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Image segmentation 

•  Goal: partition the image into its constituent objects 

•  Approaches 
–  Discontinuity: detect abrupt chsnges in gray levels è edge detection 
–  Similarity: group pixels based on their similarity with respect to a 

predefined criterion è region-based processing 
•  Feature extraction 
•  Region growing 
•  Feature clustering/classification 
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Edge detection 

Digital Image Processing  

K. Pratt, Chapter 15, pag 443 
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Edge detection 

•  Framework: image segmentation 

•  Goal: identify objects in images 
–  but also feature extraction, multiscale analysis, 3D reconstruction, 

motion recognition, image restoration, registration 

•  Classical definition of the edge detection problem: localization of 
large local changes in the grey level image → large graylevel 
gradients 
–  This definition does not apply to apparent edges, which require a more 

complex definition 
–  Extension to color images 

•  Contours are very important perceptual cues! 
–  They provide a first saliency map for the interpretation of image 

semantics 
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Contours as perceptual cues 
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Contours as perceptual cues 
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What do we detect? 

•  Depending on the impulse response of the filter, we can detect 
different types of graylevel discontinuities 
–  Isolate points (pixels) 
–  Lines with a predefined slope 
–  Generic contours 

•  However, edge detection implies the evaluation of the local gradient 
and corresponds to a (directional) derivative 
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Detection of Discontinuities 

•  Point Detection 

Detected point 
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original filtered 

+ thresholding 
(90%of max) 



Detection of Discontinuities 

1R 2R 3R 4R

•  Line detection 
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Detection of Discontinuities 
•  Line Detection Example: 
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Threshold=max{filtered} 
Suitable for binary images 



Edge detection 

•  Image locations with abrupt 
changes → differentiation → high 
pass filtering ],[ nmf Intensity profile 
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Types of edges 
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Continuous domain edge models 
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2D discrete domain 
single pixel spot 
models 
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Discrete domain edge models 

a 

b 
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Profiles of image intensity edges 
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Models of an ideal digital edge 
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Types of edge detectors 

•  Unsupervised or autonomous: only rely on local image features 
–  No contextual information is accounted for 
–  Simple to implement, flexible, suitable for generic applications 
–  Not robust 

•  Supervised or contextual: exploit other sources of information 
–  Some a-priori knowledge on the semantics of the scene 
–  Output of other kind of processing 
–  Less flexible 
–  More robust 

•  There is no golden rule: the choice of the edge detection strategy 
depends on the application 
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Types of edge detection 

•  Differential detection 
–  Differential operators are applied to the original image F(x,y) to produce 

a differential image G(x,y) with accentuated spatial amplitude changes 
–  Thresholds are applied to select locations of large amplitude 

•  Model fitting 
–  Fitting a local region of pixel values to a model of the edge, line or spot 

•  A binary indicator map E(x,y) is used to indicate the positions of 
edges, lines or points 
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Differential edge detection 

•  First order derivatives 

•  Second order derivatives 
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Differential edge detection 

Signal 

First order 
differentiation 

Second order 
differentiation 

Gradient thresholding 

Zero-crossing 
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Diff. edge det.: Approach 

1.  Smoothing of the image  
–  To reduce the impact of noise and the number of spurious (non 

meaningful) edges 
–  To regularize the differentiation 

2.  Calculation of first and second order derivatives 
–  Isolation of high spatial frequencies 
–  Required features: invariance to rotations, linearity 
–  Critical point: choice of the scale (size of the support) 

3.  Labeling 
–  Plausibility measure for the detected point belonging to a contour (to 

get rid of false edges) 
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Image gradient 

•  The gradient of an image 

•  The gradient points in the direction of most rapid change in intensity 

•  The gradient direction is given by 

•  The edge strength is given by the gradient magnitude 

23 



Gradient vector 
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Orthogonal gradient vector 

•  Continuous 1D gradient along a line normal to the edge slope 

•  Need of a discrete approximation: definition of a row and a column 
gradient combined in a spatial gradient amplitude 
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Discrete orthogonal gradient vector 
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Simplest row/col gradient approximations 
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The discrete gradient 

