguments the value of type’a to look for, as well as the array
to search. Note that the array must be sorted, relative to a comparison operation
which agrees with the comparison operation passed tobsearch. The result of the
search is an option value,SOME (i,v)if the value searched for is found at indexi
with stored valuev, andNONEotherwise.

206 CHAPTER 7. THE SML/NJ LIBRARY

structure Format : sig

datatype fmt_item
= ATOM of Atom.atom
| LINT of LargeInt.int
| INT of Int.int
| LWORD of LargeWord.word
| WORD of Word.word
| WORD8 of Word8.word
| BOOL of bool
| CHR of char
| STR of string
| REAL of Real.real
| LREAL of LargeReal.real
| LEFT of (int * fmt_item)
| RIGHT of (int * fmt_item)

exception BadFormat
exception BadFmtList

val format : string -> fmt_item list -> string
val formatf : string -> (string -> unit) -> fmt_item list -> unit

end

Figure 7.23: The structureFormat

7.7 Formatting

The SML/NJ Library provides facilities for formatting output and reading format-
ted input. These facilities correspond to the ANSI Csprintf andsscanffunctions.
For formatting output, a structureFormat (with signature given in Figure 7.23)
declares a functionformat taking as input a format string, that is a string with em-
bedded directives to be replaced by values of the actual type, as well as a list of
formatting items denoting the values to insert in the format string. The result of
the function is a new string with the directives (which are placeholders within the
format string) replaced by a string representation of the actual values.

The formatting characters in the format string indicate the type of the value
to insert at a given point. The formatting items indicate the value to insert in the
resulting string, and is specified as a large datatype that covers the type of the
values that can be specified by the formatting directives. The first element of the
formatting item list replaced the leftmost formatting direcive, the second item on
the list replaces the second leftmost formatting directive, and so on.

A formatting directive is introduced by the character%, after which the follow-
ing may appear:

7.7. FORMATTING 207

1. zero or more flags, modifying the meaning of the directive;

2. an optional minimal field width (decimal number), specifying a minimal
amount of space to fill;

3. an optional precision, specifying the number of digits to the right of the dec-
imal point for real numbres directed bye, E or f directives, or maximum
number of significant digits for real numbers directed byg or G directives.
The precision is specified by a decimal point (.) followed by a decimal num-
ber;

4. a single character specifying the type of directive (conversion).

To actually produce a% in the resulting string, you can use the special%% direc-
tive. Directives include:

d the formatting itemINT (n), LINT (n), WORD (n), LWORD (n)or
WORD8 (n)is converted to a signed decimal;

x,X the formatting itemINT (n) or LINT (n) is converted to signed
hexadecimal; ifx is specified, the lettersabcdefare used in the
hexadecimal representation, ifX is specified, the lettersABCDE-
F are used;

o the formatting itemINT (n)or LINT (n) is converted to signed octal;

c the formatting itemCHR (c)is converted to a single character string
containingc;

b the formatting itemBOOL (b)is converted to a string (trueor false);

s the formatting itemSTR (s)insertss in the output, the formatting
item ATOM (a) inserts the string representation of thea in the
output (viaAtom.toString);

f the formatting itemREAL (r)orLREAL (r)is converted to[-]ddd.ddd,
with the number of digits to the right of the decimal point given
by the precision (defaults to 6); a precision of 0 forces no print-
ing of the decimal point (unless a # flag is specified, see below);
if a decimal point is printed, at least one digit appears before it
(possibly 0);

e,E as for f, except that the number is represented as[-]d.ddde[-]dd
for e, and[-]d.dddE[-]dd for E;

g,G the formatting itemREAL (r)or LREAL (r) is converted as if the
directive wasf or e (respectivelyF if G is used) .

208 CHAPTER 7. THE SML/NJ LIBRARY

The following flags may be used to change the behavior of a directive:

- the result of the conversion will be left-justified within the field spec-
ified by the minimal field width (default is to right-justify);

∼ uses∼ as a negation character (the default is to use-); thus, it is
important to use the∼ flag when printing out numbers meant to
be read back by SML;

+ forces the result of numeric conversions to begin with a plus or
minus sign;

(space) if the first character of a numeric conversion is not a sign,
prefix a space to the result;

0 numeric conversions are zero-padded on the left, after any leading
sign and base indicator (x,0x,o,0o,. . .); no effect on left-justified
numeric conversions;

reduces the result in alternate form; the effect of this flag depends
on the directive: foro, it forces the first digit to be zero; forx (or
X), it forces a0x (or 0X) to be prefixed (default isx); for e,E,f, a
decimal point is always printed, even if no digits follow; forg or
G, trailing zeros are not removed ; there is no effect on the other
directives.

Note that it is an error to specify both a (space) and a+ flag. In general, any error
in format directives raises theBadFormatexception.

The values to be handled by the formatting directives are passed as a list of
elements of typefmt item, where the first element passed is associated with the
leftmost format directive in the format string, and so on. Constructors forfmt item
map the underlying value by an indication of what it is, and can only correspond
to some directives. An exceptionBadFmtListis raised if a mismatch occurs be-
tween formatting item and formatting directive. The format itemsLINT, INT,
LWORD, WORDand WORD8are associated with%d, %x, %X and %o, CHR
with %c, BOOL with %b, ATOM andSTRwith %s, andREALandLREALwith
%e,%E,%f,%g and%G. The specific formatting itemsLEFT andRIGHT take an
integeri and a formatting itemf and specify that the formatting itemf should be
left (respectively right) justified within a field of widthi .

The functionformatf in the structureFormat is similar toformat, but takes an
extra argument. It takes a functionf of typestring→unit which is called with the
result of the formatting. The callformatf s f lis equivalent tof (format s l). .

TheFormat structure provides the functionality to write formatted data into a
string. The opposite direction, reading formatted data from a string, is provided by
a structureScan, matching the signature given in Figure 7.24.

7.7. FORMATTING 209

structure Scan : sig

datatype fmt_item
= ATOM of Atom.atom
| LINT of LargeInt.int
| INT of Int.int
| LWORD of LargeWord.word
| WORD of Word.word
| WORD8 of Word8.word
| BOOL of bool
| CHR of char
| STR of string
| REAL of Real.real
| LREAL of LargeReal.real
| LEFT of (int * fmt_item)
| RIGHT of (int * fmt_item)

exception BadFormat

val sscanf : string -> string -> fmt_item list option
val scanf : string -> (char, ’a) StringCvt.reader

-> (fmt_item list, ’a) StringCvt.reader

end

Figure 7.24: The structureScan

210 CHAPTER 7. THE SML/NJ LIBRARY

structure ListFormat : sig

val fmt : {
init : string,
sep : string,
final : string,
fmt : ’a -> string

} -> ’a list -> string
val listToString : (’a -> string) -> ’a list -> string
val scan : {

init : string,
sep : string,
final : string,
scan : (char, ’b) StringCvt.reader -> (’a, ’b) StringCvt.reader

} -> (char, ’b) StringCvt.reader -> (’a list, ’b) StringCvt.reader

end

Figure 7.25: The structureListFormat

The sscanf function works similarly asformat in Format, in that it takes a
format string describing the format in which the data is expected. Directives just
like those given forformatcan be specified in the format string, which will match
the corresponding values in the input to be scanned .

