Wavelets and multiresolution representations

Time meets frequency




Time-Frequency resolution

Depends on the time-frequency spread of the wavelet atoms

Assuming that v is centred in t=0
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The energy spread of a wavelet time-frequency atom corresponds to an Heisemberg box centred
at (u,n/s) of size so, along the time and 0 /s along the frequency.

The area of the rectangle remains equal to o, o, at all scales, while the resolution in time and
frequency depends on s.

A wavelet defines a local time-frequency energy density Py, which measures the energy in the
Heisemberg box of each wavelet centred at (u, n /s). This energy density is called scalogram
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Increasing the scale (s gets larger) pushes the box towards low frequencies —
frequency resolution increases, spatial resolution decreases

Time spread is proportional to scale
Frequency spread is proportional to 1/scale

increasing the scale
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Dyadic Wavelets
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Scalogram

* The scalogram represents the local time/frequency energy density

— Energy density in the Heisenberg box of each wavelet @,

P, f(u,&) = |Wf ug
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3D representation

DU 41




50

40

301

20+

10}

-10

[Local discontinuities

05 / !
o1 Sinusoid with a small discontinuity
05| -

Values ot Ua,b Creetfizients for a = [1:1:32)

=
17
1o
|'.
i

0 20 40 50 B8O 100

Fourier Coefficients Wavelet Coefficients




Real Wavelets

Detect sharp signal transitions

Wy u5) = | f(t)\%w(t;ujdt

Measures the variations of f'in the neighborhood of u whose size 1s proportional to s

A real WT is complete and maintains energy conservation as long as it satisfies a weak
admissibility condition (Theorem 4.3, next slide)

The decay of the coefficients as s goes to zero characterizes the regularity of f in the
neighborhood of u




Real wavelets: Admissibility condition

 Theorem 4.3 (Calderon, Grossman, Morlet)
Let y in L*(R) be a real function such that

j VO 4 < oo Admissibility condition
0

Any fin L*(R) satisfies
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Admissibility condition

Consequences

— The integral is finite if the wavelet has zero average w(0)=0
* This condition is nearly sufficient —
— If y(0)=0 andy(®) is continuously differentiable, than the admissibility condition is satisfied

= This happens if it has a sufficient time decay

J 12D ()] de <+
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t
— The wavelet function must decay sufficiently fast in both time and frequency




Wavelet families

f(xX) oW (u,s;x)=c, ;(X)

In general, there 1s a redundancy in the representation

The amount of redundancy depends on the grids over which the u and s parameters are
sampled

u,s are real : Continuous WT (CWT, overcomplete representation)

uin Z, s=a/, j in Z : Wavelet Frames (DWF, DDWF, overcomplete)

— a=2 Dyadic wavelet frames

u=k2, s=2, k in I : Discrete Wavelet Transform (DWT) (critically sampled)

Note: removing completely the redundancy leads to complete basis (critically sampled)




Wavelet bases

Mallat - Chapter VII




Wavelet bases

One can construct wavelets such that

(1) = 1 t—2'n
Wj,n T 2] W 2]

J neZ?
is an orthonormal basis for L2(R).

f
/T PWJf=f- ijf

P,f ’

e  Multiresolution approximations

— The partial sum of wavelet coefficients giving d(?) can be interpreted as the difference between
two approximations of fat the scales 2 and 20-7

— Multiresolution approximations compute the approximations of signals at various resolutions
with orthogonal projections to different spaces {V}}; ;,

— The approximation of fat scale 2 is specified by a discrete grid of samples that provides local
averages of f on neighborhoods of size proportional to 2.

— A multiresolution consists of embedded grids of approximations




Orthogonal wavelet bases

The search for orthogonal wavelets begins with multiresolution approximations

fel’(R)—> > < v, >l// ;. difference bewteen two approximations

n=—x

at resolutions 2/ and 27/

Resolution = 1/scale
— The larger the scale, the smaller the resolution

Multiresolution approximations compute the approximation of signals at various

resolutions with orthogonal projections on different spaces {V] ez

— These are characterized by a one particular discrete filter that governs the loss of information
across resolutions




Multiresolution approximations

The approximation of a function f'at a resolution 2/ is specified by a discrete grid of
samples that provides local averages of f over neighborhoods of size proportional to 2.

Thus, a multiresolution approximation is composed of embedded grids of approximation.

More formally:

— the approximation of a function at a resolution 2 is defined as an orthogonal projection on a
space V; CLA(R).

— The space V; regroups all possible approximations at the resolution 2 .
— The orthogonal projection of fis the function f; €V, that minimizes ||f—f||.