•  How can we differentiate a digital image f[x,y]? 
–  Option 1:  reconstruct a continuous image, then take gradient 
–  Option 2:  take discrete derivative (finite difference) 

–  Discrete approximation 
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Example 
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Diagonal gradients 

•  Robert’s cross-difference operator 
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Example: Robert’s 
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Orthogonal differential gradient edge op. 
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Gradients as convolutions 

•  The gradient calculation is a neighborhood operation, so it can be 
put in matrix notations 

–  Hrow/col: row and column impulse response arrays 

•  The size of the convolution kernels can be increased to improve 
robustness to noise 

•  Example: normalized boxcar operator 
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Gradient filters 

•  Pixel differences 

•  Symmetric differences 

•  Roberts 

•  Prewitt 

•  Sobel 

1 -1 

1 0 -1 

0 -1 
1 0 

1 0 -1 
1 0 -1 
1 0 -1 

1 0 -1 
2 0 -2 
1 0 -1 

V

H

H  detects vertical edges
H  detects horizontal edges

T
V HH H=

The filter along the y direction is obtained by 
transposition of that along the x direction 

HV: detecting 
vertical edges 
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Introducing averaging 

•  Differential methods are highly sensitive to small luminance 
fluctuations → combine with averaging 

•  Prewitt operator square root gradient 

k=1 
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Sobel, Frei&Chen operator 

•  Sobel: same as Prewitt with k=2 
–  Give the same importance to each pixel in terms to its contribution to 

spatial gradient  

•  Frei&Chen: same as Prewitt with k=sqrt(2) 
–  The gradient is the same for horizontal, vertical and diagonal edges 
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Sobel 

Grow =(1/4) 

1 

1 
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Gcol =(1/4) 
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where 

a0 a1 

a7 

a2 

(i,j) 

a6 

a3 

a5 a4 

2 2
row colG G G= +

Grow [i,j]=(a0 + c a7 + a6) - (a2 + c a3 + a4) 
Gcol = (a6 + c a5 + a4)- (a0 + c a1 + a2)    
c=2 

Special case of the general one hereafter with c=2 
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Sobel extentions 
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truncated pyramid Sobel 7x7 
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Grow = 1/3 

-1 

-1 

1 
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c = 1 

Prewitt 

•  Kirsch operator 
–  8 directional masks, each selecting one specific direction 
–  “winner takes all” paradigm for the absolute value of the gradient and direction 

selected by the index of the corresponding mask 

•  Robinson operator 
–  8 directional masks, similar to Kirsh 
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Directional masks 
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Sobel 

Kirsch 

Prewitt 

Roberts Robinson 
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Truncated pyramid op. 

•  Linearly decreasing weighting to pixels away from the center of the 
edge 
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Comparison 
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Edge detection in 
presence of noise  
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Improving robustness to noise 

•  Combining smoothing with differentiation 
–  Solution 1: do smoothing first and then differentiation 
–  Solution 2: differentiate the smoothing filter and do filtering 

( )d dh dfh f f h
dx dx dx

∗ = ∗ = ∗
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h: smoothing filter 



Solution 1: Smoothing+Differentiation 

Look for peaks in  
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Sol. 2: Differentiation of the smoothing filter 
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Extending to 2° order derivative 

•  The derivative of a convolution is equal to the convolution of either 
of the functions with the derivative of the other  

•  Iterating 

z(x) = f (x)∗ g(x)
dz
dx

=
df
dx
∗ g = f ∗ dg

dx

z(x) = f (x)∗ g(x)
d 2z
dx2

=
d
dx

df
dx
∗ g

"

#
$

%

&
'=
d 2 f
dx2

∗ g
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Hints of the proof 

•  Intuition (OP) 
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Remark 

•  The order in which differentiation and smoothing are performed 
depends on their properties.  
–  Such operations are interchangeable as long as they are linear. Thus, if 

both smoothing and differentiation are performed by linear operators 
they are interchangeable 

–  In this case they can be performed at the same time by filtering the 
image with the differentiation of the smoothing filter 

•  Argyle and Macleod 

•  Laplacian of Gaussian (LoG) 
–  Difference of Gaussians (DoG) 
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Argyle and Macleod 