The result of performing a scan is an option value:NONE if the input string
to be scanned does not match the format string, orSOME (l)wherel is a list of
format items (of typefmt item list) giving the values corresponding to the format
directives in the scanned input string.

The functionsscanfscans a string, but we saw in Section 4.3 that scanning
a string can be generalized to scanning a stream of characters via a stream read-
er function. The functionscanf generalizessscanf in exactly that way. It takes
a format string and a character stream reader (over any stream, of type’a), and
returns afmt item list stream reader (over streams of type’a). The idea is simply
thatsscanfconverts a stream of characters into a stream of list of values read from
the stream according to the format string. As usual,sscanf fmtis equivalent to
StringCvt.scanString (scanf fmt).

A final piece of support for formatting concerns lists. The structureListFormat
(whose signature is given Figure 7.25) implements formatting and scanning func-
tions for lists of elements. For formatting a list[x1,...,xn] into a string, the idea is
to provide strings specifying what goes at the beginning and the end of the list, the
element separator to use, and a function to transform each element into a string.
The functionfmt takes all that information in the form of a record of type{init:
string, final: string, sep:string, fmt:’a→string}, expects an’a list [x1,...,xn] and

7.7. FORMATTING 211

structure RealFormat : sig

val realFFormat : (real * int) -> {sign : bool, mantissa : string}
val realEFormat : (real * int) -> {sign : bool, mantissa : string, exp : int}
val realGFormat : (real * int) -> {sign : bool, whole : string, frac : string, exp : int option}

end

Figure 7.26: The structureRealFormat

returns essentially the string:

initˆ(fmt x_1)ˆsepˆ(fmt x_2)ˆsepˆ...ˆsepˆ(fmt x_n)ˆfinal

The functionlistToStringformats a list into the style used by SML itself: the call
listToString fmtis equivalent tofmt{init=”[”,final=”]”,sep=”,”,fmt=fmt }.

Scanning a list from a stream (given a reader for the stream, see Section 4.3) is
done by the functionscan, which takes as input a record of type{init: string, final:
string, sep: string, scan: (char,’b) StringCvt.reader→(’a,’b) StringCvt.reader}
(with init andfinal the elements surrounding the list to be recognized,sepa string
for the separator, andscana function from a character reader on streams to’a
readers on streams) and a character reader on streams and returns an’a list reader
on streams. The idea is that the resulting list readers attempts to read the initial
string, an element (using thescanfunction in the record), a separator, an element,
and so on until the final string, at which point the appropriate list is returned (as
well as the remainder of the stream, as usual). Whitespace is ignored during the
scan. As with all stream readers,NONEis returned if an appropriate list cannot be
scanned from the supplied stream.

For example, the following call creates anint list scanning function that scans
SML-style integer lists:

ListFormat.scan {init="[",final="]",sep=",",scan=Int.scan}

As with other scanning functions, it can be used to create a reader by passing to it
a character reader on a stream. The resulting reader returns integer lists read from
the stream. The following call creates anotherint list scanning function, scanning
Lisp-style integer lists:

ListFormat.scan {init="(",final=")",sep=" ",scan=Int.scan}

Finally, the structureRealFormat(signature given in Figure 7.26) provides low-
level real to string conversion functions, which are used internally to implement

212 CHAPTER 7. THE SML/NJ LIBRARY

functions such asReal.fmtand so on. The key is that instead of returning a string
representing the whole real number, these functions return string representations
of the key parts of the real representation (sign, mantissa, exponent, etc).

The functionrealFFormat takes a real number and a precision, and returns a
record with a boolean value representing the sign of the real number, and a string
representation of the digits of the real number. The precision indicates how many
fractional digits to include (0’s are appended if necessary)

The functionrealEFormatis similar, but instead of simply returning the sign
and mantissa, it returns the exponent as well, when the real number is expressed in
scientific notation. Note that in this case the mantissa is normalized . The precision
as before indicates the number of fractional digits in the mantissa (0’s are appended
if necessary).

The functionrealGFormatreturns the sign and string representations for the
whole and fractional parts. An optional exponent is also returned, if the number
needs to be expressed in scientific notation (i.e. if there are not enough digits in
the real representation to actually represent the number). For this function, the pre-
cision represents the total number of significant digits in the whole and fractional
parts. Trailing 0’s in the fractional part are dropped.

.

7.8 Handling command-line arguments

When a program is executed from the operating system shell, it is often passed
command-line arguments. For example, a text editor may be passed a file name to
create or edit, as well as various command-line switches (or options) indicating that
the program should do this and that upon startup. As we saw in Section??, when
a heap is exported byexportFnand later loaded by SML/NJ, the exported function
is passed astring×string list argument containing the name under which it was
called from the operating system, and a list of the command-line arguments used
in the call. Such arguments may also be accessed by the Basis Library structure
CommandLine(see Section 4.6).

At this point then, we know how command-line arguments are passed to the
called program, and how to access them. The problem of how to handle them,
how to process them, how to recognize them in a consistent way still remains. This
general problem is exacerbated by the fact that users expect a certain behavior from
command-line arguments, namely that it should be possible to specify both long
and short names for the options, that some options should take arguments, that
options may be specified in any order, or clumped together, or mixed freely with
other command-line arguments such as filenames.

7.8. HANDLING COMMAND-LINE ARGUMENTS 213

structure GetOpt : sig

datatype ’a arg_order
= RequireOrder
| Permute
| ReturnInOrder of string -> ’a

datatype ’a arg_descr
= NoArg of unit -> ’a
| ReqArg of (string -> ’a) * string
| OptArg of (string option -> ’a) * string

type ’a opt_descr = {
short : string,
long : string list,
desc : ’a arg_descr,
help : string

}

val usageInfo : {
header : string,
options : ’a opt_descr list

} -> string
val getOpt : {

argOrder : ’a arg_order,
options : ’a opt_descr list,
errFn : string -> unit

} -> string list -> (’a list * string list)

end

Figure 7.27: The structureGetOpt

Instead of reinventing the wheel every time a new program is written, devel-
oppers have come up with libraries of code to deal with command-line arguments
in a uniform way. One such library for C, the so-called GNU GetOpt library, has
rapidly become a standard. This library has been ported to SML and is available in
the SML/NJ Library.