Multiresolution approximations

Definition 7.1 A sequence {V };, , of closed subspaces of L*(R) is a multiresolution
approximation if the following six conditions are satisfied

) 5 ; V, is invariant for translations proportional to the scale
V(R eZ f() eV, o f1-2k)eV,

The finer approximation subspace encloses all the

ViezZ, V.,cV, information concerning the coarser one
t : :

VieZ Nel. & “leV. Stratching the function by a factor 2 spans a coarser

.] ’f( ) j f 2 j+l Subspace

+00

lim V. = ﬂ Vo= {O} When the resolution goes to zero all the details are lost

joreo S L lim ||Pyv,f]||=0.
J=m° j=He

) +0 5 When the resolution goes to infinity the approximation
lim Vj = Closure U VJ =L (R) converges to the signal
J—>—o

= lim ||l f =Py, [ =0.
j—=—

There exists ¢ such that {$(t-n)} _ isa Riesz basis of V,




Banach and Hilbert spaces

A Hilbert space is an abstract possessing the structure of an that
allows length and angle to be measured. Hilbert spaces are in addition required to be

, a property that stipulates the existence of enough
techniques of calculus to be used.

in the space to allow the




Banach and Hilbert spaces

Banach space

Signals are often considered as vectors. To define a distance, we work within a vector
space H that admits a norm. A norm satisfies the following properties:

VieH, |f=0 and |f|=0 <& f=0, (A.3)
VAeCT Af] = AL/ (A.4)
Vi.geH, | f+gllh=IsI+lgl. (A.5)

With such a norm, the convergence of { f;;},,en to f in H means that

lim f,=f ¢ lim | f,—f]=0.
n— too n—+ow

To guarantee that we remain in H when taking such limits, we impose a completeness
property, using the notion of Carichy sequences. A sequence {fj;},cn is a Cauchy
sequence if for any £ > 0,if 2 and p are large enough,then || /), — /|| <&£.The space H
is said to be complete if every Cauchy sequence in H converges to an element of H.




Banach and Hilbert spaces

Hilbert space

Whenever possible, we work in a space that has an inner product to define angles
and orthogonality. A Hilbert space H is a Banach space with an inner product. The
inner product of two vectors (f, g) is linear with respect to its first argument:

VA1, 22€C, (MfitA2/2,8) =M1 (1,8) H A2 (/2. 8)- (A.6)
It has an Hermitian symmetry:
(f.8)=(g/)"

Moreover,

(f,/)=0 and (f.f)=0 & f=0.

One can verify that || f|| = (f.f)"/? is anorm. The positivity (A.3) implies the Cauchy-
Schwarz inequality:

[ @l=I71Hgll (A7)

which is an equality if and only if f and g are linearly dependent.
We write V1 the orthogonal complement of a subspace V of H. All vectors of V
are orthogonal to all vectors of Viand Vevei=H.




Bases of Hilbert spaces

Orthonormal Basis
A family {e;}, <y Of a Hilbert space H is orthogonal if for n # p,

(en, (—’p) =0.

If for f €eH there exists a sequence a[n] such that

ii\"
lim —Zu nle,||=0
Jim 1 = 3 el el
n=

then {e, },,cp 18 said to be an orthogonal basis of H. The orthogonality implies that
necessarily a[n] = (f.e,)/|lex]|*, and we write

S= Z \S, en) €n. (A.8)

2 ey

A Hilbert space that admits an orthogonal basis is said to be separable.
The basis is orthonormal if ||e,|| = 1 for all 7 € N. Computing the inner product
of g e H with each side of (A.8) yields a Parseval equation for orthonormal bases:

+ oo

(f, 8= Z (fsen) (g, ‘»‘*n)ﬂc- (A.9)

n=0




Bases of Hilbert space

When g =f, we get an energy conservation called the Plancherel formula:
+ oo
2 _ 2 :
117 =) 1 en)l?. (A.10)
n=0
The Hilbert spaces ¥ 2 (Z) and L2(R) are separable. For example,the family of trans-
lated Diracs {e,,[R] = 6[R — n]},,c7 is an orthonormal basis of (7). Chapters 7 and 8
construct orthonormal bases of L*(R) with wavelets, wavelet packets, and local
cosine functions.




