SINAPSI

ΣΙΝΑΠΣΙ

FGE AA.2016-17

Obiettivi

- · Definizione e struttura della sinapsi chimica
- Sinapsi chimiche rapide e lente, diffuse e discrete
- Sinapsi colinergiche (placca neuromuscolare) e adrenergiche
- Meccanismi pre e post sinaptici (EPSP; IPSP)
- Principali neurotrasmettitori centrali e periferici
- Sinapsi elettriche

Definizione

- 1. E' una giunzione cellulare attraverso la quale si trasmettono in segnali da una cellula all'altra (neuroni, neuroni cellule tessuti eccitabili)
- 2. Componenti principali: membrana presinaptica, membrana postsinaptica
- 3. Due tipi di sinapsi: chimiche ed elettriche

Trasmissione sinaptica

Il termine sinapsi indica la connessione tra due neuroni, tra un neurone e una fibra muscolare (placca neuromuscolare) o tra un neurone e una cellula endocrina.

La sinapsi consiste di tre parti principali:

- La membrana presinaptica

 la membrana terminale dell'assone presinaptico
- La fessura sinaptica spazio che separa le due cellule
- La membrana postsinaptica

 la membrana cellulare della cellula postsinaptica

Trasmissione sinaptica

Il termine sinapsi indica la connessione tra due neuroni, tra un neurone e una fibra muscolare (placca neuromuscolare) o tra un neurone e una cellula endocrina.

Esistono due tipi di sinapsi:

- Le sinapsi elettriche
- Le sinapsi chimiche

Nella <u>sinapsi chimica</u> il passaggio dell'informazione consiste nell'utilizzo di molecole, dette neurotrasmettitori.

Nella <u>sinapsi chimica</u> il passaggio dell'informazione consiste nell'utilizzo di molecole, dette neurotrasmettitori.

La sinapsi consiste di tre parti principali:

+

La membrana presinaptica

la membrana terminale dell'assone presinaptico

Nella <u>sinapsi chimica</u> il passaggio dell'informazione consiste nell'utilizzo di molecole, dette neurotrasmettitori.

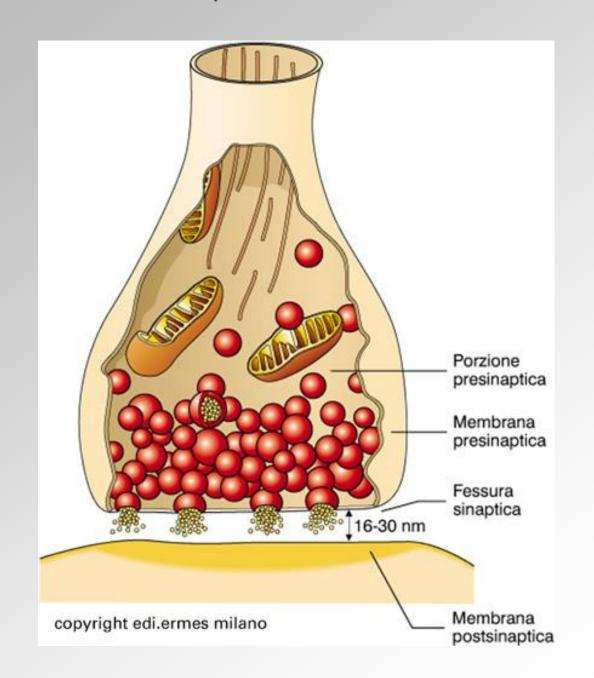
La sinapsi consiste di tre parti principali:

La membrana presinaptica

la membrana terminale dell'assone presinaptico

La fessura sinaptica

spazio che separa i due neuroni (circa 16-30 nm)

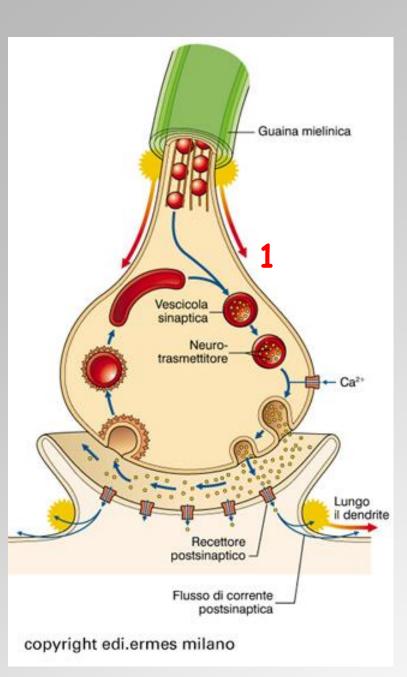

Nella <u>sinapsi chimica</u> il passaggio dell'informazione consiste nell'utilizzo di molecole, dette neurotrasmettitori.

La sinapsi consiste di tre parti principali:

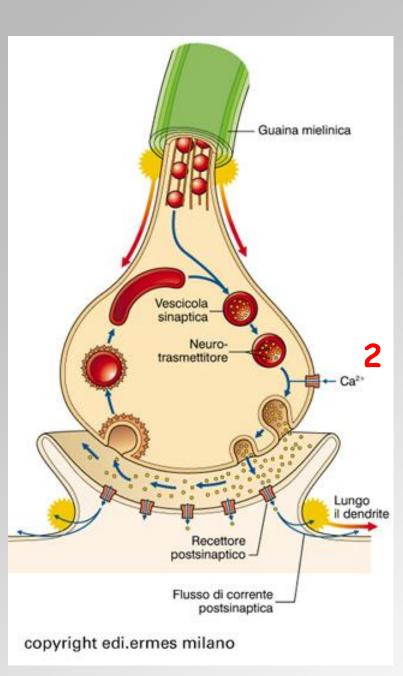
- La membrana presinaptica

 la membrana terminale dell'assone presinaptico
- La fessura sinaptica spazio che separa i due neuroni (circa 16-30 nm)
- La membrana postsinaptica

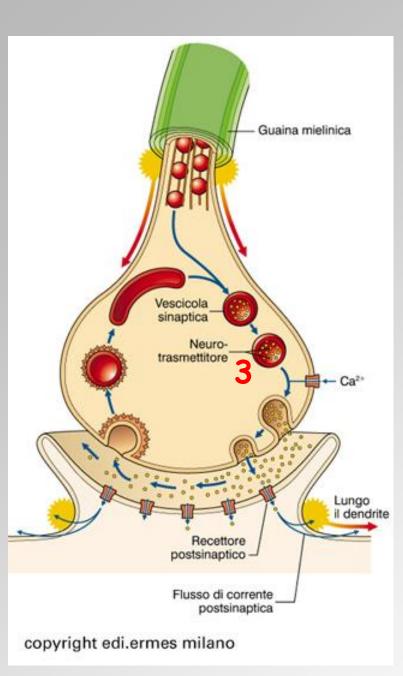
 la membrana cellulare dell'assone postsinaptico

