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Directional Dyadic Wavelet Transforms:
Design and Algorithms

Pierre Vandergheynst, Member, IEEE,and Jean-François Gobbers

Abstract—We propose a simple and efficient technique for de-
signing translation invariant dyadic wavelet transforms (DWTs) in
two dimensions. Our technique relies on an extension of the work
of Duval-Destinet al.[1], [2] where dyadic decompositions are con-
structed starting from the continuous wavelet transfrom. The main
advantage of this framework is that it allows for a lot of freedom
in designing two-dimensional (2-D) dyadic wavelets. We use this
property to construct directional wavelets, whose orientation fil-
tering capabilities are very important in image processing. We ad-
dress the efficient implementation of these decompositions by con-
structing approximate QMFs through an 2 optimization. We also
propose and study an efficient implementation in the Fourier do-
main for dealing with large filters.

Index Terms—Dyadic wavelet transform (DWT), QMF filters.

I. INTRODUCTION

WAVELETS are a well-established tool in the field of
image analysis. In particular wavelet orthogonal and

biorthogonal bases have been succesfully used in many appli-
cations. It has already been stressed that the lack of translation
invariance of these representations can be a severe drawback
for tasks like pattern recognition or texture analysis. The dyadic
wavelet transform (DWT) pioneered by Mallat and Zhong [3]
was precisely introduced to cope with this and has proved very
useful whenanalysisof multiscale features is important [4],
[5]. On the other hand, it has also been shown that the use of
specific orientation sensitive filters like Gabor filters or direc-
tional wavelets is highly suitable when one faces multiscale
oriented tokens in images [6], [7]. The main goal of this paper
is the wedding of the powerful and simple algorithmic structure
of dyadic wavelet frames together with rather mild design
constraints. This will allow us to tailor two-dimensional (2-D)
wavelets to obtain directional selectivity or suitable frequency
localization properties without much effort.

Let be a square integrable 2-D signal, and
be its 2-D Fourier transform defined by
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Throughout this paper, the will denote the 2-D convolution
product

this operation being well-defined for and by
virtue of Young’s convolution inequality [8]

(1)

where stands for the norm in . In this paper,
we mean by 2-D wavelet an integrable or square integrable com-
plex-valued function of the 2-D real variablethat has van-
ishing moments

(2)

Wavelets are thus orthogonal to functions of the form

which means that they are blind to polynomials of order up to
in the and variables.

Let us now recall the definition ofdirectional waveletsgiven
in [9].

Definition 1: A wavelet is said to be directional if and only
if its Fourier transform is strictly supported in a convex cone
with apex at the origin.

Example 1 (Cauchy Wavelets):Let be the cone defined by
the angles and and let , . The
Cauchy wavelet is defined by

if

otherwise
(3)

where , , stands for the unit vector in the direction
and is a vector in the cone defined by the angles, . These
wavelets, introduced in [9], have fast decay in the Fourier do-
main and are strictly supported inas can be seen in Fig. 1(a).

Example 2 (Gabor or Morlet Wavelets):Let be a fixed
frequency vector. The 2-D Morlet wavelet is defined by

(4)
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(a) (b)

Fig. 1. Fourier transform of the (a) Cauchy and (b) Morlet wavelets.

Strictly speaking it is not a directional wavelet1 (it does not
satisfy Def. 1 ), but it is numerically very close to it. This can
also be verified on Fig. 1(b) where we have drawn the cone in
which this wavelet is mostly concentrated.

II. TWO-DIMENSIONAL WAVELET FRAMES

In this section, we briefly review the definition and proper-
ties of translation invariant frames of wavelets also frequently
called DWTs in the literature. The interested reader should refer
to [3] for more details on this specific case and to [10], [11]
for a deep introduction to general frame theory. We will make
use of the so-called DWT and, in order to bring orientation
sensitivity into this scheme, we will use oriented wavelets

. By this we mean that the support of each
is essentially included in a ball around reference wave vector
and that the sum of these supports approximately covers an

annulus in frequency space (see Fig. 2).
Denoting the scaled and translated wavelets

the DWT of with respect to is given by

(5)

with . The DWT is a complete and stable repre-
sentation of the signal provided there exist and finite
such that

(6)

In this case dual or reconstruction wavelets are defined by

(7)

for which we have

(8)

1Actually it is not even a wavelet according to (2), but the error is very small
for largek ~! k. It can be turned into a genuine wavelet by adding a suitable
correcting term [6].

Fig. 2. Frequency localization of the oriented wavelets^ .

