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Directional Dyadic Wavelet Transforms:
Design and Algorithms

Pierre Vandergheynsiiember, IEEEand Jean-Francois Gobbers

Abstract—We propose a simple and efficient technique for de- Throughout this paper, the will denote the 2-D convolution
signing translation invariant dyadic wavelet transforms (DWTs) in  product
two dimensions. Our technigue relies on an extension of the work
of Duval-Destinet al.[1], [2] where dyadic decompositions are con-
structed starting from the continuous wavelet transfrom. The main (f*g)(Z) = / Pif(T — if)g(¥)
advantage of this framework is that it allows for a lot of freedom R2
in designing two-dimensional (2-D) dyadic wavelets. We use this . . i
property to construct directional wavelets, whose orientation fil- this operation being well-defined fgf € L? andg € L7 by
tering capabilities are very important in image processing. We ad- virtue of Young's convolution inequality [8]
dress the efficient implementation of these decompositions by con-

structing approximate QMFs through an L? optimization. We also 1 1 1
propose and study an efficient implementation in the Fourier do- If=all- < Ifllpllglley 1+===+4+= Q)
main for dealing with large filters. TP q

Index Terms—byadic wavelet transform (DWT), QMF filters. where|| - ||, stands for the norm ilii/’(RQ, de)_ In this paper,

we mean by 2-D wavelet an integrable or square integrable com-
plex-valued function of the 2-D real variahigthat hasV van-

ishing moments
AVELETS are a well-established tool in the field of

image analysis. In particular wavelet orthogonal and
biorthogonal bases have been succesfully used in many appli-
cations. It has already been stressed that the lack of translation R?
invariance of these representations can be a severe draw%%/
for tasks like pattern recognition or texture analysis. The dyadic
wavelet transform (DWT) pioneered by Mallat and Zhong [3] Ne1N—1
was precisely mtroqluced to cope with this and _has proved very Pla,y) = Z Z %Mkyz
useful whenanalysisof multiscale features is important [4],
[5]. On the other hand, it has also been shown that the use of
specific orientation sensitive filters like Gabor filters or direcwhich means that they are blind to polynomials of order up to
tional wavelets is highly suitable when one faces multiscal® — 1 in thex andy variables.
oriented tokens in images [6], [7]. The main goal of this paper Let us now recall the definition afirectional waveletgiiven
is the wedding of the powerful and simple algorithmic structuri@ [9].
of dyadic wavelet frames together with rather mild design Definition 1: A wavelet) is said to be directional if and only
constraints. This will allow us to tailor two-dimensional (2-D)f its Fourier transform is strictly supported in a convex cone
wavelets to obtain directional selectivity or suitable frequeneyith apex at the origin.

I. INTRODUCTION

aPytp(z,y)de dy =0, 0<p,qg<N. (2

elets are thus orthogonal to functions of the form

k=0 (=0

localization properties without much effort. Example 1 (Cauchy Wavelets)etC be the cone defined by
_Let f be asquare integrable 2-D signals L?(R*, d*#) and the anglesy andj and leta = o+ 7/2, # = 8 — m/2. The
f beits 2-D Fourier transform defined by Cauchy wavelet is defined by
Boan D ooy i E . R L U N L .
f@) = [ ear@e. I ) = { (0-7) (@ 1) = Hace
0, otherwise
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Fig. 1. Fourier transform of the (a) Cauchy and (b) Morlet wavelets.

Strictly speaking it is not a directional waveletit does not
satisfy Def. 1), but it is numerically very close to it. This can
also be verified on Fig. 1(b) where we have drawn the cone in

which this wavelet is mostly concentrated. Fig. 2. Frequency localization of the oriented wavelgts
Il. Two-DIMENSIONAL WAVELET FRAMES Finally the reconstruction formula reads
In this section, we briefly review the definition and proper-
ties of translation invariant frames of wavelets also frequently 25 o
. . . 27 W ) * 9
called DWTs in the literature. The interested reader should refer Z Z f X”) (@) ©

to [3] for more details on this specific case and to [10], [11] et

for a deep introduction to general frame theory. We will makghere the convergence of this last expression is intend&d in

use of the so-called DWT and, in order to bring orientatioform.

sensitivity into this scheme, we will usk oriented wavelets A much simpler formula can be used when condition (6) can