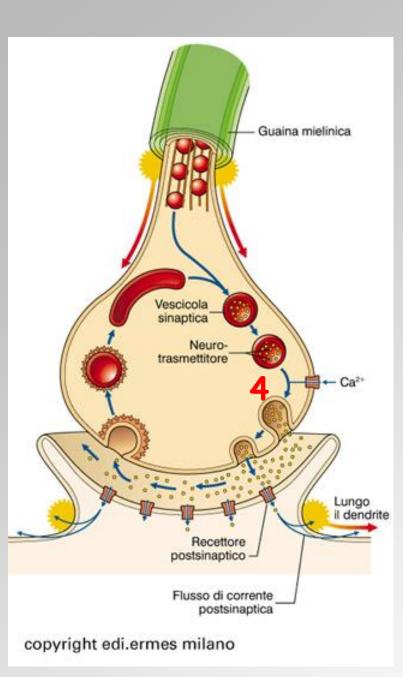


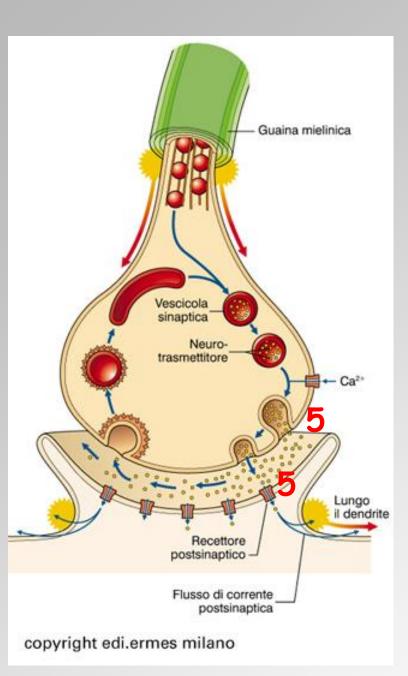
Meccanismo di azione nelle sinapsi chimiche

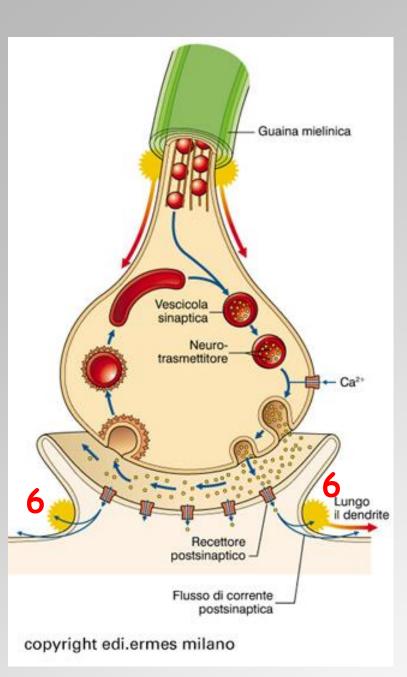

- sintesi di un neurotrasmettitore
- accumulo e rilascio di un neurotrasmettitore
- interazione di un neurotrasmettitore col recettore
- rimozione del neurotrasmettitore dallo spazio sinaptico (diffusione degradazione enzimatica ricaptazione)

<u>Ritardo sinaptico</u>: il tempo che intercorre tra l'insorgenza del potenziale d'azione e l'accoppiamento neurotrasmettitore-recettore.


Varia tra 0.5 e 5 msec.


1. Arrivo del potenziale d'azione


- 1. Arrivo del potenziale d'azione
- 2. Si aprono i canali voltaggio-dipendenti per il Ca²⁺ (circa -40 mV) che causano


- 1. Arrivo del potenziale d'azione
- 2. Si aprono i canali voltaggio-dipendenti per il Ca²⁺ (circa -40 mV) che causano
- 3. la fusione delle membrane vescicolari con la membrana presinaptica

- 1. Arrivo del potenziale d'azione
- 2. Si aprono i canali voltaggio-dipendenti per il Ca²⁺ (circa -40 mV) che causano
- 3. la fusione delle membrane vescicolari con la membrana presinaptica
- 4. Esocitosi delle vescicole contenenti i neurotrasmettitori nella fessura sinaptica

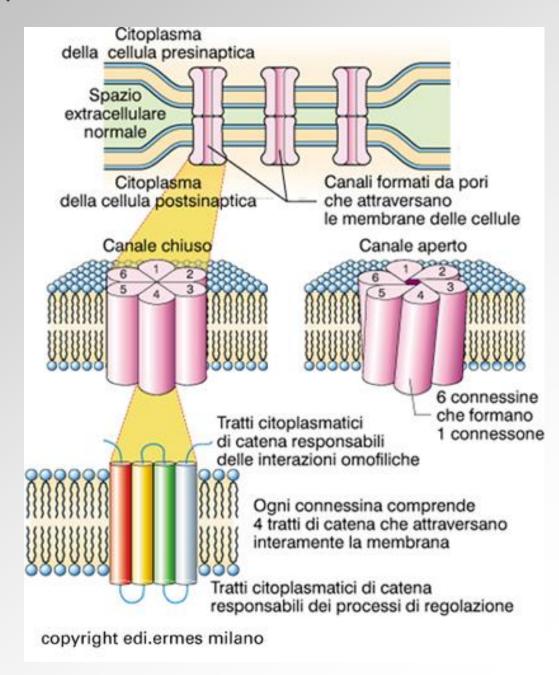
- 1. Arrivo del potenziale d'azione
- 2. Si aprono i canali voltaggio-dipendenti per il Ca²⁺ (circa -40 mV) che causano
- 3. la fusione delle membrane vescicolari con la membrana presinaptica
- 4. Esocitosi delle vescicole contenenti i neurotrasmettitori nella fessura sinaptica
- I neurotrasmettitori diffondono fino a incontrare i recettori posti sulla membrana postsinaptica

- 1. Arrivo del potenziale d'azione
- 2. Si aprono i canali voltaggio-dipendenti per il Ca²⁺ (circa -40 mV) che causano
- 3. la fusione delle membrane vescicolari con la membrana presinaptica
- 4. Esocitosi delle vescicole contenenti i neurotrasmettitori nella fessura sinaptica
- 5. I neurotrasmettitori diffondono fino a incontrare i recettori posti sulla membrana postsinaptica
- 6. Il neurotrasmettitore provoca, nella membrana postsinaptica, variazioni della conduttanza di uno o più ioni

Sinapsi elettriche

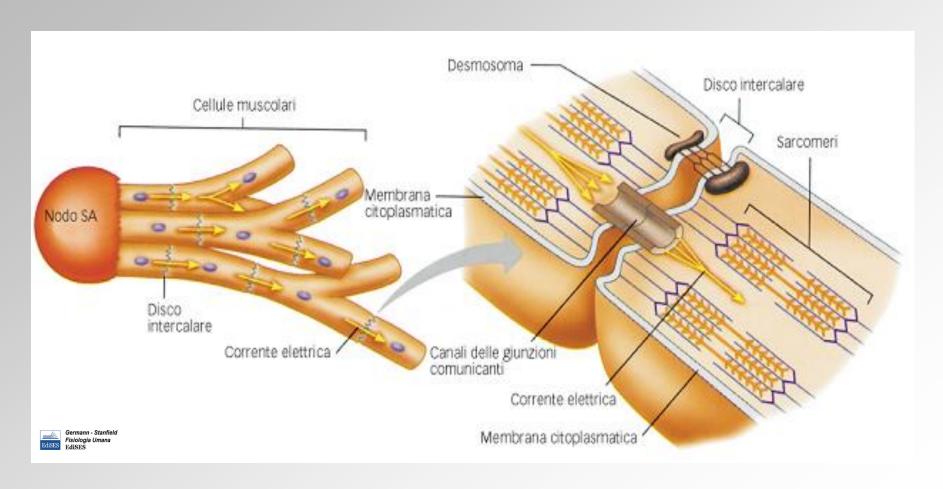
Nella sinapsi elettrica il passaggio dell'informazione consiste nel trasferimento della corrente elettrica per mezzo di ioni che attraversano le membrane di due cellule contigue.

