
Bi-matrix games

A �nite two-person general-sum game can be expressed as a pair of
m × n matrices, A = (aij)m×n. The numbers aij and bij are the
payo�s of I and II, respectively, corresponding to their i-th and j-th
pure strategies. A game in this form is called a bi-matrix game.

De�nition

A pair (x̄ , ȳ) is said to be a Nash equilibrium if

P(x , ȳ) ≤ P(x̄ , ȳ) and Q(x̄ , y) ≤ Q(x̄ , ȳ),

where P(x , y) = xTAy =

=
m∑
i=1

xi

n∑
j=1

aijyj , Q(x , y) = xTBy =
n∑

j=1

yj

m∑
i=1

aijxi .
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Theorem

Every bi-matrix game has at least one Nash equilibrium.

Proof.

Let x and y be arbitrary pair of mixed strategies. We set

ci := max(0,P(i , y)− P(x , y)), dj = max(0,Q(x , j)− Q(x , y)),

i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and de�ne the map
F : X × Y → X × Y as follows: (x ′, y ′) = F (x , y), where

x ′i :=
xi + ci

1 +
∑m

k=1
ck
, y ′j :=

yj + dj
1 +

∑n
l=1

dl
,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
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Brower �xed point theorem

Let S be a convex compact set and F : S → S be a continuous
map. Then there exists a point x̄ ∈ S so that F (x̄) = x̄ .

Theorem

Let S be a convex compact set, F : S → P is a continuous
bijection and H : P → P be a continuous map. Then there exists a
point x̄ ∈ P so that H(x̄) = x̄ .

Proof.

The continuous map F−1 ◦ H ◦ F : S → S has a �xed point y , i.e.
F−1(H(F (y))) = y . By setting x̄ = F (y) complete the proof.
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Proof (continuation).

Clearly, the map F is continuous. Also, x ′ and y ′ are mixed
strategies. Applying the Brower �xed point theorem, we obtain the
existence of a pair of mixed strategies (x̄ , ȳ) such that
F (x̄ , ȳ) = (x̄ , ȳ).

If all ci ≤ 0, i = 1, . . . ,m, and all dj ≤ 0, j = 1, . . . , n, then
P(i , ȳ) ≤ P(x̄ , ȳ), i = 1, . . . ,m, and Q(x̄ , j) ≤ Q(x̄ , ȳ),
j = 1, . . . , n. Let x = (x1, . . . , xm) and y = (y1, . . . , yn) be
arbitrary pair of mixed strategies. The previous inequalities imply
that xiP(i , ȳ) ≤ xiP(x̄ , ȳ), i = 1, . . . ,m, and
yjQ(x̄ , j) ≤ yjQ(x̄ , ȳ), j = 1, . . . , n. Summing these inequalities,
we obtain that P(x , ȳ) ≤ P(x̄ , ȳ) and Q(x̄ , y) ≤ Q(x̄ , ȳ), i.e. the
pair (x̄ , ȳ) is a Nash equilibrium.
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Proof (continuation).

Let us assume that there exists an index i0 so that ci0 >. Let us
assume that whenever x̄i > 0, then ci > 0, i.e.

P(i , ȳ) > P(x̄ , ȳ) whenever x̄i > 0.

These inequalities imply that

x̄iP(i , ȳ) > x̄iP(x̄ , ȳ) whenever x̄i > 0.

Summing these inequalities, we obtain

P(x̄ , ȳ) =
∑
xi>0

xiP(i , ȳ) >
m∑
i=1

x̄iP(x̄ , ȳ) = P(x̄ , ȳ).
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Proof (continuation).

The obtained contradiction shows that there exists an index i1 so
that xi1 > 0 and ci1 = 0. But then the equality

0 < x̄i1 =
x̄i1 + ci1

1 +
∑m

k=1
ck

=
x̄i1

1 +
∑m

k=1
ck

< x̄i1

is impossible. Hence the assumption that there exists an index i0 so
that ci0 > is wrong. This complete the proof of the theorem.
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Lemma 1.

Let (x̄ , ȳ) ∈ X × Y be a Nash equilibrium of the bi-matrix game
determined by the payo�-functions P and Q. If x̄i0 > 0, then
P(i0, ȳ) = P(x̄ , ȳ). Also, if ȳj0 > 0, then Q(x̄ , j0) = Q(x̄ , ȳ).

Proof.

Let us assume the contrary, i.e. P(i0, ȳ) < P(x̄ , ȳ). Since
(x̄ , ȳ) ∈ X × Y is a Nash equilibrium of the payo�-function P , we
have that

P(i , ȳ) ≤ P(x̄ , ȳ) for each i = 1, 2, . . . ,m, with i 6= i0.

Multiplying the both sides of these inequalities by x̄i , we obtain that

x̄iP(i , ȳ) ≤ x̄iP(x̄ , ȳ).
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Proof of Lemma 1. (continuation)

After adding of all these m inequalities, we obtain that

m∑
i=1

x̄iP(i , ȳ) <
m∑
i=1

x̄iP(x̄ , ȳ), i.e. P(x̄ , ȳ) < P(x̄ , ȳ).

The obtained contradiction shows that our assumption is wrong,
and hence P(i0, ȳ) = P(x̄ , ȳ). Analogously, one can prove that
Q(x̄ , j0) = Q(x̄ , ȳ). This completes the proof.
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Lemma 2.

Let (x̄ , ȳ) ∈ X × Y be a Nash equilibrium of the bi-matrix game
determined by the payo�-functions P and Q. If P(i0, ȳ) < P(x̄ , ȳ),
then x̄i0 = 0. Also, if Q(x̄ , j0) < Q(x̄ , ȳ), then ȳj0 = 0.

Proof.

