
Chapter 7

String Manipulation

Linguaggio Programmazione Matlab-Simulink (2018/2019)

Strings: Terminology
 A string in MATLAB consists of any number of characters and is

contained in single quotes

 strings are vectors in which every element is a single character

 A substring is a subset or part of a string

 Characters include letters of the alphabet, digits, punctuation
marks, white space, and control characters
 Control characters are characters that cannot be printed, but

accomplish a task (such as a backspace or tab)

 White space characters include the space, tab, newline, and
carriage return

 Leading blanks are blank spaces at the beginning of a string,

 Trailing blanks are blank spaces at the end of a string

 Empty string is a string with length 0, e.g. ''

String Variables
 String variables can be created using

 assignment statements

 input function (with ‘s’ as the second argument)

 Since strings are vectors of characters, many built-in functions
and operators that we’ve seen already work with strings as well
as numbers – e.g., length to get the length of a string, or the
transpose operator

 You can also index into a string variable to get individual
characters or to get subsets of strings, or in other words,
substrings

String Concatenation
 There are several ways to concatenate, or join, strings

 To horizontally concatenate (creates one long string):
 Using [], e.g.

>> ['hello' 'there']

ans =

hellothere

 Using strcat, e.g. strcat(‘hello’, ‘there’)
>> strcat('hello', 'there')

ans =

hellothere

 There is a difference: if there are leading blanks, using []
will retain them whereas strcat will not

Vertical Concatenation
 Vertically concatenating strings creates a column

vector of strings, which is basically a character matrix
(a matrix in which every element is a single character)

 There are 2 ways to do this:
 Using [] and separating with semicolons

 Using char

 Since all rows in a matrix must have the same number
of characters, shorter strings must be padded with
blank spaces so that all strings are the same length ;
the built-in function char will do that automatically

Character Matrices
 Both [] and char can be used to create a matrix in

which every row has a string:
>> cmat = ['Hello';'Hi '; 'Ciao '];

>> cmat = char('Hello', 'Hi', 'Ciao’);

 Both of these will create a matrix cmat:

 Shorter strings are padded with blanks, e.g.
cmat(2,:) is 'Hi '

H e l l o

H i

C i a o

The sprintf function
 sprintf works just like fprintf, but instead of printing,

it creates a string – so it can be used to customize the
format of a string

 So, sprintf can be used to create customized strings to
pass to other functions (e.g., title, input)

>> maxran = randi([1, 50]);

>> prompt = sprintf('Enter an integer from 1 to %d: ', maxran);

>> mynum = input(prompt);

Enter an integer from 1 to 46: 33

 Any time a string is required as an input, sprintf can
create a customized string

String Comparisons
 strcmp compares two strings and returns logical 1 if

they are identical or 0 if not (or not the same length)

 For strings, use this instead of the equality operator ==

 variations:

 strncmp compares only the first n characters

 strcmpi ignores case (upper or lower)

 strncmpi compares n characters, ignoring case

Find and replace functions

 strfind(string, substring): finds all occurrences of
the substring within the string; returns a vector of the
indices of the beginning of the strings, or an empty
vector if the substring is not found

 strrep(string, oldsubstring, newsubstring): finds
all occurrences of the old substring within the string,
and replaces with the new substring

 the old and new substrings can be different lengths

The strtok function
 The strtok function takes a string and breaks it into

two pieces and returns both strings

 It looks for a delimiter (by default a blank space) and
returns a token which is the beginning of the string up
to the delimiter, and also the rest of the string, including
the delimiter

 A second argument can be passed for the delimiter

 So – no characters are lost; all characters from the
original string are returned in the two output strings

 Since the function returns two strings, the call to strtok
should be in an assignment statement with two variables
on the left to store the two strings

Examples of strtok
>> mystring = 'Isle of Skye';

>> [first, rest] = strtok(mystring)

first =

Isle

rest =

of Skye

>> length(rest)

ans =

8

>> [f, r] = strtok(rest, 'y')

f =

of Sk

r =

ye

The eval function
 The eval function evaluates a string as a function call

or a statement

 Usually used when the contents of the string are not
known ahead of time; e.g., the user enters part of it
and then a customized string is created

 For example:
>> x = 1:5;

>> fn = input('Enter a function name: ', 's');

Enter a function name: cos

>> eval(strcat(fn, '(x)'))

ans =

0.5403 -0.4161 -0.9900 -0.6536 0.2837

eval example
This is a very common application: a series of

experiments has been run, resulting in files with the
same name except for consecutive integers at the end
of the name. We will write a for loop that will load
files named ‘file1.dat’, ‘file2.dat’, … ‘file5.dat’
(assuming that they exist)

for i = 1:5

eval(sprintf('load file%d.dat',i))

end

“is” & String/Number Functions
 “is” functions for strings:

 isletter true if the input argument is a letter of the alphabet

 isspace true if the input argument is a white space character

 ischar true if the input argument is a string

 isstrprop determines whether the characters in a string are in
a category specified by second argument, e.g. ‘alphanumeric’

