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Abstract

The limitations of commonly used separable extensions from one-dimensional transforms for images,

such as the Fourier and wavelet transforms, are well known; e.g. these separable transforms offer limited

directional information in representing image edges. In this paper, we pursue a “true” two-dimensional rep-

resentation that can capture the intrinsic geometrical structure that is key in visual information. Unlike other

transforms, such as curvelets, that were initially developed in the continuous-domain and then discretized for

sampled data, our approach starts with a discrete-domain transform and then investigates its convergence to

an expansion in the continuous-domain. We construct a discrete-domain multiresolution and multidirectional

expansion using non-separable filter banks, in much the same way that wavelets were derived from filter

banks. This construction results in a flexible multiresolution, local, and directional image expansion using

contour segments, and thus it is named the contourlet transform. The discrete contourlet transform has a

fast iterated filter bank algorithm that requires an order N operations for N -pixel images. Furthermore, we

establish a precise link between the developed filter bank and the associated continuous-domain contourlet

expansion in a directional multiresolution analysis framework. We prove that with parabolic scaling and

sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise

smooth functions with discontinuities along twice continuously differentiable curves. Finally, we show some

numerical experiments demonstrating the potential of contourlets in several image processing applications.
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I. INTRODUCTION

Efficient representation of visual information lies at the heart of many image processing tasks, including

compression, filtering, feature extraction, and inverse problems. Efficiency of a representation refers to the

ability to capture significant information about an object of interest using a sparse description. For image

compression or content-based image retrieval, the use of efficient representation implies the compactness of

the compressed file or the index entry for each image in the database. For practical applications, such an

efficient representation has to be obtained by structured transforms and fast algorithms.

For one-dimensional piecewise smooth signals, like scan-lines of an image, wavelets have been established

as the right tool, because they provide an optimal representation for these signals in a certain sense [1], [2].

In addition, the wavelet representation is amenable to efficient algorithms; in particular it has fast transforms

and convenient tree data structures. These are the key reasons for the success of wavelets in many signal

processing and communication applications; for example, the wavelet transform was adopted as the transform

for the new image-compression standard, JPEG-2000 [3].

However, natural images are not simply stacks of 1-D piecewise smooth scan-lines; discontinuity points

(i.e. edges) are typically positioned along smooth curves (i.e. contours) owing to smooth boundaries of

physical objects. As a result of a separable extension from 1-D bases, wavelets in 2-D are good at isolating

the discontinuities at edge points, but will not “see” the smoothness along the contours. In addition,

separable wavelets can capture only limited directional information – an important and unique feature

of multidimensional signals. These disappointing behaviors indicate that more powerful representations are

needed in higher dimensions.

To see how one can improve the 2-D separable wavelet transform for representing images with smooth

contours, consider the following scenario. Imagine that there are two painters, one with a “wavelet”-style

and the other with a “X-let”-style, both wishing to paint a natural scene. Both painters apply a refinement

technique to increase resolution from coarse to fine. Here, efficiency is measured by how quickly, that is

with how few brush strokes, one can faithfully reproduce the scene.

Consider the situation when a smooth contour is being painted, as shown in Figure 1. Because 2-D wavelets

are constructed from tensor products of 1-D wavelets, the “wavelet”-style painter is limited to using square-

shaped brush strokes along the contour, using different sizes corresponding to the multiresolution property

of wavelets. As the resolution becomes finer, we can clearly see the limitation of the wavelet-style painter

who needs to use many fine “dots” to capture the contour.1 The “X-let”-style painter, on the other hand,

1Or we could consider the wavelet-style painter as a pointillist!
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Fig. 1. Wavelet versus new scheme: illustrating the successive refinement by the two systems near a smooth contour, which is

shown as thick a curve separating two smooth regions.

explores effectively the smoothness of the contour by making brush strokes with different elongated shapes

and in a variety of directions following the contour. This intuition was formalized by Candès and Donoho

in the curvelet construction [4], [5], reviewed below in Section II.

For the human visual system, it is well-known [6] that the receptive fields in the visual cortex are

characterized as being localized, oriented, and bandpass. Recently, experiments in searching for the sparse

components of natural images by Olshausen and Field [7] produced basis images that closely resemble the

aforementioned characteristics of the visual cortex. This result supports the hypothesis that the human visual

system has been tuned so as to capture the essential information of a natural scene using a least number of

visual active cells. More importantly, this result suggests that for a computational image representation to

be efficient, it should based on a local, directional, and multiresolution expansion.

Inspired by the painting scenario and studies related to the human visual system and natural image

statistics, we identify a “wish list” for new image representations:

1) Multiresolution. The representation should allow images to be successively approximated, starting

from a coarse version and going to fine-resolution version.

2) Localization. The basis elements in the representation should be localized in both the spatial and the

frequency domains.

3) Critical sampling. For some applications (e.g. compression), the representation should form a basis,

or a frame with small redundancy.

4) Directionality. The representation should contain basis elements oriented at variety of directions, much

more than a few directions that are offered by separable wavelets.

5) Anisotropy. To capture smooth contours in images, the representation should contain basis elements

using a variety of elongated shapes with different aspect ratios.

Among these desiderata, the first three are successfully provided by separable wavelets, while the last
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two, especially directionality, require new constructions.

Our aim in this paper is to construct a discrete-domain expansion satisfying the above desiderata and that

can be applied to sampled images. After reviewing related work in Section II, we propose in Section III

a multiresolution and multidirectional image expansion using non-separable filter banks. This construction

results in a flexible multiresolution, local, and directional image expansion using contour segments, and

thus it is named the contourlet transform. A question of interest is the limit behavior when such schemes

are iterated over scale and/or direction, which is similar to filter banks, their iteration, and the associated

wavelet construction [8], [9], [2]. This question is explored in Section IV, where we establish a precise

link between the proposed filter bank and the associated continuous-domain expansion in a newly defined

directional multiresolution analysis framework. The approximation power of the contourlet expansion is

studied in Section V. We prove that with parabolic scaling and sufficient directional vanishing moments,

contourlets achieve the essential optimal approximation rate, O((logM)3M−2) square error with a best

M -term approximation, for 2-D piecewise smooth functions with C2 (twice continuously differentiable)

contours. Numerical experiments are presented and discussed in Section VI.

II. BACKGROUND AND RELATED WORK

Recently, Candès and Donoho [4], [5] pioneered a new expansion in the continuous two-dimensional space

R
2 using curvelets. This expansion achieves essentially optimal approximation behavior in a certain sense

(see below) for 2-D piecewise smooth functions, which are C2 except discontinuities along C2 curves. The

attractive property of curvelets is that such correct approximation behavior is simply obtained via thresholding

(or best M -term approximation) of a fixed transform.

The error decay of best M -term approximation provides a measurement of the efficiency of an expansion.

Consider a series expansion by {φn}
∞
n=1 (e.g. in a Fourier or wavelets basis) for a given function x as: x =

∑∞
n=1 cnφn. Then its best M -term approximation (also commonly referred to as nonlinear approximation

[10]) using this expansion is defined as: x̂M =
∑

n∈IM
cnφn, where IM is the set of indexes of the M -largest

|cn|. It is easy to see that the quality of the approximated function x̂M relates to how sparse the expansion

by {φn}
∞
n=1 is, or how well the expansion compacts the energy of x into a few coefficients.