•  Use a large neighborhood Gaussian-shaped weighting for noise 
suppression 

Argyle operator horizontal coordinate impulse response array can 
be expressed as a sampled version of the continuous domain impulse 
response. s and t are the spread parameters smoothing+differentiation  

Argyle 

McLeod 

The Argyle and Macleod operators, unlike the boxcar operator, give 
decreasing importance to pixels far removed from the center of the 
neighborhood. 

smoothing along the 
edge and differentiation 
along the orthogonal 
direction 
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 Argyle operator 
horizontal coordinate 
impulse response 
array 



Argyle and Macleod 

•  Extended-size differential gradient operators can be considered to 
be compound operators in which a smoothing operation is 
performed on a noisy image followed by a differentiation operation.  

•  The compound gradient impulse response can be written as 

•  Example 
gradient op. low pass 

52 

if Hg is the 3x3 Prewitt row gradient 
operator and Hs (j,k) =1/9, for all 
(j,k) in a 3x3 matrix, is a uniform 
smoothing operator, the resultant 
row gradient operator, after 
normalization to unit positive and 
negative gain, becomes 
 

[ 1 1 1  
0 0 0  

-1 -1 -1 ] 



Second order derivative 

•  Edge detectors based on first order derivative are not robust 
–  High sensitivity to noise, need a threshold 

•  Second order derivative operators detect the edge at the zero-
crossing of the second derivative → more robust, more precise 
–  Less sensitive to noise, usually don’t need a threshold for post-

processing of the contours image 

x x x 

x∂

∂

x∂

∂
f f' f ’’ 
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Laplace operator 

•  Second order differentiation operator 

•  Directional derivative 
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Laplace operator 

•  Second order derivative in the continuous domain 

•  Discrete approximation 
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Discrete approximation: proof 

•  Centring the estimation on (i,j) the simplest approximation is to 
compute the difference of slopes along each axis 

( ) ( )
( ) ( )

[ , ] [ , ] [ , 1] [ , 1] [ , ] 2 [ , ] [ , 1] [ , 1]
[ , ] [ , ] [ 1, ] [ 1, ] [ , ] 2 [ , ] [ 1, ] [ 1, ]

row

col

G i j f i j f i j f i j f i j f i j f i j f i j
G i j f i j f i j f i j f i j f i j f i j f i j

= − − − + − = − − − +

= − + − − − = − + − −

•  This can be put in operator and matrix form as 

2( , ) ( , )G x y f x y= −∇

[ , ] [ , ] [ , ]
0 1 0
1 4 1
0 1 0

G i j f i j H i j

H

= ∗

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥

−⎢ ⎥⎣ ⎦
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Discrete approximation 

–  The 4-neighbors Laplacian is often normalized to provide unit gain 
averages of the positive and negative weighted pixels in the 3x3 
neighborhood 

–  Gain normalized 4-neighbors Laplacian  

–  The weights of the pixels in the neighborhood, and thus the 
normalization coefficient, can be changed to emphasize the edges.  

•  Ex. Prewitt modified Laplacian 

0 1 0
1 1 4 1
4
0 1 0

H
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
−⎢ ⎥⎣ ⎦

1 1 1
1 1 8 1
8

1 1 1
H

− − −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
− − −⎢ ⎥⎣ ⎦

57 



Discrete approximation 

–  Gain normalized separable 8 neighbors Laplacian 

2 1 2
1 1 4 1
8

2 1 2
H

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
− −⎢ ⎥⎣ ⎦

3 30 0 0 0 0
8 8

a a a a b b b

h h−

3 30 0 0 0 0
16 16

a a a c b b b

h h−
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h=a-b 



Note 

•  Without sign change after the evaluation of the Laplacian 
–  However, the sign is meaningless if we evaluate the modulus of the 

gradient 

•  Different possible Laplacian matrices 
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Laplacian of Gaussian 

•  Quite often the zero crossing does not happen at a pixel location 
–  See the example of the step edge 

•  It is common choice to locate the edge at a pixel with a positive 
response having a neighbor with a negative response  

•  Laplacian of Gaussian: Marr&Hildreth have proposed an operator in 
which Gaussian shaped smoothing is performed prior to the 
application of the Laplacian 