{;z/) (Z), 1 < k < K}. By this we mean that the support of eaclye changed into

4’ is essentially included in a ball around reference wave vector

%, and that the sum of these supports approximately covers an

annulus in frequency space (see Fig. 2). Z Z z/’
Denoting the scaled and translated wavelets k=ljcz

)=1 V&eR*\0. (10)

In this case, the dual wavelets are formally Dirac distributions

;;b(ﬁ) 2211/} ( 4 —b)> and the reconstruction formula then reads
the DWT of f € L2(R?, d>%) with respect ta)* is given b Koo :
f & LR, d°) with respect te)™ Is given by D=3 2wk (20, 7) (11)
WERLE) = (vho f) = (3" < 1)@ ®) sezh=l

L that is, a simple sum of DWT coefficients with convergence in
with ¢(&) = +(—Z). The DWT is a complete and stable reprez2 norm.

sentation of the signal provided there exist> 0 and B finite In the following, we will be a little bit more restrictive by

such that imposing that the wavelets® are rotated versions of a prototype
directional wavelet), that is

K 2
A< P* (28)] < B V@ eR*\0. (6)
; Jez; ‘ ( )‘ (@) = (r-0, )

In this case dual or reconstruction wavelets are defined by \wherer, is a rotation matrix and;, = (k—1)27 /K. The next
section gives a very simple and straightforward technique for
3) =
V=

k
¥ (9) (7) designing such frames.

N 2
X, [+ @3)

lll. CusTOoM DESIGN OFDYADIC FRAMES

for which we have In this section we will briefly review the extension to 2-D of
K a technique introduced by Duval-Dest al. [1] that explic-
Z Zxk (2&3) ¢k (293) = 1. (8) itly builds dyadic wavelet frames starting from a Continuous
Jez k=1 Wavelet Transform (CWT). We proceed by first constructing

frames of isotropic wavelets and we then bring angular selec-
IActually it is not even a wavelet according to (2), but the error is very smaﬂ ity b titi th th letint | directi |
for large||«||. It can be turned into a genuine wavelet by adding a suitabléV!ty DY parti ioning the mother wavelet into several directiona

correcting term [6]. wavelets. The main advantage of this construction is the total
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freedom obtained on the wavelet used and this allows us to heis then shown in [1] that the approximatigi can be written
ally tailor the frame to our needs. We focus on the main princi-

ples and let the interested reader consult the references for clean fo(@) = / d25<¢(5 o)
mathematical proofs. R? ’

Néga@  an

) o and that the following limit holds in the strong sense in
A. Scale Discretization L2(R2, 2 7):
We will start from the reconstruction formula associated to ]
the CWT in two dimensions [6] Lm fo = f. (18)

Remark also that (16) implies

F(@) = /0 " /R B, (a, z?) Vi@ (12)
=0

. lim
where W;(a,b) is the wavelet transform of the signdl e &) —oo

L2(R?, d2%)

¢()

~ ‘ 2

and thus defines a smoothing function. Now, starting from an

= L - o . approximation off at scalea = 27, we can refine up to an
Wy (a, b) = Ow'la 2 /Rz d* Ty (Cfl (95 - b))ﬂx) (13) f';\rbitrary res_olution by a_ldding up details. For this purpose, we
introduce slices of details

andC, is a constant
. ‘2 D;(Z) :/ —do(Z).
2

(&)
= 2~
G =2n R2 &w (il (14) Taking the Fourier transform on both sides, we have

J+1
Y da

that we will normalize to one in the following. Convergence N N /
27 a

of (12) holds inL? norm when the wavelet € L'(R?) and D;(@) = (&)
C, < +o0. Note also that these equations are valid only when ) ]
the wavelet) is isotropic2 and this leads us to define theegrated wavelet packets

The basic idea behind the proposed construction is now to . 9 L Ja
r(g)‘ - / da
1/2 @

segment the integral over scales in (12) and replace it by a sum
over dyadic intervals. This is done first by rewriting the recon-
struction formula The name comes from the ideaghfiingtogether wavelets but it
/+oo da should be stressed that it is in no way connected to the adaptive
0

N ‘ 2

¥ (ad)

b (ad) ‘ ’ (19)

zda(f) decompositions introduced by Meyer and Wickerhauser [12].
Finally, putting (17) and (19) together, we obtain the following

where we have defined thiefinitesimal detail dyadic decomposition:
-\ 2 77 7 . — _ 27 . .
da(7) = /R LIy (a,8) vy, (D). /= /R (D0 | 1) bar sy