For the class of 2-D piecewise smooth functions mentioned above, the best M -term approximation error

‖x̂M − x‖2 using curvelets has a decay rate of O((logM)3M−2) [5], while for wavelets this rate is

O(M−1) and for the Fourier basis it is O(M−1/2) [1], [2]. Therefore, for typical images with smooth

contours, we expect significant improvement of a curvelet-like method over wavelets, which is comparable

to the improvement of wavelets over the Fourier basis. Perhaps equally important, the curvelet construction
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demonstrates that it is possible to develop an optimal representation for images with smooth contours via a

fixed transform. This fact has inspired our development of the contourlet transform in this paper.

The curvelet transform was developed initially in the continuous-domain [4] via multiscale filtering and

then applying a block ridgelet transform [11] on each bandpass image. Later, the authors proposed the

second generation curvelet transform [5] that was defined directly via frequency partitioning without using

the ridgelet transform. Both curvelet constructions require a rotation operation, which makes the construction

simple in the continuous-domain but causes the implementation of the curvelet transform for discrete images

– sampled on a rectangular grid – very challenging. In particular, approaching critical sampling seems very

difficult in such discretized constructions.

Apart from curvelets and contourlets, there have recently been several approaches in developing efficient

representations of geometrical regularity. Notable examples are the bandelet representation [12], the edge-

adapted multiscale transform [13], wedgelets [14], [15], edgeprints [16], and quadtree coding [17]. These

approaches typically require an edge-detection step, followed by an adaptive representation. By contrast,

curvelet and contourlet representations are fixed transforms. This feature allows them to be easily applied

in a wide range of image processing tasks, similar to wavelets. Furthermore, we can benefit from the well-

established knowledge in transform coding when applying contourlets to image compression (e.g. for bit

allocation).

Several other well-known systems that provide multiscale and directional image representations include:

2-D Gabor wavelets [18], the cortex transform [19], the steerable pyramid [20], 2-D directional wavelets [21],

brushlets [22], and complex wavelets [23]. The main differences between these systems and our contourlet

construction is that the previous methods do not allow for a different number of directions at each scale

while achieving nearly critical sampling. In addition, our construction employs iterated filter banks, which

makes it computationally efficient, and there is a precise connection with continuous-domain expansions.

III. DISCRETE-DOMAIN CONSTRUCTION USING FILTER BANKS

A. Concept

Comparing the wavelet scheme with the “X-let” scheme in Figure 1, we see that the improvement of

X-lets can be attributed to the grouping of nearby wavelet coefficients, since they are locally correlated due

to the smoothness of the discontinuity curve. Therefore, we can obtain a sparse image expansion by first

applying a multiscale transform and then applying a local directional transform to gather the nearby basis

functions at the same scale into linear structures. In essence, we first use a wavelet-like transform for edge

detection, and then a local directional transform for contour segment detection. Interestingly, this approach
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is similar to the popular Hough transform [24] for line detection in computer vision.

With this insight, we proposed a double filter bank approach for obtaining sparse expansions for typical

images having smooth contours. We called this a pyramidal directional filter bank (PDFB) [25], where the

Laplacian pyramid [26] is first used to capture the point discontinuities, then followed by a directional filter

bank [27] to link point discontinuities into linear structures. The overall result is an image expansion using ba-

sic elements like contour segments, and thus are named contourlets.2 In particular, contourlets have elongated

supports at various scales, directions, and aspect ratios. This allows contourlets to efficiently approximate a

smooth contour at multiple resolutions in much the same way as the “X-let” scheme shown in Figure 1. In

the frequency domain, the contourlet transform provides a multiscale and directional decomposition.

We would like to point out that the decoupling of multiscale and directional decomposition steps offers

a simple and flexible transform, but at the cost of a small redundancy (up to 33%, which comes from the

Laplacian pyramid). In a more recent work [28], we developed a critically sampled contourlet transform,

which we call CRISP-contourlets, using a combined iterated nonseparable filter bank for both multiscale and

directional decomposition. This leads to an orthonormal transform in both discrete and continuous domains.

B. Pyramid tight frames

One way of achieving a multiscale decomposition is to use the Laplacian pyramid (LP) introduced by Burt

and Adelson [26]. The LP decomposition at each step generates a sampled lowpass version of the original

and the difference between the original and the prediction, resulting in a bandpass image (see Figure 2(a)).

The process is then iterated on the coarse version.
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Fig. 2. (a) The Laplacian pyramid decomposition. The outputs are a coarse approximation c and a difference d between the original

signal and the prediction. The process can be iterated by decomposing the coarse version repeatedly. (b) The new reconstruction

scheme for the Laplacian pyramid [29]. It is the pseudo-inverse of the decomposition in (a) when the filters are orthogonal.

A drawback of the LP is the implicit oversampling. However, in contrast to the critically sampled wavelet

scheme, the LP has the distinguishing feature that each pyramid level generates only one bandpass image

2In the sequel, we will use the terms (discrete) contourlet transform and pyramidal directional filter bank interchangeably.
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(even for multidimensional cases) that does not have “scrambled” frequencies. This frequency scrambling

happens in the wavelet filter bank when a highpass channel, after downsampling, is folded back into the

low frequency band, and thus its spectrum is reflected. In the LP, this effect is avoided by downsampling

the lowpass channel only.

In [29], we studied the LP using the theory of frames and oversampled filter banks. We showed that the

LP with orthogonal filters (that is, h[n] = g[−n] and g[n] is orthogonal to its translates with respect to

the subsampling lattice) provides a tight frame with frame bounds are equal to 1. In this case, we proposed

the use of the optimal linear reconstruction using the dual frame operator (or pseudo-inverse) as shown in

Figure 2(b). The new reconstruction differs from the usual method, where the signal is obtained by simply

adding back the difference to the prediction from the coarse signal, and was shown [29] to achieve significant

improvement over the usual reconstruction in the presence of noise.

C. Iterated directional filter banks

In 1992, Bamberger and Smith [27] constructed a 2-D directional filter banks (DFB) that can be maxi-

mally decimated while achieving perfect reconstruction. The DFB is efficiently implemented via an l-level

binary tree decomposition that leads to 2l subbands with wedge-shaped frequency partitioning as shown

in Figure 3(a). The original construction of the DFB in [27] involves modulating the input image and

using quincunx filter banks with diamond-shaped filters [30]. To obtain the desired frequency partition, a

complicated tree expanding rule has to be followed for finer directional subbands (e.g. see [31] for details).
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Fig. 3. (a) Directional filter bank frequency partitioning where l = 3 and there are 23 = 8 real wedge-shaped frequency bands.

Subbands 0–3 correspond to the mostly horizontal directions, while subbands 4–7 correspond to the mostly vertical directions. (b)

The multichannel view of an l-level tree-structured directional filter bank.

