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Abstract— The ridgelet transform (Candés and Donoho,
1999) was introduced as a sparse expansion for functions on
continuous spaces that are smooth away from discontinu-
ities along lines. In this paper, we propose an orthonormal
version of the ridgelet transform for discrete and finite-size
images. Our construction uses the finite Radon transform
(FRAT) (Bolker, 1987; Matis and Flusser, 1993) as a build-
ing block. To overcome the periodization effect of a finite
transform, we introduce a novel ordering of the FRAT co-
efficients. Taking the one-dimensional wavelet transform
on the projections of the FRAT in a special way results
in the finite ridgelet transform (FRIT), which is invertible,
non-redundant, and computed via fast algorithms. Further-
more, our construction leads to a family of directional and
orthonormal bases for images. Numerical results show that
the FRIT is more effective than the wavelet transform in
approximating and denoising images with straight edges.

Keywords— wavelets, ridgelets, Radon transform, direc-
tional bases, discrete transforms, non-linear approximation,
image representation, image denoising.

I. INTRODUCTION

Many image processing tasks take advantage of sparse
representations of image data where most information
is packed into a small number of samples. Typically,
these representations are achieved via invertible and non-
redundant transforms. Currently, the most popular choices
for this purpose are the wavelet transform [1], [2], [3] and
the discrete cosine transform [4].

The success of wavelets is mainly due to the good per-
formance for piecewise smooth functions in one dimension.
Unfortunately, such is not the case in two dimensions. In
essence, wavelets are good at catching zero-dimensional or
point singularities, but two-dimensional piecewise smooth
signals resembling images have one-dimensional singulari-
ties. That is, smooth regions are separated by edges, and
while edges are discontinuous across, they are typically
smooth curves. Intuitively, wavelets in two dimensions are
obtained by a tensor-product of one dimensional wavelets
and they are thus good at isolating the discontinuity across
an edge, but will not see the smoothness along the edge.

To overcome the weakness of wavelets in higher dimen-
sions, Candeés and Donoho [5], [6] recently pioneered a new
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system of representations named ridgelets which deal ef-
fectively with line singularities in 2-D. The idea is to map
a line singularity into a point singularity using the Radon
transform [7]. Then, the wavelet transform can be used to
effectively handle the point singularity in the Radon do-
main. Their initial proposal was intended for functions
defined in the continuous R? space.

For practical applications, the development of discrete
versions of the ridgelet transform that lead to algorithmic
implementations is a challenging problem. Due to the ra-
dial nature of ridgelets, straightforward implementations
based on discretization of continuous formulae would re-
quire interpolation in polar coordinates, and thus result in
transforms that would be either redundant or can not be
perfectly reconstructed.

In [8], [9], [10], the authors take the redundant approach
in defining discrete Radon transforms that can lead to in-
vertible discrete ridgelet transforms with some appealing
properties. For example, a recent preprint [10] proposes a
new notion of Radon transform for data in a rectangular
coordinate such that the lines exhibit geometrical faithful-
ness. Their transform is invertible with a factor four over-
sampled. However, the inverse transform is ill-conditioned
in the presence of noise and requires an iterative approxi-
mation algorithm.

In this paper, we propose a discrete ridgelet transform
that achieves both invertibility and non-redundancy. In
fact, our construction leads to a large family of orthonormal
and directional bases for digital images, including adaptive
schemes. As a result, the inverse transform is numerically
stable and uses the same algorithm as the forward trans-
form. Because a basic building block in our construction is
the finite Radon transform [11], which has a wrap-around
(or aliased line) effect, our ridgelet transform is not geo-
metrically faithful. The properties of the new transform
are demonstrated and studied in several applications.

As an illustration, consider the image denoising prob-
lem where there exist other approaches that explore the
geometrical regularity of edges, for example by chaining
adjacent wavelet coefficients and then thresholding them
over those contours [12]. However, the discrete ridgelet
transform approach, with its “built-in” linear geometrical
structure, provide a more direct way — by simply thresh-
olding significant ridgelet coefficients — in denoising images
with straight edges.

The outline of this paper is as follows. In the next sec-
tion we review the concept and motivation of ridgelets in
the continuous domain. In Section III, we introduce the
finite Radon transform with a novel ordering of coefficients
as a key step in our discrete ridgelet construction. The



finite Radon transform is then studied within the theory
of frames. The finite ridgelet transform is defined in Sec-
tion IV, where the main result is a general family of or-
thonormal transforms for digital images. In Sections V,
we propose several variations on the initial design of the
finite ridgelet transform. Numerical experiments are pre-
sented in Section VI, where the new transform is compared
with the traditional ones, especially the wavelet transform.
We conclude in Section VII with some discussions and an
outlook.

II. CoNTINUOUS RIDGELET TRANSFORM

We start by briefly reviewing the ridgelet transform and
showing its connections with other transforms in the con-
tinuous domain. Given an integrable bivariate function
f(x), its continuous ridgelet transform (CRT) in R? is de-
fined by [5], [6]

CRTf(CL,b, 6) = \/]RZ qua,bﬂ(m)f(m)dm? (1)

where the ridgelets ©qp0(x) in 2-D are defined from a
wavelet-type function in 1-D () as

Vapo(®) =a Y2((x1cos0 + zosinf —b)/a).  (2)

Figure 1 shows an example ridgelet function, which is
oriented at an angle 6 and is constant along the lines
1 cos 8 + xosin 6 = const.

Fig. 1. An example ridgelet function g ¢(x1,z2).

For comparison, the (separable) continuous wavelet
transform (CWT) in R? of f(x) can be written as

CWTf(a’17 az, by, b2> = /2 wal;aszhbz (iL‘)f(ZB)dQZ, (3)
R
where the wavelets in 2-D are tensor products

wal,ambhlm (w) = ’(/}ahbl (-Tl)'(/]az,bg (‘rQ)v (4)

of 1-D wavelets, ,5(t) = a=/2¢((t — b)/a).!
As can be seen, the CRT is similar to the 2-D CWT ex-
cept that the point parameters (by, by) are replaced by the

In practice, however one typically enforces the same dilation scale
on both directions thus leading to three wavelets corresponding to
horizontal, vertical and diagonal directions.
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line parameters (b, 8). In other words, these 2-D multiscale

transforms are related by:
Wavelets: —
Ridgelets: —

/(/)scale, point—position

wscale, line—position -

As a consequence, wavelets are very effective in rep-
resenting objects with isolated point singularities, while
ridgelets are very effective in representing objects with sin-
gularities along lines. In fact, one can think of ridgelets as
a way of concatenating 1-D wavelets along lines. Hence the
motivation for using ridgelets in image processing tasks is
appealing since singularities are often joined together along
edges or contours in images.