Ø  Continuous LoG gradient 
{ }2

2

2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

1 1( , ) exp   
22

S

S

LOG x y f x y H x y
H x y g x s g y s

xg x s
ssπ

= −∇ ∗

=

⎧ ⎫⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

impulse response of the 
Gaussian smoothing 
kernel  

60 



LoG operator 

•  As a result of the linearity of the second derivative operator and of 
the convolution 

 

•  It can be shown that 
–  The convolution (1) can be performed separately along rows and cols 
–  It is possible to approximate the LOG impulse response closely by a 

difference of Gaussians (DOG) operator 

{ }2

2 2 2 2

4 2 2

[ , ] [ , ] [ , ]
( , ) ( , ) ( , )

1( , ) 1 exp
2 2

LOG j k f j k H j k
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x y x yH x y
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⎛ ⎞ ⎧ ⎫+ +
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⎝ ⎠ ⎩ ⎭

(1) 

1 1 2 2 1 2( , ) ( , ) ( , ) ( , ) ( , ),H x y g x s g y s g x s g y s s s= − <
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The LoG operator 

[ ]

2 2

2 2

2 2

2 2 2 2 2
2

4 2

1( , ) exp
2 2

( , ) : ( , )* ( , ) ( , ) * ( , ) ( , )* ( , )
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2( , ) exp mexican   hat
2 2

x yg x y
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h x y g x y f x y g x y f x y h x y f x y

x y s x yg x y
s s

π

π

⎡ ⎤+
= −⎢ ⎥

⎣ ⎦

⎡ ⎤∇ = ∇ =⎣ ⎦

⎡ ⎤+ − +
∇ = −⎢ ⎥

⎣ ⎦

•  How to choose s? 
–  Large values: pronounced smoothing → better denoising BUT smears out sharp 

boundaries reducing the precision in edge localization 
–  Small values: soft smoothing → lower noise reduction BUT better boundary 

preservation 
–  A good solution could be to follow a multiscale approach (s is the scale) 
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LoG filtering 

•  Gaussian smoothing (low-pass filter) 
–  Noise reduction (the larger the filter, the higher the smoothing) 
–  BUT 

•  Smears out edges 
•  Blurs the image (defocusing) 

•  Laplacian detection (high-pass filter) 

•  Edge location by interpolation 
–  The zero-crossing does not happen in a pixel site 

LoG filtering = Gaussian smoothing + Laplacian detection 
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DoG 

+ 

- 

Filtro DoG 
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FDoG 

•  First derivative of Gaussian op. [Pratt] 
–  Gaussian shaped smoothing is followed by differentiation 

•  FDoG continuous domain horizontal impulse response 

( ) ( ) ( )

( ) ( ) ( )

2

2

, , ,

, , ,

R

C

xH x y g x s g y t
s
yH x y g x s g y t
t
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introduces the sign change 
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0 0 1 0 0
0 1 2 1 0

[ , ] 1 2 16 2 1
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5x5 LoG 
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11x11 LoG 
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LoG 

•  Independent variables 
–  s value: larger values allow larger denoising but smear out details and 

made contour extraction not quite precise 

•  Solutions 
–  Trade off 
–  Multiscale 
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2D edge detection filters 
Laplacian of Gaussian Gaussian derivative of Gaussian 

( ),h u v
u σ

∂
∂
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LoG: example 
•  The Laplacian of a Gaussian filter 

A digital approximation: 

0 0 1 0 0 

0 1 2 1 0 

1 2 -16 2 1 

0 1 2 1 0 

0 0 1 0 0 
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Second derivative 

•  Laplacian of Gaussian: (LoG) – 
Mexican Hat 

•  Laplacian of Gaussian: Link to 
early vision: the 2D Mexican Hat 
closely resembles the receptive 
fields of simple cells in the retina 
→ edge detection is one of the 
first steps in vision  

0 1 0 
1 -4 1 
0 1 0 
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Laplacian zero-crossing detection 

•  Zero-valued Laplacian response pixels are unlikely in real images 

•  Practical solution: form the maximum of all positive Laplacian 
responses and the minimum of all Laplacian responses in a 3x3 
window. If the difference between the two exceeds a threshold an 
edge is assumed to be present. 

