School of Exercise and Sport Science,

- (Laurea magistrale in Scienze dello sport individuali e squadra,
 - Laurea magistrale in Scienze dello sport e montagna)
 - Metodologia delle misure delle attività sportive

- Wednesday 23/10/2019 14÷15:30 Luca P. Ardigò Ph.D.

A class within an eight-class module

University of Verona,

Laurea magistrale in Scienze motorie preventive ed adattate

- Lifson et al., 1955;
- (small animals) 1975;
- validation by Scholler et al., 1982;
- (premature infants, children, pregnant and lactating women, elderly, obese people, hospitalized patients);
- subject is administered a dose of stable isotope ²H₂¹⁸O, which (²H, ¹⁸O) equilibrates relatively quickly with body water (H, O);
- ²H is eliminated as ²H₂O (breath, urine, sweat, perspiratio insensibilis), while the ¹⁸O is eliminated either as $H_2^{18}O$ (breath, ...) and as $C^{18}O_2$ (breathe only);
- difference between the two rates of elimination -> V'CO2 -> ME

measures

measures

measures

- RQ (= V'CO2 / V'O2) estimate -> accuracy: . standard Western diet -> RQ estimate; . food intake diary -> RQ estimate (i.e., food quotient \approx RQ); . indirect calorimetry -> RQ

where CA is the percent of energy in the diet consisting of carbohydrates, F is the percent that is fat, P is the percent protein, and A is the percent alcohol. Data on human macronutrient intake for the USA, based

measures

$FQ = 1.0 \times CA + 0.7 \times F + 0.79 \times P + 0.66 \times A$

(7)

DLW method issues

- intensity of each type) to ME;
- have considerable costs;
- -> only 3-4 ÷ 21 d ME;
- unknown RQ -> 5% e

measures

- inability to discriminate the contribution of individual PAs (types, amount,

- costs: isotopes and tools to detect them (i.e., mass spectrophotometers) still

FIGURE 1. Number of studies in peer-reviewed journals (excluding abstracts) that used the doubly labeled water technique in the years 1981–1997 (through June) from the Science Citation Index (Institute for Scientific Information, University of Aukland, New Zealand). Since the first study in humans in 1982 the use of the technique has continued to grow.

measures

Prof. Brian James Whipp, 1937–2011

How to structure a research paper?

Introduction (The Why?) Methods (The How?) Results (The What?) **Discussion (The So What?)**

European Journal of Applied Physiology https://doi.org/10.1007/s00421-018-3944-6

ORIGINAL ARTICLE

Validity of a triaxial accelerometer and simplified physical activity record in older adults aged 64–96 years: a doubly labeled water study

Yosuke Yamada¹ · Yukako Hashii-Arishima^{2,3} · Keiichi Yokoyama⁴ · Aya Itoi^{1,5} · Tetsuji Adachi⁶ · Misaka Kimura^{7,8}

Received: 11 April 2018 / Accepted: 12 July 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Background The aim was to examine the validity of a triaxial accelerometer (ACCTRI) and a simplified physical activity record (sPAR) in estimating total energy expenditure (TEE) and physical activity level (PAL) in older adults with the doubly labeled water (DLW) method.

Methods A total of 44 Japanese elderly individuals (64–96 years), of which 28 were community-dwelling healthy adults with or without sporting habits (S or NS group) and 16 were care home residents with frailty (F group), were included in the study. Basal metabolic rate (BMR) was measured by indirect calorimetry, TEE was obtained by the DLW method, and PAL was calculated as TEE/BMR. Daily step count was monitored by a pedometer (Lifecorder). The 24-h average metabolic