In 2-D, points and lines are related via the Radon trans-
form, thus the wavelet and ridgelet transforms are linked
via the Radon transform. More precisely, denote the Radon
transform as

Rs(0,t) = g f(x)d(x1 cosO + zosind — t)de, (5)

then the ridgelet transform is the application of a 1-D
wavelet transform to the slices (also referred to as projec-
tions) of the Radon transform,

CRT;(a,b,60) = /IR Vo (t)R; (6, )dt. (6)

It is instructive to note that if in (6) instead of taking
a 1-D wavelet transform, the application of a 1-D Fourier
transform along t would result in the 2-D Fourier trans-
form. More specifically, let F's(w) be the 2-D Fourier trans-
form of f(x), then we have

Fy(&cosf,Esind) = / e IS Ry (0,t)dt. (7)
R

This is the famous projection-slice theorem and is com-
monly used in image reconstruction from projection meth-
ods [13], [14]. The relations between the various transforms
are depicted in Figure 2.

2-D
Fourier

Ridgelet
domain

Fig. 2. Relations between transforms. The ridgelet transform is the
application of 1-D wavelet transform to the slices of the Radon
transform, while the 2-D Fourier transform is the application of
1-D Fourier transform to those Radon slices.
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IITI. FiNnITE RADON TRANSFORM
A. Forward and Inverse Transforms

As suggested in the previous section, a discrete ridgelet
transform can be constructed using a discrete Radon trans-
form. Numerous discretizations of the Radon transforms
have been devised to approximate the continuous formu-
lae [15], [13], [14], [16], [17], [18]. However, most of them
were not designed to be invertible transforms for digital
images. Alternatively, the finite Radon transform theory
(which means transform for finite length signals) [11], [19],
[20], [21] originated from combinatorics, provides an inter-
esting solution. Also, in [22], a closely related transform
is derived from the periodization of the continuous Radon
transform.

The finite Radon transform (FRAT) is defined as sum-
mations of image pixels over a certain set of “lines”. Those
lines are defined in a finite geometry in a similar way as
the lines for the continuous Radon transform in the Eu-
clidean geometry. Denote Z, = {0,1,...,p — 1}, where
p is a prime number. Note that Z, is a finite field with
modulo p operations [23]. For later convenience, we denote
Zy={0,1,...,p}.

The FRAT of a real function f on the finite grid Zg is
defined as

il = FRAT ()= — 37 fligl ()
p (4,J)€ELk,1

Here Lj; denotes the set of points that make up a line
on the lattice Zf,, or more precisely

Ly ={(i,7) : j=Fki+l
Ly =A{(,j) : j€Zp}.

(mod p), i € Zp}, 0<k<p,

(9)

Figure 3 shows an example of the finite lines L ; where
points in the grid Zg are represented by image pixels. Note
that due to the modulo operations in the definition of lines
for the FRAT, these lines exhibit a “wrap around” effect.
In other words, the FRAT treat the input image as one
period of a periodic image. Later, we will present several
ways to limit this artifact.

We observe that in the FRAT domain, the energy is best
compacted if the mean is subtracted from the image f[, j]
prior to taking the transform given in (8), which is assumed
in the sequel. We also introduce the factor p~!/2 in order
to normalize the [o-norm between the input and output of
the FRAT.

Just as in the Euclidean geometry, a line Ly ; on the
affine plane Zz is uniquely represented by its slope or di-
rection k € Z (k = p corresponds to infinite slope or
vertical lines) and its intercept [ € Z,. One can verify that
there are p? + p lines defined in this way and every line
contains p points. Moreover, any two distinct points on Zg
belong to just one line. Also, two lines of different slopes
intersect at exactly one point. For any given slope, there
are p parallel lines that provide a complete cover of the

Fig. 3. Lines for the 7x7 FRAT. Parallel lines are grouped in each of
the eight possible directions. Images in order from top to bottom,
left to right are corresponding to the values of k from 0 to 7. In
each image, points (or pixels) in different lines are assigned with
different gray-scales.

plane Z2. This means that for an input image f[i, j] with
zero-mean, we have

> flijl=0 VkeZ.

i,j)€EZ2

p—1 1
;m[” = %( (10)

Thus, (10) explicitly reveals the redundancy of the
FRAT: in each direction, there are only p — 1 indepen-
dent FRAT coefficients. Those coefficients at p + 1 di-
rections together with the mean value make up totally of
(p+1)(p—1)+1 = p? independent coefficients (or degrees
of freedom) in the finite Radon domain, as expected.

By analogy with the continuous case, the finite back-
projection (FBP) operator is defined as the sum of Radon
coefficients of all the lines that go through a given point,
that is

FBP(ij)=— 3 mll, (.j)e 22

(11)
\/ﬁ (k,1)eP; 5

where P; ; denotes the set of indices of all the lines that go
through a point (4, j) € Z}. More specifically, using (9) we
can write

Pj={(kl) : l=j—Fki (modp), ke Z,}U{(p,i)}.

(12)

From the property of the finite geometry Z?2 that every
two points lie on exactly one line, it follows that every
point in Zg lies on exactly one line from the set F; ;, except
for the point (¢, ) which lies on all p + 1 lines. Thus, by



substituting (8) into (11) we obtain

Ly oS )

FBP.(i,5) =
p (k,1)eP; j (i7,5)E Lk 1

> I+ poflis ]

(i",j)ez?

= f[l’j]

bS]

(13)

So the back-projection operator defined in (11) indeed
computes the inverse FRAT for zero-mean images. There-
fore we have an efficient and exact reconstruction algorithm
for the FRAT. Furthermore, since the FBP operator is the
adjoint of the FRAT operator, the algorithm for the inverse
of FRAT has the same structure and is symmetric with the
algorithm for the forward transform.