The structureGetOpt(whose signature is given in Figure 7.27) implements fa-
cilities for handling command-line argumentsà la GNU GetOpt. The approach is to
describe every command-line option of the program by a value of type’a opt descr,
which is a record of type{short:string,long:string list,desc:’a argdescr,help:string}.
The high-level idea is that the function to recognize command-line options is given
a list of such’a opt descrvalues and a command line, and returns essentially a list
of ’a values representing the options that were passed on the command line. The
choice of’a is very much a design issue, but is typically a datatype. A command-
line option can have multiple names, and invoked by either a short (one character)
name introduced by a hyphen, like-a, or a long name introduced by a double hy-

214 CHAPTER 7. THE SML/NJ LIBRARY

phen, like--add. The fieldshort is a string containing all the characters recognized
as that option, i.e.”ain” means that the option can be specified as-a, -i or -n (typ-
ically, only one such character is given though). The fieldlong contains a list of
the strings for the recognized long names, i.e.[”add”,”inject”,”new”] for - -add,
- -inject and- -new. The fieldhelpcontains a description of the option which can
be used by the system to give online help. The fielddescdescribes the type of
command-line option this particular option belong to. The possibilities are given
by the’a arg descrtype.

An option with descset toNoArg (f) specifies that this option does not take
an argument. When such an option is recognized (we describe later how to rec-
ognize options), the functionf (of type unit→’a) is invoked to return the value
of type ’a representing that option. An option withdescset toReqArg (f,argdesc)
specifies that this option takes a required argument, which must follow it on the
command line. For options invoked with a short name, an argument looks like-a
somearg, while for long names, arguments are passed as- -add=somearg. When
the option is recognized, the functionf (of typestring→’a) is called with the op-
tion argument. The stringargdescin the descriptionReqArgof the option is used
for documentation purposes, and should be set to a short description (one word) of
what the argument means (i.e.”file” , or ”name” , or ”date”). It is used by the sys-
tem to generate online help. Finally, an option withdescset toOptArg (f,argdesc)
specifies that this option takes an optional argument. When such an option is rec-
ognized, the functionf (of typestring option→’a) is called, and passedNONE if
no argument was given on the command line (the option was followed by nothing
or by another option for short names, or no=val for long names), orSOME (s)
if an arguments was given. As withReqArg, the argdescvalue inOptArg is a
string used by the system to generate online help, and should be set to a one-word
description of the type of argument this option expects.

Two functions are provided to handle command-line options. The first func-
tion, usageInfo, synthesizes a helpful online help message, given a list of option-
s that the program recognizes. This function should be called to generate and
print a help message if for example an error is encountered while processing the
command-line arguments. Formally,usageInfotakes a string header which is a
piece of text reported verbatim (typically giving the syntax of the call, as in”foo
[options] filename”) and a list of values describing the options, of type’a opt descr
list. For each such option, the system generates a line giving the names under which
the option can be invoked, a description of the argument if one is needed, and the
help text for that option.

As an example, consider the following list of option descriptions for an hypo-
thetical applicationedit:

7.8. HANDLING COMMAND-LINE ARGUMENTS 215

val options = [{short="h",
long=["help"],
desc=GetOpt.NoArg (fn () => HelpOption),
help="produces this help message"},

{short="nc",
long=["new","create"],
desc=GetOpt.NoArg (fn () => NewOption),
help="create a new file, if one already exists"},

{short="b",
long=["background","bg"],
desc=GetOpt.ReqArg (BgOption,"color"),
help="background color of the editor"}]

We assume we have a datatypeoption result returned by the option recognizer:

datatype option_result = HelpOption
| NewOption
| BgOption of string

Note that this means that the listoptionshas typeoption result optdescr list. In
this example, we shamelessly use the fact that a constructorFoo of t for a datatype
T has typet→T (for use inReqArgor OptArg).

Calling usageInfowith this list of options generates the following help mes-
sage:

- GetOpt.usageInfo header="some header", options = options;
val it =

"some header\n -h --help produces this #"
: string

- print it;
some header

-h --help produces this help message
-n, -c --new, --create create a new file, if one already exists
-b color --background=color, --bg=color background color of the editor val it = () : unit

The functiongetOptperforms the actual conversion from command-line argu-
ments to values of type’a, given an option description list of type’a opt descr
list. In the above example,getOptwould return essentially anoption result list.
One way in which to understand this is thatgetOptconverts a list of strings repre-
senting command-line arguments into a list of values representing command-line
arguments, values chosen to be easily interpretable by the program.

Actually, getOpt is more refined. It takes as input a record describing the
operations to perform, of type{options:’a optdescr list, argOrder:’a ordorder,
errorFn:string→unit} whereoptionsis the list of options, as previously,argOrder
is an element of the’a arg order datatype, describing what to do with options
following non-options, and can be one of:

RequiredOrderno option processing after a non-option; after the first
non-option, options are treated as non-options;

Permute freely intersperse options and non-options;

216 CHAPTER 7. THE SML/NJ LIBRARY

ReturnInOrder (f) with f of typestring→’a, where’a is the type ap-
pearing in the type ofoptions, ’a opt descr list; this flag indicates
to getOptthat non-options should be wrapped using functionf
into options, and returned as such.

The full meaning of the names of these various flags will become clear when we
look at what exactlygetOptreturns. The last field in the first parameter togetOptis
errorFn, which defines a function to handle errors generated bygetOpt. Common
behaviors may include raising an exception, printing a warning and continuing to
handle options, or printing the usage information (given byusageInfo).

The second argument togetOpt, after the record describing how to handle op-
tions, is the actual list of command-line arguments, as obtained for example by
a call toCommandLine.args.6 The result ofgetOptis a pair of lists, the first list
containing the values corresponding to the options (returned as an’a list, where’a
is the type appearing in the type of the list of options,’a opt descr list); the sec-
ond list contains the unprocessed non-options (as a list of strings). What exactly is
returned, and in what order, depends on theargOrderflag passed togetOpt. If Re-
quireOrderwas passed,getOptreturns all the options up to the first non-option in
order in the first list, and everything else (including later options, unprocessed) in
order in the second list. IfPermutewas passed,getOptreturns all the options speci-
fied on the command line in relative order in the first list (if one option came before
another option on the command line, the former will appear before the latter in the
resulting list), and returns all the non-options in relative order in the second list.
Finally, if ReturnInOrderwas passed, every option and every wrapped non-option
is returned in order in the first list, and the second list is empty.

7.9 Miscellaneous functionality

We now examine the remaining modules available in the SML/NJ Library, which
are not as neatly classifiable as the above ones. Not due to lack of applicability,
far from that. But they go under the heading of general utility functions. They are
presented in no particular order.