In [32], we proposed a new construction for the DFB that avoids modulating the input image and has a

simpler rule for expanding the decomposition tree. Our simplified DFB is intuitively constructed from two

building blocks. The first building block are two-channel quincunx filter banks [30] with fan filters (see
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Figure 4) that split a 2-D spectrum into two directions: horizontal and vertical. The second building block

of the DFB are shearing operators, which amount to just reordering of image samples. Figure 5 shows an

application of a shearing operator where a −45◦ direction edge becomes a vertical edge. By adding a pair of

shearing operator and its inverse (“unshearing”) to before and after, respectively, a two-channel filter bank in

Figure 4, we obtain a different directional frequency splitting while maintaining perfect reconstruction. Thus,

the key in the DFB is to use an appropriate combination of shearing operators together with two-direction

splitting of quincunx filter banks at each node in a binary tree-structured filter bank, to obtain the desired

2-D spectrum division as shown in Figure 3(a). For details, see [32] (Chapter 3).
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Fig. 4. Two-dimensional spectrum splitting using quincunx filter banks with fan filters. The black regions represent the ideal

frequency supports of each filter. Q is a quincunx sampling matrix.

(a) (b)

Fig. 5. Example of shearing operation that is used like rotation operation for DFB decomposition. (a) The “cameraman” image.

(b) The “cameraman” image after a shearing operation.

Using multirate identities, it is instructive to view an l-level tree-structured DFB equivalently as a 2l

parallel channel filter bank with equivalent filters and overall sampling matrices as shown in Figure 3(b).

Denote these equivalent synthesis filters as G(l)
k , 0 ≤ k < 2l, which correspond to the subbands indexed as

in Figure 3(a). The corresponding overall sampling matrices were shown [32] to have the following diagonal

forms

S
(l)
k =







diag(2l−1, 2) for 0 ≤ k < 2l−1

diag(2, 2l−1) for 2l−1 ≤ k < 2l,

(1)

which means sampling is separable. The two sets correspond to the mostly horizontal and mostly vertical

set of directions, respectively.
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From the equivalent parallel view of the DFB, we see that the family
{

g
(l)
k [n − S

(l)
k m]

}

0≤k<2l, m∈Z2
, (2)

obtained by translating the impulse responses of the equivalent synthesis filters G(l)
k over the sampling lattices

by S
(l)
k , provides a basis for discrete signals in l2(Z2). This basis exhibits both directional and localization

properties. Figure 6 demonstrates this fact by showing the impulse responses of equivalent filters from an

example DFB. These basis functions have quasi-linear supports in space and span all directions. In other

words, the basis (2) resembles a local Radon transform and are called Radonlets. Furthermore, it can be

shown [32] that if the building block filter bank in Figure 4 uses orthogonal filters, then the resulting DFB

is orthogonal and (2) becomes an orthogonal basis.

Fig. 6. Impulse responses of 32 equivalent filters for the first half channels of a 6-levels DFB that uses the Haar filters. Black and

gray squares correspond to +1 and −1, respectively. Because the basis functions resemble “local lines”, we call them Radonlets

D. Multiscale and directional decomposition: pyramidal directional filter banks

Combining the Laplacian pyramid and the directional filter bank, we are now ready to describe their

combination into a double filter bank structure that was motivated in Section III-A. Since the directional

filter bank (DFB) was designed to capture the high frequency (representing directionality) of the input image,

the low frequency content is poorly handled. In fact, with the frequency partition shown in Figure 3(a),

low frequency would “leak” into several directional subbands, hence the DFB alone does not provide a

sparse representation for images. This fact provides another reason to combine the DFB with a multiscale

decomposition, where low frequencies of the input image are removed before applying the DFB.
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image

subbands
directional
bandpass

directional
subbands

bandpass

(2,2)

Fig. 7. Pyramidal directional filter bank that implements a discrete contourlet transform. First, a multiscale decomposition into

octave bands by the Laplacian pyramid is computed, and then a directional filter bank is applied to each bandpass channel.

Figure 7 shows a multiscale and directional decomposition using a combination of a Laplacian pyramid

(LP) and a directional filter bank (DFB). Bandpass images from the LP are fed into a DFB so that directional

information can be captured. The scheme can be iterated on the coarse image. The combined result is a double

iterated filter bank structure, named pyramidal directional filter bank (PDFB) [25] or discrete contourlet

transform, which decomposes images into directional subbands at multiple scales. The main properties of

the PDFB are stated in the following theorem.

Theorem 1: In a pyramidal directional filter bank, the following hold:

1) If both the LP and the DFB use perfect reconstruction filters, then the PDFB achieves perfect recon-

struction, which means it provides a frame operator.

2) If both the LP and the DFB use orthogonal filters, then the PDFB provides a tight frame with frame

bounds equal to 1.

3) The PDFB has a redundancy ratio up to 4/3.

4) Suppose an lj-level DFB is applied at the pyramidal level j of the LP (j = 1, 2, . . . , J , where j = 1

corresponds the finest scale), then the basis images of the PDFB have an essential support size of

width ≈ 2j and length ≈ 2j+lj−2.

5) Using FIR filters, the computational complexity of the PDFB is O(N) for N -pixel images.

Proof:

1) This is obvious as the PDFB is a composition of perfect reconstruction blocks.

2) Suppose an input image x to the PDFB is first decomposed into J bandpass images bj , j = 1, 2, . . . , J

and a lowpass image aJ by the LP. Since with orthogonal filters, the LP is a tight frame with frame

bounds equal to 1 [29], we have ‖x‖2 =
∑J

j=1‖bj‖
2 + ‖aJ‖

2.

With orthogonal filters, the DFB is an orthogonal transform [32], which means that it transforms
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each bandpass image bj into a set of coefficients dj with: ‖bj‖
2 = ‖dj‖

2. Combining two steps,

the decomposition by PDFB: x 7→ (d1, d2, . . . , dJ , aJ) satisfies the tight frame condition: ‖x‖2 =
∑J

j=1‖dj‖
2 + ‖aJ‖

2.

3) Since the DFB is critically sampled, the redundancy of the PDFB is equal to the redundancy of the

LP, which is 1 +
∑J

j=1(1/4)
j < 4/3.

4) Using multirate identities, the LP bandpass channel corresponding to the pyramidal level j is ap-

proximately equivalent to filtering by a filter of size about 2j × 2j , followed by downsampling by

2j−1 in each dimension. For the DFB, from (1) we see that after lj levels (lj ≥ 2) of tree-structured

decomposition, the equivalent directional filter would have support of width about 2 and length about

2lj−1. Combining these two steps into equivalent PDFB channels, we see that PDFB basis images

would have support of width about 2j and length about 2j+lj−2.

5) Let Lp and Ld be the number of taps of the pyramidal and directional filters used in the LP and the

DFB, respectively (for simplicity, suppose lowpass, highpass, analysis and synthesis filters have same

length). With a polyphase implementation, the LP filter bank requires Lp/2 + 1 operations per input

sample.3 Thus, for an N - pixel image, the complexity of the LP step in the PDFB is:

J∑

j=1

N

(
1

4

)j−1(Lp

2
+ 1

)

<
4

3
N

(
Lp

2
+ 1

)

(operations) (3)

For the DFB, its building block two-channel filter banks requires Ld operations per input sample.

With an l-level full binary tree decomposition, the complexity of the DFB multiplies by l. This holds

because the initial decomposition block in the DFB is followed by two blocks at half rate, four blocks

at quarter rate and so on. Thus, the complexity of the DFB step for an N -pixel image is:

J∑

j=1

N

(
1

4

)j−1

Ldlj <
4

3
NLd max {lj} (operations) (4)

Combining (3) and (4) we obtain the desired result.