•  Laplacian zero-crossing patterns 

+ 
+ + - 

+ 

+ 
+ + - 

+ 

- 
+ + - 

+ 

+: zero or positive 
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Laplacian of Gaussian (LoG) 

Laplacian of Gaussian 
operator 

Zero-crossings of bottom graph 73 



Effects of noise 

•  Consider a single row or column of the image 
–  Plotting intensity as a function of position gives a signal 
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Gradient thresholding 

y∂
∂

|()|2 

|()|2 

x∂
∂

+ 

Modulus of the gradient thresholding 

Tresholding 

Laplacian =0 
update 

the edge 
map 

Laplacian zero-crossing 

Smoothing is 
usually introduced 
either before or 
after the filtering 

xhx
→

∂

∂

yhx
→

∂

∂
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Revisiting Line detection 

•  Possible filters to find gradients along vertical and horizontal 
directions 

This gives more importance to the 
center point. 

Averaging provides noise 
suppression 
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Edge Detection 
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Edge Detection 
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Edge Detection 

One simple method to find zero-
crossings is black/white thresholding: 
1. Set all positive values to white 
2. Set all negative values to black 
3. Determine the black/white 
transitions. 

Compare (b) and (g): 
•  Edges in the zero-crossings image is 
thinner than the gradient edges. 
•  Edges determined by zero-crossings 
have formed many closed loops.  

original sobel 

smoothing kernel 

Laplacian 
mask 

LoG LoG mask zero crossings 
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Edge detection: Gradient thresholding 

Prewitt filter: decreasing the threshold 
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Edge detection: Gradient thresholding 
Prewitt filter: decreasing the threshold 
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Using only the vertical high frequencies 
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(a) Input image; (b) Laplacian of (a); (c) Spatially invariant high-pass filtering [sum of (a) and (b)]; (d) 
Mask image [Sobel gradient of (a) smoothed by a 5x5 box filter]; (e) Product of (b) and (d); (f) Space-
variant enhancement [sum of (a) and (e)].  

Application to image enhancement 
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Multiscale edge detection 

•  The information obtained by filtering the image at different scales is 
combined to determine the edge map 
–  scale ↔ width (s, sigma parameter) of the filter 

•  Different possibilities 
–  Adapting the filter bandwidth to the local characteristics of the image 

(Wiener) 
–  Combining edge maps obtained at different scales 

•  Canny algorithm 
–  Smoothing (allows for different scales) 
–  Gradient maxima 
–  Two thresholds to detect both weak and strong edges. Weak edges are 

retained if they are connected to strong ones (labeling) 
–  Less sensible to noise 
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Canny algorithm 

•  Based on a 1D continuous model of a step edge of amplitude hE 
plus additive Gaussian noise of amplitude σn 

•  The impulse response of the filter h(x) is assumed to be FIR and 
antisymmetric  

•  First order derivative: the edge is located at the local maxima of 

•  A threshold has to be chosen 

•  Criterion: the Canny operator impulse response h(x) is chosen to 
satisfy three criteria 
–  Good detection 
–  Good localization 
–  Single response 

( ) ( )f x h x∗
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Step edge model 

•  Parameters 
–  Edge direction (tangent to the curve) 
–  Normal direction (vector orthogonal to the contour at edge location) 
–  Local contrast (edge strength) 
–  Edge location (along the normal direction) 
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⎨
⎧
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edge 
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Detection 

•  Criterion: The amplitude of the Signal to Noise Ratio (SNR) of the 
gradient is maximized for good detection 
–  to obtain low probability of failure to mark edge points (false negative 

rate) and low probability to mark non-edge points (false positive rate) 
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Localization 

•  Criterion: Edge points marked by the ed operator must be as close 
as possible to the center of the edge 

•  Localization factor 
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Single response 