The structureIterate(whose signature is given in Figure 7.28) implements sim-
ple higher-order functions to iterate over functions. The functioniterate takes a
function f of type ’a→’a and a countn, and creates the functionfn=f o f o ... o
f. By definition,f0 (a)=a, f1 (a) = f (a), f2 (a) = f (f (a)), and so on. The function
repeatis similar, except that the functionf passed as an argument has typeint ×’a

6The list of command-line arguments is also supplied to the function given during anexportFn
(see Section 5.4).

7.9. MISCELLANEOUS FUNCTIONALITY 217

structure Iterate : sig

val iterate : (’a -> ’a) -> int -> ’a -> ’a
val repeat : (int * ’a -> ’a) -> int -> ’a -> ’a
val for : (int * ’a -> ’a) -> (int * int * int) -> ’a -> ’a

end

Figure 7.28: The structureIterate

→’a and the current “count” is passed tof every time it is called. In other words, if
fnr = repeat f n, thenf0r (a) = (0,a), f1r (a) = (1,f (0,a)), f2r (a) = (2,f (1,f (0,a))), and
so on. The intuition is thatf can act differently at every iteration. This is meant to
model (some kinds of) repeat-loops in imperative languages where, intuitively, the
function f passed as an argument represents the body of the repeat-loop, and the
first argument tof represent the variable over which the repetition is performed,
accessible at every iteration of the loop. This of course begs the question: could
we model general repeat-loops in such a way? A general repeat loop repeats until
a given condition is satisfied. If we assume that the condition can involve the cur-
rent iteration count and the value of the body at that iteration, we can implement a
repeatUntilas:

fun repeatUntil (f:int * ’a -> ’a) (until:int * ’a -> bool) (a:’a) = let
fun loop (i,curr) = if (until (i,curr))

then curr
else loop (i+1,f (i+1,curr))

in
loop (0,f (0,a))

end

This description ofrepeat is very much reminiscent of a fold. In fact, it is easy
to see thatrepeat f nis equivalent tofoldl f 0 [1,2,...,n-1], except that we do not
explicitly construct the list[1,2,...,n-1].

The last function inIterate is for, which models the behavior of for-loops in
imperative languages, at least when the induction variable is an integer. The func-
tion for performs just like arepeat, but whilerepeat f nloops with indices0 up to
n − 1, for f (n1,n2,n3) loops with indicesn1, n1 + n3, n1 + 2n3, . . . , n1 + kn3

(wherek = bn2−n1
n3
c). (If n3 < 0, the behavior is similar, but in the opposite di-

rection.) As in the case ofrepeat, the functionf passed tofor is passed the current
count at every iteration. Note thatfor can also be viewed as a fold, but this time
over the list[n1 + n3,...,n1 + kn3] , with base valuen1.

For all the functions inIterate, the exceptionLibBase.Failure is raised if the
loop limits are not correct. Foriterateandrepeat, this happens ifn < 0; for for, if
n3 ≥ 0 andn1 > n2, or if n3 ≤ 0 andn1 < n2.

218 CHAPTER 7. THE SML/NJ LIBRARY

structure ListXProd : sig

val appX : ((’a * ’b) -> ’c) -> (’a list * ’b list) -> unit
val mapX : ((’a * ’b) -> ’c) -> (’a list * ’b list) -> ’c list
val foldX : ((’a * ’b * ’c) -> ’c) -> (’a list * ’b list) -> ’c -> ’c

end

Figure 7.29: The structureListXProd

Just as we did forrepeat, can we come up with a generic for-loop, that allows
looping over values different than integers? We can, at the cost of not being able to
statically determine non-termination of the loop (using integers allows us to catch
non-terminating loops). Consider:

fun for (f:’a * ’b -> ’b) {start:’a, term:’a -> bool, inc:’a -> ’a} (b:’b) = let
fun loop (a:’a, curr:’b):’b =

if term (a)
then curr

else let
val next = inc (a)

in
loop (next,f (next,curr))

end
in

loop (start,b)
end

The structureListXProd(signature in Figure 7.29) provides the simple iterator
functionsappX, mapXand foldX over the cross-produce of two lists. The cross-
product of two lists[x1,...,xn] and[y1,...,ym] is here taken to mean the list[(x1,y1),
..., (x1,ym), (x2,y1), ..., (x2,ym), ..., (xn,y1), ..., (xn,ym)] . The functionappX
simply applies a function to the elements of the cross-product, whilemapXcreates
a new list after mapping a function to each element of the cross-product. (The call
mapX f (x,y)produces a list of sizelength (x) * length (y).) The functionfoldX folds
a functionf on the left over the cross-product of the lists. Note that the behavior of
cross-product functions are quite different than those in structureListPair, which
consider the elements of two lists in order, two at a time: the elements at position
0 in the two lists, the elements at position 1 in the two lists, etc.

The structureIOUtil (signature in Figure 7.30) defines useful functions to au-
tomatically perform input and output redirection. The functionwithInputFiletakes
a filenames, a functionf and an argumenta to which to apply the functionf, and
evaluatesf (a) under a context whereTextIO.stdInrefers to the input stream created
from file s. After f (a) is evaluated,TextIO.stdInis reset to what it was prior to the
call. The functionwithOutputFiledoes a similar thing, but rebindsTextIO.stdOut

7.9. MISCELLANEOUS FUNCTIONALITY 219

structure IOUtil : sig

type instream
type outstream

val withInputFile : string * (’a -> ’b) -> ’a -> ’b
val withInstream : instream * (’a -> ’b) -> ’a -> ’b
val withOutputFile : string * (’a -> ’b) -> ’a -> ’b
val withOutstream : outstream * (’a -> ’b) -> ’a -> ’b

end

Figure 7.30: The structureIOUtil

structure PathUtil : sig

val findFile : string list -> string -> string option
val findFiles : string list -> string -> string list
val existsFile : (string -> bool) -> string list -> string -> string option
val allFiles : (string -> bool) -> string list -> string -> string list

end

Figure 7.31: The structurePathUtil

instead. The functionswithInstreamandwithOutstreamrebindTextIO.stdInand
TextIO.stdOutto the supplied input and output streams respectively. Thus, any
function that takes its input fromTextIO.stdIncan be made to take its input from an
arbitrary file or stream, and similar any function that prints toTextIO.stdOut(say,
via the functionTextIO.print) can be made to print its output to an arbitrary file or
stream. Note that the typesinstreamandoutstreamare transparently bound to their
TextIOcounterparts.

The structurePathUtil (signature in Figure 7.31) provides some simple higher-
level pathname and searching utilities. The functionexistFiletakes a predicate on
filenamesp, a list of pathnamesp1,...,pn and a filenamef, and applies top top1/f up
to pn/f, until one such test evaluates totrue. If no test succeeds,NONEis returned,
otherwiseSOME (pi/f) for the test that succeeded. The functionallFiles is similar,
except that it returns all the filenames satisfying the predicate. As a simple example
of the use of these functions, the functionfindFile andfindFilesare provided that
simply check whether the given file exists in any of the directories pointed to by
the paths, or respectively returns all such files that exist in those directories. Those
two functions are easily written in terms ofexistFileandallFiles.

