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Foundations of Vision

Part 1



Multiresolution in vision



Can you believe your eyes?



Can you believe your eyes?





Can you believe your eyes?





Simultaneous Contrast

Simultaneous contrast describes the way a color object seems to change 
size and intensity based on the colors nearby.



Chromatic Induction

Chromatic induction describes the way adjacent colors alter the way the color itself
is perceived 



what color is this?



Afterimage



Can you believe your eyes?



Can you believe your eyes?



Can you believe your eyes?







Relevance



Relevance



Take home message

• There is no direct mapping between what you perceive when looking at an image 
and what is encoded in the image. The link between the two can be made explicit 
by a model

• Multiresoultion plays a role in perception

• Color vision is not straightforward neither is color imaging

• Image interpretation is ambiguous and depends on prior knowledge and 
expectations



Understanding vision

A problem of reverse engineering!



How to study Vision (by Wandell)

• Encoding
– How the retinal image is encoded in the visual pathway 

• Determines the quality of the information available to higher levels of processing
• Sets the benchmark for performances of automatic reproduction systems
• Nice illustration of the complementarities  between physical calculations, biological experiments 

and behavioral studies

• Representation
– How the encoded image is represented by the neural response within the peripheral and 

early cortical visual pathways

• Interpretation
– Perception is an interpretation of the retinal image, not a description

• Assigns perceptual properties such as color, motion and depth



How to study Vision (by Wandell)

• Since the information provided by the retinal image is imprecise, image 
interpretation is an inference process, which is possible due to the statistical 
regularities of the natural environment (and thus of the retinal image). 

• Understanding such regularities and how to use them to interpret the retinal image 
are central to vision science.



Part 1: Encoding

• Low-level processing

• Image formation
– Optical quality of the eye

• Photoreceptor mosaic
– Photoreceptor types
– Geometrical aspects

• The cone mosaics
• Sampling and aliasing

• Wavelength encoding
– Scotopic and photopic conditions
– Basic issues on color vision: Color matching functions



Part 2: Representation

• Low-to-mid level processing

• The Retinal representation
– The retina
– Retinal Ganglion Cells response to light

• Receptive field
– Light adaptation

• The cortical representation
– The Visual Cortex
– Receptive fields in the visual cortex

• Pattern sensitivity
– (Spatial and Spatiotemporal) Contrast Sensitivity 
– Pattern adaptation
– Masking and Facilitation



Part 3: Interpretation

• High level processing
– Color vision
– Motion and depth perception
– Seeing



Encoding

• Process that describes how the light (photons) entering the eye are captured by 
the photo-detectors present in the retina and the resulting retinal representation of 
the visual stimulus (image)

• Issues
– Limits set by the optic of the system

• Cornea, lens
– Sampling

• The photoreceptors form a discrete grid, rising the classical sampling related issues
– Normalization

• The dynamic range of the output of the visual neurons is finite and much smaller than that 
corresponding to the change in illumination experienced in a typical day (light adaptation)

– Transfer function
• The sensitivity of the photo-sensors depends on the frequency of the stimulus and on the 

illumination condition 

• Assumption: the image formation process is linear
– Can be investigated and modeled by the linear system theory



Visual and Imaging chain

Optics Sampling
(A/D)

Multiscale
representation Filtering Processing

VISUAL CHAIN

IMAGING CHAIN



Image formation

Cornea and lens focus the 
impinging light to the retina

The photoreceptors on the retina 
transpose the quanta into neural 
responses

The neural responses 
are transformed into 
neural representations 
within the optic nerve 
which brings them to 
the brain to form other 
cortical 
representations



Image formation

• The light entering the eye is brought to focus on the retina by the eye optics (cornea+lens)
– The focus of the optical system must be kept on the retina in any condition

• The retina is a thin layer of neural tissue. It consists of different types of neurons. The axons 
of some of these are collected into the optic nerve.