Finally the reconstruction formula reads

(9)

where the convergence of this last expression is intended in
norm.

A much simpler formula can be used when condition (6) can
be changed into

(10)

In this case, the dual wavelets are formally Dirac distributions
and the reconstruction formula then reads

(11)

that is, a simple sum of DWT coefficients with convergence in
norm.

In the following, we will be a little bit more restrictive by
imposing that the wavelets are rotated versions of a prototype
directional wavelet , that is

where is a rotation matrix and . The next
section gives a very simple and straightforward technique for
designing such frames.

III. CUSTOM DESIGN OFDYADIC FRAMES

In this section we will briefly review the extension to 2-D of
a technique introduced by Duval-Destinet al. [1] that explic-
itly builds dyadic wavelet frames starting from a Continuous
Wavelet Transform (CWT). We proceed by first constructing
frames of isotropic wavelets and we then bring angular selec-
tivity by partitioning the mother wavelet into several directional
wavelets. The main advantage of this construction is the total
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freedom obtained on the wavelet used and this allows us to re-
ally tailor the frame to our needs. We focus on the main princi-
ples and let the interested reader consult the references for clean
mathematical proofs.

A. Scale Discretization

We will start from the reconstruction formula associated to
the CWT in two dimensions [6]

(12)

where is the wavelet transform of the signal

(13)

and is a constant

(14)

that we will normalize to one in the following. Convergence
of (12) holds in norm when the wavelet and

. Note also that these equations are valid only when
the wavelet is isotropic.2

The basic idea behind the proposed construction is now to
segment the integral over scales in (12) and replace it by a sum
over dyadic intervals. This is done first by rewriting the recon-
struction formula

where we have defined theinfinitesimal detail

By virtue of Young’s convolution inequality
and, taking its Fourier transform, we obtain

(15)

These equations show that represents the amount of informa-
tion captured by the wavelet between scalesand , hence
the name “infinitesimal details.” Summing all these details, that
is, integrating over the scale variable, reproduces the original
signal. In the same vein, we can synthesize a low resolution ap-
proximation of by integrating up to a given resolution, say

Taking the Fourier transform on both sides suggests to introduce
the following Fourier multiplier:

(16)

2In the general case of anisotropic wavelets, one has to consider the action of
rotations in formulas (12) and (13).

It is then shown in [1] that the approximation can be written

(17)

and that the following limit holds in the strong sense in
:

(18)

Remark also that (16) implies

and thus defines a smoothing function. Now, starting from an
approximation of at scale , we can refine up to an
arbitrary resolution by adding up details. For this purpose, we
introduce slices of details

Taking the Fourier transform on both sides, we have

and this leads us to define theintegrated wavelet packets

(19)

The name comes from the idea ofgluingtogether wavelets but it
should be stressed that it is in no way connected to the adaptive
decompositions introduced by Meyer and Wickerhauser [12].
Finally, putting (17) and (19) together, we obtain the following
dyadic decomposition:

(20)

that holds in norm. In order to simplify our notations, we will
write the wavelet coefficients and in-

troduce the approximation coefficients .
Equation (20) now reads

(21)
We have thus built a DWT starting from the CWT. It is important
to realize that the scaling functionand the wavelet inherit the
localization and smoothness properties of. In view of the con-
siderable freedom we have in the choice of, we are now able
to easily design custom, translation invariant dyadic frames. A
simpler decomposition formula arises when one starts from the
so called Morlet reconstruction formula instead of (12):

(22)
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that holds in norm for and when is a
finite constant defined by

(23)

The same reasoning as before leads us to introduce a scaling
function

(24)

and integrated wavelet packets

(25)

(26)

that is, these wavelets are expressed as difference of smoothing
functions. In this case, the reconstruction formula is much
simpler, since it involves a straight sum of approximation and
wavelet coefficients

(27)

One of the main advantages of this construction is that it al-
lows to build wavelets and scaling functions that have fast decay
both in the spatial and frequency domains. This is very useful
in applications where one wants to use wavelets that have sharp
prescribed localization properties in the Fourier domain and are
also of fast decay in the spatial domain, as it is the case with
Gabor functions. This is very difficult to achieve in practice. For
example, if one wants to use spline-based wavelet frames, it ap-
pears that, although the spatial localization is very good, splines
are not sharply localized in Fourier variables (algebraic decay)
and can even show disturbing sidelobes. A concrete example is
given by texture analysis where the latter are distinguished on
the basis of the statistics of frequency subbands as measured
using Gabor wavelets [13]. If one wants to use a dyadic frame,
special care has to be given to the frequency localization of the
wavelets and this can be easily done using the technique de-
scribed above.