It is easy to see that the FRAT requires ezactly p> ad-
ditions and p? multiplications. Moreover, for memory ac-
cess efficiency, [20] describes an algorithm for the FRAT in
which for each projection k we need to pass through every
pixel of the original image only once using p histogram-
mers, one for each summation in (8) of that projection.
For images of moderate sizes, we observed that the actual
computational time of the FRAT is compatible with other
O(p? log(p?) transforms, such as the 2-D FFT, where the
leading constant can be large. For example, on a Sun Ultra
5 computer, both the forward and inverse FRAT’s take less
than a second to compute on an image of size 257 x 257.

B. Optimal Ordering of the Finite Radon Transform Co-
efficients

The FRAT described in Section III-A uses (9) as a con-
venient way of specifying finite lines on the ZZ grid via two
parameters: the slope k and the intercept [. However it is
neither a unique nor the best way for our purpose. Let us
consider a more general definition of lines on the finite Zg
plane as

woe ={0,4) €22 : ai+bj—t=0 (modp)}, (14)
where a,b,t € Z, and (a,b) # (0,0).

This is by analogy with the line equation: xcosf +
29sinf —t = 0 in R2. Therefore, for a finite line defined
as in (14), (a,b) has the role of the normal vector, while ¢
is the translation parameter. In this section, all equations
involving line parameters are carried out in the finite field
Zy, which is assumed in the sequel without the indication
of mod p.

It is easy to verify that for a fixed normal vector (a,b),
{L’a’b,t it Zp} is a set of p parallel lines in the Z2 plane.
This set is equal to the set of p lines {Ly; : | € Z,} defined
in (9) with the same slope k, where k = —b~1a for b # 0
and k = p for b = 0. Moreover, the set of lines with the
normal vector (a,b) is equal to the set of lines with the
normal vector (na,nb), for each n=1,2,...,p— 1.

With the general line specification in (14), we now define
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the new FRAT to be

1 .
Ta,b[t] = FRATf(a’bv t) = E f[l,]]-
VP et

a,b,t

(15)

From the discussion above we see that a new FRAT pro-
jection sequence: (r45[0],7q6[1],. .., Tqp[p—1]), is simply a
reordering of a projection sequence (r;[0], 7x[1], ..., 7c[p —
1]) from (8). This ordering is important for us since we
later apply a 1-D wavelet transform on each FRAT projec-
tion. Clearly, the chosen normal vectors (a,b) control the
order for the coefficients in each FRAT’s projection, as well
as the represented directions of those projections.

The usual FRAT described in Section III-A uses the set
of (p+ 1) normal vectors uy, where

ur = (—k‘,l)
u, = (1,0).

fork=0,1,...,p—1, and

(16)

In order to provide a complete representation, we need
the FRAT to be defined as in (15) with a set of p+1 normal
vectors {(ax,br) : k € Z%} such that they cover all p+ 1
distinct FRAT projections represented by {uk ke Z;}
We have p — 1 choices for each of those normal vectors as

(ag,br) =nup, 1<n<p-1

So what is the good choice for the p + 1 normal vectors
of the FRAT? To answer this we first prove the following
projection slice theorem for the general FRAT. A special
case of this theorem is already shown in [20].

Defining W, = e~ 2V=17/p the discrete Fourier trans-
form (DFT) of a function f on Z2 can be written as

1 L ut+vg
F[u7 U] = - Z f[l,j]Wp + Ja (17)
(1,5)€Z2
and for FRAT projections on Z, as
1
Ry plw) = — Tap[t]W2L. 18
[w] 7 D rasltlWy (18)

tez,

Theorem 1 (Discrete projection-slice theorem) The 1-D
DFT R, [w] of a FRAT projection r,[t] is identical to
the 2-D DFT Flu,v] of f[i,j] evaluated along a discrete
slice through the origin at direction (a,b):

R, p[w] = Flaw, bw]. (19)
Proof: Substituting (15) into (18) and using the fact that
the set of p parallel lines {L;’b)t 1t e Zp} provides a com-

plete cover of the plane Zg, we obtain

Roslel = =3 3 flgw

t€Zp (i,j)€L, 4,
1 L
_ 1 Z f[i,j]W;U(aZ+bj)
(i,§)ez2
= F[aw,bUJ]
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Fig. 4. Example of a discrete Fourier slice (indicated by the black
squares) with the best normal vector for that FRAT projection.
In this example, p = 17 and the slope k = 11. The normal vector
can be chosen as a vector from the origin to any other points
on the Fourier slide. The best normal vector is (1,3) (the solid
arrow).

From (19), we can see the role of the FRAT normal vec-
tors (a,b) in the DFT domain: it controls the order of the
coefficients in the corresponding Fourier slices. In particu-
lar, F[a,b] equals to the first harmonic component of the
FRAT projection sequence with the normal vector (a,b).
For the type of images that we are interested in, e.g. of
natural scenes, most of the energy is concentrated in the
low frequencies. Therefore in these cases, in order to en-
sure that each FRAT projection is smooth or low frequency
dominated so that it can be represented well by the wavelet
transform, the represented normal vector (a,b) should be
chosen to be as “close” to the origin of the Fourier plane
as possible.

Figure 4 illustrates this by showing an example of a dis-
crete Fourier slice. The normal vector for the correspond-
ing FRAT projection can be chosen as a vector from the
origin to any other point on the Fourier slice. However,
the best normal vector is selected as the closest point to
the origin. The choice of the normal vector (a,b) as the
closest point to the origin causes the represented direction
of the FRAT projection to have the least “wrap around”
due to the periodization of the transform. The effect of
the new ordering of FRAT coefficient in the image domain
is illustrated in Figure 5 for the same example projection.
As can be seen, the “wrap around” effect is significantly
reduced with the optimal ordering compared to the usual
one.