J
By virtue of Young'’s convolution inequality, € L?(R?, d*%) / 2~< ‘ >
S . 4 ’ ., » r..» (2
and, taking its Fourier transform, we obtain +j=z_:oo R2 &b (29,6) f (29,b) (20)
. 2
de (&) = ‘ F(&). (15) thatholdsinZ? norm. In order to simplify our notations, we will
_ _ write the wavelet coefficientsV;(27,b) = (F(Qj 5)|f> and in-
These equations show th&trepresents the amount of mforma—troduce the approximation coefficierig(2” g) = ($rpr 31 F)-
tion captured by the wavelet between scalenda + da, hence : (27,8)
g o . . Equation (20) now reads
the name “infinitesimal details.” Summing all these details, that
is, integrating over the scale variable, reproduces the original ; J i
signal. In the same vein, we can synthesize a low resolution &) = (Sr (27, ) * ¢»7) (2)+ Z (Wy (27,) xTas) (&)
proximation of f by integrating up to a given resolution, say j=—oc0 (21)

T da d(F We have thus built a DWT starting from the CWT. Itis important
. 0 a(7)- to realize that the scaling functignand the waveldt inherit the
. ) ] ) localization and smoothness propertiegofn view of the con-
Taking the Fourier transform on both sides suggests to introduggerable freedom we have in the choice/ofwe are now able
the following Fourier multiplier: to easily design custom, translation invariant dyadic frames. A
R 2 +20 g 2 simpler decomposition formula arises when one starts from the
@) = [T fiad)

(16) so called Morlet reconstruction formula instead of (12):
2In th | f anisotropi lets, one has to consider the action of L [T da
n the general case or anisotropic wavelets, one has to consiaer the action o 2y — beg
d g f@=ct [ Twr ) (22)
0

D(ai)

Jao (%) =

10

P(aid)

rotations in formulas (12) and (13). - W
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that holds inZ? norm fory € L'(R?,d?%) and whenCy, is a TABLE |
finite constant defined by SCALING FUNCTIONS OFLOWEST ORDERS
AL Order | Scaling function
Cy = 27r/ d2@,1/)£¢u2)' (23) n=2 téz(k) =e* .
re ||l n=3 | ga(k) = Lke=*" + Lherfe(k)

n=4 | ¢s(k) = e ¥ (1 +£?)

The same reasoning as before leads us to introduce a scaling ’ ) 2 g
ds(k) = 05" (30e ¥ + ke + B erfe(k))

function n=
. tda

(&) = ) ;1/) (add) (24)  that satisfies the following recurrence relation:

and integrated wavelet packets g (W) = }wn_ze_wz + (n — 2); ()
. n 2 2 n—2
i@) = [ i) (25) with
1/2 @
“ R = 1 _ e = 1 _ e s
—(20) - (@) @) )= )= jee e

that is, these wavelets are expressed as difference of smoothjAg the error function is defined by
functions. In this case, the reconstruction formula is much

simpler, since it involves a straight sum of approximation and erfo(w) = 4 /+°° dwe—"
wavelet coefficients N

I , We would like to normalize this family in such a way that
F@ =8 (27,8) + Y Wr(2,7). (27) [, d*%$,(Z) = 1 and this leads us to define
j=—0o0
. . SN Polw) = ()
One of the main advantages of this construction is that it al- S T B

lows to build wavelets and scaling functions that have fast dec\%ere the constant

. ; . o » IS defined by
both in the spatial and frequency domains. This is very useful

in applications where one wants to use wavelets that have sharp ~ (n-2)/2 ;
prescribed localization properties in the Fourier domain and are o, =¢5(0) H g " even n > 2
also of fast decay in the spatial domain, as it is the case with i=1
Gabor functions. This is very difficult to achieve in practice. For N~ =32,

. . ) > 2t+1
example, if one wants to use spline-based wavelet frames, it ap- =43(0) ] 5 nodd 7> 3.
pears that, although the spatial localization is very good, splines i=1

are not sharply localized in Fourier variables (algebraic deca o ) = =

and can even show disturbing sidelobes. A concrete exampléye? recursion is started withy = ¢,(0) andas = ¢5(0).
given by texture analysis where the latter are distinguished 82/ing functions of the lowest orders are listed in Table | Using
the basis of the statistics of frequency subbands as measufed ©r (26), we obtain the desired family of isotropic wavelets.
using Gabor wavelets [13]. If one wants to use a dyadic franféOte that the parameter also controls the number of van-
special care has to be given to the frequency localization of #§8ing moments of the associated wavelet. An example of such
wavelets and this can be easily done using the technique ec@ling function of order 4 is given on Fig. 4.