B. Example

Let us now apply the previous formalism to a concrete case.
We will construct isotropic dyadic wavelets and scaling func-
tions belonging to the class of functions with fast decay and
associated to the family of pseudo-differential operators defined
by multiplication by in the Fourier do-
main. For this purpose, we start with the family of 2-D isotropic
wavelets

(28)

and we compute the associated scaling function using (16). We
thus consider the family

TABLE I
SCALING FUNCTIONS OFLOWESTORDERS

that satisfies the following recurrence relation:

with

erfc

and the error function is defined by

erfc

We would like to normalize this family in such a way that
and this leads us to define

where the constant is defined by

even

odd

The recursion is started with and .
Scaling functions of the lowest orders are listed in Table I. Using
(19) or (26), we obtain the desired family of isotropic wavelets.
Note that the parameter also controls the number of van-
ishing moments of the associated wavelet. An example of such
a scaling function of order 4 is given on Fig. 4.

C. Directional Wavelet Frames

The next step in our construction is to build directional
wavelet frames. A simple and straightforward way to achieve
this is to start from an isotropic integrated waveletand seg-
ment it into directional ones. This can be done by introducing
an angular window , in the Fourier domain
and then defining a new wavelet

Note that this construction amounts to work with wavelets that
are separable inpolar coordinates. The choice of the angular
window is restricted by the reconstruction formula (9). More
precisely if one makes use of (21),has to satisfy

(29)
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(a) (b)

Fig. 3. Fourier transform of a directional dyadic wavelet of order 4 and angular
resolution of�=5 for the value (a)k = 0 and (b)k = 1 of the rotation
parameter.

while the simpler formula (27) requires

(30)

where we have assumed orientations. An additional re-
quirement, when working with directional wavelets, is that the
support of be strictly less than . In order to preserve the
frequency localization of , it is important that be regular
enough. The optimal choice is thus to build a partition of the
circle using a suitable compactly supported function. In
Appendix A we propose a very simple construction that uses
Schwartz’s function. An example of dyadic directional wavelet
built using this technique is depicted on Figs. 3 and 4.

IV. I MPLEMENTATION USING APPROXIMATE QMFS

One of the main drawbacks of these oriented frames is that
they are not designed to be implemented using a pyramidal al-
gorithm. Nevertheless we will now show that one can design
special QMF pairs that allow for a very good approximation of
the DWT and provide a substantial gain in computation speed.
Most of the material in this section is an extension to the 2-D
case of the work of Muschietti and Torrésani [2], [14].

A. Filter Design

As we work with translation invariant frames, we will now
sample the position parameter of the DWT over a regular grid,
that is, we will consider wavelets and scaling functions indexed
by the integer grid

We then obtain adiscreteDWT by just restricting the DWT to
this particular grid

(31)
Computing a regularly sampled continuous wavelet transform
is a problem that has been studied first by Holschneideret al.
[15]. Let us assume there exists 2-D discrete filtersand ,

(a) (b)

(c) (d)

Fig. 4. Scaling function of (a) order 4, (b) real part, (c) imaginary part, and (d)
modulus of the associated wavelet with angular resolution of�=5.

, such that one can compute these quantities
using a pyramidal algorithm [16], that is

(32)

(33)

This is equivalent to asking that the related wavelets and scaling
function satisfy a two-scale equation of the form

(34)

(35)

where and the , , are the Fourier series
of the filters and respectively. Relying on usual filter bank
theory, we know that the same filters can be used to reconstruct
the signal provided they satisfy a QMF relation

This is the exact discrete equivalent of (21). Similarly, one can
design filters that implement the weaker formula (27) provided
they satisfy a simpler constraint

The main problem at this point is that the integrated direc-
tional wavelets we have designed in Section III do not generally
satisfy any two-scale equation. Another way to coin the problem
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is to remark that, although there usually exists regular multi-
pliers and satisfying

these are not periodic and cannot be used to compute
successive approximations and details as in (32) and (33). Nev-
ertheless it is crucial to notice that these multipliers, as well as
filters and , are always multiplied by . Now, if the latter
is very well localized in and this is exactly
the case we are considering in this paper, the lack of period-
icity of and is compensated by the localization ofand
it seems then reasonable to look for good approximations of
using discrete filters. For this purpose, let us introduce the subset
of spanned by the integer translates of the scaling
function defined in (16)

and suppose that the family
forms a Riesz basis of . Finding a best approximant for
can be formulated as finding an element ofwhose distance to

is minimal in . Similarly, finding
best approximants for the is equivalent to finding those ele-
ments of that minimize the distance to .
Now since is a linear subspace of a Hilbert space, the projec-
tion theorem applies and guarantees the existence and unique-
ness of such solutions. Suppose that is the solution for