Formally, we define the set of p+1 optimal normal vectors
{(a},b}) : k € Z} as follows
1(Cp(ar), Cp(br))l-

* * :
(ai by) = arg (ak,bk)E{nIlrlligﬁnSP—l}
s.t. Cp(br)>0
(20)
Here C,(z) denotes the centralized function of period p:
Cp(z) = x — p.round(z/p). Hence, ||(Cp(ax),Cp(br))| rep-

resents the distance from the origin to the point (a,by)

16
14
12
10
8
6
4
2
0

a

0 2 4 6 8 10 12 14 16
Y S
14
12
“’

‘

Fig. 5. Lines for the FRAT projection as shown in Figure 4 using:
(a) usual ordering, (b) optimal ordering. They both represent
the same set of lines but with different orderings. The orderings
are signified by the increasing of gray-scales. The arrows indicate
the represented directions in each case.

on the periodic Fourier plane as shown in Figure 4. The
constraint C,(by) > 0 is imposed in order to remove the
ambiguity in deciding between (a,b) and (—a,—b) as the
normal vector for a projection. As a result, the optimal
normal vectors are restricted to have angles in [0, 7). We
use norm-2 for solving (20). Minimization is simply done
for each k € Z; by computing p — 1 distances in (20) and
select the smallest one. Figure 6 shows an example of the
optimal set of normal vectors. In comparison with the usual
set of normal vectors {u : k € Z;} as given in (16), the
new set {(ay,b}) : k € Z%} provides a much more uniform
angular coverage.

After obtaining the set of normal vectors {(a}, %)}, we
can compute the FRAT and its inverse with the same fast
algorithms using histogrammers described in Section III-
A. For a given p, solving (20) requires O(p?) operations
and therefore it is negligible compared to the transforms
themselves. Furthermore, this can be pre-computed, thus
only presents as a “one-time” cost.

For the sake of simplicity, we write ry[t] for 74 5+ [t] in
the sequel. In other words, from now we regard k as an
index in the set of optimal FRAT normal vectors rather
than a slope. Likewise, the line L;%b;’t is simply rewritten
as Ly, for 0 <k <p, 0<t<p.
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(b)

Fig. 6. The set of normal vectors, which indicate the represented directions, for the FRAT of size p = 17 using: (a) usual ordering; (b) optimal

ordering.

C. Frame Analysis of the FRAT

Since the FRAT is a redundant transform, it can be stud-
ied as a frame operator. In this section we will study the
FRAT in more detail and reveal some of its properties in
this frame setting. A detailed introduction to frames can
be found in [24], [3].

Suppose that F is a linear operator from RY to RM,
defined by

(Fa)n = (2, 0n),

The set {gpn}flwzl C R¥ is called a frame of RY if there
exist two constants A > 0 and B < oo such that

forn=1,..., M. (21)

M
Allz]® < Y l(w en)l® < Blz|?,

n=1

ve e RN, (22)

where A and B are called the frame bounds. When A = B
the frame is said to be tight. If the frame condition is
satisfied then F is called a frame operator. It can be shown
that any finite set of vectors that spans RY is a frame. The
frame bound ratio B/A indicates the numerical stability in
reconstructing z from (Fx),; the tighter the frame, the
more stable the reconstruction against coefficient noise.

The frame operator can be regarded as a left matrix mul-
tiplication with F', where F' is an M x N matrix in which
its nth row equals to ¢,,. The frame condition (22) can be
rewritten as

2T Az < 2T FTFz < 27 Ba, vz e RN, (23)

Since FTF is symmetric, it is diagonalizable in an or-
thonormal basis [25], thus (23) implies that the eigenval-
ues of FTF are between A and B. Therefore, the tight-
est possible frame bounds A and B are the minimum and
maximum eigenvalues of FT F, respectively. In particular,
a tight frame is equivalent to FTF = A - I, which means
the transpose of F' equals to its left inverse within a scale
factor A.

Now let us return to the FRAT. Since it is invertible it
can be regarded as a frame operator in l(Z2) with the
frame {cpk,l ke Zple Zp} defined as

Pk, = p_l/QéLk,l (24)

where dg denotes the characteristic function for the set .S,
which means dg[i, j] equals to 1 if (i,5) € S and 0 other-
wise. Note that this frame is normalized since |@ || = 1.
By writing images as column vectors, the FRAT can be re-
garded as a left matrix multiplication with F = p~ /2R,
where {R} ), (i) is the (p?® + p) x p? incidence ma-
trix of the affine geometry Zg: Rk, (i,j) equals to 1 if
(1,7) € L, and 0 otherwise.

Proposition 1: The tightest bounds for the FRAT frame
{cp;g’l ke Zyle Zp} in lg(Zg) are A=1and B=p+1.
Proof: From (23), these tightest bounds can be computed
from the eigenvalues of C = FTF = p~'RTR. Since R
is the incidence matrix for lines in Zg, (RTR)(Z-J-L (i 5"
equals the number of lines that go through both (7, j) and
(¢',5'). Using the properties of the finite geometry Z7 that
every two points lie in exactly one line and that there are
exactly p + 1 lines that go through each point, it follows
that the entries of C' equal to (p+1)p~! along its diagonal
and p~! elsewhere.

The key observation is that C'is a circulant matrix, hence
its eigenvalues can be computed as the p?-points discrete
Fourier transform (DFT) on its first column ¢ = ((p +
Dp~tp~t...,p7 1) [1] (§2.4.8). Writing c as

(4,3

c=(1,0,...,0)+p - (1,1,...,1),
we obtain,

DFT{c} = (1,1,...,1)4p-(1,0,0,...,0) = (p+1,1,1,...,1)

where the DFT is computed for the Dirac and constant
signals.

Therefore the eigenvalues of C are p+1 and 1, the latter
with multiplicity of p? — 1. As a result, the tightest (nor-
malized) frame bounds for FRAT as A =1and B=p+ 1.

]

For reconstruction, the FBP defined in (11) can be repre-
sented by a left multiplication with matrix p~!/2B, where
B j), (k) equals to 1if (k,1) € P; ; and 0 otherwise. From
the definition of P; j, we have

Ry, i) = By, k) Vi,5, ks

So the transform matrices for the operators FRAT and
FBP are transposed of each other. Let Zz denotes the
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subspace of zero-mean images defined on Zg. Since the
FBP is an inverse of the FRAT for zero-mean images, we
have the following result.