• The optic nerve exits the retina at the optic disc to bring the signal to the brain for further 
processing

Optic disc



Experience your black spot



Image formation

Due to the complexity of the optical system, it is reasonable to expect that the response will be 
characterized by a line spread function 

• The retinal image is a blurred version of the original

Eye optics
photons

Retinal 
image

Photo-
detectors

Neural 
responses

Optic 
nerve

Visual 
Cortex

Cortical 
representatations



Retinal image formation

Screen position
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The retinal position is measured in 
eccentricity or units of visual angle



Retinal position

•• EccentricityEccentricity is the measure of the distance on the retinal surface, which is either express as 
the distance in mm on the retinal surface or (more often) as the visual angle between some 
point on the retina and the center of the fovea

• Objects with the same visual angle have the same size on the retina

nodal point or apex

θ



The optics of the eye

• Geometric optics approximation

– For most eyes, the nodal point lies 7mm behind the cornea
– The distance from the nodal point to the retina is the posterior nodal distance, and it is 

about 17mm for adult humans. This must corresponds to the focal distance of the 
system.

– To have the image at focus on the retina, di=17mm. The optical power of the system 
(p=1/f) is thus dynamically changed to match such a condition when changing the 
distance of the object (screen) from the eye. In practice, the image of the object is 
focused on the retina for ds>=1m. 

• Such optic power corresponds to 58.8 dyopters
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Eccentricity

• This allows to set the size of the stimulus on the screen such that the corresponding retinal 
image covers a pre-defined region of the retina, for each distance between the screen and 
the subject
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Eccentricity

• Some typical values
– The fovea subtends 2 degrees of visual 

angle
– To stimulate the fovea the stimulus must be 

centered on the screen and cover a visual 
angle of 2 degrees

• 2cm on the screen at 57cm
• 4cm on the screen at 114cm

– By going farthest at fixed stimulus size the 
visual angle decreases and different 
portions of the retina are stimulated
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Linespread function

• Assumptions [Campbell and Gubish]
– Linearity

• Homogeneity and superposition hold
– Shift (translation) covariance

• A shifted input generates a shifted output
– No phase shift

• The phase of the retinal image is the same as the phase of the stimulus
– The attenuation of the signal is the same in the two directions
– Stimulus composed of a single vertical line on the screen at different positions
– Different illumination conditions (pupil aperture)

• The estimated linespread function
– Is bell-shaped
– The width (blurring) depends on the illumination

• When the pupil is wide open the width of the lens increases and the amount of blurring 
(defocusing) increases



Linespread function

• Westheimer’s model (1986)
– Under certain viewing conditions and for a 

pupil diameter of 3mm
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Diffraction

• Diffraction takes place because the light passes through the circular aperture 
defined by the pupil. 

• For apertures as small as 2mm, the quality of the optical system is quite high 
(small portions of the cornea and lens near the center of the visual field). In this 
conditions the main source of image blur is diffraction.



Pointspread function (PSF)

• Pointspread function (PSF): Image of a point source of light on the retina
– Aberration
– Diffraction

– Spreads the response to one single spot to about 20 cones
– Limits visual acuity

• Points can be resolved up to the point the peak of the one falls into the trough of the other



Other characteristic functions

• Optical Transfer Function (OTF): Complex function that measures the lost in 
contrast and the phase shift of a sinusoidal target

– Modulation Transfer Function (MTF)
MTF=|OTF|

– Phase Transfer Function (PTF)
PTF=phase{OTF}



Photoreceptor mosaic

• The retinal image is sampled by the photo-receptors of the retina
– Discrete sampling grid



Sampling and Aliasing



Sampling and Aliasing



Photoreceptor types

Rods

• Scotopic vision (low illumination)

• Do not mediate color perception

• High density in the periphery to capture 
many quanta

• Low spatial resolution

• Many-to-one structure
– The information from many rods is 

conveyed to a single neuron in the retina

• Very sensitive light detectors
– Reaching high quantum efficiency could be 

the reason behind the integration of the 
signals from many receptors to a single 
output. The price for this is a low spatial 
resolution

• About 10 millions

Cones

• Photopic vision (high illumination)

• Mediate color perception

• High density in the fovea

• One-to-one structure
– Do not converge into a different single 

neuron but are communicated along private 
neural channels to the cortex

• High spatial resolution
– The lower sensitivity is compensated by the 

high spatial resolution, providing the eye 
with good acuity

• About 5 millions
– 50000 in the central fovea



Cones and Rods mosaic



Cones and Rods shape



Cones and rods shapes

The light enters the inner segment and passes into the outer segment which contains light absorbing 
photopigments. Less than 10% photons are absorbed by the photopigments [Baylor, 1987].

The rods contain a photopigment called rhodopsin.