Gli ioni passano attraverso canali specializzati non selettivi, le gap junction.

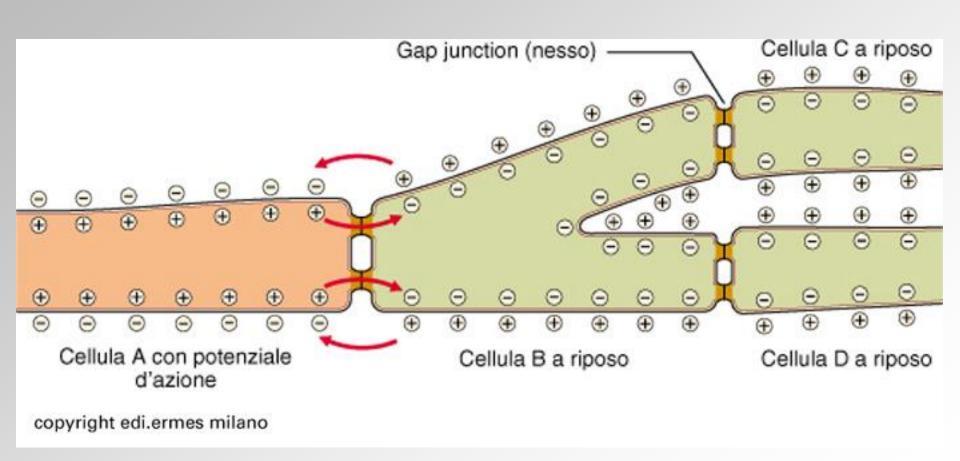

Questo tipo di trasmissione è detto *elettrotonico* e avviene senza ritardo sinaptico.

Sinapsi elettriche

Nella sinapsi elettrica il passaggio dell'informazione consiste nel trasferimento della corrente elettrica per mezzo di ioni che attraversano le membrane di due cellule contigue.

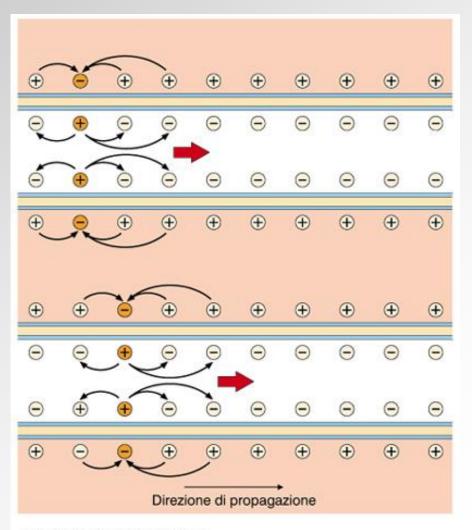

Gli ioni passano attraverso canali specializzati non selettivi, le gap junction.

Questo tipo di trasmissione è detto *elettrotonico* e avviene senza ritardo sinaptico.


Esempio di connessioni elettriche stabilite dalle cellule del miocardio

Potenziale d'azione viene trasmesso alle cellule adiacenti mediante le gap junction nei dischi intercalari.

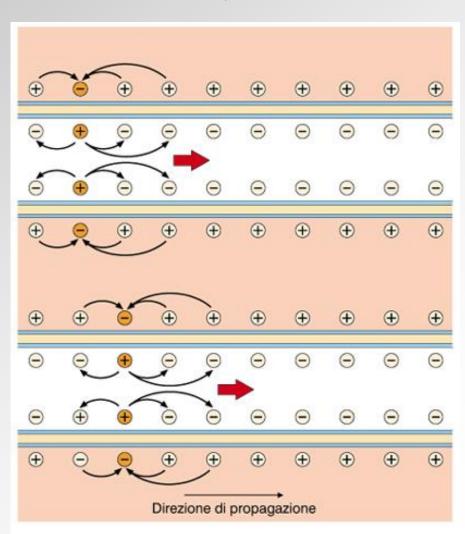
Propagazione del potenziale d'azione tra cellule contigue


La propagazione del potenziale d'azione tra cellule contigue avviene mediante correnti locali a livello dei dischi intercalari.

Potenziale locale (o elettrotonico)

I potenziali locali si instaurano in seguito a variazioni sottosoglia del potenziale di membrana e si propagano in modo elettrotonico passivo.

La corrente, determinata dal flusso ionico, entra nella membrana plasmatica e si propaga nel citoplasma fino ad incontrare i canali di membrana da cui esce e chiude il circuito locale ad anello.

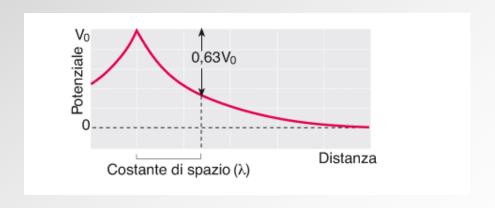

copyright edi.ermes milano

Potenziale locale (o elettrotonico)

I potenziali locali si instaurano in seguito a variazioni sottosoglia del potenziale di membrana e si propagano in modo elettrotonico passivo.

La corrente, determinata dal flusso ionico, entra nella membrana plasmatica e si propaga nel citoplasma fino ad incontrare i canali di membrana da cui esce e chiude il circuito locale ad anello.

Tale circuito genera nella parte adiacente della membrana uno stimolo depolarizzante o iperpolarizzante (a seconda dei canali voltaggio-dipendenti attivati), quindi una corrente che determinerà un altro circuito locale e così via.


copyright edi.ermes milano

Caratteristiche del potenziale locale (o elettrotonico)

Si propaga con decremento;

Si genera nel soma (o pirenoforo) e nei dendriti;

E' graduato, cioè usa variazioni di ampiezza, entità e forma del segnale per comunicare il tipo di informazione.

Caratteristiche del potenziale d'azione

- Si propaga senza decremento;
- Si genera nel monticolo assonico (o cono di emergenza);
- Presenta periodi di refrattarietà (assoluta e relativa);
- Non è un graduato, cioè l'ampiezza, l'entità e la forma del segnale non variano. Usa variazioni di frequenza di scarica per comunicare l'informazione.