. It can be expanded as

where the are the Fourier coefficients of the approximate
filter

The projection theorem gives also the following characteriza-
tion of these coefficients

(36)

Similarly, for the directional wavelets, one obtainsapproxi-
mate filters characterized by

(37)

Finally, the approximate low resolution and detail coefficients
read

(38)

and

(39)

The following theorem, which is a 2-D extension of the result
found in [2], gives us explicit formulas for the best approximants

and , as well as an estimation of the error with respect
to the original coefficients and .

Theorem 1 (Muschietti and Torrésani):

i) The filters et solutions of (36) and (37) are given
by the equation shown at the bottom of the page.

ii) If we write3 ess , and

then

For completeness, a proof of this result is given in the Appendix.

3Since this quantity is orientation independent, we drop the corresponding
superscript for ease of notation.
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B. Implementation Issues

When implementing (38) and (39), the first fact to consider
is that, generally, we possess only a finite number of
samples with .
A decision has thus to be made about the nature of the signal
outside this range.

Furthermore, the filters will practically be computed on a fi-
nite grid. That is, we will only use a finite number of
filter coefficients and (with

).
In a first approach, the signal is considered to be zero outside

this range. Unfortunately, this decision leads to impractical and
inefficient algorithms, as one has to compute (

) for each to avoid side-effects.
A second approach is to consider the signal as being periodic

of period . With this approach, fast circular convolution
algorithms can be used and we are led to the following algorithm
structure:

1) compute and using Theorem 1 and the associ-
ated impulse responses;

2) compute a first approximation of the analyzed signal
using (31); this step is traditionally skipped and the signal
is considered as its first approximation;

3) for each , iteratively compute details and approxi-
mations using (38) and (39).

The cost of this algorithm is

where the constant depends on the size of the impulse re-
sponses of the filters. This dependency strongly limits the power
of this algorithm as experiments show that, even for small sizes,
this algorithm is always slower than the FFT based algorithm
used to compute the CWT. As those sizes may not be arbitrarily
choosen, another algorithm should be used in order to get valu-
able results with small computation times.

The obvious way to handle this problem is to replace convo-
lutions in the real space by products of Fourier transforms in
the frequency space. The main advantage of this technique is
that we no longer need to restrict ourselves to use small filters,
as we may now use impulse responses that are the same size
as the signal, thus giving much more precise results than with
the above algorithm. For the sake of simplicity, we will develop
this new algorithm in the 1-D case, its extension to the 2-D di-
rectional case being straightforward.

For the first step, we have to compute two periodic convolu-
tion products

By introducing ,
, and
where the notation means the

FFT algorithm applied to a sequence of length, we
get and .

We may then get the details back in the real space with
.

For the second step, we have to compute

Given the periodicity of the signal, we may rewrite this as

for . Let us now define
for , we get

(40)

(41)

where , , and
. In the Fourier space, (40) and (41) may be

rewritten as

where ,
, and

. A straightforward calculation
gives

for . Furthermore
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Fig. 5. Computation time for different implementations of the 2-D pyramidal
algorithm as a function of the image width (square images assumed): pyr(n) is
the standard pyramidal algorithm withn by n filters, pyr F is the modified
Fourier pyramidal algorithm explained in the text. The graph is normalized
with respect to the standard algorithm with convolution in the Fourier domain
(stdF ).

for . The last equation is particularly in-
teresting as it makes appear the same twiddle factors already
present in the traditional FFT implementations.

Extending the above results to the following steps, one comes
to the conclusion that the complexity of this new algorithm
is also of order , but with a hidden constant that is
exactly half the one encountered in the FFT based algorithm,
this constant being associated with the pyramidal structure.
The same ideas apply to the 2-D case, thus giving an algorithm
whose complexity is

with a hidden constant also exactly half that of the FFT based
algorithm. As a matter of comparison, Fig. 5 shows timings of
this algorithm for different image sizes. Timings of the usual
pyramidal algorithm and standard implementation in the Fourier
domain are also displayed.