Cone and rods

photons



The fovea

• The fovea is the region of the highest visual acuity. The central fovea contains no 
rods but does contain the highest concentration of cones.

Blind spot



Properties of Rod and Cone Systems

Rods Cones Comment

More photopigment Less photopigment

Slow response: long integration 
time

Fast response: short integration 
time Temporal integration

High amplification Less amplification Single quantum detection in rods (Hecht, Schlaer & 
Pirenne)

Saturating Response (by 6% 
bleached)

Non-saturating response 
(except S-cones)

The rods' response saturates when only a small amount 
of the pigment is bleached (the absorption of a photon 
by a pigment molecule is known as bleaching the 
pigment). 

Not directionally selective Directionally selective Stiles-Crawford effect (see later this chapter)

Highly convergent retinal 
pathways

Less convergent retinal 
pathways Spatial integration

High sensitivity Lower absolute sensitivity

Low acuity High acuity Results from degree of spatial integration

Achromatic: one type of 
pigment

Chromatic: three types of 
pigment

Color vision results from comparisons between cone 
responses



Types of cones

The cones are classified based on their wavelength selectivity as L (long), M (medium) and S (short) 
wavelength sensors.

L,M and S cones have different sensitivity and spatial distributions. The S cones are far less 
numerous and more sensitive than the others. 



Cone mosaic

This diagram was produced based on histological sections from a human eye to determine the density of the 
cones. The diagram represents an area of about 1° of visual angle. The number of S-cones was set to 7% 
based on estimates from previous studies. The L-cone:M-cone ratio was set to 1.5. This is a reasonable 
number considering that recent studies have shown wide ranges of cone ratios in people with normal color 
vision. In the central fovea an area of approximately 0.34° is S-cone free. The S-cones are semi-regularly 
distributed and the M- and L-cones are randomly distributed.
Throughout the whole retina the ratio of L- and M- cones to S-cones is about 100:1.

Williams (1985) measured the sampling density 
of the mosaic of the L- and M-cones together. 
His results are consistent with a sampling 
frequency of 60 cpd at the central fovea, 
consistent with a center-to-center spacing of the 
cones of 30 minutes of degree.

The sampling frequency than decreases when 
increasing the visual angle, consistently with the 
decrease in cone density.



Wavelength encoding

• Scotopic matching experiment → Scotopic luminosity function V’(λ)
– Characterizes vision at low illumination conditions
– Rod responses
– One primary light and one test light
– The intensity of the light beam is the parameter

• Photopic color matching experiment→ Color matching finctions (CMF), photopic
luminosity function V(λ)

– Characterizes vision under high illumination conditions
– Cones responses
– Three primary lights and one test light
– The intensities of each primary lights are the parameters



Representation



Representation

Visual streams
• The visual system consists of a collection of pathways, each responsible for analyzing different 

aspects of the retinal image. 
• It begins at the early stages of visual encoding, with the segregation between rods and cones. 

The specialization is elaborated in the retina and continues into the cortical area.

Issues of interest

• Adaptation and contrast
• Compensation in response to variations of the illumination level (adaptation)

• Multiresolution
– Image contrast is represented within a certain range of spatial frequencies and within a certain range of spatial frequencies and 

orientationsorientations, as shown by both behavioral and electrophysiological studies

• Linking hypothesis
• About matching behavioral and biological measurements
• Example: linking color matching experiments with cone sensitivities



The Retinal representation
Retina cross section (rabbit) The human retina consists of different layers 

and its structure changes with eccentricity.

There are many types of cells and of 
interconnections both within and between 
layers, which make the system quite complex.

The connected series of neurons carrying 
information in parallel are referred to as visual 
pathways or visual streams. It seems that the 
segregation to different pathways starts at the 
output of rods and cones.

One of the main functions of the retina is to 
organize the information collected by the 
photoreceptors into a collection of visual 
streams.

It is common belief that each visual stream 
carries an efficient representation of the 
spatiotemporal component of the image that is 
most relevant for tasks carried out in the visual 
area where the ganglion cell output is sent.



Neural information flow



Along the pathway

• Lateral Geniculate Nucleus (LGN)
• The LGN is placed between the retina and the cortex. It resembles a six-layered, warped cake.

– The lower two layers contain large cell bodies, called magnocellular neurons, while the upper four layers 
are characterized by small cell bodies termed parvocellular neurons.