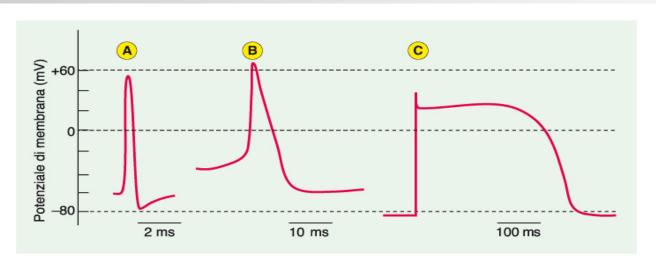
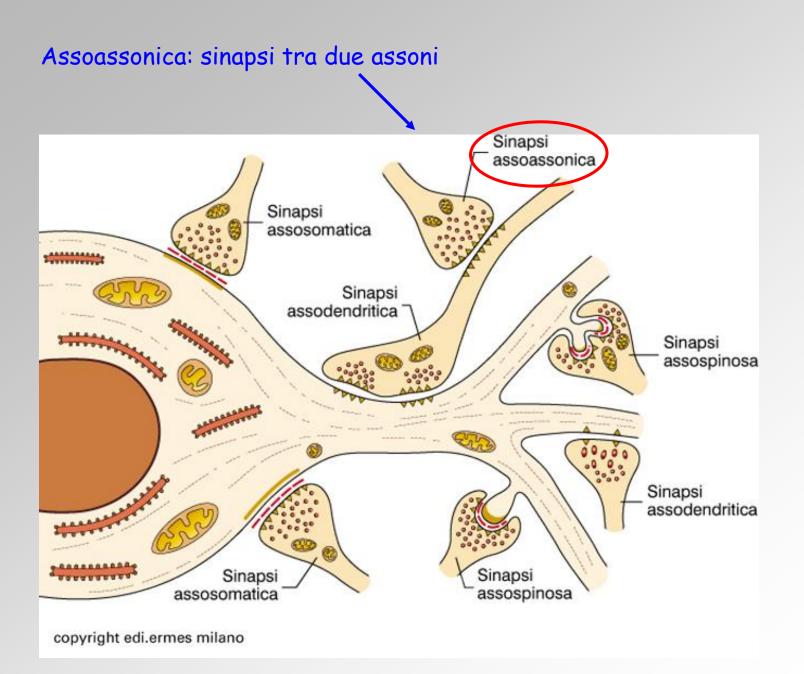
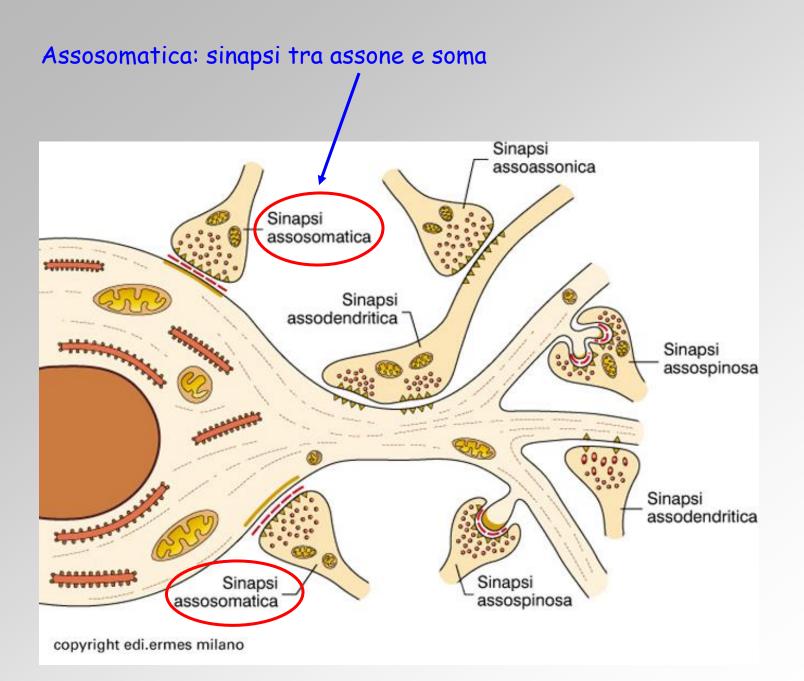
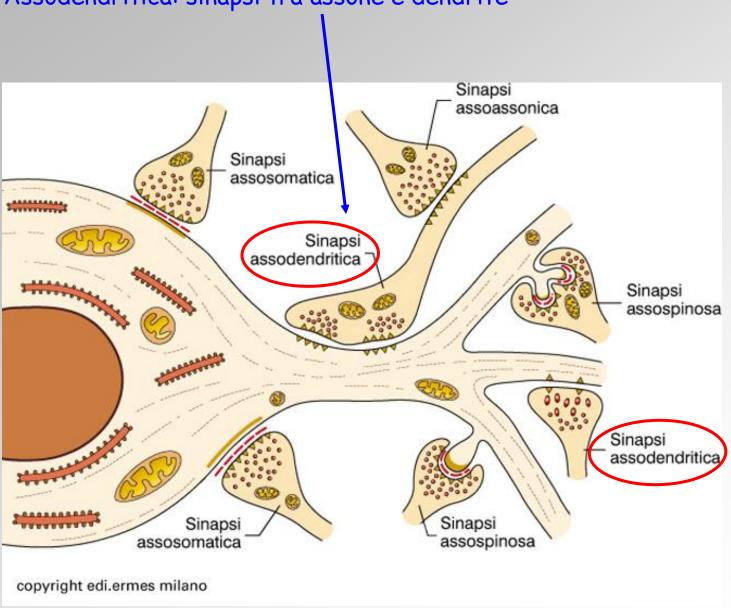


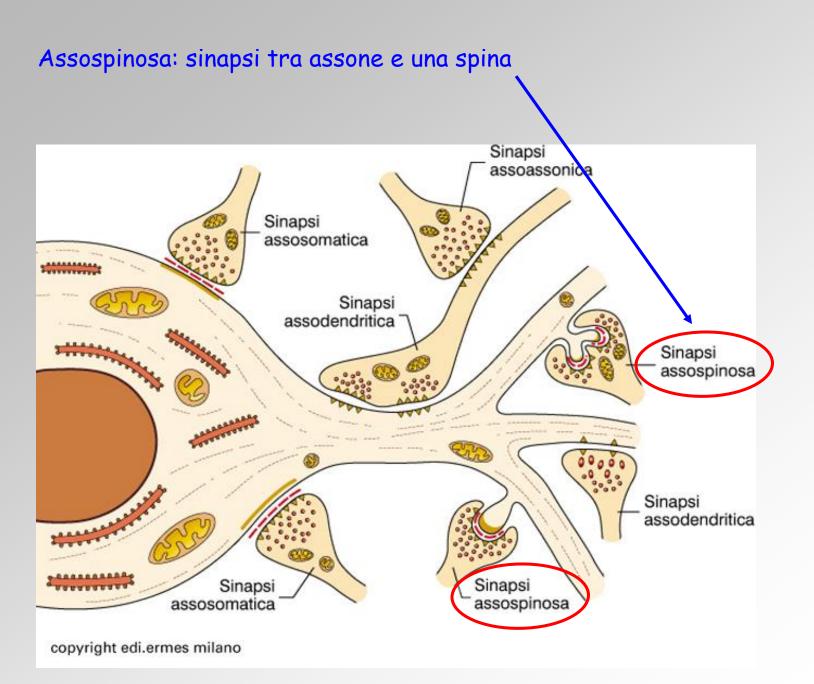
Figura 4.7 Esempi di potenziali d'azione di tre tipi di cellule eccitabili diverse: (A) motoneurone; (B) cellula cromaffine della midollare surrenale; (C) cellula di muscolo ventricolare cardiaco.


Differenza tra sinapsi chimiche ed elettriche

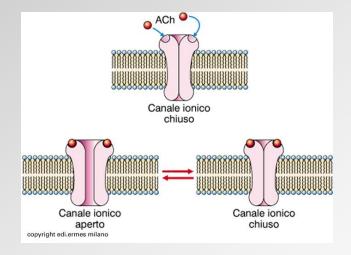

Sinapsi chimiche:

Lo stimolo passa dalla membrana presinaptica a quella postsinaptica mediante il rilascio di un neurotrasmettitore nella fessura sinaptica (16-30 nm).