Since the multiscale and directional decomposition steps are decoupled in the PDFB or discrete contourlet

transform, we can have a different number of directions at different scales, thus offering a flexible multiscale

and directional expansion. Moreover, the full binary tree decomposition of the DFB in the contourlet

transform can be generalized to arbitrary tree structures, similar to the wavelet packets generalization of

3Here we assume all filters are implemented non-separably. For certain filters, separable filtering (may be in polyphase domain)

is possible and requires lower complexity.
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the wavelet transform [33]. The result is a family of directional multiresolution expansions, which we call

contourlet packets. Figure 8 shows examples of possible frequency decompositions by the contourlet trans-

form and contourlet packets. In particular, contourlet packets allow finer angular resolution decomposition

at any scale or direction, at the cost of spatial resolution.

PSfrag replacements
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Fig. 8. Examples of possible frequency decompositions by the contourlet transform and contourlet packets.

In addition, from Theorem 1(4) we see that by altering the depth of the DFB tree decomposition tree at

different scales (and even at different orientations in a contourlet packets transform), we obtain a rich set of

contourlets with variety of support sizes and aspect ratios. This flexibility allows the contourlet transform

and the contourlet packets to fit smooth contours of various curvatures well.

IV. CONTOURLETS AND DIRECTIONAL MULTIRESOLUTION ANALYSIS

As for wavelet filter banks, the iterated PDFB has an associated continuous-domain expansion in L2(R
2)

using the contourlet functions. In this section, the connection between the discrete-domain PDFB and the

continuous-domain contourlet expansion will be made precise via a new multiresolution analysis framework,

similar to the link between wavelets and filter banks [34]. The new elements are multidirection and the

combination with multiscale. For simplicity, we will only consider the case with orthogonal filters, which

leads to tight frames. The more general case with biorthogonal filters can be treated similarly.

A. Multiscale

We start with the multiresolution analysis for the LP, which is similar to the one for wavelets. Suppose

that the LP in the PDFB uses orthogonal filters and downsampling by 2 in each dimension (that means
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M = diag(2, 2) in Figure 2). Under certain regularity conditions, the lowpass filter G in the iterated LP

uniquely defines a scaling function φ(t) ∈ L2(R
2), which satisfies the two-scale equation [9], [2]

φ(t) = 2
∑

n∈Z2

g[n] φ(2t − n). (5)

Let us denote

φj,n = 2−jφ

(
t − 2jn

2j

)

, j ∈ Z,n ∈ Z
2. (6)

Then the family {φj,n}n∈Z2 is an orthonormal basis for an approximation subspace Vj at the scale 2j .

Furthermore {Vj}j∈Z
provides a sequence of multiresolution nested subspaces . . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂

V−2 . . . , where Vj is associated with a uniform grid of intervals 2j×2j that characterizes image approximation

at scale 2j . The difference images in the LP contain the details necessary to increase the resolution between

two consecutive approximation subspaces. Therefore the difference images live in a subspace Wj that is the

orthogonal complement of Vj in Vj−1.

Vj−1 = Vj ⊕Wj (7)

In [29] we show that each level in the LP can be considered as an oversampled filter bank where each

polyphase component of the difference image, together with the coarse image, comes from a separate filter

bank channel. Let Fi(z), 0 ≤ i ≤ 3 be the synthesis filters for these polyphase components. These are

highpass filters. As for wavelets, we associate with each of these filters a continuous function ψ(i)(t) where

ψ(i)(t) = 2
∑

n∈Z2

fi[n] φ(2t − n). (8)

Proposition 1 ([29]): Using ψ(i)(t) in (8), define

ψ
(i)
j,n(t) = 2−jψ(i)

(
t − 2jn

2j

)

, j ∈ Z,n ∈ Z
2. (9)

Then, for scale 2j , {ψ(i)
j,n}0≤i≤3, n∈Z2 is a tight frame for Wj . For all scales, {ψ(i)

j,n}j∈Z, 0≤i≤3, n∈Z2 is a

tight frame for L2(R
2). In both cases, the frame bounds are equal to 1.

Since Wj is generated by four kernel functions (similar to multi-wavelets), in general it is not a shift

invariant subspace. Nevertheless, we can simulate a shift invariant subspace by denoting

µj−1,2n+ki
(t) = ψ

(i)
j,n(t), 0 ≤ i ≤ 3, (10)

where ki are the coset representatives for downsampling by 2 in each dimension

k0 = (0, 0)T , k1 = (1, 0)T , k2 = (0, 1)T ,k3 = (1, 1)T . (11)

With this notation, the family {µj−1,n}n∈Z2 associated to a uniform grid of intervals 2j−1 × 2j−1 on R
2

provides a tight frame for Wj .
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B. Multidirection

In the iterated PDFB, the discrete basis (2) of the DFB can be regarded as a change of basis for the

continuous-domain subspaces from the multiscale analysis in the last section. Suppose that the DFB’s in

the PDFB use orthogonal filters. Although in the PDFB the DFB is applied to the difference images or the

detail subspaces Wj , we first show what happens when the DFB is applied to the approximation subspaces

Vj .

Proposition 2: Define

θ
(l)
j,k,n(t) =

∑

m∈Z2

g
(l)
k [m − S

(l)
k n] φj,m(t), (12)

for arbitrary but finite4 l. Then the family {θ
(l)
j,k,n}n∈Z2 is an orthonormal basis of a directional subspace

V
(l)
j,k for each k = 0, . . . , 2l − 1. Furthermore,

V
(l)
j,k ⊥ V

(l)
j,k′ for k 6= k′, (13)

V
(l)
j,k = V

(l+1)
j,2k ⊕ V

(l+1)
j,2k+1, and (14)

Vj =
2l−1⊕

k=0

V
(l)
j,k . (15)

Proof: (Sketch) This result is proved by induction on the number of decomposition levels l of the DFB,

in much the same way for the wavelet packets bases [33] (see also [2]). Suppose that {θ(l)
j,k,n}n∈Z2 is an

orthonormal basis of a subspace V (l)
j,k . To increase the directional resolution, an extra level of decomposition

by a pair of orthogonal filters is applied to the channel represented by g(l)k that leads to two channels with

equivalent filters g(l+1)
2k and g(l+1)

2k+1 . This transforms the orthonormal basis {θ
(l)
j,k,n}n∈Z2 in two orthonormal

families {θ(l+1)
j,2k,n}n∈Z2 and {θ

(l+1)
j,2k+1,n}n∈Z2 . Each of these families generate a subspace with finer directional

resolution that satisfies the “two-direction” equation (14). With this induction, starting from an orthonormal

basis {φj,n}n∈Z2 of Vj , we obtain orthonormal bases for all directional subspaces V (l)
j,k .

C. Multiscale and multidirection: the contourlet expansion

Applying the directional decomposition by the family (2) onto the detail subspace Wj as done by the

PDFB, we obtain a similar result.