scribed above. C. Directional Wavelet Frames

B. Example The next step in our construction is to build directional

Let us now apply the previous formalism to a concrete Caéggv_elet frames. A simple and_ sfcraightforward way to achieve
We will construct isotropic dyadic wavelets and scaling fund!S IS to start from an isotropic integrated waveleand seg-
tions belonging to the class 6f° functions with fast decay and MenNt it into directional ones. This can be done by introducing
associated to the family of pseudo-differential operators defin8 ar;]gular ‘;\,"r_‘dOVW(‘P)’ ¢ € |[0’27r] in the Fourier domain
by multiplication byw™ = (w? + w2)™/? in the Fourier do- and then defining a new wavelet
main. For this purpose, we start with the family of 2-D isotropic @(w’ o) = f(w)n(@-
wavelets

Al o Note that this construction amounts to work with wavelets that
() = whe (28) are separable ipolar coordinates. The choice of the angular
indow is restricted by the reconstruction formula (9). More

and we compute the associated scaling function using (16). we o . :
thus consider the family précisely if one makes use of (23)has to satisfy

_ ok
e K

K-1

gn(w) = /‘+°<> @a"e_”’z, (n>2) Z

2
=1 (29)

a k=0
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-~

(@) (b)

Fig. 3. Fourier transform of a directional dyadic wavelet of order 4 and angular
resolution ofr /5 for the value (a)k = 0 and (b)k = 1 of the rotation
parameter.

while the simpler formula (27) requires

K-—1
ZU(@—%)zl (30)

k=0

where we have assumeli orientations. An additional re-
quirement, when working with directional wavelets, is that the
support ofn) be _Sm_CtIy IeASS_ thar_ar. In order to preserve the Fig. 4. Scaling function of (a) order 4, (b) real part, (c) imaginary part, and (d)
frequency localization of’, it is important that; be regular modulus of the associated wavelet with angular resolutian/sf.

enough. The optimal choice is thus to build a partition of the

circle using a suitable compactly support€d function. In r = ¢... K — 1, such that one can compute these quantities

Appendix A we propose a very simple construction that us@sing a pyramidal algorithm [16], that is
Schwartz’s function. An example of dyadic directional wavelet _
built using this technique is depicted on Figs. 3 and 4. Sif(m,n) =" hyeSia
p,qCZ
f(m—2"tpn—2771g) (32)

Whfm,n) = 3 6,85

IV. MPLEMENTATION USING APPROXIMATE QMFS

One of the main drawbacks of these oriented frames is that -
they are not designed to be implemented using a pyramidal al- PaE ) )
gorithm. Nevertheless we will now show that one can design f (m -2 pn—2 q) - (33

special QMF pairs that allow for a very good approximation ofhhjs is equivalent to asking that the related wavelets and scaling

the DWT and provide a substantial gain in computation speggnction satisfy a two-scale equation of the form
Most of the material in this section is an extension to the 2-D . .

case of the work of Muschietti and Torrésani [2], [14]. ¢ (2we, 2wy) =mo (wa, wy) ¢ (wa, wy) (34)
U (2w, 2wy) =mh (wa, wy) UF (Was wy) (35)

A. Filter Design wheremg and them’, k = 0... K — 1, are the Fourier series

As we work with translation invariant frames, we will nowof the filtersh andg* respectively. Relying on usual filter bank
sample the position parameter of the DWT over a regular grigheory, we know that the same filters can be used to reconstruct
that is, we will consider wavelets and scaling functions indexgfe signal provided they satisfy a QMF relation

by the integer grid K1

2 .
|m0 (wwva” + Z |m’f (wwva)
k=0

=2

\I/;me(a:, y) = 2" 5k (2_j(a: —m,y— n)) . Jm,n € L.
o _ o This is the exact discrete equivalent of (21). Similarly, one can
We then obtain aliscreteDWT by just restricting the DWT to design filters that implement the weaker formula (27) provided

this particular grid they satisfy a simpler constraint
K-1
Wi f(m,n) = <‘I’§;m,n f>, S f(m,n) = <¢jmw f?, mo (o, wy) + Y A (waywy) = 2.
(31) k=0