Sinapsi elettriche:


Lo stimolo passa dalla membrana presinaptica a quella postsinaptica attraverso specifici canali detti gap junction, che mettono in diretta comunicazione le due membrane. Questo è possibile poiché la fessura sinaptica ha uno spessore di 4-5 nm.

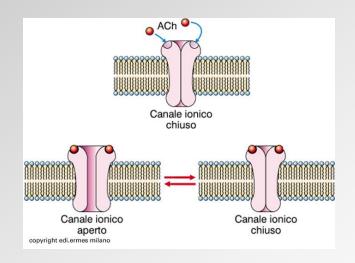
Assodendritica: sinapsi tra assone e dendrite


Principali neurotrasmettitori

- ✓ acetilcolina (Ach)
- √ dopamina (DA)
- ✓ noradrenalina (NA)
- ✓ adrenalina (A)
- ✓ serotonina (5'-HT)
- ✓ glutammato (Glu)
- ✓ glicina (Gly)
- \checkmark acido γ -amino-butirrico (GABA)
- √ oppioidi endogeni (encefaline, endorfine, dinorfine)

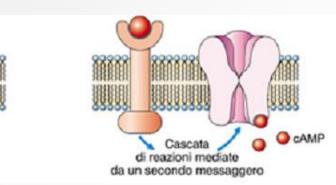
Ci sono due tipi di recettori:

Recettori ionotropi


Il legame del neurotrasmettitore al recettore apre direttamente un canale ionico.

Ci sono due tipi di recettori:

Recettori ionotropi


Il legame del neurotrasmettitore al recettore apre direttamente un canale ionico.

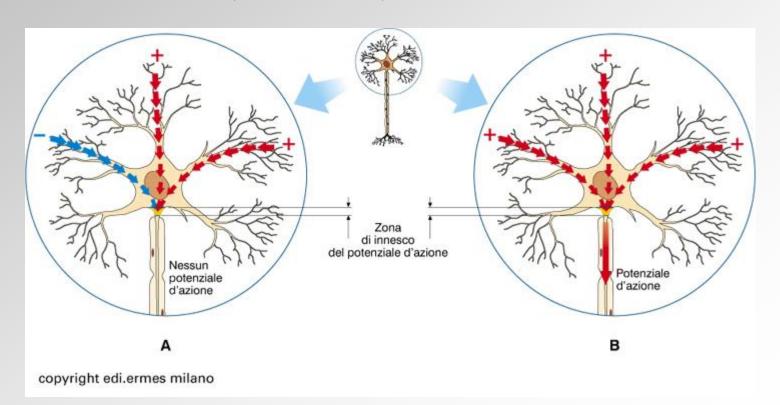
🗕 Recettori metabotropi

Il legame del neurotrasmettitore al recettore crea una cascata di reazioni metaboliche intracellulari (secondi messaggeri) che portano all'apertura di un canale ionico

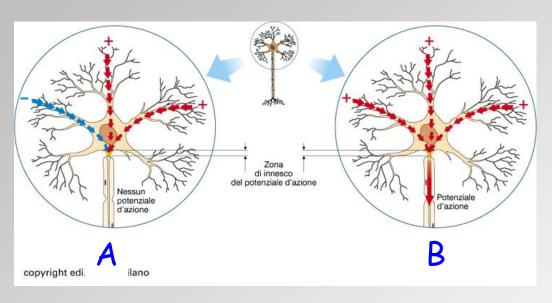
"dall'interno".

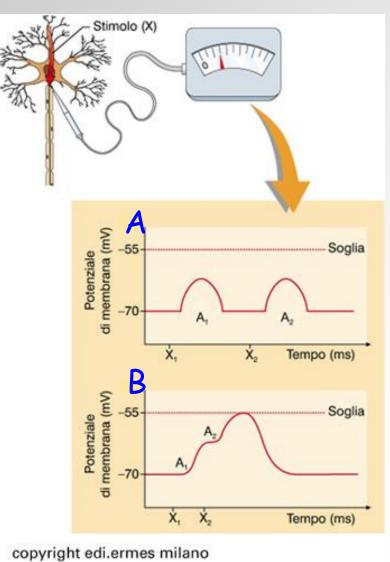
L'attivazione dei recettori ionotropi <u>non genera</u> nel neurone postsinaptico un potenziale d'azione.

Le variazioni del potenziale postsinaptico prendono il nome di:

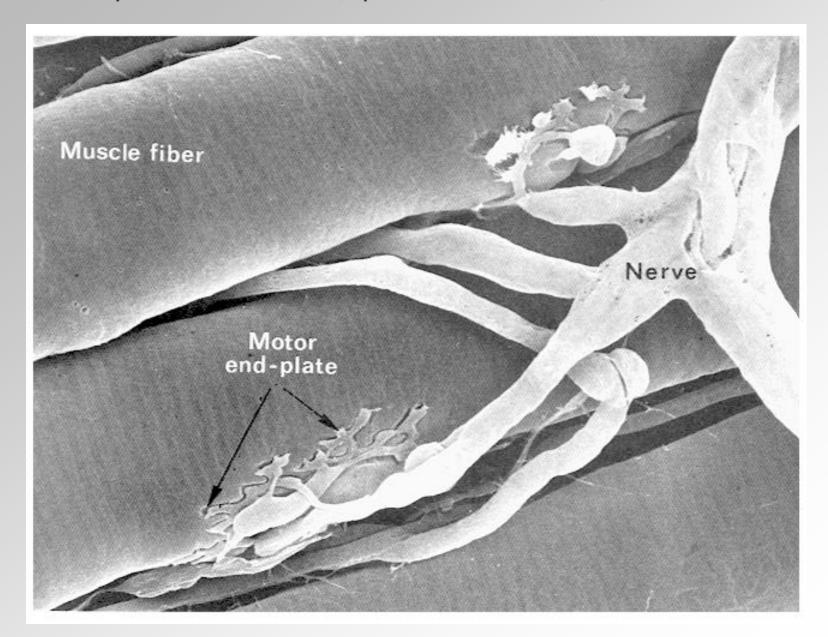

- Potenziale postsinaptico eccitatorio (EPSP) causa una depolarizzazione
- Potenziale postsinaptico inibitorio (IPSP)

causa una iperpolarizzazione

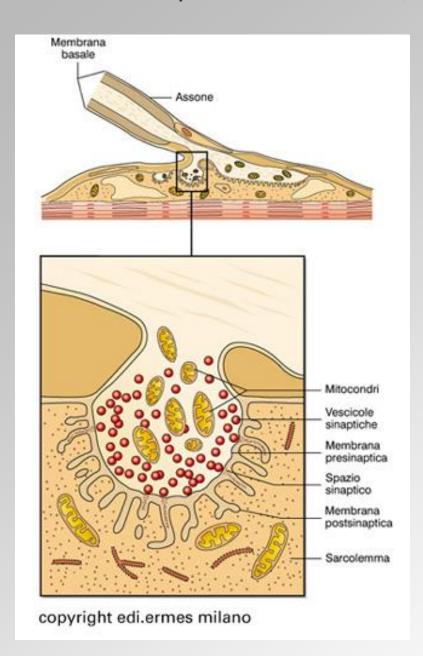

La variazione di potenziale indotta è la conseguenza dell'attivazione di canali ionici specifici; in genere EPSP è la conseguenza di un aumento di permeabilità per Na^{+} , mentre IPSP per K^{+} e Cl^{-} .