 Converting from strings to numbers and vice versa:
 int2str converts from an integer to a string storing the integer

 num2str converts a real number to a string containing the
number

 str2num (and str2double) converts from a string containing
number(s) to a number array

 (Note: different from converting to/from ASCII equivalents)

Common Pitfalls
 Trying to use == to compare strings for equality,

instead of the strcmp function (and its variations)

 Confusing sprintf and fprintf. The syntax is the
same, but sprintf creates a string whereas fprintf
prints

 Trying to create a vector of strings with varying lengths
(the easiest way is to use char which will pad with
extra blanks automatically)

 Forgetting that when using strtok, the second
argument returned (the “rest” of the string) contains
the delimiter.

Programming Style Guidelines
 Trim trailing blanks from strings that have been stored

in matrices before using

 Make sure the correct string comparison function is
used; for example, strcmpi if ignoring case is desired

Exercises
 Prompt the user for a string. Print the length of the

string and also the first and last characters in the
string. Make sure that this works regardless of what
the user enters.

 In a loop, create and print strings with file names
“file1.dat”, “file2.dat”, and so on for file numbers 1
through 5.

 Create an x vector. Prompt the user for ‘sin’, ‘cos’, or
‘tan’ and create a string with that function of x (e.g.,
‘sin(x)’ or ‘cos(x)’). Use eval to create a y vector using
the specified function.

Chapter 8

Data Structures: Cell Arrays and Structures

Linguaggio Programmazione Matlab-Simulink (2018/2019)

Cell Arrays
 A cell array is a type of data structure that can store

different types of values in its elements

 A cell array could be a vector (row or column) or a
matrix

 It is an array, so indices are used to refer to the
elements

 One great application of cell arrays: storing strings of
different lengths

Creating Cell Arrays
 The syntax used to create a cell array is curly braces { }

instead of []

 The direct method is to put values in the row(s)
separated by commas or spaces, and to separate the
rows with semicolons (so, same as other arrays) – the
difference is using { } instead of []

 The cell function can also be used to preallocate by
passing the dimensions of the cell array, e.g.

cell(4,2)

Referring to Cell Array Elements
 The elements in cell arrays are cells
 There are two methods of referring to parts of cell arrays:

 you can refer to the cells; this is called cell indexing and parentheses
are used

 you can refer to the contents of the cells; this is called content
indexing and curly braces are used

 For example:
>> ca = {2:4, 'hello'};

>> ca(1)

ans =

[1x3 double]

>> ca{1}

ans =

2 3 4

Cell Array Functions
 the celldisp function displays the contents of all

elements of a cell array

 cellplot puts a graphical display in a Figure Window
(but it just shows cells, not their contents)

 to convert from a character matrix to a cell array of
strings: cellstr

 iscellstr will return logical true if a cell array is a cell
array of all strings

Functions strjoin and strsplit
 Introduced in R2013a

 strjoin concatenates all strings from a cell array into
one string separated by a delimiter (space by default
but others can be specified)

 strsplit splits a string into elements in a cell array
using a blank space as the default delimiter (or
another specified)

Structure Variables
 Structures store values of different types, in fields

 Fields are given names; they are referred to as

structurename.fieldname using the dot operator

 Structure variables can be initialized using the struct
function, which takes pairs of arguments (field name
as a string followed by the value for that field)

 To print, disp will display all fields; fprintf can only
print individual fields

Struct Example
>> subjvar = struct('SubjNo’,123,'Height’,62.5);

>> subjvar.Height

ans =

62.5000

>> disp(subjvar)

SubjNo: 123

Height: 62.5000

>> fprintf('The subject # is %d\n',...

subjvar.SubjNo)

The subject # is 123

Cell Arrays vs. Structs
 Cell arrays are arrays, so they are indexed

 That means that you can loop though the elements in a
cell array – or have MATLAB do that for you by using
vectorized code

 Structs are not indexed, so you can not loop

 However, the field names are mnemonic so it is more
clear what is being stored in a struct

 For example:
variable{1} vs. variable.weight: which is more mnemonic?