Proposition 2: On the subspace of zero-mean images Zf,,
the FRAT is a normalized tight frame with A = B = 1,
which means

p p-1
F=Y Y (fori)ers, Vfe€Z.
k=0 1=0

Remark 1: Tt is instructive to note that constant images
on Zg are eigenvectors of C = FTF with the eigenvalue
p + 1. Taking constant images out leaves a system with
all unity eigenvalues, or a tight frame on the remaining
subspace. Thus, we have another interpretation of FRAT
being a normalized tight frame for zero-mean images.

By subtracting the mean from the image before apply-
ing the FRAT, we change the frame bound ratio from p+1
to 1 and obtain a tight frame. Consequently, this makes
the reconstruction more robust against noise on the FRAT
coefficients due to thresholding and/or quantization. This
follows from the result in [26] that with the additive white
noise model for the coefficients, the tight frame is optimal
among normalized frames in minimizing mean-squared er-
ror.

(25)

IV. ORTHONORMAL FINITE RIDGELET TRANSFORM

With an invertible FRAT and applying (6), we can ob-
tain an invertible discrete ridgelet transform by taking the
discrete wavelet transform (DWT) on each FRAT projec-
tion sequence, (r;[0],7%x[1],...,7s[p — 1]), where the direc-
tion k is fixed. We call the overall result the finite ridgelet
transform (FRIT). Figure 7 depicts these steps.

Image FRAT domain FRIT domain
i k k
i FRAT m
DWT
Fig. 7. Diagram for the FRIT. After taking the FRAT, a DWT

is applied on each of the FRAT slices or projections where k is
fixed.

Typically p is not dyadic, therefore a special border han-
dling is required. Appendix A details one possible way
of computing the DWT for prime length signals. Due to
the periodicity property of the FRAT coefficients for each
direction, periodic wavelet transforms are chosen and as-
sumed in this section.

Recall that the FRAT is redundant and not orthogonal.
Next we will show that by taking the 1-D DWT on the
projections of the FRAT in a special way, we can remove
this redundancy and obtain an orthonormal transform.

Assume that the DWT is implemented by an orthogonal
tree-structured filter bank with J levels, where Gy and G4

are low and high pass synthesis filters, respectively. Then
the family of functions:

{g(()‘])[~ —27m], g%j)[~ —2im] s j=1,...,J;m € Z}
is the orthogonal basis of the discrete-time wavelet series

[1]. Here GU) denotes the equivalent synthesis filters at
level 7, or more specifically

J—1
G (2) [T Go=*),
k=0
j—2
j j—1 k
G (=) Gz ) [[Go(z*), d=1,....J
k=0

The basis functions from Gé‘]) are called the scaling func-
tions, while all the others functions in the wavelet basis are
called wavelet functions. Typically, the filter G is designed
to satisfy the high pass condition, G1(z)|.=1 = 0 so that
the corresponding wavelet has at least one vanishing mo-
ment. Therefore, ng)(z)|z:1 =0,Vvj =1,...,J, which
means all wavelet basis functions have zero mean.

For a more general setting, let us assume that we have a
collection of (p + 1) 1-D orthonormal transforms on RP
(which can be the same), one for each projection k of
FRAT, that have bases as

{wﬁ,’i) : mEZp}, k=0,1,...,p.

The only condition that we require for each of these bases
can be expressed equivalently by the following lemma.

Lemma 1 (Condition Z) Suppose that {w,, : m € Z,}is
an orthogonal basis for the finite-dimensional space RP,
then the following are equivalent:

1. This basis contains a constant function, say wg, i.e.
woll] = const, Vi € Z,.

2. All other basis functions, w,,, m = 1,...,p — 1, have
Zero mean.

Proof: Denote 1 = (1,1,...,1) e RP. If wy =1, ¢ #0
then from the orthogonality assumption that (wq, w,,) =
0, we obtain ), wy,[l] =0, Vm=1,...,p—1.

Conversely, assume that each basis function w,,, 1 <
m < p — 1, has zero mean. Denote S the subspace that
is spanned by these functions and S+ is its orthogonal
complement subspace in RP. It is clear that S+ has di-
mension 1 with wg as its basis. Consider the subspace
So = {cl:ceR}. We have (cl,wp,) = c) ,wn|l] =
0, Vm=1,...,p—1, thus Sy C S*. On the other hand,
dim(Sy) = dim(S+) = 1, therefore S+ = Sy. This means
wy is a constant function. [ |

As shown before, the Condition Z is satisfied for all
wavelet bases, or in fact any general tree-structured fil-
ter banks where the all-lowpass branch is carried to the
maximum number of stages (i.e. when only one scaling
coefficient is left).



By definition, the FRIT can be written as
FRITy[k,m] = (FRATs[k, ], wiy)[)
= wW S ena)

€2,

= (/, Z w,(ff)[l] Pk1)-

€2,

(26)

Here {¢y,} is the FRAT frame which is defined in (24).
Hence we can write the basis functions for the FRIT as

follows:
Pl,m = Z wi¥l) k.
1€z,

(27)

We can next prove the result on the orthogonality of a
modified FRIT.
Theorem 2: Given p + 1 orthonormal bases in 1%(Z,)

(which can be the same): {'w,gf) m e Zp}, 0 <k <np,
that satisfy the Condition Z then

{pk,m:k:Oalv"' 7p71}u{p0}

is an orthonormal basis in ZZ(ZIE), where py, ,, are defined in
(27) and py is the constant function, poli, j] = 1/p, ¥(i,5) €
Z2.

P
Proof: Let us consider the inner products between any two
FRIT basis functions

pym=1,2,...