Let us assume that x̄i0 > 0. According to Lemma 4 we obtain that
P(i0, ȳ) = P(x̄ , ȳ). This contradiction shows that x̄i0 = 0.
Analogously, one can prove that ȳj0 = 0.
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Example

Let (x̄ , ȳ) ∈ X × Y be a Nash equilibrium of the bi-matrix game
determined by the matrices

A =

(
2 4 5
4 2 1

)
B =

(
3 2 0
0 2 3

)
Applying Lemma 1 and Lemma 2, one can that the only
possibilities for x̄ are x̄ = (1/3, 2/3) and x̄ = (2/3, 1/3). The case
x̄ = (1/3, 2/3) is impossible. Solving the linear system 2ȳ1 + 4ȳ2 = P(x̄ , ȳ)

4ȳ1 + 2ȳ2 = P(x̄ , ȳ)
ȳ1 + ȳ2 = 1

one can obtain that x̄ = (2/3, 1/3) and ȳ = (1/2, 1/2, 0) is the
unique Nash equilibrium of this game.



Two person cooperative games: the bargaining problem

Motivation

Let us consider the following bi-matrix games(
(1, 4) (0, 0)
(0, 0) (4, 1)

)
and

(
(5, 5) (0, 10)

(10, 0) (1, 1)

)
The �rst game has two Nash equilibriums ((1,1) and (2,2) in pure
strategies) and it is not clear how to choose "an optimal strategy".
The second game has one Nash equilibrium ((2,2) in pure
strategies), but clearly the pure strategies (1,0) for both players
ensure bigger payo�s for them. For that reason, the cooperation
between the two players is more reasonable.
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Motivation (continuation)

Let us consider the following bi-matrix game(
(2, 1) (−1,−1)

(−1,−1) (1, 2)

)
This game has again two Nash equilibriums ((1,1) and (2,2) in pure
strategies) and it is not clear how to choose "an optimal strategy".
Let us denote by pij the probability the I player to choose his i-th
pure strategy and the II player to choose his j-th pure strategy. If
the two players determine together the probabilities
p11 = p22 = 1/2 and p12 = p21 = 0, then the expected payo� for
the both players will be 3/2. One can check that (3/2, 3/2) is not
expected payo� for the two players, corresponding to suitable mixed
strategies.
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Motivation (continuation)

Let us consider the following bi-matrix game
(a11, b11) (a12, b12) . . . (a1n, b1n)
(a21, b21) (a22, b22) . . . (a2n, b2n)
. . . . . . . . . . . .

(am1, bm1) (am2, bm2) . . . (amn, bmn)


If denote by pij ≥ 0 the probability the I player to choose his i-th
pure strategy and the II player to choose his j-th pure strategy,
then the corresponding payo� for the two players is

(P(~p),Q(~p))T =
m∑
i=1

n∑
j=1

pij(aij , bij)
T ,

m∑
i=1

n∑
j=1

pij = 1.

Here ~p = (p11, p12, . . . , pmn).
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Motivation (continuation)

Let X and Y be the sets of all mixed strategies for the �rst end for
the second player, respectively. Then the guaranteed payo� u0 for
the �rst player is u0 := maxx∈Xminy∈YP(x , y), and for the second
player is v0 := maxy∈Yminx∈XQ(x , y). Let us denote by S the
convex hull of the points (aij , bij)

T , i = 1, . . . ,m, j = 1, . . . , n.
Then we can formulate the following problem: It is given a bounded
closed convex subset S of R2 and a point (u0, v0)T ∈ R2. Here,
(u0, v0)T is the point whose components are the guaranteed payo�s
for the two players and S is the feasible set, i.e. given any point
(x , y)T ∈ S , then it is possible for the two players acting together
to obtain payo� u for the �rst player and payo� v for the second
player. We want to assign to each triple (S , u0, v0) a bargaining
solution (ū, v̄)T .
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Properties of (ū, v̄)T .

The following axioms (given by John Nash) seem reasonable
conditions that the solution (ū, v̄)T of the problem (S , u0, v0) have
to satisfy:

1. Individual rationality: (ū, v̄)T ≥ (u0, v0)T ;

2. Feasibility: (ū, v̄)T ∈ S ;

3. Pareto-optimality: If (u, v)T ∈ S and (u, v)T ≥ (ū, v̄)T , then
(u, v)T = (ū, v̄)T ;

4. Independence on irrelevant alternatives: if (ū, v̄)T ∈ T ⊂ S
and (ū, v̄)T is a solution of the problem (S , u0, v0), then
(ū, v̄)T is a solution of the problem (T , u0, v0);
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Properties of (ū, v̄)T (continuation).

5. Independence on linear transformations: Let S ′, (u′
0
, v ′

0
)T and

(ū′, v̄ ′)T be obtained from S , (u0, v0)T and (ū, v̄)T ,
respectively, by the linear transformation u′ = α1u + β1,
v ′ = α2v + β2, where α1 > 0, α2 > 0, β1 and β2 are �xed
constants. If (ū, v̄)T is a solution of the problem (S , u0, v0),
then (ū′, v̄ ′)T is a solution of the problem (S ′, u′

0
, v ′

0
);

6. Symmetry: Let S be such that if (u, v)T ∈ S , then
(v , u)T ∈ S . Suppose that (ū′, v̄ ′)T is a solution of the
problem (S ,w0,w0). Then ū = v̄ .
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Remark.

The �rst three axioms are obvious and need no justi�cation. The
4-th states that, if a point is a solution of the bargaining problem,
and then the feasible set is enlarged, the solution of the new
problem will be the same point or one of the new points of the
enlarged set, but not a point in the old, smaller set. The 5-th is
natural enough, especially if we think of a set S coming from a
bi-matrix game. The 6-th states that if the two players have equal
capacities.

Theorem 1.