Structure Functions
 the function rmfield removes a field but doesn’t alter

the variable

 the function isstruct will return logical 1 if the
argument is a structure variable

 the function isfield receives a structure variable and a
string and will return logical 1 if the string is the name
of a field within the structure

 the fieldnames function receives a structure variable
and returns the names of all of its fields as a cell array

Vector of Structures
 A database of information can be stored in MATLAB in a vector

of stuctures; a vector in which every element is a structure

 For example, for a medical experiment information on subjects
might include a subject #, the person’s height, and the person’s
weight

 Every structure would store 3 fields: the subject #, height, and
weight

 The structures would be stored together in one vector so that you
could loop through them to perform the same operation on every
subject – or vectorize the code

Example
>> subjvar(2) = struct('SubjNo', 123, 'Height',...

62.5, 'Weight', 133.3);

>> subjvar(1) = struct('SubjNo', 345, 'Height',...

77.7, 'Weight', 202.5);

 This creates a vector of 2 structures

 The second is created first to preallocate to 2 elements

 A set of fields can be created, e.g.
>> [subjvar.Weight]

ans =

202.5000 133.3000

Example Problem

We will write general statements (using the programming
method) that will print the item number and code fields of
each structure in a nice format
for i = 1:length(packages)

fprintf('Item %d has a code of %c\n', ...

packages(i).item_no, packages(i).code)

end

 packages

 item_no cost price code

1 123 19.99 39.95 ‘g’

2 456 5.99 49.99 ‘l’

3 587 11.11 33.33 ‘w’

Nested Structures
 A nested structure is a structure in which at least one

field is another structure

 To refer to the “inner” structure, the dot operator
would have to be used twice

 e.g. structurename.innerstruct.fieldname

 To create a nested structure, calls to the struct
function can be nested

Nested struct example
 The following creates a structure for a contact that

includes the person’s name and phone extension. The
name is a struct itself that separately stores the first
and last name.

 The calls to struct are nested
>> contactinfo = struct(...

'cname', struct('last', 'Smith', 'first', 'Abe'),...

'phoneExt', '3456');

>> contactinfo.cname.last

ans =

Smith

Sorting
 Sorting is the process of putting a list in order; either

ascending (lowest to highest) or descending (highest
to lowest)

 MATLAB has built-in sort functions

 there are many different sort algorithms

 One strategy is to leave the original list, and create a
new list with all of the same values but in sorted order
– another is to sort the original list in place

 The selection sort will be used as an example of sorting
a vector in ascending order in place

Selection sort algorithm
 Put the next smallest number in each element by looping

through the elements from the first through the next-to-
last (the last will then automatically be the largest value)

 For each element i:
 find the index of the smallest value

 start by saying the top element is the smallest so far (what is needed
is to store its index)

 loop through the rest of the vector to find the smallest

 put the smallest in element i by exchanging the value in
element i with the element in which the smallest was found

Selection Sort Function
function outv = mysort(vec)

%This function sorts a vector using the selection sort

% Loop through the elements in the vector to end-1

for i = 1:length(vec)-1

indlow = i; % stores the index of the lowest

%Select the lowest number in the rest of the vector

for j = i+1 : length(vec)

if vec(j) < vec(indlow)

indlow = j;

end

end

% Exchange elements

temp = vec(i);

vec(i) = vec(indlow);

vec(indlow) = temp;

end

outv = vec;

end

Built-in sort Function
 The sort function will sort a vector in ascending (default) or

descending order:
>> vec = randi([1, 20],1,7)
vec =

17 3 9 19 16 20 14
>> sort(vec)
ans =

3 9 14 16 17 19 20
>> sort(vec, 'descend')
ans =

20 19 17 16 14 9 3

 For a matrix, each individual column would be sorted
 sort(mat,2) sorts on rows instead of columns

Sorting Vector of Structs
 For a vector of structures,

what would it mean to sort?
Based on what? Which field?

 For example, for the vector
“parts”, it would make sense
to sort based on any of the
fields (code, quantity, or
weight)

 The sorting would be done
based on the field e.g.
parts(i).code

 The entire stuctures would be
exchanged

 parts

 code quantity weight

1 ‘x’ 11 4.5

2 ‘z’ 33 3.6

3 ‘a’ 25 4.1

4 ‘y’ 31 2.2

Selection Sort for Vector of structs
 If the vector of structs is called “vec” instead of “parts”, what would

change in this function to sort based on the code field?
function outv = mysort(vec)

%This function sorts a vector using the selection sort

% Loop through the elements in the vector to end-1

for i = 1:length(vec)-1

indlow = i; % stores the index of the lowest

%Select the lowest number in the rest of the vector

for j = i+1 : length(vec)

if vec(j) < vec(indlow) vec(j).code < vec(indlow).code

indlow = j;

end

end

% Exchange elements

temp = vec(i);

vec(i) = vec(indlow);

vec(indlow) = temp;

end

outv = vec;

end

Sorting Strings
 To sort a cell array of strings alphabetically, use sort:

>> sciences = {'Physics', 'Biology', 'Chemistry'};
>> sort(sciences)
ans =

'Biology' 'Chemistry' 'Physics’

 For a character matrix, however, this will not work because sort
will just sort every individual column:

>> scichar = char(sciences)
scichar =
Physics
Biology
Chemistry
>> sort(scichar)
ans =
Bhelics
Chomigt
Piysosyry

The function sortrows
 The function sortrows will sort the rows within a

column vector, so for strings this will yield an
alphabetical sort:

>> sciences = {'Physics', 'Biology', 'Chemistry'};
>> scichar = char(sciences);
>> sortrows(scichar)
ans =

Biology
Chemistry
Physics

 This works for numbers, also

Indexing
 Rather than sorting the entire vector every time on a

particular field, it is frequently more efficient to
instead create index vectors based on the different
fields

 Index vectors, which we have seen already, give the
order in which the vector should be traversed

 e.g. vec([3 1 2]) says “go through the vector in this order:
the third element, then the first, then the second”

Indexing into a Vector of structs
 For the vector of structures “parts”, the index vectors shown give

the order in which to go through the vector based on the code
field, quantity, and for the weight:

 parts

 code quantity weight ci qi wi

1 ‘x’ 11 4.5 1 3 1 1 1 4

2 ‘z’ 33 3.6 2 1 2 3 2 2

3 ‘a’ 25 4.1 3 4 3 4 3 3

4 ‘y’ 31 2.2 4 2 4 2 4 1

E.g.: [code_sorted, ci] = sort([parts.code])

Using an index vector
 To use this (e.g. to iterate through the vector in order of the code field

by using the code index vector ci):
for i = 1:length(parts)

do something with parts(ci(i))

end

 parts

 code quantity weight ci qi wi

1 ‘x’ 11 4.5 1 3 1 1 1 4

2 ‘z’ 33 3.6 2 1 2 3 2 2

3 ‘a’ 25 4.1 3 4 3 4 3 3

4 ‘y’ 31 2.2 4 2 4 2 4 1

Common Pitfalls
 Confusing the use of parentheses (cell indexing)

versus curly braces (content indexing) for a cell array

 Forgetting to index into a vector using parentheses or
to index into a cell array using parentheses or curly
braces or referring to a field of a structure using the
dot operator

 Thinking that you can index into a structure

 When sorting a vector of structures on a field,
forgetting that although only the field in question is
compared in the sort algorithm, entire structures must
be interchanged

Programming Style Guidelines
 Use arrays when values are the same type and represent in some sense

the same thing.

 Use cell arrays or structures when the values are logically related but
not the same type nor the same thing.

 Use cell arrays rather than character matrices when storing strings of
different lengths

 Use cell arrays rather than structures when it is desired to loop through
the values or to vectorize the code.

 Use structures rather than cell arrays when it is desired to use names
for the different values rather than indices.

 Use sortrows to sort strings stored in a matrix alphabetically; for cell
arrays, sort can be used.

 When it is necessary to iterate through a vector of structures in order
based on several different fields, it may be more efficient to create
index vectors based on these fields rather than sorting the vector of
structures multiple times.

Exercises
Practice 8.1

 Write an expression that would display a random
element from a cell array (without assuming that the
number of elements in the cell array is known). Create
two different cell arrays and try the expression on them
to make sure that it is correct.

Exercises
Practice 8.2

 A silicon wafer manufacturer stores, for every part in
its inventory, a part number, quantity in the factory,
and the cost for each.

Create this structure variable using struct. Print the cost
in the form $xx.xx.

 onepart
part_no quantity costper

123 4 33.95

Exercises
Practice 8.3

 Modify the code from the preceding Quick Question
to use sprintf.

Exercises
Practice 8.4

 A silicon wafer manufacturer stores, for every part in
their inventory, a part number, how many are in the
factory, and the cost for each. First, create a vector of
structs called parts so that when displayed it has the
following values:

>> parts

parts =

1x3 struct array with fields:

partno

quantity

costper

>> parts(1)

ans =

partno: 123

quantity: 4

costper: 33

>> parts(2)

ans =

partno: 142

quantity: 1

costper: 150

>> parts(3)

ans =

partno: 106

quantity: 20

costper: 7.5000

Next, write general code that will, for any values and any
number of structures in the variable parts, print the part
number and the total cost (quantity of the parts
multiplied by the cost of each) in a column format.

For example, if the variable parts stores the previous
values, the result would be:

123 132.00

142 150.00

106 150.00

