Ca' Vignal 2 Strada le Grazie 15 37134 Verona - Italia Tel. +39 045 802 7069 Fax +39 045 802 7068

Master's Program in Applied Mathematics First written test of Functional Analysis December 19, 2013

Solve the following problems. Justify your conclusions. Time: 120 min.

Pb 1. Let $a \in C([0,1] \times [0,1])$ and define $T: C([0,1]) \to C([0,1])$ by setting

$$T(u)(x) := \int_0^1 a(x,\sigma)u(\sigma)d\sigma, \quad x \in [0,1].$$

Show that T maps bounded sequences into relatively compact sequences.

Pb 2. Let $(a_n) \subset \mathbf{R}$ be a sequence such that $(a_n x_n) \in \ell^1$ for any $(x_n) \in \ell^2$. Show that $(a_n) \in \ell^2$.

(Hint: Consider the linear functional $T:(x_n)\mapsto \sum_{n=1}^\infty a_nx_n\dots S$. Banach and H. Steinhaus may have something to tell.)

Pb 3. Let $u \in L^2(\mathbf{R})$. Show that $T: \mathbf{R} \to L^2(\mathbf{R}), T(y) := u(\cdot - y)$ is continuous.

Pb 4. Let $Y = \{(x_n) \in \ell^1 : x_1 = x_3 = x_5 = \dots = 0\}$ and let $\varphi \in Y'$. Prove that there exist infinitely many linear extensions $\Phi : \ell^1 \to \mathbf{R}$ of φ with $\|\Phi\|_{(\ell^1)'} = \|\varphi\|_{Y'}$.

Pb 5. For $\alpha \in (0,1]$, discuss the strong and weak convergence in $L^2(\mathbf{R}^2)$ of the sequence of functions

$$f_n(x,y) = n^{\alpha} e^{-n^2 x^2 - n^2 y^2}$$

Pb 6. Compute $\lim_{n\to\infty} \int_0^\infty \frac{\sin(n\sqrt{\sigma})}{2n\sigma + \sigma^3} d\sigma$.