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Context & Background



Distributed Embedded Systems (DESs)

 Distributed applications of Networked
Embedded Systems (NESs) interacting together

— Example: Distributed control of building
temperature

« Different types of channels and protocols
« Each NES acts as a node of the network
« New design goal

— Good behavior of the global application




Network Synthesis

« Design process starting from a high-level
specification of DES

« It finds the actual configuration in terms of
— mapping of application tasks onto network nodes
— their spatial displacement

— the type of channels and protocols among them,
and the network topology



e —
CASSE (1)

« Communication Aware Specification and Synthesis
Environment (CASSE), is an extended design flow, which
addresses the network synthesis, in terms of nodes, tasks, data
flows, abstract channels, zones and contiguities.

— Tasks

« A task represents a basic functionality of the whole application; it
takes some data as input and provides some output.

« Relevant attributes: computational requirements, mobility.
— Data flows

« A data flow (DF) represents communication between two tasks;
output from the source task is delivered as input for the
destination task.

« Relevant attributes: communication requirements.
— Nodes
A node can be seen as a container of tasks.

* Relevant attributes: available computational resources, intrinsic
power consumption, power consumption due to tasks, mobulity,
economic cost.
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CASSE (2)

— Abstract Channels

e An abstract channel (AC) interconnects two or more
nodes.

° Relevamf attributegs: availa_ble communication resources,
economic cost, wireless/wired.

— Zones

« A zone is a partition of the space which contains nodes;
each zone is characterized by environmental attributes
which are application-specific.

— Contiguities
« Zones are related by the notion of contiguity defined as

follows:

— Two zones are contiguous if nodes belonging to them can
communicate each other.

— Contiguity represents not only the Iohysical distance
between zone, but it can be used also to model
environmental obstacles like walls.

e Relevant attributes: resistance.
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UML Deployment Diagram
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Purely analytical Optimization

« Process that explores the solutions using
techniques unaware of the network context.

« Formulation of the network optimization
oroblem in the form of MILP (Mixed Integer
_Linear Programming) problem, whose
optimization techniques are well known in
literature (e.g. Simplex method, Branch-and-
bound method).
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Current limitations

« The increase of the complexity of distributed
applications

— Computer-aided design for the communication
infrastructure between nodes of a DES

« Low scalability of pure analytical approaches
(e.g., MILP) to the size of a real application

— Analytical modeling could be combined with
Network Manipulation driven by an
optimization process

« Gap between the ideal model of the network,
and the real network

— Mixed analytical and simulation-based
methodology is needed
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Methodology



BT
Contributions

« NW-aware approach for the optimal Network
Synthesis of DES.

« Methodology to manipulate the DES description
from a high level specification to simulation.

« Definition of manipulation rules to alter the
network setup according to given optimization
goals.

« Use of the network simulation to validate the
optimization results and explore other possible
solutions.
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Flow for optimal Network Synthesis
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Optimization problem (1)

N1 N3
' e nodes NO, N1, N2, N3
: e tasks TO, T1, T2, T3
CO ' DO C1 §D1

channels CO, C1

|| . data flows DO, D1
NO . N2
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Optimization problem (2)

PROBLEMS:

: , * How to split this

co | i transformations into

| | elementary steps?

5 | * How to link elementary
: | transformations to

optimization goals?
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NW-Aware Optimization
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e
Simulated Annealing

« Generic probabilistic
metaheuristic for the
global optimization
problem of locating a s
good approximation to
the global optimum of
a given function.

« Aims to find a global
optimum when many
local optima are
present.

o Often used when the
search space is large
and also discrete.

Y

|

Replace current
solution with new
solution.

17




e
Ideal model vs. Actual behavior (1)
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For each (-th data flow we
define its throughput as:

Th(D;)

Ideally, the used capacity of
channel C should be:

Z Th(D;)

NOT ALWAYS TRUE!

e.g., overhead of the wireless protocols
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Non-idealities

« In the Network-aware Optimization process we
make some ideality assumptions which often
don't correspond to reality.

« For this reason we make a list of non-ideality
factors that we are not able to take fully into
account in the Network-aware optimization
approach:

— from the point of view of the Network

— from the point of view of the Nodes

— from the point of view of the Power consumption
— from the point of view of the HW Architecture
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Ideal model vs. Actual behavior (2)
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BT
Simulation

« To take into account the non-ideality factors in the
optimization process, we are going to use the
simulation applied to:

— Points close to the optimal obtained with the
manipulations
* Neighbors in the solution space
— Points close to the optimal obtained with the

manipulations
« Neighbors in the ranking of the best solutions found

« Network Simulation lets us to refine the choice of
candidate solutions for those objectives that operate
on parameters verifiable through simulation (e.g.
delay, error rate).
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Toolchain
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Experimental results
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NW-Aware Optimization
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Transmission delay minimization

Optimization
objectives

Economic cost
minimization

-~

-

"~

Power consumption
minimization

.

-~

-

"~

Transmission delay

Optimization
strategies

Nodes removal

Channels removal

~

minimization

>

Error rate
minimization

-

Tasks reallocation J

Data flows
reallocation

Manipulation
rules

Move task

Move data flow

Remove data flow

Add node

Remove node

Add channel

Move channel

Remove channel

27




Experimental results (before)
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Experimental results (after)
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Validation through simulation
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Conclusions &
Future developments
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B
Conclusions

« New methodology for the optimal network synthesis
of Distributed Embedded Systems.

- Validation of the optimization process results
through network simulation.

« Set of tools in support of the optimization process
from the UML description to the SCNSL simulation

model.
Future developments

« Extension of the set of optimization objectives

— Introduction of new optimization strategies
— Introduction of new manipulation rules

 Further integration of the network simulation in the
optimization process.

« Adaptation of the methodology for a
Multi-objective optimization.
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