Computing a regularly sampled continuous wavelet transformThe main problem at this point is that the integrated direc-
is a problem that has been studied first by Holschnedded. tional wavelets we have designed in Section Il do not generally
[15]. Let us assume there exists 2-D discrete filterand g, satisfy any two-scale equation. Another way to coin the problem
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is to remark that, although there usually exists regular mulimilarly, for the directional wavelets, one obtaiRsapproxi-
pliers yio andy satisfying mate filtersg®:2. characterized by

m,n

—

$(25) = no(@)H(@),  TH(23) = nf (@) S
Ho H u[e/Rz dxdy<(f)($+m7y+n)

these are nd®w x 27 periodic and cannot be used to comp

successive approximations and details as in (32) and (33). Nev-

ertheless it is crucial to notice that these multipliers, as well as % k.a L (af U)
. AN NN E G z+pyuta — V(5,5
filters mg andm}, are always multiplied by. Now, if the latter et pia 9 ) 4 272

is very well localized in[—w, ] x [—w, «] and this is exactly —0Vm.n €7 37)
the case we are considering in this paper, the lack of period- B '

icity of 1o andpf is compensated by the localizationgfind  Finally, the approximate low resolution and detail coefficients
it seems then reasonable to look for good approximations of read
using discrete filters. For this purpose, let us introduce the subset

of L?(R?, d>%) spanned by the integer translates of the scaling Sjf(m,n) = Z @ i1
function defined in (16) P.gEZ
f(m—2"pn—2"1¢) (38)
Vo=l eL?|f= 3 condlo—my—n)cmn € L2 and
m,nez Wf’af(m’ n) = g;i’g Jl'l—l

and suppose that the famifyp(x — m,y — n),m,n € 7} pact

forms a Riesz basis of,. Finding a best approximant for, f(m =27, —2"q).
can be formulated as finding an elementgfwhose distance to
(1/4)¢(x/2,y/2) is minimal in L*(R2, d?Z). Similarly, finding
best approximants for the! is equivalent to finding those ele-
ments ofV, that minimize the distance td /4)V*(x/2,v/2). to the original coefficientss; f(m, n) andW* f(m, n).
Now sincel is a linear subspace of a Hilbert space, the projec--l-heorem 1 (Muschietti é{nd T&)rrésani): J ’

tion theorem appll_es and guarantees the_emstence gnd unlquei—) The filtersmg etm’f’“ solutions of (36) and (37) are given
ness of such solutions. Suppose that V), is the solution for by the equation shown at the bottom of the pade
1o. It can be expanded as y quati W page.

i) If we write3C; = 2 esssupgeg: m$ (), ¢ = 0,1 and
,7 = Z h’:ﬁ,nd)nl,n

(39)

The following theorem, which is a 2-D extension of the result
found in [2], gives us explicit formulas for the best approximants
m& andm’*, as well as an estimation of the error with respect

. 2 1/2
= sty = | [ [ @alme(@ - @) i@ |
where thehy, ., are the Fourier coefficients of the approximate R
filter then
1 ) ;
a _ a —i(mwe +nwy) a a 1—(C,
mg (We, wy) = In2 mzngz Mo n€ . ng f- ijHOO <L2v (mf, o) - 1—(—630)||f”2’

The projection theorem gives also the following characteriza- H k,a k H a a
. e W — Wi <2 +C
tion of these coefficients i i/ N (mf 1) 1 (5, o)

— 1—(Co)'
//cmw@@+mw+m x—T%%—)mu
R2 0
1 /2 . L .
% [ Z he B +p,y+q) — Z¢ (57 %)D For completeness, a proof of this result is given in the Appendix.
P9€L

3Since this quantity is orientation independent, we drop the corresponding
=0,Ym,n € Z. (36) superscript for ease of notation.