220 CHAPTER 7. THE SML/NJ LIBRARY

structure Random : sig

type rand

val rand : (int * int) -> rand
val toString : rand -> string
val fromString : string -> rand
val randInt : rand -> int
val randNat : rand -> int
val randReal : rand -> real
val randRange : (int * int) -> rand -> int

end

Figure 7.32: The structureRandom

The structureRandom(signature in Figure 7.32) implements a random number
generator (really, a pseudo-random number generator). The typerand represents
the internal state of the random number generator, state which is used to compute
the next random number. The state is initially “seeded” by a call to the function
randwith two integers arguments. Random numbers are generated deterministical-
ly from the internal state, and therefore internal states seeded with the same values
will generate the same sequence of random numbers, which can be useful for de-
bugging. On the other hand, to non-deterministically generate numbres, it may be
useful to seed the state with unpredictable values, such as can be derived from the
time of day. For example:

rand (Int32.toInt (Time.toSeconds (Time.now ())),0)

The functionsfromStringand toStringrespectively convert an internal state from
and to a string. This is useful to save the current state to a file, and restoring the
state later.

Four functions are provided to generate random numbers. All take a state as
an argument, and all modify the passed state as a side effect. The functionrandInt
returns a random integer betweenInt.minIntandInt.maxInt. The functionrandNat
generates a random natural number between0 andInt.maxInt. The functionran-
dRangeapplied to(lo,hi) generates a random integer betweenlo andhi. Finally,
randRealgenerates a random real number between0.0and1.0.

While most structures in the SML/NJ Library are rather independent of SM-
L/NJ itself, the structureTimeLimit(signature in Figure 7.33) relies on the timing
facilities of SML/NJ and the support for signals (see Chapter??). The structure
TimeLimit provides a function to do timeouts on function application. The call

7.9. MISCELLANEOUS FUNCTIONALITY 221

structure TimeLimit : sig

exception TimeOut

val timeLimit : Time.time -> (’a -> ’b) -> ’a -> ’b

end

Figure 7.33: The structureTimeLimit

timeLimit t f x (with t a Time.timevalue) will evaluatef (x) but timeout after e-
lasped timet if the evaluation is not finished by then. This can be very useful to
prevent non-essential and potentially long-running computations from taking too
much time. If such timing out is intrinsic to the application, it may be an indication
that what you need is concurrency facilities, and you should then probably turn to
CML, described in an future version of these notes.

The structureParserComb(signature in Figure 7.34) provides straightforward
constructs for building simple parsers. We will return to parsing in more depth in
Chapter?? when we introduce ML-Yacc, but for now let us just say that parsing
consists of determining whether a given sequence of tokens is part of the language
of a given grammar. The type of a parser according toParserCombis (’a,’strm)
parser, which is just an abbreviation for the type(char,’strm) StringCvt.reader
→(’a,’strm) StringCvt.reader. In other words, an(’a,’strm) parseris just a scanning
function for (’a,’strm) values. TheParserCombstructure provides combinators to
build complex parsers from simple ones.

The simplest parser isresult (v), which is a parser that always returns the value
v (of type ’a), without touching the stream. Similarly, the parserfailure always
returns an indication that the scanning failed (the valueNONE). Slightly more in-
volved are the parsers created bychar (c)andstring (s), which respectively scan
a given character from the stream, or a given string from the stream. The func-
tion eatChar (p)takes a predicate on characters and returns a parser that scans
the next character from the stream if it satisfies the predicate, and fails otherwise.
More generally, the functiontoken (p)takes a predicate on characters and returns
a string parser, that scans the longest string containing all the characters satisfying
the predicate.

The above functions all create simple parsers from scratch. The remaining
functions combine parsers to form more complex ones. The combinatorwrap
takes an(’a,’strm) parserand a transformer function of type’a→’b, and returns
a (’b,’strm) parserthat uses the(’a,’strm) parserto get ’a values from the stream
and transforms them. Theseqcombinator takes two parsers for values of type’a

222 CHAPTER 7. THE SML/NJ LIBRARY

structure ParserComb : sig

type (’a, ’strm) parser =
(char, ’strm) StringCvt.reader -> (’a, ’strm) StringCvt.reader

val result : ’a -> (’a, ’strm) parser
val failure : (’a, ’strm) parser
val wrap : ((’a, ’strm) parser * (’a -> ’b)) -> (’b, ’strm) parser
val seq : ((’a, ’strm) parser * (’b, ’strm) parser) -> ((’a * ’b), ’strm) parser
val seqWith : ((’a * ’b) -> ’c)

-> ((’a, ’strm) parser * (’b, ’strm) parser)
-> (’c, ’strm) parser

val bind : ((’a, ’strm) parser * (’a -> (’b, ’strm) parser))
-> (’b, ’strm) parser

val eatChar : (char -> bool) -> (char, ’strm) parser
val char : char -> (char, ’strm) parser
val string : string -> (string, ’strm) parser
val skipBefore : (char -> bool) -> (’a, ’strm) parser -> (’a, ’strm) parser
val or : ((’a, ’strm) parser * (’a, ’strm) parser) -> (’a, ’strm) parser
val or’ : (’a, ’strm) parser list -> (’a, ’strm) parser
val zeroOrMore : (’a, ’strm) parser -> (’a list, ’strm) parser
val oneOrMore : (’a, ’strm) parser -> (’a list, ’strm) parser
val option : (’a, ’strm) parser -> (’a option, ’strm) parser
val token : (char -> bool) -> (string, ’strm) parser

end

Figure 7.34: The structureParserComb

7.9. MISCELLANEOUS FUNCTIONALITY 223

and’b, and returns a new parser that attempts to read a value of type’a followed
by a value of type’b using the two parsers in sequence. The result is a pair of val-
ues of type’a ×’b. If such a sequence of values cannot be found, the parser fails.
More generally,seqWithis like seq, except that it also takes a transformer function
’a tuple ’b→’c which is applied to the two parsed value to get a value of type’c.
The combinatorbind implements dependent parsing. It takes a(’a,’strm) parser
and a function’a →(’b,’strm) parser, and creates a(’b,’strm) parserthat behaves
as follows: it tries to parse a value of type’a from the stream, and uses that value
to create a(’b,’strm) parserto parse a value of type’b from the stream.