•  Criterion: There should be only a single response to a true edge 
–  The distance between peaks of the gradient when only noise is present 

is set to 

•  Global criterion: maximization of the product S(h)L(h) subject to (2) 
–  Constrained maximization 
–  Note: a large filter (W) improves detection (better denoising) BUT 

reduces the precision in localization 
–  No close form solution, numerical ones are adopted 
–  For low xm, h(x) resembles the boxcar, while for larger xm it is closely 

approximated by a FDoG (first derivative of Gaussian) 

mx kW= (2) 
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Canny 
impulse 
responses 
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Example 
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Example 

threshold = 0.5 
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Performance assessment 

•  Possible errors 
–  False negatives (an edge point is present but it is not detected) 
–  False positives (a non-edge point  is detected) 
–  Error in the estimation of the orientation 
–  Error in the localization of the edge 

•  Paradigms 
–  Use of synthetic images + noise with known parameters 
–  Tests on sets of real images 
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Performance evaluation 

Objective 

•  The ground truth is assumed to 
be available and represented by 
the actual contour (full reference 
metric) 

•  Concerns low level features 
–  Measure to which extent the 

estimated contour represents the 
actual contour 

•  Metric: MSE among the estimated 
(f[j,k]) and the real (s[j,k]) edges 

Subjective 

•  The ground truth is not necessarily 
given (reduced or no-reference 
metric) 

•  Concerns high-level features 
–  Measures to which extent the 

estimated contour allows to 
identify the corresponding object 
in the image 

–  Focus on semantics or image 
content 

•  Metric: subjective scores given to 
the different algorithms 

•  Lead to perception-based models 
and metrics 
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Objective assessment 

•  1D case 

A common strategy in signal detection theory is to establish a bound 
on the probability of false detection resulting from noise and then 
try to maximize the probability of true signal detection 

•  When applied to edge detection, this translates in setting a the 
minimum value of the threshold such that the FP rate does not 
exceed the predefined bound. Then the probability of true edge 
detection can be calculated by a coincidence comparison of the 
edge maps of the ideal versus the real edge detectors 

•  2D case 
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estimated edge 

ground truth 

95 



Performance assessment: Figure of Merit 

•  Types of errors 

•  Detection 
–  Missing valid edge points (False Negatives, FN) 
–  Failure to localize edge points 
–  Classification of noise fluctuations as edge points (False Positives, FP) 

•  Localization 
–  Error in estimating the edge angle;  

•  Mean square distance of the edge estimate from the true edge 

•  Accuracy 
–  Algorithm's tolerance to distorted edges and other features such as 

corners and junctions 
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Performance assessment: Figure of Merit 

( ) 2
1

1 1
max , 1
1:  perfectly detected edge

AI

M
iA I i

M

F
I I d

F
α=

=
+
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∑

II, IA: number of ideal and detected edge points, respectively 
di: distance among the ideal and the detected edge point along the 
normal to a line of ideal edge points (evaluated according to (3)) 
α: scaling constant 
The rating factor is normalized so that R  = 1 for a  
perfectly detected edge 

ensures a penalty for 
smeared or fragmented edges 

to penalized 
edges that are 
localized by offset 
from the true 
position 

di 
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Figure of merit 
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Filters competition 

•  A possible classification strategy 
–  Synthetic image 

•  64x64 pixels 
•  vertical oriented edge with variable slope and contrast 
•  added Gaussian noise of variance σn  
•  Control parameter SNR=(h/ σn), h being the normalized edge value 

(0<h<=1) 
–  Filter threshold: maximize the FM constrained to maximum bound for 

false detection rate  
•  False detection=false positives 
•  Probability to detect an edge when no edge is present 

along a line 
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Filter comparison 

Step edge (w=1) 
FOM is low for wide and 
noisy edges; and high 
in the opposite case 
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Filter comparison 

Ramp edge 
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Changing SNR 

•  Sobel 

•  Step edge 
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Changing the filter 
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Subjective evaluation 
•  Task: “Give a score to the 

detected edges” 

•  Many trials 
–  The experiment is repeated at 

least two times for each subject 

•  Many subjects 
–  A sufficiently high number of 

subjects must participate in the 
experiment to make data analysis 
significant from the statistical point 
of view 

•  Output: {scores} 

•  Data analysis 

A high figure of merit generally corresponds to a 
well-located edge upon visual scrutiny, and vice 
versa. 
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