• About 90% of the fibers in the optic nerve project to the lateral geniculate nucleus (LGN) of the 
thalamus and from there onto primary visual cortex. 

– This pathway dominates conscious visual perception. About 100,000 ganglion cells project to the superior 
colliculus (SC) at the top of the midbrain.

• Superior Culliculus (SC)
• The superior colliculi retains a number of important visual functions underlying orienting 

responses as well as eye and head movements. 
• The SC integrates visual and auditory information together with head motion and directs eyes to 

regions of interest in the external world (saccades).
– The two SCs are the most important visual regions in fish, amphibians, and reptiles. In primates, much of 

their function has been taken over and extended by the cortex.
– The SC can be divided conveniently into superficial, intermediate, and deep layers. The superficial layer 

receives direct input from retinal ganglion cells in a topographic manner.
– Each nucleus is about 6mm wide.



Symmetries

Left visual field Right visual field

nasotemporal
division

Left retina Right retina

R RL L

nasotemporal
division

R L

Left colliculus Right colliculus

fovea

The view is from behind, looking forward at the backs of the retinas. 

Both retinas send the information from the right visual field to the left nucleus, and viceversa. Each nucleus receives from the 
portions of both retinas that receives the image of the controlateral visual field



Monocular and binocular vision

monocular monocular

binocular

The temporal retina of the right eye views the left
visual hemifield, but its view is limited because of 
the nose. 

The nasal retina of the left eye has a more 
extensive view of the visual field. The portion of 
the visual field that only this eye sees is called 
the monocular portion of the left visual field.

temporal retina, left eye temporal retina, right eye

View from behind

nasal retina, right eyenasal retina, left eye



Image contrast and adaptation

• Challenge: The neurons must be sensitive to image patterns despite the great 
variation of illumination along the day

– The neurons response range covers about 2 or 3 orders of magnitude, versus the 6 of 
the daylight illumination

• Solution: Encode the local contrast instead of the absolute stimulus values
– Local contrast: percentage change in the image intensity relative to local average

• remains constant despite the changes in the illumination



Cortical representation



Feedforward and Feedback Pathways 

– The signals from the two retinas are 
communicated to area V1 via the LGN. In 
the macaque monkey, after the signals are 
processed in V1 they are communicated via 
multiple pathways to the 30+ visually 
responsive extrastriate cortical areas 

– Anatomical hierarchical models place the 
visual cortical areas into a multi-level 
processing model based upon the pattern 
of feed forward, lateral, and feedback 
pathways found in each area. 

– It is true that visual information is passed 
from the retina to the LGN to V1 to the 
higher cortical areas and that the higher 
areas project back to V1 and V1 to the LGN

Very complex path of interaction



Visual area wiring diagram



Receptive fields



Retinal ganglion cells response to light

• Action potentials or spikes
– The responses of ganglion cells are 

analyzed by recording the temporal pattern
of action potentials caused by light 
stimulation

– These can be measured by either placing a 
microelectrode near to their cell bodies in 
the retina or in the optic nerve outside the 
eye

• Receptive field [Kuffler, 1952]
– Operationally, the receptive field can be 

defined as the portion of the visual field in portion of the visual field in 
which an appropriate stimulus modulates which an appropriate stimulus modulates 
the cell responsethe cell response

– The RF depends on the entire visual RF depends on the entire visual 
pathwaypathway, though there is no feedback in the 
retinal ganglion cells



Center-surround organization

• Spontaneous firing rate
– Average number of spikes per unit time in presence of a constant field

• Typically 50 spikes/sec

• The RF is characterized through the change in firing rate caused by a stimulus at 
different positions in the visual field

x

spike frequency
spontaneous 

firing rate on-center off-surround

A

B

C



Center-surround organization

on-center off-surround off-center on-surroundLeft: Four recordings from a typical on-
center retinal ganglion cell. Each record is a
single sweep of the oscilloscope, whose
duration is 2.5 seconds. For a sweep this
slow, the rising and falling phases of the
impulse coalesce so that each spike appears
as a vertical line. To the left the stimuli are
shown. In the resting state at the top, there
is no stimulus: firing is slow and more or
less random. The lower three records show
responses to a small (optimum size) spot, a
large spot covering the receptive-field cen-
ter and surround, and a ring covering the
surround only. Right: Responses of an off-
center retinal ganglion cell to the same set
of stimuli shown at the left. stimulus: white region