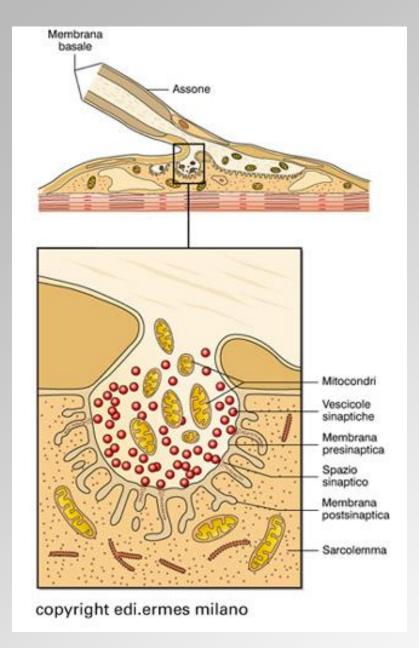

La variazione di potenziale indotta è la conseguenza dell'attivazione di canali ionici specifici; in genere EPSP è la conseguenza di un aumento di permeabilità per Na^+ , mentre IPSP per K^+ e Cl^- .

I potenziali postsinaptici si possono sommare sia temporalmente (frequenza di scarica elevata) che spazialmente (più terminazioni attivate).



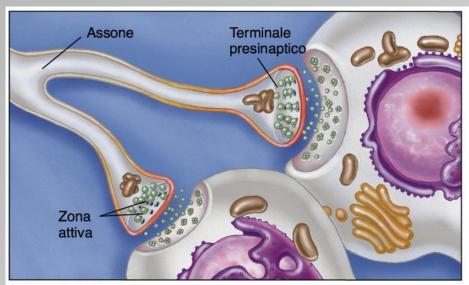
Meccanismo di azione nella membrana postsinaptica




Sinapsi neuromuscolare (o placca nuromuscolare)

Sinapsi neuromuscolare (o placca nuromuscolare)

Sinapsi neuromuscolare (o placca nuromuscolare)



Il neurotrasmettitore utilizzato in questo tipo di sinapsi è l'acetilcolina (ACh) che attiva i recettori ionotropi. Di conseguenza si aprono canali ionici non selettivi che fanno passare ioni K⁺ e Na⁺.

L' EPSP viene detto <u>potenziale di placca</u> ed è sufficiente a generare un potenziale d'azione.


Ogni potenziale d'azione in un motoneurone crea un potenziale d'azione in una fibra muscolare.

Sinapsi chimiche diffuse e discrete

Sinapsi discrete: il neurotrasmettitore è rilasciato in punti specifici e discreti del terminale presinaptico chiamati zone attive

(a) Terminali discreti

- Sinapsi diffuse: la liberazione non è limitata alle zone attive
- Hanno la forma di varicosità (sinapsi en passant)
- Tipiche della componente simpatiche del SNA

(b) Terminali diffusi

Sinapsi viscerale

Le sinapsi tra motoneurone e muscolo scheletrico sono sempre eccitatorie, mentre le sinapsi del s.n.a. possono eccitare o inibire direttamente l'organo bersaglio.

Una particolare caratteristica del s.n.a. è rappresentata dal possedere un'attività tonica di base. Questo permette a ciascuna divisione del s.n.a. di controllare un determinato organo bersaglio da sola, poiché, aumentando o riducendo il livello di attività tonica, l'organo innervato può essere, rispettivamente, stimolato o inibito.

Neurotrasmettitori

- Neurotrasmettitori a basso peso molecolare Basso peso molecolare Sintetizzati nei terminali presinaptici
- Trasmettitori peptidici (neuropetidi)
 Fabbricati nel soma e convogliati mediante trasporto assonico al terminale sinaptico

Neurotrasmettitori a basso peso molecolare-ACh

- Acetilcolina
 SNC
 Placca neuromuscolare
 SNA: pre e post gangliari parasimpatico,
 pregangliari simpatico
- Due recettori
 - Nicotinici
 - Muscarinici

Recettori nicotinici

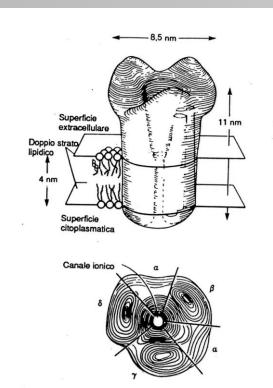


Fig. 4-13. Diagramma del recettore nicotinico fetale per l'acetilcolina visto di lato (in~alto) e dall'alto (in~basso). α , β , γ ; δ : subunità recettoriali. (Riproduzione autorizzata; da: McCarthy MP et al: Molecular biology of the acetylcholine receptor. *Annu Rev Neurosci* 1986;9:383. Riproduzione autorizzata; da: *Annual Review of Neuroscience*, Vol. 9. Copyright 1986 by Annual Reviews Inc.).

 Recettori nicotinici 5 sub-unità βθγθθδθθε (2) αθθsiti attivi) ACh si lega alle sub unità a Il canale si apre e permette il contemporaneo di sodio passaggio (interno) e potassio (esterno) Il risultato è una depolarizzazione di membrana Il canale ionico rimane aperto sino al distacco dell'ACh l'ACh è in seguito idrolizzata nella fessura sinaptica in colina e acetato dalla acetilcolinesterasi Questo è il recettore presente nella placca neuromuscolare

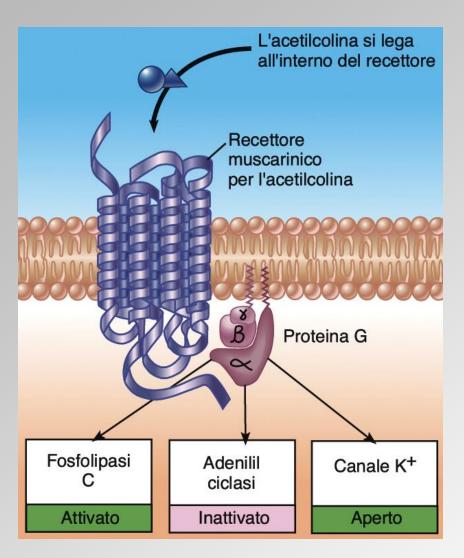
Placca neuromuscolare-Riassunto degli eventi

Sintesi degli avvenimenti che si verificano durante la trasmissione neuromuscolare

Arrivo del potenziale d'azione al terminale presinaptico della fibra motrice

Aumento della permeabilità al Ca⁺⁺ e ingresso di Ca⁺⁺ nel terminale assonico

Liberazione di ACh sulla membrana post-giunzionale

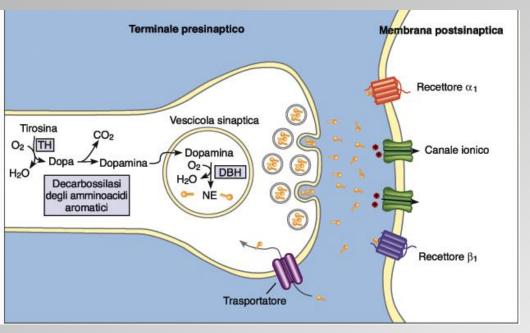

Combinazione di ACh con recettori specifici della membrana post-giunzionale

Aumento della permeabilità della membrana post-giunzionale al Na⁺ e al K⁺ con conseguente genesi dell'EPP