4The situation when the number of levels l of the iterated DFB goes to ∞ involves a regularity study for the DFB, which will

be treated elsewhere.
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Fig. 9. (a) Multiscale and multidirectional subspaces generated by the contourlet transform which is illustrated on a 2-D spectrum

decomposition. (b) Sampling grid and approximate support of contourlet functions for a “mostly horizontal” subspace W
lj
j,k. For

“mostly vertical” subspaces, the grid is transposed.

Proposition 3: Define

ρ
(l)
j,k,n(t) =

∑

m∈Z2

g
(l)
k [m − S

(l)
k n] µj−1,m(t) (16)

The family {ρ
(l)
j,k,n}n∈Z2 is a tight frame of a detail directional subspace W (l)

j,k with frame bounds equal

to 1, for each k = 0, . . . , 2l − 1. Furthermore, the subspaces W (l)
j,k are mutually orthogonal, across scales

and directions.

Proof: This result is obtained by applying Proposition 1 to the subspaces in Proposition 2.

Figure 9(a) shows a graphical representation of the detail directional subspaces W (l)
j,k in the frequency-

domain. The indexes j, k, and n specify the scale, direction, and location, respectively. Note that the number

of DFB decomposition levels l can be different at different scales j, and in that case will be denoted by lj .

Recall that Wj is not a shift-invariant subspace. However, the following result establishes that its subspaces

W
(l)
j,k are, since they are generated by a single function and its translations.

Proposition 4: Let us denote

ρ
(l)
j,k(t) =

∑

m∈Z2

g
(l)
k [m] µj−1,m(t) (17)

Then for l ≥ 2

ρ
(l)
j,k,n(t) = ρ

(l)
j,k(t − 2j−1S

(l)
k n) (18)

Proof: The definition of ψj,n in (9) implies that ψj,m+n(t) = ψj,m(t − 2jn). Applying this to (10)

we have µj−1,m+2n(t) = µj−1,m(t− 2j−12n). In other words, µj−1,m are periodically shift invariant with

even shifts in m. From (1) we see that when l ≥ 2, sampling by S
(l)
k is also even in each dimension. Thus,
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with a change of variable we obtain

ρ
(l)
j,k,n(t) =

∑

m∈Z2

g
(l)
k [m−S

(l)
k n] µj−1,m(t) =

∑

m∈Z2

g
(l)
k [m] µj−1,m(t− 2j−1S

(l)
k n) = ρ

(l)
j,k(t− 2j−1S

(l)
k n).

Therefore the translated family of ρ(l)
j,k

{

ρ
(l)
j,k,n(t) = ρ

(l)
j,k(t − 2j−1S

(l)
k n)

}

n∈Z2
(19)

is a frame of W (l)
j,k . As a result, the subspace W (l)

j,k is defined on a rectangular grid with intervals 2j+l−2×2j

or 2j × 2j+l−2, depending on whether it is mostly horizontal or vertical (see Figure 9(b)). The reason that

{ρ
(l)
j,k,n}n∈Z2 is an overcomplete frame for W (l)

j,k is because it uses the same sampling grid of the bigger

subspace V (l)
j−1,k.

Substituting (8) into (10) and then into (17), we can write ρ(l)
j,k(t) directly as a linear combination of the

scaling functions as

ρ
(l)
j,k(t) =

3∑

i=0

∑

n∈Z2

g
(l)
k [2n + ki]

(
∑

m∈Z2

fi[m]φj−1,2n+m

)

=
∑

m∈Z2

(
3∑

i=0

∑

n∈Z2

g
(l)
k [2n + ki]fi[m − 2n]

)

︸ ︷︷ ︸

c
(l)
k [m]

φj−1,m(t). (20)

The discrete signal c(l)k roughly equals to the summation of convolutions between g(l)
k and fi’s, and thus

it resembles a highpass and directional filter. Equation (20) shows that ρ(l)j,k can be viewed as a grouping of

“edge-detection” elements φj−1,m at a scale 2j−1 and along a direction k. This justifies the name contourlet

for the functions ρ(l)
j,k. It can be checked that

‖ρ
(l)
j,k,n‖

2
2 = 3/4, for all l ≥ 2, j ∈ Z, 0 ≤ k < 2l, n ∈ Z

2. (21)

Finally, integrating the multidirection analysis over scales we have the following result for the contourlet

frames of L2(R
2).

Theorem 2: For a sequence of finite positive integers {lj}j≤j0
the family

{φj0,n(t), ρ
(lj)
j,k,n(t)}j≤j0, 0≤k≤2lj−1, n∈Z2 (22)

is a tight frame of L2(R
2). For a sequence of finite positive integers {lj}j∈Z

, the family

{ρ
(lj)
j,k,n(t)}j∈Z, 0≤k≤2lj−1, n∈Z2 (23)

is a tight frame of L2(R
2). In both cases, the frame bounds are equal to 1.
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Proof: This result is obtained by applying Proposition 3 to the following decompositions of L2(R
2)

into mutual orthogonal subspaces:

L2(R
2) = Vj0 ⊕




⊕

j≤j0

Wj



 , and

L2(R
2) =

⊕

j∈Z

Wj .

The contourlet frames in (22)-(23) have several distinguishing features that are important to emphasize.

1) The contourlet expansions are defined on rectangular grids, and thus offer a seamless translation to the

discrete world, where image pixels are stored on a rectangular grid. To achieve this “digital-friendly”

feature, the contourlet kernel functions ρ(lj)
j,k have to be different for different directions k and cannot

be obtained by simply rotating a single function. This is a key difference between the contourlet and

the curvelet [4], [5] systems. The contourlet kernel functions ρ(lj)
j,k at different directions are defined

iteratively via the DFB as described in the proof of Proposition 2.

2) Since the contourlet functions are defined via the iterated PDFB like wavelets, the contourlet expansions

have fast filter bank algorithms and convenient tree structures.

3) It is easy to verify that with FIR filters, the iterated PDFB leads to compactly supported contourlet

frames. More precisely, the contourlet function ρ(lj)
j,k,n has support of size width ≈ C2j and length ≈

C2j+lj−2. Thus at each scale and direction, the set
{

ρ
(lj)
j,k,n

}

n∈Z2
tiles the plane R

2.

4) The contourlet construction provides a space-domain multiresolution scheme that offers flexible re-

finements for the spatial resolution and the angular resolution.

V. CONTOURLET APPROXIMATION AND COMPRESSION

The proposed contourlet filter bank and its associated continuous-domain frames in the previous sections

provide a framework for constructing general directional multiresolution image representations. Since our

goal is to develop efficient or sparse expansions for images having smooth contours, the next important

issues are: (1) what conditions should we impose in order to obtain a sparse contourlet expansion for that

class of images; and (2) how can we design filter banks that can lead to contourlet expansions satisfying

those conditions. We consider the first issue in this paper; the second one is addressed in a forthcoming

paper.
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A. Parabolic scaling

In the curvelet construction, Candès and Donoho [4] point out that a key to achieving the correct nonlinear

approximation behavior by curvelets is to select support sizes obeying the parabolic scaling relation for

curves: width ∝ length2 . The same scaling relation has been used in the study of Fourier integral operators

and wave equations, for example see [35].

PSfrag replacements

u
vw

l

u = u(v)

Fig. 10. Illustrating the parabolic scaling

relation for curves. The rectangular supports

of the basis functions that fit a curve exhibit

the quadric relation: width ∝ length2.