Two-dimensional RF

• The shape of the RF reflects many 
properties of the neurons, like the 
sensitivity to different frequencies 
(bandwidth)

• Linearity holds, so one can characterize 
the response to complex stimuli by 
exploiting homogeneity and superposition

– Test for linearity in retinal ganglion cells 
[Enroth, Cugell and Pinto, 1970]



Contrast Sensitivity Functions

• Contrast threshold
– Amount of stimulus contrast needed to elicit a criterion level of response from the neuron
– Principle

• When the stimulus pattern is matched with the RF of the neuron, a small amount of contrast will 
elicit the criterion response level

• Contrast sensitivity = 1/Contrast Threshold

• The highest spatial frequency to which the cell responds is bounded by the size of 
the RF center

+-

high response →
low contrast 
threshold (on-
center)

+-

low response →
high contrast 
threshold

-+

high response →
low contrast 
threshold (off-
center)



Contrast Sensitivity Functions
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Spatio-temporal CS

• Flickering stimuli
– The temporal frequency of the flicker ft is an additional control variable
– For a single neuron, the responses to many repetitions of the stimulus must be collected 

and averaged → peri-stimulus time histogram (PSTH)

• Space-time receptive fields
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Spatio-temporal CSF

Space time separability does not hold!



Weber’s law

• Threshold sensitivity as a function of background intensity
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I : steady value of the background intensity
ΔIt : incremental threshold 

The incremental threshold is proportional to the 
absolute value of the mean background intensity 
→ contrast sensitivity is constant (ΔIt /I 
represents the contrast at threshold)

Weber’s law characterizes many visual 
mechanisms, and is one the most important laws 
in vision. It is an approximation and it applies 
best to low spatial frequency patterns.

Good agreement with behavioral CSFs
[Pasternak&Merigan, 1981, cat]
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Weber’s law

• Weber's Law states that the ratio of the increment threshold to the background 
intensity is a constant. 

– So when you are in a noisy environment you must shout to be heard while a whisper 
works in a quiet room. 

– And when you measure increment thresholds on various intensity backgrounds, the 
thresholds increase in proportion to the background.

– The fraction  ΔI/I is known as the Weber fraction. If we rearrange the equation to 
ΔI=IxK, you can see that Weber's Law predicts a linear relationship between the 
increment threshold and the background intensity. 

I

ΔI

t



The Cortical Representation

The human cortex is a 2mm thick sheet of neurons with a surface area of 1.400 cm2, in the form of a crumpled 
sheet stuffed into the skull.
In primates the great part of the signals from the retina and LGN arrives at a single area called V1, or primary 
visual cortex. It comprises about 1.5x108 neurons.
More than 20 other areas have been discovered to receive visual inputs.



Receptive fields in V1

– The RF in V1 are qualitatively different from those of LGN
• The LGN neurons’ RF are circularly symmetric while the V1 are not
• Direction selectivity
• Orientation selectivity
• Some of them are binocular
• [Hubel&Wiesel, 1959-82]: simple cells and complex cells. While simple cells succeeded the 

test for linearity, complex cells did not
• The classic method for testing orientation and direction selectivity is to measure the spike rate of 

a single cell in response to drifting oriented luminance bars and/or drifting luminance spots 
electrodevisual stimulus

position



Orientation selectivity

• Orientation selectivity is modeled by a RF that is elongated along the preferred 
orientation of the neuron

• Stimuli oriented along the main axis of these RF are more effective at exciting or inhibiting the 
cell than stimuli in other orientations

• The degree of orientation selectivity is represented by the size of the RF: the neuron with a 
longer RF will respond well to a narrower set of orientations

• Orientation selectivity could result from pooling the responses of sets of neurons with symmetric 
RF according to different policies. The exact mechanisms underlying orientation selectivity are 
still mostly unknown

• The preferred orientation of neurons varies in an orderly way that depends on the position in the 
cortical sheet

– Open issues
• What are the rules for making the interconnections that lead to the spatial organization of 

orientation selectivity?
• What functional role do they have in perceptual processing?
• Is the spatial organization essential?