The problem determined by (S , u, v) has a unique solution (ū, v̄)T

satisfying the axioms 1-6.
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The proof is based on the following lemmas:

Lemma 1.

If there is a point (u, v)T ∈ S , satisfying u > u0 and v > v0, then
the problem

(u − u0)(v − v0)→ max

subject to
u ≥ u0, v ≥ v0,
(u, v) ∈ S

has a unique solution (ū, v̄).
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Proof of Lemma 1.

By hypothesis, the set S is compact. The function
g(u, v) := (u − u0)(v − v0) is continuous, and hence it reaches its
maximum on the considered set. Also, by hypothesis, this maximum
M is positive. Let us assume that there are two points (u1, v1)T

and (u2, v2)T such that M = g(u1, v1) = g(u2, v2). As M > 0, it is
not possible that u1 = v1 (this equality implies that v1 = v2. Let us
assume that u1 < u2. Then this inequality implies that v1 > v2.
As S is a convex set, the point (ū, v̄) ∈ S , where ū := (u1 + u2)/2
and v̄ := (v1 + v2)/2. But the we obtain that
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Proof of Lemma 1 (continuation).

g(ū, v̄) =
(u1 − u0) + (u2 − u0)

2
.
(v1 − v0) + (v2 − v0)

2
=

(u1 − u0)(v1 − v0)

2
+

(u2 − u0)(v2 − v0)

2
+

(u1 − u2)(v2 − v1)

4
> M.

because the �rst two terms are equal to M/2 and the third term is
positive. This completes the proof.

Lemma 2.

Let S , (u0, v0)T and (ū, v̄)T are as in Lemma 1. We set

h(u, v) = (v̄ − v0)u + (ū − u0)v .

Then h(u, v) ≤ h(ū, v̄) for each (u, v)T ∈ S .
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Proof of Lemma 2.

Let us assume that there exists a point (u, v)T ∈ S such that
h(u, v) > h(ū, v̄). Let us choose an arbitrary ε ∈ (0, 1). We set
uε := ū + ε(u − ū) and vε := v̄ + ε(v − v̄). Because h is a linear
function, h(u − ū, v − v̄) > 0. Since

g(uε, vε) = g(ū, v̄) +ε[h(u− ū, v − v̄) +ε(u− ū)(v − v̄)] > g(ū, v̄),

we obtain a contradiction with the maximality of g(ū, v̄). This
completes the proof.
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Proof of Theorem 1

• Let the assumptions of Lemma 1 hold true. Then there exists a
unique point (ū, v̄) that maximizes the function g . By de�nition
the point (ū, v̄)T satis�es axioms 1 and 2.
• We set S0 := {(u, v)T ∈ S : u ≥ u0, v ≥ v0}. Let the point
(u, v)T ∈ S0 and (u, v)T ≥ (ū, v̄)T . If (u, v)T 6= (ū, v̄)T , then
g(u, v) > g(ū, v̄). The obtained contradiction shows that axiom 3
also is ful�lled.
• Since (ū, v̄)T maximizes g on S0, then (ū, v̄)T maximizes g on
the smaller set T0. Thus axiom 4 holds true.
• If we set u′ = α1u + β1 and v ′ = α1v + β1, then

g ′(u′, v ′) = (u′ − u′0)(v ′ − v ′0) = α1α2(u − u0)(v − v0) = g(u, v).

Since the point (ū, v̄)T maximizes g on S0, then the point (ū′, v̄ ′)T

maximizes g ′ on S ′
0
. So, axiom 5 also is ful�lled.



Two person cooperative games: the bargaining problem

Proof of Theorem 1 (continuation).

• Assume that the set S is symmetric, u0 = v0 = w0 and (ū, v̄)T

maximizes g on S0. Then (v̄ , ū)T maximizes g on S0 too. Since
the maximum of g is reached at a unique point, we have that
(ū, v̄)T = (v̄ , ū)T , i.e. ū = v̄ . Thus axiom 6 holds true too.

• We have obtained that the point (ū, v̄)T satis�es the axioms
1 ÷ 6. To complete the proof, we have to show that (ū, v̄)T is the
unique point that satis�es these axioms. Indeed, let us consider the
set U := {(u, v)T : h(u, v) ≤ h(ū, v̄)}. According to Lemma 2, we
have that S ⊂ U. Let the set U ′ be obtained from the set U by the
linear map: L(u, v) = (u′, v ′)T , where

u′ :=
u − u0
ū − u0

, v ′ :=
v − v0
v̄ − v0

.
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Proof of Theorem 1 (continuation).

One can directly checked that L(u0, v0) = (0, 0)T ,
L(ū, v̄) = (1, 1)T and U ′ = {(u′, v ′) : u′ + v ′ ≤ 2}. Because U ′ is
symmetric, axiom 6 implies that the solution for the triple U ′, 0, 0)
have to belong to the line u′ = v ′. According to axiom 3, the
solution has to be the point (1, 1)T . Let us consider the linear map
L−1. Then U is the image of U ′ under the map L−1. Then axiom 5
implies that (ū, v̄)T is the solution of the bargaining problem for
(U, u0, v0). Because (ū, v̄)T ∈ S ⊂ U, the axiom 4 implies that
(ū, v̄)T is the solution of the bargaining problem for (S , u0, v0).
This completes the proof of Theorem 1 whenever there exists a
point (u, v)T ∈ S such that u > u0 and v > v0.
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Proof of Theorem 1 (continuation).