	Community-dwelling older adults with sporting habits	Community-dwelling older adults without sporting habits	Care home residents with frailty	
	n = 9 (M6/W3)	n = 19 (M6/W13)	n = 16 (M8/W8)	
Age (years)	71 ± 5	74 <u>+</u> 7	84 ± 8	
Height (cm)	162.8 ± 7.7	150.8 ± 6.9	150.9 ± 9.5	
Weight (kg)	55.9 <u>+</u> 10.1	51.3 ± 8.0	50.6 <u>+</u> 9.5	
BMI	21.0 ± 2.1	22.4 ± 2.5	22.4 ± 4.6	
Percent fat (%)	26.7 ± 7.0	33.8 ± 5.7	27.9 ± 11.1	
TBW (kg)	29.8 ± 4.9	24.8 ± 4.5	26.4 ± 4.3	
FFM (kg)	40.8 ± 6.7	33.9 ± 6.2	36.0 ± 5.9	
FM (kg)	15.2 ± 5.6	17.4 ± 4.0	14.6 ± 7.5	
mBMR (kcal d^{-1})	1210 ± 154	1084 ± 169	1046 ± 192	
$eBMR$ (kcal d^{-1})	1188 ± 135	1067 ± 137	1036 ± 103	
TEE_{DLW} (kcal d ⁻¹)	2556 ± 372	2044 ± 377	1608 ± 354	
AEE_{DLW} (kcal d ⁻¹)	1091 <u>+</u> 263	756 ± 258	401 ± 226	
AEE_{DLW}/Wt (kcal kg ⁻¹ d ⁻¹)	19.7 <u>+</u> 4.1	15.1 ± 6.3	8.2 ± 5.1	
PAL _{DLW}	2.12 ± 0.23	1.90 ± 0.29	1.54 ± 0.24	
24-h average METs of ACCTRI	1.80 ± 0.17	1.66 ± 0.14	1.27 ± 0.10	
TEE of ACCTRI without DIT (kcal d ⁻¹)	2128 <u>+</u> 258	1771 ± 251	1317 <u>+</u> 377	
$(\text{TEE}_{\text{DLW}} - \text{TEE}_{\text{ACCTRI}})/\text{TEE}_{\text{DLW}} \times 100 \ (\%)$	-16.2 ± 8.8	-12.2 ± 10.5	-15.6 ± 14.3	
TEE of ACCTRI with DIT (kcal d^{-1})	2364 <u>+</u> 287	1968 <u>+</u> 279	1463 <u>+</u> 173	
PAL of ACCTRI corrected with DIT	2.00 ± 0.19	1.85 ± 0.15	1.41 ± 0.11	
TEE of sPAR without DIT (kcal d^{-1})	2153 <u>+</u> 359	1729 ± 319	1347 <u>+</u> 185	
$(\text{TEE}_{\text{DLW}} - \text{TEE}_{\text{sPAR}})/\text{TEE}_{\text{DL}} \times 100 \ (\%)$	-15.6 ± 8.2	-14.6 ± 11.3	- 16.1 ± 16.4	
TEE of sPAR with DIT (kcal d^{-1})	2393 <u>+</u> 399	1921 ± 354	1497 <u>+</u> 205	
PAL of sPAR corrected with DIT	2.01 ± 0.21	1.80 ± 0.20	1.44 ± 0.09	
Step count (d^{-1})	9568 <u>+</u> 4496	8334 <u>+</u> 3591	2130 ± 2075	
Nd/No	1.037 ± 0.011	1.034 ± 0.012	1.038 ± 0.010	

BMI body mass index, TBW total body water, FFM fat-free mass, FM fat mass, BMR measured basal metabolic rate, eBMR estimated BMR by the fifth Japanese recommended dietary allowance equation, TEE total energy expenditure, AEE activity energy expenditure, AEE/Wt AEE divided by weight, PAL physical activity level, ACCTRI triaxial accelerometer, DIT diet-induced thermogenesis, sPAR simplified physical activity record, Nd/No stable isotope dilution space ratio of ²H and ¹⁸O

Table 2 Physical characteristics, body composition, energy expenditure, and physical activity of men (n=20) and women (n=24)

