Introduction

The Structure of a Compiler

Linguaggi e Compilatori
Modulo Compilatori

Alessandra Di Pierro
alessandra.dipierro@univr.it

alessandra.dipierro@univr.it

Text Book and
Principles of Compiler Desig

http://www.di.univr.it/?ent=oi&cs=420&discr=&discrCd=&id=81197&lang=it

What is a compiler?

source prograin

Compiler

'

target program

Figure 1.1: A compiler

input —= Target Program —= output

“lgure 1.2: ming the target program
Figure 1.2: Running the target prograt

Interpreter

Another kind of language processing

SOUrce prograin —e

input —

Interpreter

—= output

Figure 1.3: An interpreter

Hybrid Approaches

source prograr

Translator

%

intermediate program —s—

input —

Virtual
Machine

——— (’JllT.pllI.

Figure 1.4: A hybrid compiler

Producing a machine code

source prograrn

library files
relocatable object files

target machine code

Figure 1.5: A language-processing system

Phases of a Compiler

@ Analysis or front-end

@ Synthesis or back-end

The symbol table stores information about the entire source
program.

Maps variables into attributes, i.e. type, name, dimension, address,
etc.

This information helps us detecting inconsistencies and misuses
during type checking.

Compilation process

Symbol Table

character stream

’ Lexical Analyzer

T
token stream

’ Syntax Analyzer

T
syntax tree

’ Semantic Analyzer

T
syntax tree

Intermediate Code Generator

intermediate representation

Machine-Independent
Code Optimizer

- N T N
intermediate representation

’ Code Generator

T
target-machine code

Machine-Dependent
Code Optimizer

T
target-machine code

Compilation process

position = initial + rate * 60

Lexical Analyzer

d, 1) (=) (id.2) (+) (id.3) () (60)

Gy
position (id. 2y .
initial (id. 3 60
rate

Semantic Analyzer

SYMBOL TABLE

inttofloat

60

t1 = id3 * 60.0
idl = id2 + t1

Code Generator
LDF R2,
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, Ri, B2
STF idl, R1

Figure 1.7: Translation of an assignment statement

Languages and Compilers

The design of programming languages is strongly related to the
design of compilers.

Adding new language features places new demand to compilers
writers

@ 1940’s programs are sequences of 0's and 1's (first electronic
computers)

e Early 1950’s Assembly

o Late 1950’s Fortran, Cobol, Lisp

@ 1970’s C Language

e 1990’s C++, Java

Since 1940's computer architectures has evolved as well!

High-level Programming Languages

They define programming abstractions.
Compilers must translate programs to the target language.

Easier to write programs but the generated target programs run
more slowly.

Need for optimisation

Example: the register keyword in C.

A Simple Example

Objective: to translate programs such as the following simple one:

{
int i; int j; float[100] a; float v; float x;
while (true) {
do i = i+1; while (a[il < v);
do j = j-1; while (aljl > v);
if (i >= j) break;
x = alil; alil = aljl; aljl = x;
}
}

Figure 2.1: A code fragment to be translated

A Simple Example (ctd.)

The compiler front end (EEIEEE) translates the program into the

form:
1 i=1i+1
2 tl=al[il]
3: if t1 < v goto 1
1 j=3-1
5: t2=al[j]

6: if t2 > v goto 4

7: ifFalse i >= j goto 9
&: goto 14

90 x=ali]

10: t3=al[j]

11: a[i]1 =13

122 aljl=x

13: goto 1

Figure 2.2: Simplified intermediate code for the program fragment in Fig. 2.1

http://dragonbook.stanford.edu

	Course Info
	Basics
	Languages and Compilers
	A Simple Syntax-Directed Translator

