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What is a compiler?
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Interpreter

Another kind of language processing
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Figure 1.3: An interpreter



Hybrid Approaches
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Figure 1.4: A hybrid compiler



Producing a machine code
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Figure 1.5: A language-processing system



Phases of a Compiler

@ Analysis or front-end

@ Synthesis or back-end

The symbol table stores information about the entire source
program.

Maps variables into attributes, i.e. type, name, dimension, address,
etc.

This information helps us detecting inconsistencies and misuses
during type checking.



Compilation process
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Compilation process
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Lexical Analyzer
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Figure 1.7: Translation of an assignment statement



Languages and Compilers

The design of programming languages is strongly related to the
design of compilers.

Adding new language features places new demand to compilers
writers

@ 1940’s programs are sequences of 0's and 1's (first electronic
computers)

e Early 1950’s Assembly

o Late 1950’s Fortran, Cobol, Lisp

@ 1970’s C Language

e 1990’s C++, Java

Since 1940's computer architectures has evolved as well!



High-level Programming Languages

They define programming abstractions.
Compilers must translate programs to the target language.

Easier to write programs but the generated target programs run
more slowly.

Need for optimisation

Example: the register keyword in C.



A Simple Example

Objective: to translate programs such as the following simple one:

{
int i; int j; float[100] a; float v; float x;
while ( true ) {
do i = i+1; while ( a[il < v );
do j = j-1; while ( aljl > v );
if (i >= j ) break;
x = alil; alil = aljl; aljl = x;
}
}

Figure 2.1: A code fragment to be translated



A Simple Example (ctd.)

The compiler front end (EEIEEE) translates the program into the

form:
1 i=1i+1
2 tl=al[il]
3: if t1 < v goto 1
1 j=3-1
5: t2=al[j]

6: if t2 > v goto 4

7: ifFalse i >= j goto 9
&: goto 14

90 x=ali]

10: t3=al[j]

11: a[i]1 =13

122 aljl=x

13: goto 1

Figure 2.2: Simplified intermediate code for the program fragment in Fig. 2.1
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