	Men $(n=20)$			
	Community-dwell- ing older adults with sporting habits	Community ing older ad without spo habits		
	<i>n</i> =6	<i>n</i> =6		
Age (years)	73 ± 5	73 ± 9		
Height (cm)	165.7 ± 7.3	157.2 ± 7		
Weight (kg)	60.3 ± 9.8	58.4 ± 5		
BMI	21.8 ± 2.0	23.6 ± 1		
Percent fat (%)	27.2 ± 6.3	29.0 ± 2		
TBW (kg)	31.9 ± 4.0	30.4 ± 3		
FFM (kg)	43.6 ± 5.5	41.5 ± 4		
FM (kg)	16.7 ± 5.8	16.9 ± 1		
mBMR (kcal d ⁻¹)	1269 ± 145	1242 ± 1		
eBMR (kcal d ⁻¹)	1255 ± 112	1205 ± 1		
TEE_{DLW} (kcal d ⁻¹)	2704 ± 353	2308 ± 4		
AEE_{DLW} (kcal d ⁻¹)	1165 ± 295	835 ± 2		
$\frac{AEE_{DLW}}{kg^{-1} d^{-1}}$	19.6 ± 5.1	14.2 ± 4		
PAL _{DLW}	2.14 ± 0.29	1.85 ± 0		
24-h average METs of ACCTRI	1.76 ± 0.19	1.59 ± 0		
TEE of ACCTRI without DIT (kcal d ⁻¹)	2209 ± 286	1924 ± 3		
(TEE _{DLW} – TEE _{ACCTRI})/ TEE _{DLW} × 100 (%)	-17.9 ± 9.9	-16.2 ± 5		
TEE of ACCTRI with DIT (kcal d^{-1})	2454 ± 318	2138 ± 3		
PAL of ACCTRI cor- rected with DIT	1.96 ± 0.21	1.76 ± 0		
TEE of sPAR without DIT (kcal d ⁻¹)	2245 ± 388	1959 ± 4		
$(\text{TEE}_{\text{DLW}} - \text{TEE}_{\text{sPAR}})/$ TEE _{DLW} × 100 (%)	-16.9 ± 9.5	-15.3 ± 9		
TEE of sPAR with DIT (kcal d^{-1})	2494 ± 431	2177 ± 4		
PAL of sPAR corrected with DIT	1.98 ± 0.22	1.79 ± 0		
Step count (d^{-1})	9034 ± 5022	7925 ± 4		
Nd/no	1.035 ± 0.012	1.033 ± 0		

BMI body mass index, TBW total body water, FFM fat-free mass, FM fat mass, mBMR measured basal metabolic rate, eBMR estimated BMR by the fifth Japanese recommended dietary allowance equation, TEE total energy expenditure, AEE activity energy expenditure, AEE/Wt AEE divided by weight, PAL physical activity level, ACCTRI triaxial accelerometer, DIT diet-induced thermogenesis, sPAR simplified physical activity record, *Nd/No* stable isotope dilution space ratio of 2 H and 18 O