Let us assume that there does not exist a point (u, v)T ∈ S such
that u > u0 and v > v0. If there exist two points (u1, v0)T ∈ S and
(u0, v2)T ∈ S with u1 > u0 and v2 > v0, then the convexity of S

implies that (u3, v3)T :=
1

2
(u1, v0)T +

1

2
(u0, v2)T ∈ S . Clearly

u3 > u0 and v3 > v0, which is impossible by our assumption.
Hence, if a point (u, v0)T ∈ S with u > u0, then there does exist a
point (u0, v)T ∈ S with v > v0. Then (ū, v̄) is the point with
maximal �rst component and v̄ = v0. Similarly, if a point
(u0, v)T ∈ S with v > v0, then there does exist a point
(u, v0)T ∈ S with u > u0. Then (ū, v̄) is the point with maximal
second component and ū = u0. It can be easily checked that these
solutions satisfy all axioms 1 ÷ 6. Moreover, axioms 1 ÷ 3 imply
that there is no other point satisfying these axioms.
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n-person noncooperative games

First, let us consider an n -person noncooperative game. Then
cooperation between the players is forbidden by the rules of the
game. Then there exist at least one Nash equilibrium. The idea of
the proof is the same as in the case of a noncooperative bi-matrix
game. In general there is no big di�erence between a
noncooperative bi-matrix game and an n -person noncooperative
game.

n-person cooperative games

Let us consider an n-cooperative bi-matrix game for which
cooperation are permitted. In this case a new idea appears:
coalition. In the n-person case, there are many possible coalitions.
This means that is a coalition exists ant remains for some time,
then the members of the coalition have to reach some sort of
equilibrium or stability. Hence this idea for stability has to be
analyzed in any meaningful theory.
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De�nition

For an n-person game we denote by N := {1, 2, 3, . . . , n} the set of
all players. Any nonempty subset S of N is called a coalition.

De�nition

By the characteristic function v of an n-person game we mean a
real valued function v de�ned on the subsets of N that assigns to
each S ⊂ N the maximum value for S of the two-person game
played between S and N \ S (assuming that these two coalitions
form). This means that v(S) is the payo� of the members of the
coalition S can obtain from the game, whatever the remaining
players may do.
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Properties of the characteristic function

1. v(∅) = 0;
2. v(S ∪ T ) ≥ v(S) + v(T ) for each S ⊂ N ⊃ T with S ∩ T = ∅.
The second property means that if S and T are disjoint coalitions,
they can accomplish at least as much by joining forces as by
remaining separate.

Remark.

The essence of n-person games is the formation of coalition. For
that reason we shall study in details the characteristic function.
This function tells us the capacities of the coalitions. This we shall
study an n-person cooperative game with its characteristic function.
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De�nition.

A game in characteristic function form is said to be constant sum if
v(S) + v(N \ S) = v(N) for all subsets sS of N.

Remark.

Let us assume that an n-person sum is played and the players have
a total payo� v(N) to divide. This can be divided in any way, but
clearly no player will accept less than the minimum that he can
attain for himself.

De�nition.

An imputation for an n-person sum determined by its characteristic
function is any vector x = (x1, x2, . . . , xn), satisfying

1.
n∑

i=1

xi = v(N);

2. xi ≥ v({i} for all i = 1, . . . , n.
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We denote by E (v) the set of all imputations of the game
determined by the characteristic function v .
The main question of an n-person cooperative game is: Which of
all the imputations will be obtained?
The answer is trivial when the set E (v) contains only one element.
In that case the unique imputations will be the obvious result. It
does not matter what coalition form. This give rise to distinction
between essential and inessential games. It is clear by super

additivity (repeated n times) that v(N) ≥
n∑

i=1

v({i}). If

v(N) =
n∑

i=1

v({i}), then the following relations

v(N) =
n∑

i=1

xi ≥
n∑

i=1

v({i}) = v(N) imply that

E (v) = {(v(1)}, v(2)}, . . . , v(n)})}, and the game is trivial.
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De�nition

A game v is essential if

v(N) >
n∑

i=1

v({i}).

It is otherwise inessential (we study further only essential games).

Let x and y be two imputations. Suppose that the players are
confronted by a choice between x and y . It is not enough that
some players prefer the imputation y to x because it is impossible
that all players prefer y to x (since the sum of the components of
each imputations is v(N)). It is important that the players that
prefer y to x are su�ciently strong to enforce the choice of y .
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De�nition.

Let y and x be two imputations, and let S be an arbitrary coalition.

It is said that y dominates x trough S (the notation is y
�
S x) if

1. yi > xi for each i ∈ S ;

2.
∑
i∈S

yi ≤ v(S).

It is said that y dominates x (the notation is y � x) if there exists

a coalition S with y
�
S x .

Remark

The condition 1. says that the players from the coalition S prefer y
to x , while condition 2 says that the players from S are capable of
obtaining what y gives them.

One can check that the relation y
�
S x (for any given S is a partial

order relation in E (v), while � is not irre�exive, symmetric and
transitive (since the coalition can be di�erent in di�erent cases).
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De�nition

It is said that two n-person cooperative games u and v are
isomorphic if there exists a bijection f : E (u)→ E (v) such that for
any x ∈ E (u) 3 E (v) and S ⊂ N we have that

y
�
S x i� f (y)

�
S f (x).

De�nition

It is said that two n-person cooperative games u and v are
S-equivalent if there exist r > 0 and n constants α1, α2, . . . , αn, so
that

v(S) = ru(S) +
n∑

i=1

αi

for each coalition S .
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Theorem.

If u and v are S-equivalent, then they are isomorphic.

Proof.

Assume that u and v are S-equivalent, i.e. there exist r > 0 and n
constants α1, α2, . . . , αn, so that

v(S) = ru(S) +
n∑

i=1

αi

for each coalition S . Consider the following bijection
f : E (u)→ E (v) such that if y = f (x) then yi = rxi + αi for each
i = 1, 2, . . . , n. One can check that f is well de�ned. Moreover,

y
�
S x i� f (y)

�
S f (x).