Putting it all together, we have a new fast algorithm, per-
fectly suited to compute the 2-D CWT, faster than the traditional
“pseudo-pyramidal” algorithm and sharper. Furthermore, it is
essential to note that the whole construction is equivalent to that
leading to the FFT algorithm in the Fourier transform theory.
It should be noted that a Fourier implementation of the pyra-
midal algorithm is quite natural when one adresses the problem
of designing maximally regular wavelets. That is why the algo-
rithm described above shares common features with the Fourier
implementation of the Meyer wavelet decomposition [17]. We
refer the interested reader to the work of Rioul and Duhamel
[18] for more general considerations on implementating pyra-
midal algorithms in the frequency domain.

C. Alternative Implementations

In this section, we will briefly review other techniques that
would allow one to achieve directional sensitivity within a DWT
framework.

Probably the most successful design of orientation sensitive
decomposition is Freeman and Adelson’s construction ofsteer-
able filters [19]. These filters implement a special type of ori-
ented wavelet-like decomposition that shares with our construc-
tion the idea of polar separability in the Fourier domain. While
the radial frequency part of the filters is simply constrained by
the usual subband splitting and reconstruction relations, the an-
gular part undergoes a more complicated design procedure. In
essence, the goal is to be able to synthesize any orientation of
a prototype waveform on basis of a few rotated versions of it-
self. This is very useful in specific applications where one would
like to analyze images at all orientations without increasing the
total computational cost of the algorithms. Such examples can
be found in [19]–[21]. The main problems or difficulties that
arise with steerable filters are due to these angular constraints
that make design much more tricky than in the present approach.
Since the implementation itself is exactly the same as the one
described here, we would say that steerable filters are the pre-
ferred solution when one really makes use of the steerable prop-
erty, that is, when analyzing atall orientations is needed.

Another technique that allows to easily design application
specific wavelets was introduced by Abry and Aldroubi [22].
The results obtained by this approach are very powerful, but
the authors have mainly focused on (bi)orthogonal wavelets and
have not considered 2-D nonseparable frames.

Finally, several authors have advocated the use of splines
to approximate wavelet frames decompositions [23]. This ap-
proach leads to low complexity algorithms and very efficient
results when one is interested in analyzing singularities (e.g.,
edges) in images. Nevertheless, when dealing with the analysis
of frequencies in images, the approximation may give bad re-
sults due the poor frequency localization of splines.

V. CONCLUSIONS

We have introduced a method to design and implement 2-D
translation invariant frames of directional wavelets. This scheme
is caracterized by weak design constraints that allow one to
tailor wavelets to specific needs: fast decay in the spatial and
frequency domains, prescribed frequency localization or orien-
tation selectivity, etc. The interest of such decompositions re-
sides in the processing of images considered as real 2-D objects
which can be more efficiently represented by real 2-D atoms and
not just tensor products of 1-D basis. With this in mind it is rea-
sonable to argue that translations, scalings and rotations are pre-
ferred geometric operations that apply to images, hence the use-
fulness of efficient atomic representations involving these simil-
itudes of . This technique has already found successful appli-
cations in texture analysis and synthesis, watermarking [24] or
image quality assessment [25] for example.

APPENDIX A
EXAMPLE OF ANGULAR DECOMPOSITION

Let us consider the following , compactly supported, func-
tion of one real variable (Schwartz’s function)

if
otherwise.

(42)
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For a given , let stand for the periodization of

By carefully choosing and in (42), we can guarantee that
is strictly positive definite. Introducing

(43)

it is easy to check that it is a , compactly supported, function.
Furthermore, it satisfies

(44)

Now taking , and periodizing , we end up
with a partition of the unit circle

(45)

and

(46)

This is illustrated on Fig. 6 where we have plotted these func-
tions.

APPENDIX B
PROOF OFTHEOREM 1

We will essentially follow the proof given in [2]. The first part
is obtained by taking the Fourier transform of (36) and (37) and
using the periodicity of and . We then have

(47)

which gives the result for and similarly for . As for the
second part of the theorem, the inequality
allows us to work directly in the Fourier domain. Let us intro-
duce the following quantities:

We have the inequality

(48)

(a) (b)

(c)

Fig. 6. Schwartz’s function (a)g and (b) the corresponding angular
window�. (c) Three such translated windows and their sum (thick line).

and similarly for . Let us now compute the
second term in the r.h.s of (48)

Using the Cauchy-Schwarz inequality and by periodicity of,
we find

For the first term at the r.h.s of (48), we find

ess

Combining these estimations, we have

(49)
By iteratively bounding the last term of (49), in the same way,
we finally obtain

(50)
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An equivalent processing of the wavelet coefficients achieves
the proof.
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