To conclude our description of the provided functions, the combinatorskip-
Before takes a character predicatep and an(’a,’strm) parser and returns a new
(’a,’strm) parserthat skips any character satisfying the predicate before trying to
parse a value of type’a using the supplied parser. The combinatoror takes two
(’a,’strm) parserand creates a parser that successively attempts to parse a value of
type ’a using one of the parsers. Whichever succeeds, its value is returned. Only
one value is returned. Theor’ combinator is a generalization ofor to list of parsers,
and works under the same principle. Note thator (andor’) are not backtracking
choices. Once a branch of theor that has been selected and has successfully parsed
a value, a subsequent failure of the parse will not backtrack to theor to try the other
branch. Similarly toor, oneOrMore(respectivelyzeroOrMore) takes a parser and
attempts to parse at least one (respectively zero) value from the stream using the
parser, until the parsing fails. The result is returned as a list of the parsed values.
Finally, option turns a parser into a parser that never fails: it simply injectsNONE
in the resulting stream when the parser would fail.

Notes

A good reference for algorithmic and data structure issues is the brick by Cormen,
L and Rivest [?].

Interesting issues regarding the typing of format strings (such as those found
in Format) are described by Danvy [?].

Atoms are related to symbols as found in Lisp/Scheme.
The implementation of red-black trees used by the SML/NJ Library is fully

functional, and is described by Okasaki in [?]. More details about the implementa-
tion of data structures using purely functional algorithms can be found in Okasaki’s
book [?].

Splay trees are described in [?].
Property lists have been introduced by Stephen Weeks and used in the MLton

compiler to keep information between compiler passes. The implementation uses

224 CHAPTER 7. THE SML/NJ LIBRARY

a little-known subtletly in the SML type system: the fact that the exception type
exncan be used as an extensible datatype.

Sorting algorithms are described in most introductory computer science text-
books.

The implementation of MergeSort used in the SML/NJ Library is from Paulson
[?]. The implementation of QuickSort is a highly engineered version due to Bentley
and McIlroy [?].

Details on hashing functions and such.
GetOpt reference from GNU.
Source ofRandomstructure. Another structure for pseudo-random number

generation is provided,Rand, but is not as good asRandom. It is based on [?].
Parser combinators have been described in detail by Hutton and Meijer [?].

They form a monad [?].

Bibliography

[1] H. Abelson, G. J. Sussman, and J. Sussman.Structure and Interpretation of
Computer Programs. The MIT Press, 1985.

[2] R. Adams, W. Tichy, and A. Weinert. The cost of selective recompilation
and environment processing.ACM TOSEM, 3(1), 1994.

[3] A. Appel, D. MacQueen, R. Milner, and M. Tofte. Unifying exceptions with
constructors in standard ML. Technical Report ECS LFCS 88 55, Laborato-
ry for Foundations of Computer Science, Department of Computer Science,
Edinburgh University, June 1988.

[4] A. W. Appel. A runtime system.Lisp and Symbolic Computation, 3:343–
380, 1990.

[5] A. W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

[6] A. W. Appel. Axiomatic bootstrapping: A guide for compiler hackers.ACM
Transactions on Programming Languages and Systems, 16(6):1699–1718,
1994.

[7] A. W. Appel and D. B. MacQueen. A Standard ML compiler. InFunctional
Programming Languages and Computer Architecture, volume 274 ofLec-
ture Notes in Computer Science, pages 301–324. Springer-Verlag, Septem-
ber 1987.

[8] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. InThird
International Symposium on Programming Languages Implementation and
Logic Programming, volume 528 ofLecture Notes in Computer Science,
pages 1–13. Springer-Verlag, August 1991.

[9] A. W. Appel and D. B. MacQueen. Separate compilation for Standard ML.
In Proceedings of the 1994 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 13–23. ACM Press, 1994.

225

226 BIBLIOGRAPHY

[10] L. Augustsson. A compiler for Lazy ML. InConference Record of the 1984
ACM Symposium on Lisp and Functional Programming, pages 218–227.
ACM Press, 1984.

[11] L. Augustsson and T. Johnsson. Lazy ML user’s manual. Technical re-
port, Department of Computer Science, Chalmers University of Technology,
1987.

[12] H. P. Barendregt.The Lambda Calculus, Its Syntax and Semantics. Studies
in Logic. North-Holland, Amsterdam, 1981.

[13] R. Bird and P. Wadler.Introduction to Functional Programming. Prentice-
Hall, 1988.

[14] L. Birkedal, N. Rothwell, M. Tofte, and D. N. Turner. The ML Kit (version
1). DIKU-report 93/14, Department of Computer Science, University of
Copenhagen, 1993.

[15] M. Blume. Hierarchical Modularity and Intermodule Optimization. PhD
thesis, Princeton University, 1997.

[16] M. Blume. Dependency analysis for Standard ML.ACM Transactions on
Programming Languages and Systems, 21(4), 1999.

[17] M. Blume and A. W. Appel. Hierarchical modularity.ACM Transactions on
Programming Languages and Systems, 21(4), 1999.

[18] G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and
Multiple Inheritance. PhD thesis, Department of Computer Science, Uni-
versity of Utah, 1992.

[19] R. Burstall and J. A. Goguen. Putting theories together to make specifica-
tions. InProceedings of the Fifth International Joint Conference on Artificial
Intelligence, pages 1045–1058, 1977.

[20] R. Burstall, D. MacQueen, and D. Sannella. HOPE: An experimental ap-
plicative language. InConference Record of the 1980 Lisp Conference,
pages 136–143, 1980.

[21] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An extension of
System F with subtyping.Information and Computation, 109(1–2):4–56,
1994.

[22] A. Church. The Calculi of Lambda Conversion. Number 6 in Annals of
Mathematical Studies. Princeton University Press, Princeton, NJ, 1941.

BIBLIOGRAPHY 227

[23] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T. Sasaki, and S. F. Smith.Implementing Mathematics in the NuPRL Proof
Development System. Prentice-Hall, 1986.

[24] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract ma-
chine.Science of Computer Programming, 8, May 1987.

[25] K. Crary, R. Harper, and S. Puri. What is a recursive module? InProceed-
ings of the 1999 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 50–63. ACM Press, 1999.

[26] N. Dershowitz and E. M. Reingold.Calendrical Calculations. Cambridge
University Press, 1997.

[27] D. Duggan and C. Sourelis. Parametrized modules, recursive modules and
mixin modules. In1998 ACM SIGPLAN Workshop on ML, 1998.

[28] S. I. Feldman.Make – a Program for Maintaining Computer Programs. Bell
Laboratories, 1979.

[29] M. Felleisen and D. P. Friedman.The Little MLer. The MIT Press, 1998.

[30] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. H/Direct: A binary for-
eign language interface for Haskell. InProceedings of the 1998 ACM SIG-
PLAN International Conference on Functional Programming, pages 153–
162. ACM Press, 1998.

[31] K. Fisher and J. H. Reppy. The design of a class mechanism for MOBY.
In Proceedings of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM Press, 1999.

[32] M. J. Fisher. Lambda-calculus schemata. InProceedings of the ACM Con-
ference on Proving Assertions about Programs, pages 104–109, 1972.