<Pk,m,Pk',m'> = Z IU,(,I:)[[] wfjf,)[l’] <(Plc,l,<,0k’,l’>-

L€ Z,

Using properties of lines in the finite geometry Zg, it is
easy to verify that

1 k=K 1=0
(Pr,1s PR 1) = 0 ifk=kK 141
1/p ifk#K

Thus, when the two FRIT basis functions have the same
direction, k = k’, then

(PE,ms Prym?) = Z w1 w) ] = 6[m —m').
1€2,

(28)

So the orthogonality of these FRIT basis functions comes
from the orthogonality of the basis {w(k) tm € Zp}. In
particular, we see that py,, have unit norm. Next, for
the case when the two FRIT basis functions have different
directions, k # k', using (28) we obtain

1 ’
Pl o) =~ > w1 wl (1]

Lez,
1 ’
== S wPm ) [ > Wl

p lez, ez,

In this case, if either m or m’ is non-zero, e.g. m # 0,
then using the Condition Z of these bases, Zlezp w [l =

0, it implies (pk,m, Pk’ ,m/) = 0.
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Finally, note that | J, Lx(I) = Z, for all directions k (see

(10)). So, together with the assumption that wgk) are con-

stant functions, we see that all of the FRIT basis functions
Pro, (k=0,1,...,p) correspond to the mean of the input
image so we only need to keep one of them (in any direc-
tion), which is denoted as pg. The proof is now complete. ®

Remark 2: 1. An intuition behind the above result is
that at each level of the DWT decomposition applied on the
FRAT projections, all of the non-orthogonality and redun-
dancy of the FRAT is pushed into the scaling coeflicients.
When the DWT’s are taken to the maximum number of
levels then all of the remaining scaling coefficients at dif-
ferent projections are the same, hence we can drop all but
one of them. The result is an orthonormal FRIT.

2. We prove the above result for the general setting where
different transforms can be applied on different FRAT pro-
jections. The choice of transforms can be either adaptive,
depending on the image, or pre-defined. For example, one
could employ an adaptive wavelet packet scheme indepen-
dently on each projection. The orthogonality holds as long
as the “all lowpass” branch of the general tree-structured
filter bank is decomposed to a single coefficient. All other
branches would contain at least one highpass filter thus
leading to zero-mean basis functions.

3. Furthermore, due to the “wrap around” effect of the
FRAT, some of its projections could contain strong periodic
components so that a more oscillated basis like the DCT
might be more efficient. Also note that from Theorem 1,
if we apply the 1-D Fourier transform on all of the FRAT
projections then we obtain the 2-D Fourier transform. For
convenience, we still use the term FRIT to refer to the cases
where other transforms than the DWT might be applied to
some of the FRAT projections.

To gain more insight into the construction for the or-
thogonal FRIT basis, Figure 8 illustrates a simple example
of the transform on a 2 x 2 block using the Haar wavelet.
In this case, the FRIT basis is the same as the 2-D Haar
wavelet basis, as well as the 2-D discrete Fourier basis.

Fig. 8. Illustration on the contraction of orthogonal FRIT basis for
a 2 X 2 block using the Haar wavelet. Upper: Basis images for
the FRAT. Lower: Basis images for the orthogonal FRIT. These
images are obtained by taking the (scaled) Haar transform for
each pair (corresponding to one projection) of the FRAT basis
images. The constant image results from all projections and thus
we can drop all but one of them.

1




DO AND VETTERLI: THE FINITE RIDGELET TRANSFORM FOR IMAGE REPRESENTATION 9

V. VARIATIONS ON THE THEME
A. Folded FRAT and FRIT

The FRAT in the previous sections is defined with a pe-
riodic basis over Zg. This is equivalent to applying the
transform to a periodization of the input image f. There-
fore relatively large amplitude FRAT coefficients could re-
sult due to the possible discontinuities across the image
borders. To overcome this problem, we propose a similar
strategy as in the block cosine transform by extending the
image symmetrically about its borders [3].

n p=2n-1

1
«

\_/’

T

Fig. 9. Extending the image symmetrically about its borders in order
to reduce the discontinuities across the image borders due to the
periodization.

Given that p is a prime number and p > 2, then p is odd
and can be written as p = 2n — 1. Consider an n X n input
image f[¢,7], 0 <1,j < n. Fold this image with respect to
the lines 4 = 0 and j = 0 to produce a p x p image f[i, j],
in which (also see Figure 9)

i) = 71,171,

The periodization of f [i, 7] is symmetric and continuous
across the borders of the original image, thus eliminating
the jump discontinuity that would have resulted from the
periodic extension of f[i,j]. Applying the FRAT to the
fli, 4] results in p(p + 1) transform coefficients. Notice the
new range for the pixel indices of the image f[i,j]. We
will show that the FRAT coefficients of f[i, j] exhibit cer-
tain symmetry properties so that the original image can be
perfectly reconstructed by keeping exactly n? coefficients.

Consider the 2-D DFT of f[i, j]

Flul =~ 3 fli, jlwpt.

p —n<i,j<n

—n <i,j<n. (29)

Using the symmetry property of f[i, j] in (29), we obtain
Flu,v] = Fllul, |v]].
Theorem 1 shows that the FRAT 7, [t], (—n <t < n)
of f[i,j] can be computed from the inverse 1-D DFT as

1 .
i’a,b[t] = = Z Ra,b[w]wg;wtv

\/I_) —nw<n

[aw, bw]. The symmetry of F[u,v] thus

where R, 3[w] =
yields
abl|w|] and

R
Ryl o [w]-

2
£
I

From (30) we have 7, p[t] = 74[|t|]] or each projection
Fab[t] is symmetric about ¢t = 0, and (31) reveals the du-
plications among those projections. In fact, with the set
of optimal normal vectors in (20), except for two projec-
tions indexed by (1,0) and (0, 1) (the vertical and horizon-
tal projections, respectively) all other projections have an
identical twin. By removing those duplications we are left
with 24 (p—2)/2 = n+1 projections. For example, we can
select the set of n + 1 independent projections as the ones
with normal vectors in the first quadrant (refer to Figure
6). Furthermore, as in (10), the redundancy among the
projections of the folded FRAT can be written as

n—1
f‘az,bz [0] + 2 Z faz’bz [t] = i Z j[l7j] (32)
t=1

\/ﬁ —n<i,j<n

The next proposition summarizes the above results.
Proposition 3: The image f[i, j] can be perfectly recon-
structed from the following n? — 1 coefficients:

Tazpr[t]  such that Cp(a) >0and 0 <t <n, (33)
and the mean of the image f[z,j]

To gain better energy compaction, the mean should be
subtracted from the image f[i, ] previous to taking the
FRAT. The set of independent coefficients in (33) is re-
ferred as the folded FRAT of the image f[i, j].