Orientation selectivity
Orientation selective cell Orientation non selective cell

Histograms of cells’
responses as a 
function of time



Non-linear features
• Contrast sensitivity of simple and complex cells

– Contrast normalization
– Model for contrast-gain control [Heeger 1992, Simoncelli&Shwartz 2000]

Simple 
(complex) cell

space

tim
e

number of spikes/s vs time
ft=2 Hz
Tt=0.5 s

time

excitatory (0<t<0.25s)

inhibitory (0.25<t<0.5s)

time



Non-linear responses
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From local to global

[L. Zhaoping et al., Trends in Cognitive Sciences, Vol. 6. No. 1, Jan, 2002, p. 9-16]



Modeling receptive fields

Sparse representations and the statistics of the natural 
environment [olshausen]



Modeling vision

• Identification of the optimal basis for representing the stimuli
– Make some assumptions on the strategies employed by the visual system
– Derive a mathematical representation of the stimulus accordingly

• Design of the model in the feature space
– Make some assumptions on the way the transformed coefficients are “interpreted”
– Design a mathematical/statistical model that tries to reproduce such a behavior
– Example: image quality metrics

• Model validation
– Objective evaluation (ideal observer)
– Subjective evaluation



Identification of the optimal basis

It has long been assumed that sensory neurons are adapted, through both 
evolutionary and developmental processes, to the statistical properties of signals to 
which they are exposed [Atteanave-56, Barlow-61]

Statistics of natural images ↔ Neural responses

► Efficient coding hypothesis
– “The role of early sensory neurons is to reduce the redundancy in the representation of 

the sensory input” [Barlow-61]

The simplicity of such a statement hides very difficult problems
– Description of the probability distribution over the space of natural images

• The estimation of probability density functions on high dimensional spaces is cumbersome
– Identification of the neurons that should respond to the independent coding hypothesis 
– Translation of the neural responses to perceptual cues



Identification of the optimal basis

• Guideline
– Analyze the statistical properties of environmental signals (images) and derive a 

description of the response properties of sensory neurons based on a given statistical 
optimization criterion (sparsity)

• Method
– Interpret the stimulus (image) as the realization of an underlying stochastic process
– Make some assumptions on the criteria followed by the visual system for its encoding 
– Derive a cost function and an optimization rule

• Keywords
– Sparsity & statistical independence
– Implications of the efficient coding hypothesis
1. Statistical independence: the response of neuron Ni does not provide any information on 

the response of neuron Nj, for any i different from j
2. Sparsity: most of the neurons are not active (not responding) most of the time



Basic approximations

• Hypothesis of linearity
– The stimulus is represented by a weighted sum of basis functions
– Basis functions ↔ receptive fields of neurons

• Stationarity
– The statistical parameters (mean, variance..) do not change with spatial position

• Ergodicity
– Statistical properties can be inferred from a single realization (image)

• Limit to second order properties of the input statistics
– Variance, covariance

• Properties of points and dipoles
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Sparse coding

• Maximization of the sparseness of the representation
– The marginal histograms (i.e. the histograms of the coefficients obtained after the 

perceptual decomposition) have a sharp peak at zero [Olshausen&Field-96]
• The great majority of subband coefficients are zero

Linear 
decomposition
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Responses of arrays of neurons which are 
selective for different spatial frequencies, 
scales and orientations ↔ subbands



Sparse coding bases

The basis functions are multi-scale, 
bandpass and oriented

Resemble RF of neurons 
responsible for early 
vision

→ physiological mapping

Can be assimilated to wavelet
families

→ SP and information-theoretic 
mapping

First evidence of the complementarity of the fields 
of vision sciences and signal processing 



Olshausen’s model



Olshausen’s model

• For efficient coding “si” have to be:
– Sparse
– Statistically independent

• Drawbacks of previous approaches:
– PCA or ICA achieve the two constraints but solutions not spatially localized. Then they 

do not allow for overcomplete codebooks
– Fitting Gabor wavelets functions: too many parameters to be tuned by hand
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Bases-Learning Algorithm

By imposing the following probability distributions:
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it is possible to apply the Bayes’ rule to derive the following cost function which trades off 
“representation quality” for “sparseness”. Thus, the search for a sparse code can be 
formulated as an optimization problem minimizing the cost function:
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It measures how well the 
code describes the image

It assesses the 
sparseness of the code



Training Sets

Each set is composed of ten images of 512x512 pixels



Preprocessing

• It is needed to counteract the fact that the error computed in the cost function 
preferentially weights low frequencies. 