Depolarizzazione delle zone della membrana muscolare contigue alla regione della placca, e nascita del potenziale d'azione

21110 FIONE DELL' ACH

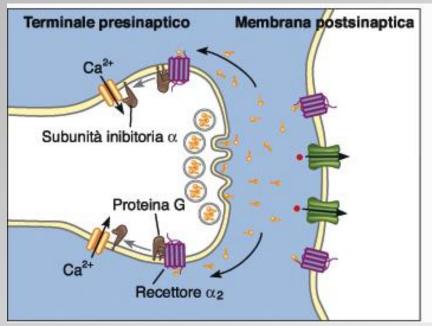
Recettori muscarinici

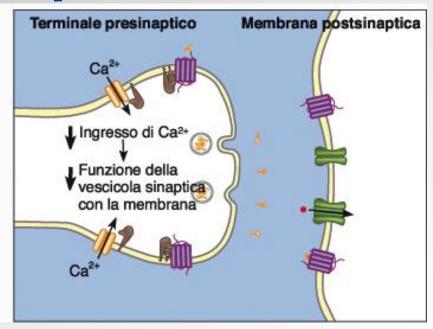

- Due tipi (M₁ e M₂) con 7 domini
- Agiscono tramite una proteina G
- M₁: diminuzione g_K, mediante fosfolipasi C, depolarizzazione
- M₂: aumenta g_K per inibizione dell'adenilciclasi, iperpolarizzazione

Recettore M₂

Neurotrasmettitori a basso peso molecolare-Ammine biogene

- Ammine biogene: caratterizzate dalla presenza di un gruppo NH₂
- Un sottogruppo, le catecolammine, presenta un anello catecol
- Le catecolammine comprendono i trasmettitori noradrenalina (NE), adrenalina, dopammina (DA)

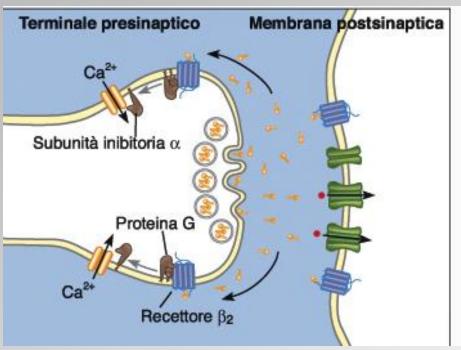

Ammine biogene - Noradrenalina

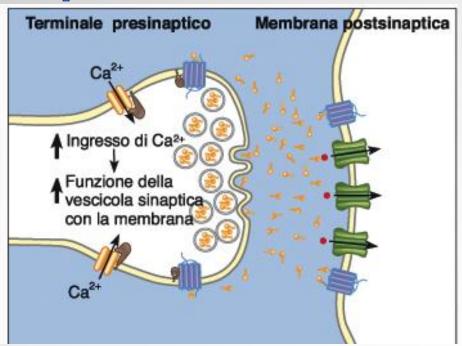


- La sintesi di NE è un processo labile epuò essere aumentata da meccanismi a breve e lungo termine (stress, p.e.)
- 80% ricaptato, 20% degradato da COMT
- Due gruppi di recettori: a (SNC e SNP) e β (SNP)
- a loro volta divisi in $a_0 \square \square a_0 \square \square \beta_0 \square \square \square \beta_0$
 - α_{Π} :
- SNC: aumenta g_K , IPSP
- SNP: i) α_{\parallel} -A, corrente verso l'interno di Ca^{++} (nel muscolo liscio si ha contrazione); ii) α_{\parallel} -B, DAG, innesco di una lunga serie di reazioni cellulari
- \forall β_{\square} :
- tachicardia (cuore)
- secrezione renina (rene)
- tessuto adiposo (lipolisi)
- \forall β_{\square} :
- rilassamento muscolo liscio

Recettori adrenergici e meccanismi a feedback

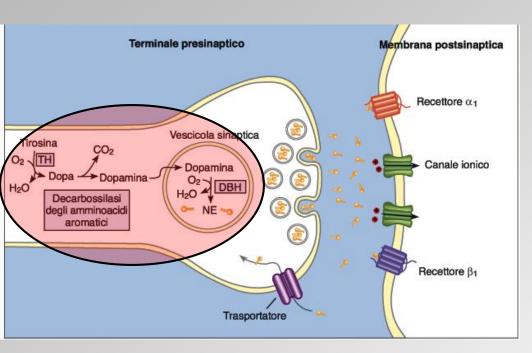
Inibizione a feedback: autorecettori a2

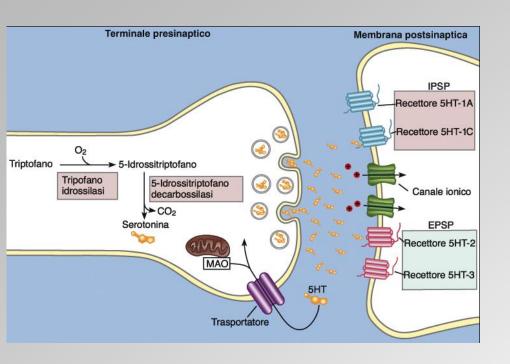




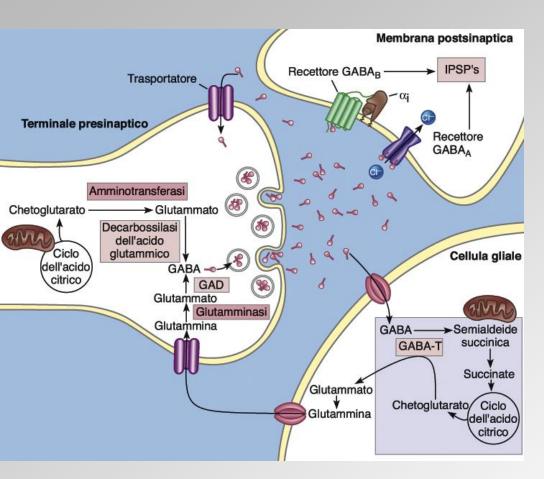
- Autorecettori a_□
 - Quando aumenta la concentrazione di NE nella fessura sinaptica, sono attivati e la liberazione di NE è inibita

Recettori adrenergici e meccanismi a feedback

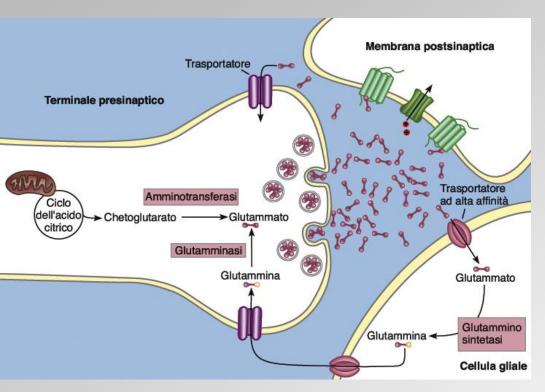

Eccitazione a feedback: autorecettori β_{Π}


- Autorecettori β_□
 - L'attivazione di questi recettori stimola la liberazione di NE

Ammine biogene-Dopammina


- Tre sottotipi di recettori
- D₁: accoppiati a proteina G_s attivano l'adenilciclasi
- $D_2 e D_3$: accoppiati a proteina G_p inibiscono l'adenilciclasi
- D₂ iperpolarizza
- L'80% di DA è riutilizzato, il rimanente è degradato da COMT
- La trasmisione sinaptica della DA è influenzata da sostanza stupefacenti:
 - cocaina: inibisce il riassorbimento di DA nel terminale presinaptico
 - amfetamine: aumentano la liberazione nella fessura sinaptica