Y ¢ (2(ws +27p) , 2 (wy + 27q)) ¢ (wa + 27p, wy + 27Q)
P.9€Z

mg (W, wy) =

- 2
> ‘(7)(%C + 27p, wy + 27rq)‘
p,qCZ
> o (2 (ws +27p) , 2 (wy +27q)) (/A) (we + 27p, wy + 27q)
k,a _pg€eZ

my (we, wy) = ‘2

S |#(wn + 270w, + 27q)
P.qez
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B. Implementation Issues We may then get the details back in the real space with

When implementing (38) and (39), the first fact to considei i} = TFFIN({Djn}).
is that, generally, we possess only a finite numherx N of  For the second step, we have to compute

samplesf(m,n) with (m,n) € [0...M —1,0...N —1]. N-1
A decision has thus to be made about the nature of the signal Coop = Z C_1,k—2nhn
outside this range. n=0
Furthermore, the filters will practically be computed on a fi- N-1
nite grid. That is, we will only use a finite numbét x @ of d_gp = Z C—1,k—2n9n-
n=0

filter coefficientsh? . andgh:¢ (with (p,q) € [-P/2... P/2—
1,-Q/2...Q/2 = 1)).

In a first approach, the signal is considered to be zero outside

Given the periodicity of the signal, we may rewrite this as

. . .. . . N/2—-1
this range. Unfortunately, this decision leads to impractical and ¢ des _ /z: (R + )
inefficient algorithms, as one has to compué ¢ 27~!(P — €2,k T 6220 = —~ €=12(k—n) \"tn T MntN/2
1)) x (N +2771(Q — 1)) for each;j > 0 to avoid side-effects. 1\:;;_1
A second approach is to consider the signal as being periodic ;  def .
of period M x N. With this approach, fast circular convolution ~ “—2# = “-22k+1 = nz;o c-12=nt (o +Pnsnz2)
algorithms can be used and we are led to the following algorithm N/;_l
structure: o def
4 d o =d oo = C_1,2(k—n) (Gn + Gntny2
1) computerng andm®* using Theorem 1 and the associ- 2k nz::O e 72)
ated impulse responses; N/2—1
2) compute a first approximation of the analyzed sighal  ¢* kdéfd,Q kgl = Z 1 20—m)t1 (Gn + Gnansa)
using (31); this step is traditionally skipped and the signal ’ n—0 ’

is considered as its first approximation; for kb — 0
3) for eachj > 0, iteratively compute details and approxi—for - 0’
mations using (38) and (39). n==u4...

,N/2— 1. Letus now definé,, = h,, + A,y /2
,N/2 -1, we get

The cost of this algorithm is o N/2-1 . .
Clop = C 1 pnhn
C(M,N)=c¢-M-N o nz::o o
where the constant depends on the size of the impulse re- N2
_ . > ! op= 3 b (40)
sponses of the filters. This dependency strongly limits the power —2,k —Lk—n"'n
of this algorithm as experiments show that, even for small sizes, 1\?;31
this algorithm is always slower than the FFT based algorithm P / o 1
used to compute the CWT. As those sizes may not be arbitrarily -2,k = Z C-1,k—n9n
choosen, another algorithm should be used in order to get valu- 1\:;:31
able results with small computation times. 1 1 1
. : . dlyr= > cij,g (41)
The obvious way to handle this problem is to replace convo- 2k — —Lk-ndn

lutions in the real space by products of Fourier transforms in
the frequency space. The main advantage of this techniquaviserec’ | ; = c_1 ok, ¢t = c1 2841, d2 | 5, = d_y 2 and
that we no longer need to restrict ourselves to use small filted8,, , = d_1 2141. In the Fourier space, (40) and (41) may be

as we may now use impulse responses that are the same kivgitten as
/N /N
= —Cgl,nHr];, Ci?,n _Cil,n,Hr];,
2 2
rectional case being straightforward. Do

as the signal, thus giving much more precise results than with
the above algorithm. For the sake of simplicity, we will develop 0927,,,
/N /N
. . —2n = 50217716;&1 Dl—?,n 5C£17NG’}L

For the first step, we have to compute two periodic convolu-
tion products where {092,71} FFTN/2({CO—2,k})' {CiQ,n}

this new algorithm in the 1-D case, its extension to the 2-D di-

N-1 FFTN/Q({Cl—Q,k})! {Dg2,n} = FFTN/Q({d(iQ,k}) and
g = Z Cok_nhn {DL,,} = FFTy/p({d", }). A straightforward calculation
=0 gives
N—1

1
=0

forn =0,...,N/2— 1. Furthermore
FFTN({cjr}), {Djn}

By introducing {C; .}

FFTn({d;}), {Ha} = FFTn({hi}) and {G,} = 0 = (Clin 4 Cotinga)
FITn({gr}) where the notation FFTn means the V2 ’ ’