[33] M. J. Fisher. Lambda-calculus schemata.Lisp and Symbolic Computation,
6(3/4):257–286, 1993.

[34] M. Flatt.Programming Languages for Reusable Software Components. PhD
thesis, Rice University, 1999.

[35] E. Gansner and J. H. Reppy, editors.The Standard ML Basis Library. Cam-
bridge University Press, 2000. In preparation.

228 BIBLIOGRAPHY

[36] L. George, F. Guillame, and J. H. Reppy. A portable and optimizing back
end for the SML/NJ compiler. 1994.

[37] S. Gilmore. Programming in Standard ML ’97: A tutorial introduction.
Technical report ECS-LFCS-97-364, LFCS, Department of Computer Sci-
ence, University of Edinburgh, 1997. Available fromhttp://www.dcs.
ed.ac.uk/home/stg/NOTES/ .

[38] S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without dynamic types.
Technical report ECS-LFCS-97-378, LFCS, Department of Computer Sci-
ence, University of Edinburgh, 1997.

[39] J-Y. Girard. Interprétation Fonctionelle et́Elimination des Coupures dans
l’Arithmétique d’Ordre Suṕerieur. Thèse de doctorat d’état, Universit́e Paris
VII, 1972.

[40] M. Gordon, R. Milner, and C. Wadsworth.Edinburgh LCF, volume 78 of
Lecture Notes in Computer Science. Springer-Verlag, 1979.

[41] M. J. C. Gordon and T. F. Melham.Introduction to HOL. Cambridge Uni-
versity Press, 1993.

[42] The ML2000 Working Group. Principles and a preliminary design for M-
L2000. Unpublished manuscript, 1999.

[43] M. R. Hansen and H. Rischel.Introduction to Programming using SML.
Addison Wesley, 1999.

[44] R. Harper. Programming in Standard ML. Online tutorial notes available
from http://www.cs.cmu.edu/˜rwh/introsml/index.html ,
1998.

[45] R. Harper, P. Lee, F. Pfenning, and E. Rollins. A compilation manager for
Standard ML of New Jersey. In1994 ACM SIGPLAN Workshop on ML and
its Applications, pages 136–147, 1994.

[46] R. Harper, P. Lee, F. Pfenning, and E. Rollins. Incremental recompilation
for Standard ML of New Jersey. Technical Report CMU-CS-94-116, De-
partement of Computer Science, Carnegie Mellon University, 1994.

[47] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order
modules and sharing. InConference Record of the Twenty-First Annual
ACM Symposium on Principles of Programming Languages. ACM Press,
1994.

BIBLIOGRAPHY 229

[48] R. Harper and J. C. Mitchell. The type structure of Standard ML.
ACM Transactions on Programming Languages and Systems, 15(2):11–252,
1993.

[49] R. Hindley. The principal type scheme of an object in combinatory logic.
Transactions of the AMS, 146:29–60, 1969.

[50] L. Huelsbergen. A portable C interface for Standard ML of New Jersey.
Technical memorandum, AT&T Bell Laboratories, November 1995.

[51] J. Hughes. The design of a pretty-printing library. In J. Jeuring and E. Mei-
jer, editors,Advanced Functional Programming, number 925 in Lecture
Notes in Computer Science, pages 53–96. Springer-Verlag, 1995.

[52] R. J. M. Hughes. Lazy memo functions. InProceedings, IFIP Conference on
Functional Programming Languages and Computer Architecture, number
201 in Lecture Notes in Computer Science, pages 129–146, 1985.

[53] IEEE. IEEE standard for binary floating-point arithmetic. Std 754-1985
(Reaffirmed 1990), 1985.

[54] IEEE/ANSI. IEEE standard for radix-independent floating-point arithmetic.
Std 854-1987, 1987.

[55] W. Kahan. Lecture notes on the status of IEEE standard 754 for binary
floating-point arithmetic. Work in progress. Available fromhttp://www.
cs.berkeley.edu/˜wkahan/ieee754status/ , 1996.

[56] R. Kelsey, W. Clinger, and J. Rees (Eds). The revised5 report on the algo-
rithmic language Scheme.ACM SIGPLAN Notices, 33(9):26–76, 1998.

[57] A. R. Koenig. An anecdote about ml type inference. InProceedings of the
USENIX Symposium on Very High Level Languages. USENIX, 1994.

[58] X. Leroy. Unboxed objects and polymorphic typing. InConference Record
of the Nineteenth Annual ACM Symposium on Principles of Programming
Languages, pages 177–188. ACM Press, 1992.

[59] X. Leroy. Polymorphism by name. InConference Record of the Twentieth
Annual ACM Symposium on Principles of Programming Languages. ACM
Press, 1993.

[60] X. Leroy. Manifest types, modules, and separate compilation. InConfer-
ence Record of the Twenty-First Annual ACM Symposium on Principles of
Programming Languages, pages 109–122. ACM Press, 1994.

230 BIBLIOGRAPHY

[61] X. Leroy. Applicative functors and fully transparent higher-order modules.
In Conference Record of the Twenty-Second Annual ACM Symposium on
Principles of Programming Languages, pages 142–153. ACM Press, 1995.

[62] X. Leroy. Camlidl user’s manual. Online manual available fromhttp:
//caml.inria.fr/camlidl/ , 1999.

[63] X. Leroy, J. Vouillon, and D. Doligez. The Objective Caml system. Soft-
ware and documentation available fromhttp://pauillac.inria.
fr/ocaml/ , 1996.

[64] D. MacQueen. Modules for Standard ML. InConference Record of the
1984 ACM Symposium on Lisp and Functional Programming, pages 198–
207. ACM Press, 1984.

[65] D. MacQueen. Using dependent types to express modular structure. In
Conference Record of the Thirteenth Annual ACM Sumposium on Principles
of Programming Languages, 1986.

[66] D. B. MacQueen. Structures and parameterisation in a typed functional lan-
guage. InFunctional Programming Languages and Computer Architecture,
1981.

[67] D. B. MacQueen and M. Tofte. A semantics for higher-order functors. In
Fifth European Symposium on Programming, volume 788 ofLecture Notes
in Computer Science, pages 409–423. Springer, 1994.

[68] J. McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part i.Communications of the ACM, 3(4):184–195,
1960.

[69] J. McCarthy.LISP 1.5 Programmer’s Manual. The MIT Press, 1962.

[70] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes, and barbed wire. InProceedings FPCA’91, vol-
ume 523 ofLecture Notes in Computer Science. Springer-Verlag, 1991.

[71] R. Milner. A theory of type polymorphism in programming.Journal of
Computer and Systems Sciences, 17(3):348–375, 1978.

[72] R. Milner. A proposal for Standard ML. InConference Record of the 1984
ACM Symposium on Lisp and Functional Programming, pages 184–197.
ACM Press, 1984.