However, orthogonality might be lost in the folded FRIT
(resulting from applying 1-D DWT on n + 1 projections of
the folded FRAT), since the basis functions from a same
direction of the folded FRAT could have overlap. Never-
theless, if we loosen up the orthogonality constraint, then
by construction, the folded FRAT projections (7q: px[t] :
0 < t < n) are symmetric with respect to ¢ = 0 and
t =n — 1/2. This allows the use of folded wavelet trans-
form with biorthogonal symmetric wavelets [27] or orthog-
onal symmetric IIR wavelets [28]. We anticipate the folded
FRIT has potential in block transforms (i.e. dividing the
image into small blocks and applying FRIT to each block)
where the border effect is more serious, and plan report the
results in a forthcoming paper.

B. Multilevel FRIT’s

In the FRIT scheme described previously, multiscale
comes from the 1-D DWT. As a result, at each scale, there
is a large number of directions, which is about the size of
the input image. Moreover, the basis images of the FRIT
have long support, which extend over the whole image.

Here we propose a different scheme where the number of
directions can be controlled, and the basis functions have
smaller support. Assume that the input image has the size
n X n, where n = pips...pyq and p; are prime numbers.
First, we apply the orthonormal FRIT to n; X n; non-
overlapping subimages of size p; Xpy, where ny = p2 ... pJq.
Each sub-image is transformed into p? — 1 “detail” FRIT
coefficients plus a mean value. These mean values form an
n1 Xny coarse approximate image of the original one. Then
the process can be iterated on the coarse version up to J
levels. The result is called as multilevel FRIT (MFRIT).
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At each level, the basis functions for the “detail” MFRIT
coeflicients are obviously orthogonal within each block, and
also with other blocks since they do not overlap. Further-
more, these basis functions are orthogonal with the con-
stant function on their block, and thus orthogonality holds
across levels as well. Consequently, the MFRIT is an or-
thonormal transform.

By collecting the MFRIT coefficients into groups de-
pending on their scales and directions, we obtain a
subband-like decomposition with J scales, where level ¢
has p; directions. When p; = 2, the orthonormal FRIT
using the Haar DWT is the same as the 2 x 2 Haar DWT
(see Figure 8). Therefore the MFRIT scheme includes the
multilevel 2-D Haar DWT. In general, when p; > 2, the
MFRIT offers more directions than the 2-D DWT and can
be useful in certain applications such as texture analysis.

VI. NUMERICAL EXPERIMENTS
A. Non-linear Approzimation

Following the study of the efficiency of the ridgelet trans-
form in the continuous domain using the truncated Gaus-
sian functions [6], we first perform numerical compari-
son on a 256 x 256 image of the function: f(z1,22) =
1{w2<2$1+0,5}e’xf’x§ (see Figure 10(a)), using four 2-D
transforms: DCT, DWT, FRAT and FRIT. The compari-
son is evaluated in terms of the non-linear approximation
power, i.e. the ability of reconstructing the original image,
measured by signal-to-noise ratios (SNR'’s), using the N
largest magnitude transform coefficients. For the FRAT
and FRIT, we extend the image size to the next prime
number, 257, by replicating the last pixel in each row and
column. We use the orthogonal Symmlet wavelet with 4
vanishing moments [24] for both the DWT and the FRIT.

Our initial experiments indicate that in order to achieve
good results, it is necessary to apply strong oscillated
bases to certain FRAT projections to handle to the “wrap
around” effect (refer to the remarks at the end of Sec-
tion IV). For images with linear singularities, we find that
in the FRAT domain, most of the image energy and sin-
gularities are contained in the projections with the least
“wrap around” (see Figure 13(b)). Therefore, without
resorting to adaptive methods, we employ a simple, pre-
defined scheme where the DWT is only applied to the pro-
jections with ||(af, ;)| < D, while the remaining projec-
tions use the DCT. We use D = 3 in our experiments, which
means in the tested FRIT, only 16 FRAT projections are
represented by the DWT. Although the this FRIT contains
most of Fourier-type basis functions, due to the concen-
tration of energy mentioned above, the resulting nonlinear
approximation images are mainly composed of the ridgelet-
type functions that fit around the linear edge.

Figure 10(b) display the comparison results. We omit the
FRAT since its performance is much worse than the others.
Clearly the FRIT achieves the best result, as expected from
the continuous theory. Furthermore, the new ordering of
the FRAT coefficients is crucial for the FRIT in obtaining
good performance.
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Fig. 10. (a) Test image: a truncated Gaussian image of size 256 x 256
that represents the function f(z1,z2) = 1{xz<211+o_5}e—1%—9¢%,

(b) Comparison of non-linear approximations using four different
2-D transforms: DCT, DWT, FRIT with usual ordering and
FRIT with optimal ordering.
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keep the most 0.5% significant coefficients.
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(a)Using DWT

(b)Using FRIT

Fig. 12. From left to right, reconstructed images from the 32, 64, 128 and 256 most significant coefficients of the DWT and FRIT, out of

65536 coefficients.

We then compare the performance where the singular-
ity line varies its orientation. Consider the truncated
Gaussian image again, using the function fy(z1,22) =
121 cos 04wssing<0.3}€ 1~ “2. Due to the circular symme-
try, we only need to consider 0 < 6 < 90°. Figure 11 shows
the results where the FRIT (with optimal ordering) con-
sistently outperforms both the DWT, more than 2 dB on

the average, as well as the DCT.

Our next test is a real image of size 256 x 256 with
straight edges. Figure 12 shows the images obtained from
non-linear approximation using the DWT and FRIT. As
can be seen, the FRIT correctly picks up the edges using
the first few significant coefficients and produces visually
better approximated images. But let us point out that even
this simple test image can not be represented as a summa-
tion of a few “global” linear singularities (like the Gaussian
truncated images), and thus it is not in the optimal class
of the ridgelet transform.