This completes the proof.



n-person cooperative games

De�nition.

It is said that a game u is in (0,1) normalization if
1. u(i) = 0 for each i = 1, 2, . . . , n;
2. u(N) = 1.

Theorem.

If u is an essential game, then u is S-equivalent to exactly one
game in (0,1) normalization.

Proof.

Let v be a game in (0,1) normalization which is S-equivalent to the
original game u. Then 0 = v({i}) = ru({i}) + αi for each

i = 1, 2, . . . , n, and 1 = v(N) = ru(N) +
n∑

i=1

αi . From here we

obtain that
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Proof (continuation.

r =
1

u(N)−
∑n

i=1
u({i})

and αi = − u({i})
u(N)−

∑n
i=1

u({i})

for each i = 1, 2, . . . , n. This completes the proof.

De�nition.

A game u is said to be symmetric if u(S) depends only on the
number of elements of S .

De�nition.

A game u in (0,1) normalization is said to be simple if for each
coalition S we have that u(S) ∈ {0, 1}. A game u is said to be
simple if its (0,1) normalization is simple.
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De�nition

The set of all undominated imputations for a game u is called core
and it is denoted by C (u).

Theorem.

The core of a game u is the set of all vectors x = (x1, x2, . . . , xn)
satisfying

1.
∑
i∈S

xi ≥ u(S) for all coalitions S ;

2.
n∑

i=1

xi = u(N).
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Proof.

If we set S := {i}, i = 1, 2, . . . , n, then condition 1. implies that
xi ≥ u({i}), i = 1, 2, . . . , n. These inequalities and condition 2
imply that all vector x are imputations.

Let us assume that the vector x satis�es conditions 1 and 2, but
there exists a vector y with y

�
S x , i.e. yi > xi for all i ∈ S and∑

i∈S
yi ≤ u(S). By adding the inequalities we obtain that∑

i∈S
yi > u(S). The obtained contradiction shows that there does

not exist a vector y with y
�
S x .
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Proof (continuation).

Conversely, let us assume that the imputation x does not satisfy
the conditions 1. and 2. Then there exist ε > 0 and a coalition S
such that

∑
i∈S

xi = u(S)− ε. We set

α := u(N)− u(S)−
∑

i∈N\S

u({i}).

Clearly, α ≥ 0. Let s be the number of the elements of S . We set

yi :=

 xi +
ε

s
, if i ∈ S ;

u({i}) +
α

n − s
, if i 6∈ S .

One can check that y is an imputation such that y
�
S x . Hence

x 6∈ C (u). This completes the proof.
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Remark.

The core can contain more than one point. This means that more
than one outcome is stable. But the core can be an empty set:

Theorem.

If u is an essential constant-sum game, then C (u) = ∅.

Proof.

Let us assume that x ∈ C (u). Then

u(N)− xi =
∑

j∈N\{i}

xj ≥ u(N \ {i}) = u(N)− u({i}),
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Proof (continuation).

and hence xi ≤ u({i}). Then

u(N) =
∑
i∈N

xi ≤
∑
i∈N

u({i}) < u(N)

because the game is essential. The obtained contradiction shows
that C (u) = ∅ and completes the proof.

Example.

Let u be a simple game in (0,1) normalization. It is said that the
player i is a veto player if u(N \ {i}) = 0.
Let us assume that u has no veto players. Then u(N \ {i}) = 1 for
each i .
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Example (continuation).

Let x be an imputation belonging to the core C (u). Then the
following inequalities hold true:∑

i∈N
xi = u(N) = 1 and

∑
i∈N\{j}

xi ≥ u(N \ {j}) = 1,

which is impossible, because xi ≥ u({i}) = 0 for each
i = 1, 2, . . . , n. Hence C (u) = ∅.

Assume now that the game has one or more veto players and denote
by S the set of all veto players. Let x be an imputation such that:∑

i∈S
xi = 1, xi ≥ 0 for all i ∈ S , and xi = 0 for all i 6∈ S .
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Example (continuation).

Let us assume that y
�
T x . Then yi > xi for each i ∈ T and∑

i∈T
yi ≤ u(T ). If u(T ) = 0, then we have that

0 = u(T ) ≥
∑
i∈T

yi >
∑
i∈T

xi ≥ 0,

which is impossible. Hence T is a winning coalition, i.e. u(T ) = 1.
Then we must have S ⊂ T , so

1 =
∑
i∈N

yi ≥
∑
i∈T

yi >
∑
i∈T

xi ≥
∑
i∈S

xi = 1,

which is impossible. Hence, x ∈ C (v).
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De�nition of "solution" in the sense of fon Neuman and
Morgenstern

A set V is said to be stable subset of the set E (u) of all
imputations i�
1. internal stability: if x ∈ V 3 y , then y 6� x ;
2. external stability: if x 6∈ V , then there exists y ∈ V so that
y � x .

Example.

Let us consider the game determined by the following characteristic
function:

u(S) =


−2, if S has one member;
2, if S has two members;
0, if S has three members.
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Example (continuation).

One can check that this game is S-equivalent to a (0,1)
normalization (with r = 1/6, α1 = α2 = α3 = 1/3):

v(S) =


0, if S has one member;
1, if S has two members;
1, if S has three members.

We set

V :=

{(
1

2
,
1

2
, 0

)
,

(
1

2
, 0,

1

2

)
,

(
0,

1

2
,
1

2
,

)}
and show that this set is a "solution" in the sense of of fon
Neuman and Morgenstern: One can check the no one of these
imputations dominates any one of the others, i.e. 1. holds true.
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Example (continuation).