The motivation behind the parabolic scaling is to efficiently ap-

proximate a smooth discontinuity curve by “laying” basis elements

with linear or rectangular supports along the curve (refer to “X-

let” scheme in Figure 1). Suppose that the discontinuity curve is

sufficiently smooth, namely it is C2, then locally, by the Taylor

series expansion, it can be approximated by a parabolic curve. More

precisely, with the local coordinate setup as in Figure 10, it is easy

to check that the parametric representation of the discontinuity curve

obeys

u(v) ≈
κ

2
v2, when v ≈ 0, (24)

where κ is the local curvature of the curve. Hence, in order to match

the discontinuity curve, at fine scale the width w and the length l of the basis functions have to satisfy (refer

to Figure 10)

w ≈
κ

8
l2. (25)

*

Contourlet

=*

DFBLP

=

Fig. 11. Illustrating the evolution of the support size of a

contourlet frame that satisfies the parabolic scaling.

For the contourlet frame in (22), we know that

when an lj-level DFB is applied to the pyramidal

scale 2j , the contourlet functions have support size

of width ∼ 2j and length ∼ 2lj+j−2. Hence to

make the contourlet expansion satisfy the parabolic

scaling, we simply have to enforce that the number

of directions is doubled at every other finer scale

in the pyramid. An example of such a frequency

decomposition is shown in Figure 8(a). More pre-

cisely, suppose that at the scale 2j0 we start with an

lj0-level DFB, then at subsequently finer scales 2j

(j < j0), the number of DFB decomposition levels
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has to be

lj = lj0 − b(j − j0)/2c, for j ≤ j0. (26)

Figure 11 graphically depicts a contourlet frame satisfying the parabolic scaling. As can be seen in the

two pyramidal levels shown, as the support size of the basis element of the LP is reduced by four in each

dimension, the number of directions of the DFB is doubled. Combining these two stages, the support sizes

of the contourlet functions evolve in accordance to the desired parabolic scaling.

B. Directional vanishing moment

As an analogy, for the wavelet case in 1-D, wavelet approximation theory brought a new condition into filter

bank design, which earlier only focused on designing filters with good frequency selection properties. This

new condition requires wavelet functions to have a sufficient number of vanishing moments, or equivalently,

the lowpass filter must have enough “zeros at ω = π”. The vanishing-moments property is the key for the

sparse expansion of piecewise smooth signals by wavelets [8], [2]. Intuitively, wavelets with vanishing

moments are orthogonal with polynomial signals, and thus only a few wavelet basis functions around

discontinuity points would “feel” these singularities and lead to significant coefficients [36].

In the contourlet case, our target for approximation is 2-D piecewise smooth functions with discontinuities

along smooth curves. For this type of functions, singularities are localized in both space and direction.

More specifically, a local region around a smooth contour has a singularity that can be approximated by

two polynomial surfaces separated by a straight line. Thus, it is desirable that only the contourlet functions

that are located and oriented around the discontinuity curve would “feel” this singularity. One simple way

to achieve this desideratum is to require all 1-D slices in a certain direction of contourlet functions to have

vanishing moments. We refer this requirement as the directional vanishing moment (DVM) condition.

Definition 1 (Directional vanishing moment): A 2-D function ρ(t1, t2) is said to have an L-order di-

rectional vanishing moment along a direction u = (u1, u2)
T if all 1-D slices of that function along

the direction u (suppose that u1 6= 0; if u1 = 0 then u2 6= 0 and we can swap the two dimensions):

ρu,d(t) = ρ(t, tu2/u1 − d), have L vanishing moments:

∫ ∞

−∞

ρu,d(t)t
n = 0, for all d ∈ R, 0 ≤ n < L. (27)

In the frequency domain, the DVM condition (27) is equivalent to requiring ρ̂(ω1, ω2) to have a factor

(u2ω1−u1ω2)
L. For contourlet functions ρ(l)

j,k(t) constructed from an iterated PDFB as in (20), taking Fourier

transforms on both sides, we see that ρ(l)
j,k(t) has L DVMs along direction u if the discrete-time Fourier
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transform C
(l)
k (ejω1 , ejω2) of the filter c(l)k [n] has L zeros along the line u2ω1 − u1ω2 = 0, which means

C
(l)
k (ejω1 , ejω2) =

(

1 − ej(u2ω1−u1ω2)
)L

R(ejω1 , ejω2) (28)

This requirement in turn leads to filter design conditions for the PDFB. When u1 and u2 are integers,

(28) is equivalent to requiring C
(l)
k (z1, z2) to have a factor (1 − zu2

1 z−u1

2 )L. For the ideal frequency case

(i.e. with sinc-type filters), the contourlet functions have DVMs on all orthogonal directions outside the fan

regions of their frequency supports.

We note that the DVM property also holds in other 2-D expansions. In particular, 2-D separable wavelets

have directional vanishing moments in the horizontal and vertical directions, which make wavelets especially

good in capturing horizontal and vertical edges. Ridgelets [11], which offer an optimal representation for

2-D functions that are smooth away from a discontinuity along a line, have directional vanishing moments

in all but one direction.

C. Approximation rate for 2-D piecewise smooth functions

Now we show that a contourlet expansion that satisfies the parabolic scaling and has sufficient DVMs

achieves the optimal nonlinear approximation behavior for 2-D piecewise smooth functions with disconti-

nuities along smooth curves. Recall that for a contourlet frame (22) to satisfy the parabolic scaling, lj has

to follow (26). For simplicity,5 set j0 = 0 and l0 = 2. This leads to a contourlet frame which at scale 2j

(j = −1,−2, . . .) has about 2−j/2 directions and each contourlet function ρj,k,n has support size of order

width ∼ 2j and length ∼ 2j/2. Because of (21), it follows that the maximum amplitude of ρj,k,n is of

order of Aj ∼ 2−3j/4.

Consider a function f defined on the unit square [0, 1]2 that is C2 except for discontinuities along a C2

and finite length curve C. Suppose that the contourlet kernel functions ρj,k have two-order DVMs along a

dense enough set of directions (this will be made precise in a moment). We classify contourlets ρj,k,n into

type 1, whose support intersects with the discontinuity curve C, and type 2, whose support is included in a

region where f is C2.

The key idea is as follows. For a type 1 contourlet ρj,k,n, we can localize the support area that would

be affected by the discontinuity curve C to be “sandwiched” between two lines parallel to the tangent of

the curve (see Figure 12(a)). Denote dj,k,n to be the length of C that intersects with the support of ρj,k,n.

Because the curve is twice differentiable, using Taylor expansion as in (24) (also see Figure 10), the width

of the affected area is of the order d2
j,k,n. Outside that area, because f is C2 and ρj,k,n has two vanishing

5Other values of l0 only changes the constant but not the exponent in the approximation rate.
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moments on the tangent direction, it can be shown that the line integrals along the direction of the product

f · ρj,k,n are bounded by AjKd
3
j,k,n. Hence, the corresponding type 1 contourlet coefficient behaves like

|〈f, ρj,k,n〉| ∼ Ajd
3
j,k,n +Ajd

3
j,k,n2j/2 ∼ 2−3j/4d3

j,k,n. (29)
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Fig. 12. (a) A contourlet function that intersects with the discontinuity curve (denoted by the thick curve). (b) Illustrating the

tolerable gap in angle with directional vanishing moments. The hatched region is the ideal affected area, while the gray region is

the actual affected area corresponding to DVMs on a direction that is α away from the tangent of the discontinuity curve.