• Zero-phase whitening lowpass filter:
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Result: codebook (set 1)
The algorithm randomly selects image patches the dimension of the chosen bases

Results from training a system of 192 bases functions on 16x16 image patches extracted from scenes of 
nature: the results were obtained after 40,000 iteration steps (4 hours of computation) 



Result: codebook (set 2)

a) 2x-overcomplete system of 128 bases functions of 8x8 pixels (b) 192 bases of 16x16 pixels
20,000-40,000 iteration steps: 2-4 hours of computation

The learned bases result to be oriented along specific directions and spatially well localized.
Moreover, the bases seem to capture the intrinsic structure of Van Gogh brushstrokes!

a) b)



Result: codebook (set 3)

64 bases functions of 8x8 pixels

The bases seem to capture the intrinsic structure of the building elements, that are mainly composed of vertical, 
horizontal, slanting edges and corners.



Codebook properties

The basis functions result to be: spatially localized, oriented and bandpass



Frequency Tiling Properties

In pictures of buildings, the basis spectrums undergo certain precise directions.
These preferential directions are due to the localized orientation of  the correspondent bases in the spatial domain: 
horizontal, vertical  and slanting edges
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Reconstruction

• Given the probabilistic nature of the approach, we can not have a perfect 
reconstruction but, conversely, the best approximation of the original picture

• At the end of the learning process, coefficient histograms undergo the Laplacian 
distribution imposed by the model: they are sparse!

• To have an M-bases approximation, take only the M coefficients of higher absolute 
value
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How well does the learned codebook fit the 
behavior of V1 receptive fields? 

• Versus
– Localized, oriented and bandpass bases
– Sparseness of coefficients resemble the sparse activity of neuronal receptive fields
– Learned bases from natural scenes reveal the intrinsic structure of the training pictures: 

they behave as feature detectors (edges, corners) like V1 neurons

• Against
– Bases show higher density in tiling the frequency space only at mid-high frequencies, 

while the majority of recorded receptive fields appear to reside in the mid to low 
frequency range

– Receptive field reveal bandwidths of 1 - 1.5 octaves, while learned bases have 1.7 – 1.8 
octaves

– Neurons are not always statistically independent of their neighbours, as it is assumed in 
the analytical model

• Remaining challenges for computational algorithms
– Accounting for non-linearities as shown by neurons at later stages of visual system
– Accounting for forms of statistical dependence



Conclusions

• Results demonstrate that localized, oriented, bandpass receptive fields emerge 
only when two objectives are placed on a linear coding of natural images:

– That information be preserved
– And that the representation be sparse

• The learned bases behave as feature detectors and capture the intrinsic structure 
of natural images

• Increasing the degree of completeness results in a higher density tiling of 
frequency space

• Sparseness and statistical independence among coefficients allow efficient 
representation of digital images

• Spatial and frequency properties of such a learned codebook reveal a lot of 
similarities with fitted Gabor wavelets!



Gabor: frequency response



Gabor: impulse response



learned fitted Gabor



Pattern sensitivity



Pattern sensitivity
• Spatio-temporal patterns

• Behavioral experiments
– Detection

• Threshold
– Discrimination

• Just Noticeable Difference (JND)

• Neural image
– The responses of a collections of 

neurons with similar RF differing in the 
spatial position make up a neural 
image

• Each neural image is representative of 
a population of neurons which 
encodes a different property of the 
stimulus. 

• The intensity of the neural image at a 
point represents the activity level of 
the corresponding neuron



Pattern sensitivity

• Psychophysical investigation
– Threshold experiments
– Discrimination experiments

• Generalization of the definition of the spatiotemporal CSF as resulting from the 
whole vision processes a stimulus is subject to in the psychophysical investigation 
loop

– No longer a way to characterize the responses of neurons (either completely for those 
for which linearity holds – LGN neurons and simple cells of V1 – or partially – complex 
cells in V1) BUT one of the many measures aiming at characterizing the visual system

• Pattern Contrast Sensitivity

• Pattern Masking

• Towards a multiresolution representation



Spatial CSF









Spatial CSF

• Fixed experimental conditions
– Given background intensity level
– Monochromatic stimuli (sine waves)