Let x = (x1, x2, x3) be any imputation of the game, i.e.
x1 + x2 + x3 = 1 with x1 ≥ 0, x2 ≥ 0 and x3 ≥ 0. Then at most
two components of x can be large as 1/2. If this actually happens,
then both of those components must be equal to 1/2, while the
remaining component is zero. Hence in this case x belongs to V .
Thus if x 6∈ V , the at most one of the components can be as large
as 1/2. Clearly, then exists an element of V that dominates x with
respect to the coalition determined by the indices of the remainder
two components of x .

However, V is not the only stable set: if c is an arbitrary number
from the interval [0, 1/2), then the set
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Example (continuation).

V3,c := {x1, 1− c − x1, c) : 0 ≤ x1 ≤ 1− c}

is also a "solution" in the sense of of fon Neuman and
Morgenstern: clearly, the set V3,c is internally stable. Let
y = (y1, y2, y3) be any imputation of the game that does not
belong to V3,c , i.e. y1 + y2 + y3 = 1 with y1 ≥ 0, y2 ≥ 0 and
c 6= y3 ≥ 0. If y3 = c + ε for some ε > 0, then the imputation
x = (x1, x2, x3) with x1 = y1 + ε/2, x2 = y2 + ε/2 and x3 = c
dominates y with respect to the set {1, 2}. If y3 < c , the at last
one of the remainder components is less than or equal to 1/2 (or
else their sum will be greater than 1). Say that y1 ≤ 1/2. Then the
imputation x = (x1, x2, x3) with x1 = 1− c , x2 = 0/2 and x3 = c
dominates y with respect to the set {1, 3}.
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Remark.

The weakness of the concept for a "solution" in the sense of of fon
Neuman and Morgenstern is that there is no theorems for existence
of this solution in the general case. There are obtained only partial
results.

Theorem.

Let u be a simple game in (0,1) normalization, and let S be the
minimal winning coalition, i.e. a coalition such that u(S) = 1, but
u(T ) = 0 for each subset T of S . Let VS be the set of all
imputations for which xi = 0 for each i 6∈ S . Then VS is a
"solution" in the sense of of fon Neuman and Morgenstern.
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Proof.

Let x and y be two arbitrary elements of VS such that y
�
T x .

Clearly, T ⊆ S . If T ⊂ S , then

0 = u(T ) ≥
∑
i∈T

yi >
∑
i∈T

xi ≥ 0,

which is impossible. If T = S , then

1 = u(T ) ≥
∑
i∈T

yi >
∑
i∈T

xi = 1,

which is also impossible. Hence, VS is internally stable.
Let y be an arbitrary imputation that does not belong to VS . Then∑
i 6∈S

yi = ε > 0. Let s be the number of elements of S . We set

xi = yi + ε/s for each i ∈ S , and xi = 0 for each i 6∈ S . Then

x
�
S y . Hence, VS is externally stable. This completes the proof.



The Shapley value (1953)

De�nition.

It is said that the coalition T of the game u is a carrier i�
u(S) = u(S ∩ T ) for any coalition S .

The meaning of this de�nition is that if a player does not belong to
a carrier, then this player is dummy, i.e. he can to contribute
nothing to any coalition.

De�nition.

Let u be an n-person game and π be a permutation of the elements
of the set N. Then by πu we mean the game v such that
v(S) := u({π−1(i1), π−1(i2), . . . , π−1(is)}) for any coalition
S = {i1, i2, . . . , is}.
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Remark.

Clearly, πu(S) = u(π−1(S)). Then we have that
1. πu(∅) = u(π−1(∅)) = u(∅) = 0.
2. If S ∩ T = ∅, then πu(S ∪ T ) = u(π−1(S ∪ T )) =
u(π−1(S)∪π−1(T )) ≥ u(π−1(S)) + u(π−1(T )) = πu(S) +πu(T ).
Hence, πu is a characteristic function.



The Shapley value

In fact, the game πu is the game v with the role of the players
interchanged by the permutation π.

Axioms (Shapley)

By the value of a game u we mean a vector ϕ[u] satisfying the
following axioms:

S1. If T is any accrier, then
∑
i∈S

ϕ[u]i = u(T );

S2. ϕ[πu]π(i) = ϕ[u]i For any permutation π and for any i ∈ N;
S3. If u and v are any games, then ϕ[u + v ] = ϕ[u] + ϕ[v ].

It is remarkable, that these three axioms determine unique vector
ϕ[u] for each n-person game u.
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Theorem.

There exists a unique function ϕ de�ned on all games and
satisfying Axioms 1÷ 3.

The proof is based on the following lemmas:

Lemma 1.

For any coalition S the game wS is de�ned as

wS(T ) =

{
0, if S 6⊂ T ;
1, if S ⊂ T ;

Then, if s := |S |, then

ϕi [wS ] =


1

s
, if i ∈ S ;

0, if i 6∈ S .
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Remark 1.

Clearly, we have that
1. wS(∅) = 0 because S 6⊂ ∅.
2. Let T1 ∩ T2 = ∅. If T1 ∪ T2 ⊇ S , then wS(T1 ∪ T2) = 1 and
there are possible the following cases:
a) T1 ⊇ S and T2 6⊇ S . Then wS(T1) = 1 and wS(T2) = 0;
b) T1 6⊇ S and T2 ⊇ S . Then wS(T1) = 0 and wS(T2) = 1;
c) T1 6⊇ S and T2 6⊇ S . Then wS(T1) = 0 and wS(T2) = 0;
Hence wS(T1 ∪ T2) ≥ wS(T1) + wS(T2) in each of these three
cases.
Hence, wS is a characteristic function.
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Remark 2.

We show that if S̄ ⊇ S , then S̄ is a carrier of the game wS . Indeed,
if a coalition T ⊇ S , then we have that (S̄ ∩ T ) ⊇ S , and hence
wS(S̄ ∩ T ) = 1 = wS(T ).
If a coalition T 6⊇ S , then we have that (S̄ ∩ T ) 6⊇ S , and hence
wS(S̄ ∩ T ) = 0 = wS(T ).
Hence, S̄ is a carrier for the game wS .