BIBLIOGRAPHY 231

[73] R. Milner and M. Tofte. Commentary on Standard ML. The MIT Press,
Cambridge, Mass., 1991.

[74] R. Milner, M. Tofte, and R. Harper.The Definition of Standard ML. The
MIT Press, Cambridge, Mass., 1990.

[75] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Stan-
dard ML (Revised). The MIT Press, Cambridge, Mass., 1997.

[76] J. C. Mitchell, S. Meldal, and N. Madhav. An extension of Standard ML
modules with subtyping and inheritance. InConference Record of the Eigh-
teenth Annual ACM Symposium on Principles of Programming Languages,
pages 270–278. ACM Press, 1991.

[77] E. Morcos-Chounet and A. Conchon. PPML, a general formalism to specify
prettyprinting. InProceedings of the IFIP Congress, Dublin, 1986. North-
Holland.

[78] J. H. Morris. Lambda-Calculus Models of Programming Languages. PhD
thesis, MIT, Cambridge, Mass., 1968.

[79] J. H. Morris. A bonus from van Wijngaarden’s device.Communications of
the ACM, 15(8):773, 1972.

[80] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic. Talx86: A realistic typed as-
sembly language. In1999 ACM SIGPLAN Workshop on Compiler Support
for Systems Software (WCSSS ’99), pages 25–35, 1999.

[81] G. Morrisett and R. Harper. Semantics of memory management for poly-
morphic languages. InHigher-Order Operational Techniques in Semantics,
pages 175–226. Cambridge University Press, 1997.

[82] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed
assembly language.ACM Transactions on Programming Languages and
Systems, 3(21):528–569, May 1999.

[83] G. Nelson, editor.System Programming with Modula-3. Prentice Hall Series
in Innovative Technology. Prentice-Hall, 1991.

[84] Oberon Microsystems Inc. Component Pascal language report. Available
from http://www.oberon.ch , 1997.

[85] D. C. Oppen. Prettyprinting.ACM Transactions on Programming Lan-
guages and Systems, 2(4):465–483, 1980.

232 BIBLIOGRAPHY

[86] L. C. Paulson.Isabelle, A Generic Theorem Prover, volume 828 ofLecture
Notes in Computer Science. Springer-Verlag, 1994.

[87] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, second edition, 1996.

[88] J. Peterson and K. Hammond (Eds). Report on the programming language
Haskell, version 1.4. Technical report, Department of Computer Science,
Yale University, 1997. Available fromhttp://www.haskell.org .

[89] R. Pucella. The design of a COM-oriented module system. InProceedings
of the Joint Modular Languages Conference, number 1897 in Lecture Notes
in Computer Science, pages 104–118. Springer-Verlag, 2000.

[90] R. Pucella and J. H. Reppy. An abstract IDL mapping for Standard ML. In
preparation, 2000.

[91] C. Reade.Elements of Functional Programming. Addison Wesley, Reading,
MA, 1989.

[92] D. Rémy and J. Vouillon. Objective ML: A simple object-oriented extension
of ML. In Conference Record of the Twenty-Fourth Annual ACM Symposium
on Principles of Programming Languages, pages 40–53. ACM Press, 1997.

[93] J. H. Reppy. A high-performance garbage collector for Standard ML. Tech-
nical memorandum, AT&T Bell Laboratories, 1993.

[94] J. C. Reynolds. Towards a theory of type structure. InProceedings, Colloque
sur la Programmation, number 19 in Lecture Notes in Computer Science,
pages 408–425. Springer-Verlag, 1974.

[95] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1), 1965.

[96] C. V. Russo.Types for Modules. PhD thesis, University of Edinburgh, 1998.
Available as LFCS thesis ECF-LFCS-98-389.

[97] C. V. Russo. First-class structures for Standard ML. InEuropean Symposium
on Programming, volume 1782 ofLecture Notes in Computer Science, pages
336–350. Springer-Verlag, 2000.

[98] Z. Shao. Typed common intermediate format. InProceedings of the
1997 USENIX Conference on Domain Specific Languages, pages 89–102.
USENIX, 1997.

BIBLIOGRAPHY 233

[99] Z. Shao and A. W. Appel. A type-based compiler for Standard ML. In
Proceedings of the 1995 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 116–129. ACM Press, 1995.

[100] S. Sokolowski.Applicative High Order Programming: The Standard ML
Perspective. Chapman & Hall Computing, London, 1991.

[101] G. L. Steele Jr. RABBIT: A compiler for Scheme. AI Memo 474, MIT,
1978.

[102] G. L. Steele Jr.Common Lisp the Language. Digital Press, second edition,
1990.

[103] C. Szyperski. Import is not inheritance — why we need both: Modules and
classes. InEuropean Conference on Object-Oriented Programming, volume
615 of Lecture Notes in Computer Science, pages 19–32. Springer-Verlag,
1992.

[104] C. Szyperski.Component Software. Addison Wesley, 1997.

[105] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A
type-directed optimizing compiler for ML. InProceedings of the 1996 ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 181–192. ACM Press, 1996.

[106] W. F. Tichy. RCS – a system for version control.Software — Practice and
Experience, 15:637–654, 1985.

[107] M. Tofte. Type inference for polymorphic references.Information and Com-
putation, 89(1), 1990.

[108] M. Tofte and J-P. Talpin. Region-based memory management.Information
and Computation, 132(2):109–176, 1997.

[109] D. A. Turner. Miranda: A non-strict functional language with polymorphic
types. InFunctional Programming Languages and Computer Architecture,
volume 201 ofLecture Notes in Computer Science. Springer-Verlag, 1985.

[110] J. D. Ullman.Elements of ML Programming. Prentice-Hall, ML97 edition,
1998.

[111] P. Wadler. List comprehensions. In S. L. Peyton Jones, editor,The Imple-
mentation of Functional Programming Languages. Prentice-Hall, 1987.

234 BIBLIOGRAPHY

[112] P. Wadler. How to make ad-hoc polymorphism less ad-hoc. InConference
Record of the Sixteenth Annual ACM Symposium on Principles of Program-
ming Languages. ACM Press, 1989.

[113] P. Wadler. A prettier printer. Unpublished manuscript, 1998.

[114] P. R. Wilson. Uniprocessor garbage collection techniques. InInternational
Workshop on Memory Management, number 637 in Lecture Notes in Com-
puter Science. Springer-Verlag, 1992.

[115] N. Wirth. Programming in MODULA-2. Springer-Verlag, second edition,
1982.

[116] N. Wirth. From Modula to Oberon.Software — Practice and Experience,
18(7), 1988.

[117] A. Wright. Simple imperative polymorphism.Lisp and Symbolic Computa-
tion, 8(4):343–355, 1995.

[118] X/Open Company Ltd. X/Open Preliminary Specification X/Open DCE:
Remote Procedure Call. 1993.

Appendix A

SML/NJ Grammar

235