2018 study example 1

Women (n=24)Community-dwell- Community-dwell- Care home y-dwell- Care home residents with ing older adults dults ing older adults residents with frailty with sporting without sporting frailty orting habits habits n=8n=3n = 13n=8 82 ± 8 69 ± 4 75 ± 6 87 ± 7 7.4 158.8 ± 4.9 157.0 ± 5.6 147.9 ± 4.4 143.0 ± 5.0 5.7 49.7 ± 9.2 47.2 ± 1.2 48.0 ± 6.8 51.5 ± 10.3 19.2 ± 1.0 1.3 19.7 ± 3.4 25.1 ± 4.2 21.9 ± 2.8 25.8 ± 9.7 36.0 ± 5.4 2.3 20.4 ± 9.1 35.3 ± 7.4 3.6 28.6 ± 3.3 25.7 ± 4.1 22.3 ± 1.7 24.2 ± 4.2 4.9 39.0 ± 4.6 35.1 ± 5.5 30.4 ± 2.3 33.0 ± 5.7 1.4 10.7 ± 6.3 12.1 ± 4.3 17.6 ± 4.8 18.5 ± 6.8 167 1117 ± 144 1090 ± 103 1011 ± 114 975 ± 217 124 1003 ± 88 990 ± 99 1082 ± 90 1054 ± 36 442 1795 ± 338 2260 ± 208 1922 ± 285 1421 ± 274 281 944 ± 97 719 ± 250 498 ± 259 303 ± 144 4.6 10.5 ± 6.0 20.0 ± 1.6 15.6 ± 7.0 5.8 ± 2.7 0.23 2.07 ± 0.07 1.61 ± 0.26 1.92 ± 0.32 1.47 ± 0.21 0.14 1.26 ± 0.10 1.87 ± 0.10 1.70 ± 0.12 1.29 ± 0.11 323 1357 ± 132 1966 ± 57 1700 ± 184 1277 ± 176 5.2 -22.5 ± 13.4 -12.6 ± 6.2 -10.3 ± 11.9 -8.8 ± 12.4 358 1508 ± 147 2185 ± 63 1889 ± 204 1418 ± 195 2.07 ± 0.11 0.15 1.39 ± 0.11 1.88 ± 0.14 1.43 ± 0.11 1414 ± 180 448 1971 ± 250 1622 ± 173 1281 ± 176 -24.4 ± 17.9 -12.9 ± 5.4 -14.4 ± 12.3 -9.1 ± 12.2 9.6 498 1571 ± 200 2409 ± 306 1983 ± 212 1565 ± 216 0.31 1.44 ± 0.09 20.7 ± 0.11 1.80 ± 0.13 1.44 ± 0.09 4625 3028 ± 2398 10637 ± 3903 8523 ± 3211 1231 ± 1276 1.041 ± 0.009 0.011 1.038 ± 0.009 1.034 ± 0.012 1.037 ± 0.011

DLV S S PAR త Accelerometer

Fig. 1 Relationship between age and total energy expenditure (TEE) squares indicate care home residents

in men (a) and women (b), relationship between age and basal metabolic rate (BMR) in men (c) and women (d), relationship between age and physical activity energy expenditure (AEE) in men (e) and women (f), and relationship between age and physical activity level (PAL) in men (g) and women (h). Circles indicate community-dwelling healthy older adults without sporting habits, triangles indicate community-dwelling healthy older adults with sporting habits, and

Fig. 2 Relationship between physical activity level (PAL) calculated by the doubly labeled water (DLW) method with the measured basal metabolic rate (BMR) and 24-h average MET of the triaxial accelerometer (ACCTRI) (a) or 24-h average MET of the simplified physical activity record (sPAR) (b), relationship between PAL by DLW and PAL of ACCTRI (c) or sPAR (d) corrected with estimated diet-induced thermogenesis (DIT), and relationship between total energy expenditure (TEE) by DLW and TEE of ACCTRI (c) or sPAR (d) corrected with DIT. Circles indicate community-dwelling healthy older adults without sporting habits, triangles indicate community-dwelling healthy older adults with sporting habits, and squares indicate care home residents

Fig. 3 Bland–Altman agreement plots showing the difference between the physical activity level (PAL_{DLW}) and total energy expenditure (TEE_{DLW}) measured using doubly labeled water and estimated by (a and c) a triaxial accelerometer (ACCTRI) and (**b** and **d**) simplified physical activity record (sPAR). A negative sign for the difference indicates an underestimation and a positive sign denotes an overestimation. No statistical differences were observed in the estimation error between ACCTRI and sPAR in both PAL and TEE. Circles indicate community-dwelling healthy older adults without sporting habits, triangles indicate community-dwelling healthy older adults with sporting habits, and squares indicate care home residents