Remark 3.

Let π is any any permutation which carries S into itself, i.e.
π(S) := {π(s) : s ∈ S} = S . If T ⊇ S , then
π−1(T ) ⊇ π−1(S) = S , and hence
πwS(T ) = wS(π−1(T )) = 1 = wS(T ). If T 6⊇ S , then
π−1(T ) 6⊇ π−1(S) = S , and hence
πwS(T ) = wS(π−1(T )) = 0 = wS(T ). So, πwS = wS .
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Proof of Lemma 1.

It is clear the S is a carrier for wS . Also, any superset T of S is

also carrier for wS . By Axiom 2, then it follows that
∑
i∈T

ϕi [wS ] = 1

for any coalition T ⊇ S . And this implies that ϕi [wS ] = 0 for any
i 6∈ S .
If π is any any permutation which carries S into itself, it is clear
that πwS = wS . Then Axiom 2 implies that
ϕπ(i)[wS ] = ϕπ(i)[πwS ] = ϕi [wS ]. In particular, if π(i) = j , then we
have that ϕj [wS ] = ϕπ(i)[wS ] = ϕπ(i)[πwS ] = ϕi [wS ]. This implies
that ϕj [wS ] = ϕi [wS ] for each two indices i and j from S . As there
are s of this indices and their sum is equal to 1, it follows that

ϕi [wS ] =
1

s
and this completes the proof of Lemma 1.



The Shapley value

Corollary.

If c > 0, we set (cwS)(T ) := c .wS(T ) for each coalition T .
Clearly, (cwS) is a characteristic function. Then ϕi [cwS ] = cϕi [wS ].

Proof.

As in the proof of Lemma 1, we can obtain that ϕi [(cwS)] = 0 for

any i 6∈ S ,
∑
i∈S

ϕi [(cwS)] = c and ϕj [(cwS)] = ϕi [(cwS)] for each

two indices i and j from S . From here, it follows that

ϕi [(cwS)] =
c

s
and this completes the proof of the Corollary.
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Lemma 2.

If u is an arbitrary game, then

u(U) =
∑
S⊆N

cS wS(U)

for each coalition U, where

cS =
∑
T⊆S

(−1)s−tu(T ),

where s := |S | and t := |T |, i.e. by the number of the elements of
the sets S and T are denoted by s and t.

Proof of Lemma 2.

Let U be an arbitrary coalition with u = |U|. Then the following
equalities hold true:
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Proof of Lemma 2 (continuation).∑
S⊆N

cS wS(U) =
∑
S⊆U

cS =

=
∑
S⊆U

∑
T⊆S

(−1)s−tu(T )

 =
∑
T⊆U

 ∑
T⊆S⊆U

(−1)s−t

 u(T ) =

= u(U) +
∑
T⊂U

 ∑
T⊆S⊆U

(−1)s−t

 u(T ) =

=
∑
T⊆U

(
u∑

s=t

(
u − t
s − t

)
(−1)s−t

)
u(T )

because for every value of s between t and u, there will be
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Proof of Lemma 2 (continuation).(
u − t
s − t

)
sets S with s elements such that T ⊂ S ⊆ U. Since

u∑
s=t

(
u − t
s − t

)
(−1)s−t =

u−t∑
j=0

(
u − t
j

)
(−1)j = (1− 1)u−t = 0.

(remind that
k∑

j=0

(
k
j

)
ak−j(−b)j = (a− b)k). So, we have

obtained that ∑
S⊆N

cS wS(U) =
∑
S⊆U

cS = u(U)

which completes the proof.
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Remark.

Let u and v be characteristic functions such that u − v is also a
characteristic function. Since u = v + (u − v), Axiom 3 implies
that ϕ[u] = ϕ[v ] + ϕ[u − v ], i.e. ϕ[u − v ] = ϕ[u]− ϕ[v ]. Since

u =
∑
S⊆N

cS wS ,

we obtain that for each index i

ϕi [u] =
∑
S⊆N

cS ϕi [wS ] =
∑

i∈S⊆N
cS

1

s
.

Taking into account the de�nition of cS , we obtain that
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ϕi [u] =
∑

i∈S⊆N

∑
T⊆S

1

s
(−1)s−tu(T ) =

= ϕi [u] =
∑
T⊆N

 ∑
{i}∪T⊆S⊆N

1

s
(−1)s−t

 u(T ).

We set

γi (T ) :=
∑

{i}∪T⊆S⊆N

1

s
(−1)s−t .

It is easy to see that if i 6∈ T and T ′ := T ∪ {i}, then
γi (T ) = −γi (T ′) (because the terms in the sum of γi (T ) will be
the same, except that t ′ = t + 1 and hence, there is a change of
the sign throughout. Therefore,
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ϕi [u] =
∑

i∈T⊆N
γi (T )(u(T )− u(T \ {i}).