• Parameters
– Stimulus contrast
– Spatial frequency

• Measure
– Contrast at threshold c
– or Contrast sensitivity 1/c

• Threshold estimation
– For each tested frequency, the value of the 

contrast for which the stimulus becomes 
visible are collected

– The contrast at threshold is defined as the 
smallest one
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• Low sensitivity at high spatial frequencies
• No improvements at low frequencies; small fall 
near zero, probably due to neural factors
• Band-pass structure 

• Good agreement with the neural CSFs



Light adaptation

• Low light levels
– Integration across many neurons to achieve 

a reliable signal → compromises spatial 
resolution

• High intensity levels
– No need to integrate → improved spatial 

resolution

• Webers’ law regime
– Range in which the contrast sensitivity 

becomes constant
• Low spatial frequencies

– Kernel of truth: contrast sensitivity varies of 
2 orders of magnitude versus the 6 of the 
mean background illumination
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Find your CSF!



Spatio-temporal CS

• Flickering stimuli
– The temporal frequency of the flicker ft is an additional control variable
– For a single neuron, the responses to many repetitions of the stimulus must be collected 

and averaged → peri-stimulus time histogram (PSTH)

• Space-time receptive fields
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Weber’s law

Temporal sensitivity
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Spatio-temporal CSF



Chromatic CS

The spatial CSF for luminance contrast is band-pass in 
nature, with a peak sensitivity around 5 cycles per degree. 
This function approaches zero at zero cycles per degree, 
illustrating the tendency for the visual system to be 
insensitive to uniform fields. It also approaches zero at 
about 60 cycles per degree, the point at which details
can no longer be resolved by the human eye. 

The chromatic mechanisms are of a low-pass nature and 
have signicantly lower cut-o frequencies. This indicates the 
reduced availability of chromatic information for the details. 

The yellow-blue CSF has a lower cutoff frequency then the 
red-green one, because of the pattern of S cones in the 
retina. 

Note also that the luminance CSF is much higher than the 
chromatic CSFs. This denotes a greater sensitivity of the 
visual system to small changes in luminance contrast
compared to chromatic contrast.



Chromatic temporal sensitivity

Typical temporal CSFs for luminance and chromatic 
contrast. They share many characteristics with the spatial 
CSF. 

Luminance temporal CSF is still higher in both sensitivity 
and cut-off frequency than are the chromatic temporal 
CSFs. 

It also exhibits band-pass characteristics, while chromatic 
temporal CSFs have low-pass behavior.



Pattern masking
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Pattern masking

Some hints

• The presence of the masker facilitates 
detection at low masker contrast and 
masks detection at high masker contrast

– Dipper effect, typical of measurements at 
threshold, like signal visibility in noise

• When the frequencies differ by a factor of 
2 there is still masking but not significant 
facilitation

• When the frequencies differ by a factor 3, 
the effect of masking is reduced

Main limitations

• Only simple stimuli
– Monochromatic signals
– One signal and one masker

• No models available to predict the 
masking efficiency of non monochromatic 
maskers

– Not even maskers consisting of the sum of 
2 sinewaves

• Luminance domain



Temporal masking

• Presenting one visual stimulus (a "mask" or "masking stimulus") immediately after another brief (≤ 50 ms) 
"target" visual stimulus leads to a failure to consciously perceive the first stimulus. A similar phenomenon 
can occur when a masking stimulus precedes a target stimulus rather than following it: this is known as 
forward masking

• Masking behavior depends on
– Stimulus type (grating/noise)
– Orientation, frequency, color, …

• Temporal masking
– Sensitivity drop around scene changes
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Why we are interested in vision?

Issues

• Automatization of all the tasks based on 
vision

– Image segmentation, classification, pattern 
recognition

• Automatic assessment of image quality

• Compression and coding

• Security and watermarking

• Design of new imaging devices
– From capture to display

Hints&guidelines

• Exploitation of the CSF
– Perceptual quantization

• Exploitation of the masking properties
– Compression (as before)
– Watermarking

• Exploitation of the color perception 
mechanisms

– Compression
– Watermarking
– Design of capture devices
– Image rendering

On top of this: we need a framework for the effective representation of the visual stimulus



Core issue

• Can we learn something about this from the investigation of visual processes?

Vision 
sciences

Signal
processing

Multiresolution representations
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