Riesz basis

Link to the discrete domain: the existance of a Riesz bases provides a discretization theorem

Definition: A family of vectors is a Riesz basis of a space H if
1. it is linearly independent

2. there exist A,B>0 such that

VyeH 3dA[n]: y= Zﬂ[n]en
n=0

1) 2 <« 1y
Lf < S <L

The existance of a Riesz basis for V, provides a discretization theorem

YD)V, > f(0)= Y alnlda—n)
Al < X Jatnll” < B 1Y

1 t—2'n o _
\/; 9 2j 1s a Riesz basis for Vj
neZ




Scaling function

* The scaling function 1s obtained by the orthogonalization of the Riesz basis

Theorem 7.1

Let V; be a multiresolution approximation and ¢ be the scaling function whose FT is

] Hew
p)y=—y— 2
(Y [d(@+2km) )"
k=—00
Let us denote (6)= 1 t—2'n

The family {@, .}, ;, 7 1s an orthonormal basis of V; forall j in Z




Approximation

* The orthogonal projection of f onto V; is obtained as an expansion in the scaling orthogonal
basis

]%}fﬂz §§<f;¢vm>¢vm

n=—00

* The inner products a;[n] are the projection coefficients at scale 2!

t—2'n

aj[n]=<f,¢j,n>=Tf(r>le7w[ 5 )=f*aj(2fn)

— The normalization factor at the denominator ensures that

2

o(w+2krn) =1

o0

2

k=—0




a,[n]=f*@,2'n)

Approximation

A _ a[nf only one sample out
— ?; — out of 2j is retained —
downsampling

— The energy of @; is mostly concentrated in [-T7/2),71/21] which corresponds to low pass filtering

The signal approximation is obtained by convolving f with a low-pass filter and
downsampling by 2 -> any scaling function corresponds to a conjugate mirror filter

A multiresolution is completely characterized by the scaling function




Wavelet representation

Summarizing

AL =PV =Y (0,00
alnl=(f.0,)
d,f=PW =3 (fw, W,
di=(fw,)

{A@ fAdf} }

discrete approximation at resolution |

discrete approximation coefficients at resolution j

details at resolution j

wavelet coefficients at resolution j

wavelet representation




Wavelets and multiresolution representations




Scaling equation

* A multiresolution approximation is completely characterized by the function ¢ that
generates the orthonormal bases for each V;

— We study the properties of ¢ which guarantee that all the spaces V; satisfy all conditions of
a multiresolution approximation.

— It is proved that any scaling function corresponds to a discrete filter called conjugate
mirror filter

e Procedure

1. Link ¢ to the corresponding discrete filter 42/n/
2. Determine the properties of #/n] such that @ is a scaling function




Scaling equation

From multiresolution conditions follows

* The scaling equation relates a dilation of ¢ by 2 to its

integer translations.
» The sequence h/n] will be interpreted as a discrete filter

(D

1




Scaling equation

» Taking the F-trasform of (1) convolution product

f el {

1 =~ ~
L) e

<o

—_
(\©)
S

~
[l

—  where

~+00

ﬁ(a)) = Z h[nle”’"

* Next step is thus the expression of “¢@(w) as a product of dilations of “h(w).
— For any p>0, (2) implies

$(27"0)= (27 0)d(2" )




Scaling equation
Iterating:

é(z@:%ﬁ(w)é)(wp

bo1-LH2Jo(2)  4{2)A(2p(2) +oferia)-rolire

replacing in the expression above for all values of p up to P:

ot0)=( 5] o $)i(£)i(3)

If () is continuous at ©=0 then

lim(® (27 @)= d(0) >

P—+o0

A  fy ( 2P a)) — find the necessary and sufficient conditions on

D(w)= HTCD(O) “h(m) to guarantee that this infinite product is the F-
p=l 2 transform of a scaling function




Conjugate Mirror Filters

Teorem 7.2 (Mallat&Meyer)

Let ¢ in L?(R) be an integrable scaling function. The F-series of //n] satisfies

ﬁ(m)<2 + A(a)+7r)(2 =2 and i;(O) =42 CMF

(2) Vo

Conversely, if 7”(w) 1s 27T periodic and continuously differentiable in a neighborhood of w=0, if it
satisfies (2) and if

>0

inf

/A
we| ——,—

272

p
Then, CI) H T/ 2 @ D(0) is the F-transform of a scaling function.

p+

N4




CMF property

The solid line gives |"4(w)|2 on [-m,wt] for a cubic spline multiresolution. The dotted line
corresponds to |"g(w)|2.




Conjugate mirror filters

Table 7.1 Conjugate Mirror Filters h[n] for Linear Splines m =1 and Cubic
Splines m=3

n h[n] n hin]
=1 0 0.817645956 m=3 5. —5 0.042068328
1, -1 0.397296430 6, —06 —0.017176331
2, -2 —0.069101020 7. =7 —0.017982291
3. -3 —0.051945337 8 -8 0.008685204
4, —4 0.016974805 9, -9 0.008201477
5 —5 0.009990599 10, =10 —0.004353840
6. —0 — 0003883261 11, —11 —0.003882426
7, =7 —0.002201945 12, —12 0002186714
8. —8 0L000923371 13, —13 0.001882120
9.-9 000051 1636 14, —14  —0.001103748
10, =10 —0.000224296 15, —15 —0.000927187
11, —11 —0.000122686 1o, —16 0.000559952
=3 o 0766130398 17,17 0.000462093
18, —18  —0.000285414
1, -1 0.433923147
- 19, —19  —0.000232304
,—2 —0.050201753 20, —20 0.0001 46098
3.—3  —0.110036987 ' '
4, —4 0.032080869

Note: The coefficients below 10~ are not given.




