COSTRUZIONE DEGLI INSIEMI \mathbb{Z} E \mathbb{N}

d) Consideriamo l'insieme N^2 (costituito dalle coppie di interi naturali). Introduciamo in N^2 la seguente relazione:

$$(m,n)\sim(m',n') \Leftrightarrow m+n'=m'+n$$
. [4.1]

Lasciamo al lettore la cura di verificare che si tratta di una relazione di equivalenza; è consigliabile farsi (nel piano, riferito ad assi cartesiani) una rappresentazione grafica di N^2 e delle classi di equivalenza che risultano definite. La relazione di equivalenza [4.1] può essere impiegata per introdurre formalmente l'insieme Z degli interi relativi, partendo dagli interi naturali: si pone per definizione $Z = N^2/\sim$. (Il lettore non si spaventi: il trucco sta nel tenere presente che la coppia (m, n) fa la parte dell'intero relativo m - n.) L'addizione si definirà, ovviamente, così:

$$[(m, n)] + [(m_1, n_1)] = [(m + m_1, n + n_1)].$$

Ma, naturalmente, occorre dimostrare che il risultato (che è una classe di equivalenza) dipende solo dalle due classi di equivalenza addende, e non dalle coppie, che le rappresentano. Lasciamo al lettore il compito di dimostrarlo. Il lettore non avrà poi difficoltà (sapendo dove vuole arrivare) a definire la moltiplicazione di due elementi di Z; occorre sempre tener presente che quando si deve operare su classi di equivalenza bisogna dimostrare che il risultato è indipendente dai rappresentanti che le individuano.

e) Sia Z l'insieme degli interi relativi, e sia $Z^* = Z - \{0\}$. Nell'insieme $Z \times Z^*$ (che è dunque insieme di tutte le coppie (p, q) di interi relativi, con $q \neq 0$), introduciamo la seguente relazione

 $(p,q)\sim(p',q') \Leftrightarrow pq'=p'q$. [4.2] Ad esempio, si ha $(1,3)\sim(2,6)\sim(-1,-3)\sim(4,12)\sim...$ Si verifica facilmente che si tratta di una relazione di equivalenza: la proprietà riflessiva e simmetrica sono evidenti; verifichiamo la transitiva. Supponendo $(p,q)\sim(p',q')$ e $(p',q')\sim(p'',q'')$ si ha: pq'=p'q e p'q''=p''q'. Moltiplicando membro a membro la prima per q'' e la seconda per q si ottiene: pq'q''=p''qq''=p''q', da cui, essendo $q'\neq 0$, si ricava pq''=p''q, che dice appunto $(p,q)\sim(p'',q'')$.