FFT algorithm applied to a sequence of lengih, we L eZimn/N

get C—l,n = \/NCO,an and D—l,n = \/NCO,nGn- C—l,n - \/i (C—l,n B O—l,n-l—N/Q)
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Probably the most successful design of orientation sensitive
decomposition is Freeman and Adelson’s constructicstesr-
able filters[19]. These filters implement a special type of ori-
ented wavelet-like decomposition that shares with our construc-
tion the idea of polar separability in the Fourier domain. While
the radial frequency part of the filters is simply constrained by
the usual subband splitting and reconstruction relations, the an-
gular part undergoes a more complicated design procedure. In
essence, the goal is to be able to synthesize any orientation of
a prototype waveform on basis of a few rotated versions of it-
2k 4 self. Thisis very useful in specific applications where one would

pyr (18) like to analyze images at all orientations without increasing the

//*/T total computational cost of the algorithms. Such examples can
! - be found in [19]-[21]. The main problems or difficulties that
arise with steerable filters are due to these angular constraints
. ' that make design much more tricky than in the present approach.
128 256 812 1024 Since the implementation itself is exactly the same as the one
Fig. 5. Computation time for different implementations of the 2-D pyramidaqiescribed here, we would say that steerable filters are the pre-

algorithm as a function of the image width (square images assumed@))dgr  ferred solution when one really makes use of the steerable prop-

the standard pyramidal algorithm with by » filters, pyr.F" is the modified erty that is. when analyzing atl orientations is needed
Fourier pyramidal algorithm explained in the text. The graph is normalized ' ! )

with respect to the standard algorithm with convolution in the Fourier domain An.o.ther technique that allows to easily design appl?cation
(Std.F). specific wavelets was introduced by Abry and Aldroubi [22].

The results obtained by this approach are very powerful, but
forn = 0,...,N/2 — 1. The last equation is particularly in- the authors have mainly focused on (bi)orthogonal wavelets and
teresting as it makes appear the same twiddle factors alreddye not considered 2-D nonseparable frames.
present in the traditional FFT implementations. Finally, several authors have advocated the use of splines

Extending the above results to the following steps, one conmtesapproximate wavelet frames decompositions [23]. This ap-
to the conclusion that the complexity of this new algorithmproach leads to low complexity algorithms and very efficient
is also of orderV log,(NV), but with a hidden constant that isresults when one is interested in analyzing singularities (e.g.,
exactly half the one encountered in the FFT based algorithedges) in images. Nevertheless, when dealing with the analysis
this constant being associated with the pyramidal structud.frequencies in images, the approximation may give bad re-
The same ideas apply to the 2-D case, thus giving an algoritlsuits due the poor frequency localization of splines.
whose complexity is

C(M,N)= M - N -log,(M.N) V. CONCLUSIONS

with a hidden constant also exactly half that of the FFT basedWe hf';\ve_ mtrqduced a methqd to_ design and |mplgment 2D
algorithm. As a matter of comparison, Fig. 5 shows timings &anslatlon invariant frames of directional wavelets. This scheme
this algorithm for different image sizes. Timings of the usuétfllcaracter;zed by Wea}}!_‘ des%n.(;onstéalnts _tha';] allow pr|1e tg
pyramidal algorithm and standard implementation in the Fouri or wavelets tq Specilic neeas. ast decay |n.t e spatia an
requency domains, prescribed frequency localization or orien-

domain are also displayed. ) - . .
Putting it all together, we have a new fast algorithm peP:;mon selectivity, etc. The interest of such decompositions re-

fectly suited to compute the 2-D CWT, faster than the traditionﬁilﬂ_eshin thiprocessi;_g _Of irlnages consid detrfd asl rzeaDI 2-D objec(;s
“pseudo-pyramidal” algorithm and sharper. Furthermore, it Y$nICh ¢an be more efiiciently represented by real 2-D atoms an

essential to note that the whole construction is equivalent to gt Just tensor products of 1-D basis. With this in mind itis rea-

leading to the FFT algorithm in the Fourier transform theor _onable to argue that translations, scalings and rotations are pre-