Ammine biogene - Serotonina


- Serotinina o 5-idrossitriptamina (5HT), soprattutto nel tronco
- Diversi recettori:
 - 5- HT_{1A} : aumenta g_K , IPSP, tramite AMPc
 - 5- HT_{1C} : aumenta k_{CI} , IPSP, tramite IP₃
 - 5-HT₂: diminuisce g_K , EPSP, tramite IP₃
 - 5-HT₃: aumento $g_K e g_{Na}$, EPSP

Amminoacidi-GABA

- Acido gamma ammino butirrico (GABA), potente inibitore
- Due sottotipi di recettori:
- 1. $GABA_A$: aumento g_{CI} , IPSP. L'aumento di g_{CI} è facilitato dalle benzodiazepine
- 2. GABA_b: aumento gK, IPSP, AMPc
- La trasmissione sinaptica tramite GABA è terminata dal riassorbimento e trasporto del GABA nelle cellule gliali

Amminoacidi-Glutammato

- Tre sottotipi di recettori:
- Cainato: aumento gk e gNA, EPSP
- Quisqualato: aumento gK e e gNA, EPSP
- N-metil-D-aspartato (NMDA):

 aumento g_{ca}, recettore è
 bloccato da Mg⁺⁺ quando la
 membrana è a riposo ed è
 sbloccato dalla depolarizzazione
 di membrana
 Quindi è regolato sia
 chimicamente sia dal voltaggio

Neurotrasmettitori e recettori-Sinossi

Neurotrasmettitore	Recettore	Conduttanza di membrana	Potenziale di membrana	Secondo messaggero
Acetilcolina (ACh)	Nicotinico Muscarinico M ₁ Muscarinico M ₂	Aumenta g _{Na} , g _K Diminuisce g _K Aumenta g _K	EPSP EPSP IPSP	IP ₃ e DAG AMP _c
Dopammina (DA)	D ₁ D ₂		EPSP (?) IPSP	AMP _c
Noradrenalina	⟨ 1	Aumenta g _K Diminuisce g _{Ca}	IPSP (SNC) Contrazione (SNP) [tachicardia] [dilatazione]	IP ₃ /DAG AMPc AMPc AMPc
Serotonina	5-HT _{1A} 5-HT _{1B} 5-HT _{1C} 5-HT _{1D} 5-HT ₂ 5-HT ₃	Aumenta g_K Aumenta g_{Cl} Diminuisce g_K Aumenta g_K/g_{Na}	IPSP IPSP EPSP EPSP	AMPc IP ₃ IP ₃
Glutammato	Cainato Quisqualato NMDA	Aumenta g _{Na} , g _K Aumenta g _{Na} , g _K Aumenta g _{Ca}	EPSP EPSP EPSP	
GABA	GABA-A GABA-B	Aumenta gCl Aumenta gK	IPSP IPSP	AMPc (?)

Neuropetidi ad alto peso molecolare

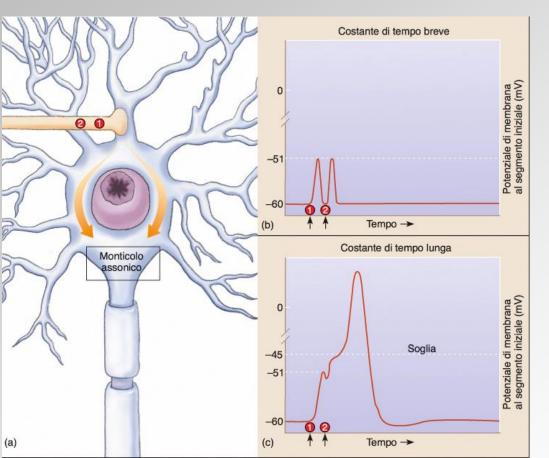
Colocalizzazione di trasmettitori a basso peso molecolare e di neuropetidi

Trasmettitori a basso peso mollecolare	Neuropeptide
ACh	Peptide vasoattivo intestinale
NE	Somatostatina Encefalina Neurotensina
DOPA	Colecistochinina Encefalina
Adrenalina (E)	Encefalina
5-HT	Sostanza P Ormone rilasciante la tirotropina

- Neurotrasmettitori formati da catene aminoacidiche
- Sono formati nel soma e derivano come prodotti di grosse poliproteine
- I peptidi sono poi trasportati nella zona terminale dove, una volta secreti, modulano l'attirvità dei neurotrasmettitori: colocalizzazione
- Oppiacei
- met-encefalina, leu-encefalina, dinorfina, beta endorfinaDerivano da tre polipeptidi: proencefalina, prooppiomelanocortina, prodinorfina
- Recettori oppioidi: recettori mu (betaendorfina), recettore delta (leuencefalina, met-encefalina), recettore kappa (dinorfina)
- Regolazione percezione dolore
- Ossido nitrico (NO)
- Oltre all'attività vasodilatatrice, ha diverse funzioni regolatorie

Integrazione neuronale

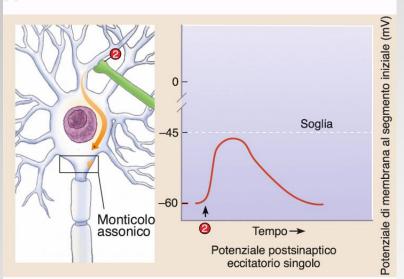
- Ogni Neurone deve ricevere un input (eccitatorio, inibitorio), integrarlo e trasformare il risultato modulando la propria frequenza di generazione dei PA
- · Decodificazione dell'informazione:

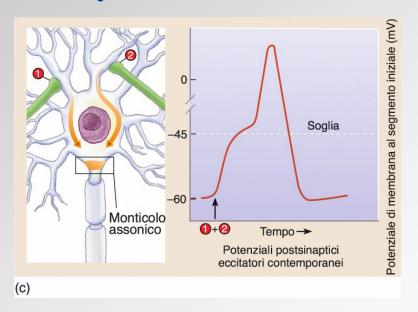

Integrazione dei segnali in arrivo

· Codificazione dell'informazione:

modulazione della frequenza di generazione dei PA l'informazione trasmessa consiste nel numero di impulsi nell'unità di tempo: codice in frequenza


Decodificazione dell'informazione -Sommazione temporale


• La somma (spaziale e temporale) dell'attività delle sinapsi eccitatorie ed inibitorie determina se un neurone genera PA o no e a quale frequenza



- 1. Sommazione temporale di EPSP
- Se due EPSP generati dalla stessa sinapsi si succedono in tempi ravvicinati, si raggiunge PS e si genera PA

Decodificazione dell'informazione -Sommazione spaziale

- 1. Sommazione spaziale di EPSP
- Vari EPSP generati da diverse sinapsi si sovrappongono in tempi ravvicinati, si raggiunge PS e si genera PA

Bibliografia

- Fisiologia Generale ed umana, IV edizione, Rhoades R e Pflanzer R, Piccin editore, Padova
 - Capitolo 7- Organizzazione funzionale del sistema nervoso Le sinapsi
- · Fisiologia dell'Uomo, autori vari, Edi. Ermes, Milano
 - Capitolo: Neurofisiologia generale (Capitolo 1.5)