2018 study example 1

Fig. 4 Relationship between daily step counts by Lifecorder and physical activity level (PAL) calculated by the doubly labeled water (DLW) method with measured basal metabolic rate (mBMR). Circles indicate community-dwelling healthy older adults without sporting habits, triangles indicate community-dwelling healthy older adults with sporting habits, and squares indicate care home residents

adults without sporting habits, triangles indicate community-dwelling

2018 study example 1

Wearables vs. DLW

	Standardized Day (Measured by Metabolic Chamber: 2093.0 ([304.0] kcal/day)			Free-living Days (Measured by DLW Method: 2314.4 ([312.6] kcal/day)			
Device Name (Wearing Position)	Difference in TEE Between Each Device and Metabolic Chamber (kcal/day), Mean (SD)	Estimated TEE by Each Device, Mean (SD)	Spearman Rank Correlation Coefficient ^a	Difference in TEE Between Each Device and DLW (kcal/day), Mean (SD)	Estimated TEE by Each Device, Mean (SD)	Spearman Rank Correlation Coefficient ^a	
Withings Pulse O ₂ (wrist)		1814.8 (230.3) ^b	0.88		1796.6 (246.5)b	0.82	
Jawbone (UP24) (wrist)		1815.8 (206.8) ^b	0.89		1724.2 (229.7) ^b	0.81	
Garmin Vivofit (wrist)		1844.1 (268.3)	0.90	•	1811.6 (274.8) ^b	0.85	
ActiGraph GT3X (waist) ^c		1919.8 (343.0)	0.88		1789.5 (334.2)b	0.80	
Suzuken Lifecorder EX (waist)		2051.8 (277.7)	0.93		2034.4 (298.3)	0.83	
Panasonic Actimarker (waist)		2081.5 (329.9)	0.92		2069.8 (320.3)	0.85	
Epson Pulsense (wrist)		2128.9 (206.2)	0.71		2097.4 (292.9)	0.82	
Tanita AM-160 (pocket)		2138.0 (363.3)	0.92		2094.4 (402.3)	0.85	
Fitbit Flex (wrist)		2219.3 (327.5)	0.90		2142.5 (354.4)	0.84	
Misfit Shine (wrist)		2221.5 (312.4)	0.84		2084.1 (330.8)	0.85	
Omron Active Style Pro (waist)		2268.3 (367.2)	0.92		2245.2 (359.5)	0.88	
Omron CaloriScan (pocket)		2297.5 (345.5)	0.93		2221.3 (384.5)	0.88	

Spearman rank correlation coefficients were obtained by interparticipant analysis. DLW indicates doubly labelled water; TEE, total energy expenditure.

^a Significant correlation for Spearman test between standard TEE and TEE estimated by each device.

^b Significant difference from TEE obtained by the metabolic chamber or DLW method.

^c TEE was calculated by adding resting metabolic ratio to physical activity energy expenditure provided by ActiGraph.

Wearables vs. DLW

JAMA Network[™] N

Chamber and Doubly Labeled Water Method

JAMA Intern Med. 2016;176(5):702-703. doi:10.1001/jamainternmed.2016.0152

Figure Legend:

All 12 Wearable Devices on the BodyPhoto of all 12 wearable devices: Fitbit Flex, JAWBONE UP24, Misfit Shine, EPSON PULSENCE PS-100, Garmin Vivofit (wrist), TANITA AM-160, OMRON CaloriScan HJA-403C (hand-held), and Withings Pulse O2, OMRON Active style Pro HJA-350IT, Panasonic Actimarker EW4800, SUZUKEN Lifecorder EX, and ActiGraph GT3X (waist).

Date of download: 11/16/2018

Copyright © 2016 American Medical Association. All rights reserved.

From: Accuracy of Wearable Devices for Estimating Total Energy ExpenditureComparison With Metabolic

Accelerometer issues

- SINGLE-SITE PLACEMENT;
- speed rapid changes activities (e.g., tennis)

measures

- waist placement -> PA underestimate during upper limb movement, standing, vertical activity (i.e., climbing stairs, uphill walking), pushing or pulling objects, carrying loads (e.g., books or laptops), body-supported exercise (e.g., cycling), water PA (e.g., swimming), running faster than 9 km/h, horizontal

Ellis et al., 2014

measures

Solution?