Suppose that instead of having DVMs on the tangent direction of the discontinuity curve, we only find

DVMs on a direction that is α degree away as shown in Figure 12(b). A simple geometrical argument

shows that instead of d3
j,k,n, the affected area would be upper bounded by d3

j,k,n + d2
j,k,n tanα. Thus, if

tanα ≤ A1d, then the decay in (29) will be unchanged. To achieve this and since dj,k,n ≤ A22
j/2, the

maximum gap αj between directions that ρj,k,n has DVMs must be of the order

αj ≤ A2j/2. (30)

We now estimate the intersection length dj,k,n. Let θj,k,n denote the angle between the contourlet function

ρj,k,n and the local tangent direction of the discontinuity curve C. From Figure 12(a), we see that dj,k,n ∼

max
{
2j/ sin θj,k,n, 2j/2

}
. Since there are about 2−j/2 directions, locally as the intersected contourlets

slowly turn away from the discontinuity direction, the angle θ increases almost uniformly from 0 to π/2

with a step size about 2j/2. More precisely, within a square region of length 2j/2 we can reorder the direction
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index to k̃, k̃ = 1, . . . , 2−j/2 so that θj,k̃,n ≈ k̃2j/2. With this index, the intersection lengths behave like

dj,k̃,n ∼ 2j/(k̃2j/2) = 2j/2k̃−1.

Substituting this into (29), we have the following decay for type 1 contourlet coefficients at scale 2j and

k̃-th direction away from the discontinuity curve

|〈f, ρj,k̃,n〉| ∼ 23j/4k̃−3. (31)

In addition, since the discontinuity curve C has finite length, there are O(2−j/2k̃) corresponding contourlet

coefficients.

We now turn attention to type 2 contourlets, whose support is included in a region where f is C2. For

those contourlets, the corresponding coefficients 〈f, ρj,k,n〉 behave as if f is C2. Because of the tight frame

property in Proposition 3, we have

i∑

j=−∞

∑

k

∑

n

|〈f, ρj,k,n〉|
2 = ‖f − PVi

f‖2
2 (32)

where PVi
f is the projection of f onto the approximation subspace Vi at scale 2i. Therefore, contourlets

are as effective as wavelets in approximating smooth functions.

Suppose that the scaling function φ has accuracy of order 2, which is equivalent to requiring the refinement

filter G(ejω1 , ejω2) in (5) to have a second-order zero at (π, π) [37], that is

∂k1+k2G(ejω1 , ejω2)

∂k1ω1∂k2ω2

∣
∣
∣
∣
(π,π)

= 0, for all k1, k2 ∈ Z; 0 ≤ k1 + k2 < 2. (33)

Then for a smooth function f̃ in C2, we have

‖f̃ − PVi
f̃‖2 ∼ (2i)2. (34)

Thus, combined with (32), the sum square error of type 2 contourlet coefficients 〈f, ρj,k,n〉 due to

truncation up to scale 2i is O(24i). In addition, because there are O(2−2j) type 2 contourlet coefficients at

scale 2j , it follows that type 2 contourlet coefficients at scale 2j decay like O(23j).

For a best-M term approximation, based on the above rates of decay of contourlet coefficients, by setting

the threshold T = 2−L (L � 0), we would keep all type 1 coefficients with k̃ ≤ 2j/4+L/3 and all type 2

coefficients to scale 2−L/3. Moreover, since k̃ ≤ 2−j/2, we have the following scheme for picking contourlet

coefficients above threshold T = 2−L.

• For 0 ≥ j ≥ −L/3: keep all coefficients.

• For −L/3 > j ≥ −4L/9: keep all type 1 (intersected) coefficients.

• For −4L/9 > j ≥ −4L/3: keep all type 1 (intersected) coefficients with k̃ ≤ 2j/4+L/3.
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Then the total number of retained coefficients is:

M ∼ 22L/3 +

−L/3
∑

j=−4L/9

2−j/2
∑

k̃=1

2−j/2k̃ +

−4L/9
∑

j=−4L/3

2j/4+L/3
∑

k̃=1

2−j/2k̃ ∼ L22L/3. (35)

The distortion due to truncation is

‖f − f̂ contourlet
M ‖2 ∼ 2−4L/3 +

−4L/9
∑

j=−4L/3

2−j/2
∑

k̃=2j/4+L/3

2−j/2k̃ (23j/4k̃−3)2 +

−4L/3
∑

j=−∞

2−j/2
∑

k̃=1

2−j/2k̃ (23j/4k̃−3)2

∼ 2−4L/3 +

−4L/9
∑

j=−4L/3

2j
2−j/2
∑

k̃=2j/4+L/3

k̃−5 +

−4L/3
∑

j=−∞

2j
2−j/2
∑

k̃=1

k̃−5. (36)

To simplify the last expression, we use the following approximation
b∑

k̃=a

k̃−5 ∼

∫ b

a
x−5dx = (a−4 − b−4)/4.

Substitute this back into (36) we obtain

‖f − f̂ contourlet
M ‖2 ∼ L2−4L/3. (37)

Combining (35) with (37) we have

‖f − f̂ contourlet
M ‖2 ∼ L3M−2 ∼ (logM)3M−2.

The following theorem summarizes this nonlinear approximation property of contourlets.

Theorem 3: Suppose that the contourlet frame (22) satisfies the parabolic scaling condition (26), each

contourlet function ρj,k,n has two-order directional vanishing moments on a set of directions with maximum

angular gap of A2j/2, and the scaling function φ has accuracy of order 2. Then for a function f that is C2

away from a C2 discontinuity curve, the M -term approximation by this contourlet frame achieves

‖f − f̂ contourlet
M ‖2 ≤ C(logM)3M−2. (38)

Interestingly, this is exactly the same approximation behavior derived for curvelets [5], where curvelets

are compactly supported in frequency and the approximation analysis was carried out in the Fourier domain.

For comparison, the approximation error of the same function f by wavelets decays like M−1 (see for

example [2]). Because the “complexity” of f is at least equal to the “complexity” of the discontinuity curve

C, which is a C2 curve, no other approximation scheme can achieve a better rate than M−2 [10]. In this

sense, the contourlet expansion achieves the optimal approximation rate for piecewise smooth functions with

C2 contours.

D. Contourlet Compression
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Fig. 13. A possible zero-tree of con-

tourlet coefficients.

In the last subsection, we consider the approximation rate of contourlets

by keeping the M -most significant coefficients. For the compression

application, we have to account for the cost to index these M retained

coefficients, as well as the cost to quantize them. Fortunately, as can be

seen from the last subsection, the M retained coefficients are organized

in tree-structures, where each contourlet coefficient has four children in

the finer scale, at the scale location, and either in the the same direction

or in two finer directions (when the number of directions is doubled);

see Figure 13. Indeed, in the scheme of picking M -best coefficients in

the last subsection, from coarse to fine scales, we successively localize

in both location (contourlets intersect with the discontinuity curve) and

direction (intersected contourlets with direction close to the tangent of the

discontinuity curve). These embedded tree-structures, which are similar

to the embedded zero-trees for wavelets [38], allow us to efficiently index

the retained coefficients using 1 bit per coefficient.