Now, if i ∈ T , then there exist

(
n − t
s − t

)
coalitions S with s

elements such that S ⊇ T . Hence,

γi (T ) :=
n∑

s=t

(
n − t
s − t

)
1

s
(−1)s−t =

=
n∑

s=t

(
n − t
s − t

)
(−1)s−t

∫
1

0

x s−1ds

=

∫
1

0

x t−1
n∑

s=t

(
n − t
s − t

)
(−1)s−tx s−tds
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=

∫
1

0

x t−1(1− x)n−tdx =: I (t) =
(t − 1)!(n − t)!

n!
. (1)

To check this equality, we shall use induction on t. For t = 1 we
have that I (1) =

=

∫
1

0

(1−x)n−1dx = −
∫

1

0

(1−x)n−1d(1−x) = − (1− x)n

n

∣∣∣∣1
0

=
1

n
,

and (1) holds true. Let us assume that (1) is ful�lled for some
n > t ≥ 1. The we shall prove (1) for t + 1. Indeed, we have that
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I (t +1) =

∫
1

0

x t(1− x)n−t−1dx = −
∫

1

0

x t(1− x)n−t−1d(1− x) =

= −
∫

1

0

x td
(1− x)n−t

n − t
= − x t

(1− x)n−t

n − t

∣∣∣∣1
0

+
t

n − t

∫
1

0

x t−1(1− x)n−tdx =
t

n − t

(t − 1)!(n − t)!

n!
=

=
t!(n − t − 1)!

n!
,

and, hence, (1) is true for t + 1 too. This shows that (1) is ful�lled
for each positive integer n and for each positive integer t ≤ n.



The Shapley value

Thus we have obtain that

ϕ[u]i =
∑

i∈T⊆N

(t − 1)!(n − t)!

n!
(u(T )− u(T \ {i})).

This formula gives the Shapley value explicitly. One can check that
Axioms 1 ÷ 3 hold true. Indeed,
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ϕ[u1 + u2]i =
∑

i∈T⊆N

(t − 1)!(n − t)!

n!

(u1(T )+u2(T )−u1(T\{i})−u2(T\{i})) =

=
∑

i∈T⊆N

(t − 1)!(n − t)!

n!
(u1(T )− u1(T \ {i}))+

+
∑

i∈T⊆N

(t − 1)!(n − t)!

n!
(u2(T )− u2(T \ {i})) = ϕi [u1] + ϕi [u2],

i.e. Axiom 1 holds true.
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Also, denoting T ′ := π−1T , we have that

ϕ[π u]π(i) =
∑

π(i)∈T⊆N

(t − 1)!(n − t)!

n!
(π u(T )−π u(T \{π(i)})) =

=
∑

π(i)∈T⊆N

(t − 1)!(n − t)!

n!
(u(π−1(T ))− u(π−1(T \ {π(i)})) =

=
∑

i∈T ′⊆N

(t − 1)!(n − t)!

n!
(u(T ′)− u(T ′) \ {i})) = ϕ[u]i ,

i.e. Axiom 2 holds true too.
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Let T be a carrier of the game u. Then for each imputation U

u(U) = u(U ∩ T ) =
∑
S⊆N

cS wS(U ∩ T ) =

=
∑
S⊆T

cS wS(U ∩ T ) =
∑
S⊆T

cS wS(U).

Thus u =
∑

S⊆T cS wS and, hence, using that T is a carrier for
any wS with S ⊆ T , we obtain that∑

i∈T
ϕi [u] =

∑
i∈T

∑
S⊆T

cS ϕi [wS ] =

=
∑
S⊆T

cS
∑
i∈T

ϕi [wS ] =
∑
S⊆T

cS wS(T ) = u(T ),

and, so, Axiom 3 also holds true.
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Since ϕi [u] =
∑

i∈T⊆N

(t − 1)!(n − t)!

n!
(u(T )− u(T \ {i}) ≥

≥
∑

i∈T⊆N

(t − 1)!(n − t)!

n!
u({i}) =

=
n∑

t=1

(
n − 1
t − 1

)
(t − 1)!(n − t)!

n!
u({i}) =

=
n∑

t=1

(n − 1)!

(t − 1)!(n − t)!

(t − 1)!(n − t)!

n!
u({i}) =

=
n∑

t=1

1

n
u({i}) = u({i}),
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and because N is a carrier for each game u, we have that

n∑
i=1

ϕi [u] = u(N),

and hence the Shapley vector is an imputation for each game u.

Example.

Consider a corporation with 4 stockholders, having respectively 10,
20, 30 and 40 shares of stock. It is assumed that each decision is
taken by approval of stockholders holding a simple majority of the
shares. This can be treated by as a simple 4-person game in which
the winning coalitions are the following: {2, 4}, {3, 4}, {1, 2, 3},
{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, and {1, 2, 3, 4}.
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Example (continuation).

To �nd ϕ1, we note that the only winning coalition T for which
T \ {1} is not winning, is {1, 2, 3}. Hence

ϕ1 =
2!1!

4!
=

1

12
.

Analogously,

ϕ2 =
1!2!

4!
(u({2, 4})− u({4})) +

2!1!

4!
(u({1, 2, 3})− u({1, 3}))

+
2!1!

4!
(u({1, 2, 4})− u({1, 4})) =

1

12
+

1

12
+

1

12
=

1

4
.
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Example (continuation).

ϕ3 =
1!2!

4!
(u({3, 4})− u({4})) +

2!1!

4!
(u({1, 2, 3})− u({1, 2}))

+
2!1!

4!
(u({1, 3, 4})− u({1, 4})) =

1

12
+

1

12
+

1

12
=

1

4
.

ϕ4 =
1!2!

4!
(u({2, 4})− u({2})) +

2!1!

4!
(u({1, 2, 4})− u({1, 2}))

+
2!1!

4!
(u({3, 4})− u({3})) +

2!1!

4!
(u({1, 3, 4})− u({1, 3}))

+
2!1!

4!
(u({2, 3, 4})−u({2, 3})) ==

1

12
+

1

12
+

1

12
+

1

12
+

1

12
=

5

12
.



The Shapley value

Example (continuation).

Hence, the Shapley value is the vector

(
1

12
,
1

4
,
1

4
,
5

12

)
. This

contrast to the "vote vector"

(
1

10
,
1

5
,
1

3
10,

2

5

)
. Note that player 3

have more shares then player 2, but they have the same value. This
is not surprising because player 3 has not greater opportunity than
player 2 to form winning coalitions.