To gain an insight into the FRIT, Figure 13(a) shows the
top five FRAT projections for the “object” image that con-
tain most of the energy, measured in the ly-norm. Those
projections correspond to the directions that have discon-
tinuities across, plus the horizontal and vertical directions.
Therefore, we see that at first the FRAT compacts most
of the energy of the image into a few projections (see Fig-
ure 13(b)), where the linear discontinuities create “jumps”.
Next, taking the 1-D DWT on those projections, which are
mainly smooth, compacts the energy further into a few
FRIT coefficients.

B. Image Denoising

The motivation for the FRIT-based image denoising
method is that in the FRIT domain, linear singularities
of the image are represented by a few large coefficients,
whereas randomly located noisy singularities are unlikely to
produce significant coefficients. By contrast, in the DWT
domain, both image edges and noisy pixels produce simi-
lar amplitude coefficients. Therefore, a simple threshold-
ing scheme for FRIT coefficients can be very effective in
denoising images that are piecewise smooth away from sin-
gularities along straight edges.

We consider a simple case where the original image is
contaminated by an additive zero-mean Gaussian white
noise of variance o2. With an orthogonal FRIT, the noise
in the transform domain is also Gaussian white of the same
variance. Therefore it is appropriate to apply the thresh-
olding estimators that were proposed in [29] to the FRIT
coefficients. More specifically, our denoising algorithm con-
sists of the following steps:

Step 1: Applying FRIT to the noisy image.

Step 2: Hard-thresholding of FRIT coefficients with the
universal threshold T' = 0+1/2logN where N = p? pixels.
Step 3: Inverse FRIT of the thresholded coefficients.

For an image which is smooth away from linear singulari-
ties, edges are visually well restored after Step 3. However
due to the periodic property of the FRIT, strong edges
sometimes create “wrap around” effects which are visible
in the smooth regions of the image. In order to overcome
this problem, we optionally employ a 2-D adaptive filtering
step.
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Direction: (a,b) = (1,1); Energy = 47.66%

1 1
Direction: (a,b) = (1,0); Energy = 18.28%
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1 1
Direction: (a,b) = (0,1); Energy = 16.22%
T T

1 1
Direction: (a,b) = (-2,1); Energy = 2.14%

1 1
Direction: (a,b) = (-1,1); Energy = 1.94%
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(a)Using DWT; SNR = 19.78 dB.

10 1

5 10 15 20 25 30
Direction

(b)

Fig. 13. (a) Top five FRAT projections of the “object” image that
contain most of the energy. (b) Distribution of total input image
energy among FRAT projections. Only the top 30 projections
are shown in the descending order.

Step 4: (Optional) Adaptive Wiener filtering to reduce
the “wrap around” effect.

In some cases, this can enhances the visual appearance of
the restored image.

The above FRIT denoising algorithm is compared with
the analogous wavelet hard-thresholding method using the
same threshold value. Figure 14 shows the denoising results
on the real image. The FRIT is clearly shown to be more
effective than the DWT in recovering straight edges, as well
as in term of SNR's.

VII. CONCLUSION AND DISCUSSION

We presented a new family of discrete orthonormal
transforms for images based on the ridgelet idea. Own-
ing to orthonormality, the proposed ridgelet transform is
self-inverting — the inverse transform uses the same algo-
rithm as the forward transform — and has excellent nu-

(b)Using FRIT; SNR = 19.67 dB

Wiener

and

(c)Using  FRIT
SNR = 21.07 dB.

filter;

Fig. 14. Comparison of denoising on the “object” image.

merical stability. Experimental results indicate that the
FRIT offers an efficient representation for images that are
smooth away from line discontinuities or straight edges.
A Matlab code implementing the transforms and experi-
ments in this paper is available at an author’s Web page
www.ifp.uiuc.edu/~minhdo.

However, it is important to emphasize that the ridgelet
transform is only suited for discontinuities along straight
lines. For complex images, where edges are mainly along
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curves and there are texture regions (which generate
point discontinuities), the ridgelet transform is not opti-
mal. Therefore, a more practical scheme in employing the
ridgelet transform is to first utilize a quad-tree division of
images into suitable blocks where edges look straight and
then apply the discrete ridgelet transform to each block.
Another scheme is to use the ridgelet transform as the
building block in a more localized construction such as the
curvelet transform [30].
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APPENDIX

I. ORTHOGONAL WAVELET TRANSFORM FOR NON
DyADIC LENGTH SIGNALS

In the construction of the orthonormal FRIT, we need
wavelet bases for signals of prime length p. In addition,
those bases have to satisfy the Condition Z in Lemma 1.
Let n = 27 be the nearest dyadic number to p that is
smaller than or equal to p. Suppose that p — n is small,
then one simple way of taking the wavelet transform on a
sequence of p samples is to apply the usual wavelet trans-
form on the first n samples and then extend it to cover the
remaining p — n samples.

Let {v,, :m € Z,} to be the basis vectors of an or-
thonormal wavelet transform of length n with J decom-
position levels. We assume periodic extension is used to
handle the boundary. Suppose that v corresponds to the
single scaling coefficient or the mean value, then all other
vectors must have zero mean (see Lemma 1). Denote ct#}
be the vector with k entries, all equal to c. Consider the
following p vectors defined in RP

(1{10}) / so

woy =
w, = (1P pt1) /s
wy = (177, —p+2,0) /5
Wp—n = (l{p—n}’ —ptn, O{n_l}) / $p—n
Wy = (01,077
wp,1 = (’Un,h 0{:07”})
Here sy, is the scale factor such that |[wy| = 1. The or-

thogonality of the new set {wy, : k € Z,} can be easily ver-
ified given the fact that {v,, : 1 < m < n} are orthonormal
vectors with zero mean. Therefore, {wy : k € Z,} is an or-
thonormal basis for RP that satisfies the Condition Z. For a
length p input vector @ = (2o, 21,...,Zp—1), the transform
coefficients correspond to wy, where p—n < k < p—1, can
be computed efficiently using the usual DWT with J levels
on the first n samples @’ = (zo,z1,...,2n—1). The last
scaling coefficient is then replaced by p — n + 1 coeflicients

corresponding to the basis vectors wg, k£ = 0,...
Thus the new basis in R? also has fast transforms.

,p—n.
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