For quantization, instead of using fixed length coding to precision T = 2−L, a slight gain (in the log

factor, but not the exponent of the rate-distortion function) can be obtained by variable length coding. With

variable length coding, we encode coefficients with magnitude in the range (2l−1−L, 2l−L] with l bits. Such

a scheme is obtained via bit plane coding [9]. In this scheme, the number of coefficients encoded with l bits

is upper bounded by the number of coefficients with magnitude above the threshold 2l−1−L, and according

to (35) is of the order (L− l + 1)22(L−l+1)/3. Thus the total number of bits to encode the coefficients is

R . M +
∑

l≥1

l(L− l + 1)22(L−l+1)/3 ≤ L22L/3 + L22L/3
∑

l≥1

l2−2(l−1)/3 ∼ L22L/3. (39)

The compression distortion is equal to the sum of the truncation distortion in (37) and the quantization

distortion, which is MT 2 ∼ L22L/3(2−L)2 = L2−4L/3. Thus the compression distortion is also of the order

L2−4L/3. Together with (39) we obtain the following estimation of the rate distortion function D(R).

Corollary 1: Under the assumption of Theorem 3, a contourlet compression system that uses embedded

zero-trees and bit plan coding achieves

D(R) ≤ C ′(logR)3R−2. (40)

VI. NUMERICAL EXPERIMENTS

All experiments in this section use a wavelet transform with “9-7” biorthogonal filters [39], [40] and

6 decomposition levels. For the contourlet transform, in the LP stage we also use the “9-7” filters. The
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Fig. 14. Example of the discrete contourlet transform, applied to the peppers image.

choice of the “9-7” biorthogonal filters rather than orthogonal ones is motivated by the fact that these filters

are very popular and successful in image processing practice (partly because they are linear phase) and

actually they are close to being orthogonal. In the DFB stage we use the “23-45” biorthogonal quincunx

filters designed by Phoong et al. [41] and modulate them to obtain the biorthogonal fan filters. Apart from

being linear phase and nearly orthogonal, these fan filters are close to having the ideal frequency response

and thus can approximate the directional vanishing moment condition. The drawback is that they have large

support which creates a large number of significant coefficients near edges. As mentioned before, designing

optimized contourlet filters is a topic to be studied further.

The number of DFB decomposition levels is doubled at every other finer scale and is equal to 5 at the finest

scale. Note that in this case, both the wavelet and the contourlet transforms share the same detail subspaces

Wj as defined in Section IV-A. The difference is that each detail subspace Wj in the wavelet transform

is represented by a basis with three directions, whereas in the contourlet transform it is represented by a

redundant frame with many more directions. An example of the contourlet transform is shown in Figure 14.

A. Wavelets vs. Contourlets

To highlight the difference between the wavelet and contourlet transform, Figure 15 shows a few wavelet

and contourlet basis images. We see that contourlets offer a much richer set of directions and shapes, which

help to capture geometric structures in images.
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Fig. 15. Comparing a few actual 2-D wavelets (left) and contourlets (right).

B. Nonlinear approximation

Next we compare the nonlinear approximation (NLA) performances of the wavelet and the contourlet

transforms. In these NLA experiments, for a given value M , we select the M -most significant coefficients

in each transform domain, and then compare the reconstructed images from these sets of M coefficients.

Since the two transforms share the same detail subspaces, it is possible to restrict the comparison in these

subspaces. We expect that most of the refinement happens around the image edges.

Figure 16 shows sequences of nonlinear approximated images at the finest detailed subspace Wj using

the wavelet and the contourlet transforms, respectively, for the input peppers image. The wavelet scheme

is seen to slowly capture contours by isolated “dots”. By contrast, the contourlet scheme quickly refines by

well-adapted “sketches”, in much the same way as the “X-let” painter discussed in the Introduction.

Figure 17 shows a detailed comparison of two nonlinear approximated images by the wavelet and

contourlet transforms using the same number of coefficients. Contourlets are shown to be superior compared

with wavelets in capturing fine contours (directional textures on cloths). In addition, there is a significant

gain of 1.46 dB in peak signal-to-noise ratio (PSNR) by contourlets.

C. Denoising

The improvement in approximation by contourlets based on keeping the most significant coefficients will

directly lead to improvements in applications, including compression, denoising, and feature extraction. In

particular, for image denoising, random noise will generate significant wavelet coefficients just like edges,

but is less likely to generate significant contourlet coefficients. Consequently, a simple thresholding scheme

[42] applied on the contourlet transform is more effective in removing the noise than it is for the wavelet

transform.

Figure 18 displays a “zoom-in” comparison of denoising when applying wavelet and contourlet hard-

thresholding on the Lena image. The contourlet transform is shown to be more effective in recovering
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M = 4 M = 16 M = 64 M = 256

(a) Using wavelets

M = 4 M = 16 M = 64 M = 256

(b) Using contourlets

Fig. 16. Sequence of images showing the nonlinear approximations of the peppers image using M most significant coefficients at

the finest detailed subspace Wj , which is shared by both the wavelet and contourlet transforms.

smooth contours, both visually as well as in signal-to-noise ratio (SNR). A more sophisticated denoising

scheme that takes into account the dependencies across scales, directions and locations in the contourlet

domain using a hidden Markov tree model is presented in [43] and shows further improvements.

VII. CONCLUSION

In this work, we constructed a discrete transform that can offer a sparse expansion for typical images

having smooth contours. Using recent results from harmonic analysis and vision, we first identified two key

features of a new image representation that improves over the separable 2-D wavelet transform, namely

directionality and anisotropy. Based on this, we developed a new filter bank structure, the pyramidal

directional filter bank (PDFB) or the discrete contourlet transform, that can provide a flexible multiscale and

directional decomposition for images. The developed discrete filter bank has an associated continuous-domain

expansion similar to filter bank iterations and the associated wavelet constructions. This connection was

made precise via a newly defined directional multiresolution analysis that provides successive refinements at

both spatial and directional resolution. With parabolic scaling and sufficient directional vanishing moments,

the contourlet expansion is shown to achieve the optimal nonlinear approximation behavior for piecewise

smooth functions in R
2 with C2 contours. Experiments with real images indicate the potential of contourlets
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Original image Wavelet NLA: PSNR = 24.34 dB Contourlet NLA: PSNR = 25.70 dB

Fig. 17. Nonlinear approximations (NLA) by the wavelet and contourlet transforms. In each case, the original image Barbara of

size 512 × 512 is reconstructed from the 4096-most significant coefficients. Only part of images are shown for detail comparison.

Fig. 18. Denoising experiments. From left to right are: original image, noisy image (SNR = 9.55 dB), denoising using wavelets

(SNR = 13.82 dB), and denoising using contourlets (SNR = 15.42 dB).

in several image processing applications. A Matlab contourlet toolbox is available for download from

www.ifp.uiuc.edu/∼minhdo/software.
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