It should be noted that a Fourier implementation of the pyr grred geometric operations that apply to images, hence the use-

midal algorithm is quite natural when one adresses the probl ITIII{wess of efficient atomic representations involving these simil-
tudes ofR?. This technique has already found successful appli-

of designing maximally regular wavelets. That is why the algd- ¢ . Vs q hesi King 2
rithm described above shares common features with the Fouﬁ@Pons in texture analysis and synthesis, watermarking [24] or

implementation of the Meyer wavelet decomposition [17]. winage quality assessment [25] for example.
refer the interested reader to the work of Rioul and Duhamel

[18] for more general considerations on implementating pyra- APPENDIX A

midal algorithms in the frequency domain. EXAMPLE OF ANGULAR DECOMPOSITION

pyr (8)

;:ﬁi ove F

Let us consider the following>°, compactly supported, func-

tion of one real variable (Schwartz’s function)
In this section, we will briefly review other techniques that

would allow one to achieve directional sensitivity within a DWT oulz) = e /@ =) if _q<z<a
framework. ¢ 0, otherwise.

C. Alternative Implementations

(42)
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For a givenr € R}, letd, (z) stand for the periodization of

d-(z) = Z Jo(z — n7).

nCZ

is strictly positive definite. Introducing o |

| |

By carefully choosing: ands in (42), we can guarantee that - } o ‘ ‘
|

|

/ |
wr(r) = - Ew; (43) @ (b)
itis easy to check that it is@™, compactly supported, function.
Furthermore, it satisfies
Z w-(r—nr)=1, VzeR. (44) ’
nCZ
Now takinge < 7 /2, 7 = /K and periodizingu,, we end up
with aC=* partition of the unit circle (“C) ‘
n(z) = Z We i (@ — 2mr) (45) Fig. 6. Schwartz’s function (a).s and (b) the corresponding angular
oy /K window ;. (c) Three such translated windows and their sum (thick line).
and e o
K1 - and similarly for||W]’?’“ - W}‘Hl. Let us now compute the
Z n <$ - f) =1 (46) second term in the r.h.s of (48)
k=0
S._ S|l = J
This is illustrated on Fig. 6 where we have plotted these fur“:‘gf Sill, _/1 | Gwdwy2
X StxS
tions. . .
‘ Z f (we + 27k, wy 4 27l) ¢
APPENDIX B mlez .
PROOF OF THEOREM 1 X (27 (we + 27k) , 27 (wy + 270))
We will essentially follow the proof given in [2]. The first part - Z Jws + 21k, wy + 271)
is obtained by taking the Fourier transform of (36) and (37) and klez ,
using the periodicity ofn2 andm!**. We then have x mg (2 we, 2 wy)

X dA) (2j_1 (we + 21k), 2971 (wy + 27rl))‘.

27 27
/ dwm dwyeiwI m4iwy,n - - - - N
0 0 Using the Cauchy-Schwarz inequality and by periodicityrf

~ 2 ;
Q{mg’(wx,wy) Z ‘(/)(u)gC + 27k, wy + 27rl)‘ we find
kjicz —_ - - 2
— 3 b (wn + 27k 0, + 281)9 |3 -5 X 587r2||f||2\//Rz 3 i @)H() - $(23)|

k,lcZ

<8 fll2v (mg, o) -
(2 (wo + 27k) 2 (wy + 27rl))} =0  (47)

For the first term at the r.h.s of (48), we find

which gives the result fom§ and simiIarnyormf’”’.As forthe 1o = 21 a(oi—1-\||&a" (= T
second part of the theorem, the inequalji§f|o. < ||f]|1 /47> ”SJ =i, 52/H2 3 |mi (276) | ST (@) — Sffl(w)‘
allows us to work directly in the Fourier domain. Let us intro- <9 alllge _ 5
duce the following quantities: = ;;gz essmg| j—1 7 J*1H1 ;
Sj(m,n) = Z @S]’_l (m—2"Yk,n — 29710 Combining these estimations, we have
87 3], < el lov (m o) + o | S, — 857
~ L W i1 i1 Ja — Oy S o 2l md,uo —+ Cp H ;’_1 — j_lH .
Wim,n) =3 giSia (m =2 7"p,n —217q). ' (49)
pace By iteratively bounding the last term of (49), in the same way,
We have the inequality we finally obtain
N — = =~ o & " 1—(Co)
‘S]‘?—Sj S HS]‘?—Sj 1+‘S]’—S]’ ) (48) ‘Sj -5 . S87T2||f||21/(m07uo)1_700~ (50)
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