- A combination of variables describing: movements feature sedentary PA); 2) a trunk-focused posture variable featuring locomotion; largest, most powerful muscles);

measures

- 1) upper limbs-focused high frequency components (upper limbs
- 3) lower limbs-focused high intensity components (lower limbs have

- More than ONE accelerometer together, as well (e.g., waist TriTrac-R3D + dominant arm wrist Actiwatch, Actiwatch + Actical, ...);

- accelerometers based activity logger: . two (@sternum, front thigh) biaxial accelerometers + analog data-logger;

measures

Culhane et al., 2004

Culhane et al., 2004

measures

90°

Figure 3 Standing criteria.

Culhane et al., 2004

measures

measures

min. and max. predictive value and sensitivity per class

Busser et al., 1997 . uniaxial accelerometer (@front thigh) + 2 unixial accelerometer/digital data-logger (backpack) -> sitting, standing, lying, crawling, walking, running, going on a swing 73÷91% detection;

measures

class

Figure 6 Minimal and maximal validity of the individual ADL categories based on the monitor's sensitivity (S_{min} and S_{max} , respectively) and predictive value (P_{\min} and P_{\max} , respectively). Sensitivity indicates how often the monitor recognizes a category; the predictive value indicates how often the decision of the monitor is correct. A lack of sensitivity indicates a false negative; a lack of predictive value indicates a false positive.

. three uniaxial accelerometers (2@sternum, front thigh) + digital recorder;

-> sitting, standing, lying, walking, climbing/going down stairs, cycling 80% detection (Veltink et al., 1996);

. four biaxial accelerometers (@lateral thighs, sternum or front forearms) + HR monitor + digital recorder;

-> more than twenty different postures/locomotions 83÷88% detection;

measures

Figure 1. An extended configuration of the Activity Monitor, with accelerometers at the thighs, trunk, and lower arms.

Bussmann et al., 2001

- Introduction of another type of physical sensor: . (@sternum) two biaxial accelerometers

+ piezoelectric gyroscope + digital recorder (@wrist);

measures

Najafi et al., 2003

Overa	TABLE II Overall Sensitivity and Specificity of Transition Detection for the 11 Elderly (First Study)							
	*_	Sensitivity, %				Specificity, %		
# Test	Total PT	ΡT	SiSt**	StSi	Lying	Walking	SiSt	StSi
1	40	100	100	100	100	95±4	100	100
2	66	98±5	100	97±10	-	97±3	95±12	100±0
3	58	100	97±10	63±29	-	-	63±29	97±10
4	58	100	88±25	75±29	-	-	75±29	88±25
5	64	96±9	89±18	86±19	-	-	86±19	94±13
6	57	100	85±19	72±24	-	-	72±24	85±19
Mean	57±9	99±2	93 ±7	82±15	100	96±1	82±15	94±6

* PT: Postural transition.

** SiSt: sit-to-stand transition.

† StSi: stand-to-sit transition.

Najafi et al., 2003

-> posture change, walking detection;

measures

- thermometry, ventilation measure):
 - . e.g., HR monitor (-> ME) + motion sensor(s) (-> motion-sensor-sensitive PA);
- accelerometers + inclinometers -> body position over time -> 85% unstructured exercise thermogenesis estimate:
 - . total internal heat produced $\approx 75 \div 80\%$ energy intake;
 - . partial internal heat produced <- sitting, standing, walking, working, any other unstructured exercise;

 - . i.e., motion sensor -> yes/not time to use HR monitor for ME estimate;

measures

- Accelerometry (-> movement) + physiological measure (e.g., HR measure,

. proposal: (during the day) wearing motion sensor, (structured exercise) wearing HR monitor;

. exception: children (i.e., V'O2 [ml O2/kg^{.75} min] correlated w/both counts, HR, but w/counts r² > w/HR r²);

measures

Eston et al., 1998

Second generation accelerometers (re: children HR)

. solution: two different individual V'O2 vs. HR relationships, one for inactivity, one for PA;

measures