What about wavelets?

Orthonormal wavelets carry the details needed to increase the resolution of a signal
approximation.

The approximations of f at scales 2/ and 20*D are respectively equal to its orthogonal
projections in V; and V,,

We know that V., 1s included in V,

Let W.

i+1 be the orthogonal complement of V., n V,

V=V, @,
The orthogonal projection of f on V; can be decomposed as follows
PV,.\f =PV,[+PW,f

The complement PW,,f provides the details that appear at scale j but disappear at the next
coarser scale.

Next theorem will show that basis for W, can be constructed by scaling and translating a
wavelet y




Corresponding orthogonal wavelet family

 Theorem 7.3 [Mallat&Meyer]
Let ¢ be a scaling function and h the corresponding CMF. Let ¥ be such that

~ 1 (oo
v 74{3)9(3)

with (@)= /h (0+7)
Let us denote o0- | ) .
T

For any scale, {V; ,};;, 7 1s an orthonormal basis for W..

For all j, {l//j i } , is an orthonormal basis for L2,
) j.nel

Signal domain ~~ £(@)=e 7l (0+7) > g(2)=z""h(-z"") > gln] =(=1)' " A1 n]




Corresponding orthogonal wavelet family

— Lemma 7.1. The family {w; .} ., is an orthonormal basis for W iif

g a))‘2 +‘§(a)+7r)‘2 =2

and
é(w)ﬁ*(a))+§(a)+7r)};*(a)+7r):2

— Furthermore

Vi

1 =Vi+W; —>— ( )EVVICVO

v

since  {op(t— n)}nez is an ortonormal basis of  V; —

+00
%W(%) = Z glnlp(t—n)  with

(il

» The orthogonal wavelets carry the details lost going from scale j to scale j+1
= Wavelets are the basis functions for W,
= The details at scale j are obtained by projecting the signal onto the wavelet family ; ,




Summary

+00
Approximation function at scale 2i: PVJ- f= Z< /@ j,n>(0 i n
n=—00
+00
Details (“residual” functions) at scale 2J: I ij = Z<f sWin >'// jan
n=—00
+00  +00
Wavelet representation: f= Z Z< faWj,n>Vj,n

j:—oo Nn=—0o0

If the basis 1s orthogonal, the scaling function characterizes the multi-resolution completely

Scaling function @ -> h[n] -> g[n] -> wavelet y




Example

Battle-Lemarié cubic spline wavelet and its spectrum
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Example

« Property: for any y that can generate an orthonormal family, one can verify that

2

p(2o) =1

+00

VoeR-{0}, )

j=—o

FIGURE 7.6

Graph of |[/(2/w)|? for the cubic spline Battle-Lemarié wavelet, with 1 sj=5and wel|—m, 7).




Example of wavelet analysis

Approximation

S
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FIGURE 7.7

Wavelet coefficients d;[n] = (£, ¥} calculated at scales 2/ with the cubic spline wavelet. Each
up or down Dirac gives the amplitude of a positive or negative wavelet coefficient. At the top is
the remaining coarse-signal approximation a;[n] = {f, &) for J=-5.




Warning

* Each CMF generates a wavelet orthonormal bases

* Does any wavelet orthonormal bases correspond to a multiresolution approximation and
CMF? It depends on the support:
— If y has compact support than it corresponds to a multiresolution approximation [ Lemarié]

— However, there exists “pathological” wavelets that decay as |t|"! that cannot be derived from any
multiresolution approximation




Classes of wavelet bases

Wavelets are interesting for applications for their ability to represent signals with few non
zero coefficients

The best basis for an application is the one that maximizes the number of zero or close to
zero coefficients. This depends on

— The regularity of f
— The number of vanishing moments of the wavelet
— The size of its support
The constraints on the wavelet translate to design rules for the filter g[n], thus h[n]

— Thus, we need conditions on “*h(w)




Wavelet properties

* Vanishing moments

— The wavelet has p vanishing moments if
I t“w(H)dt =0 for 0<k<p (3)

— The number of vanishing moments is equal to the multiplicity of zeros of h"(w) in = or,
equivalently, the number of vanishing derivatives of *y in zero

* Theorem 7.4: Vanishing moments

Let @ and y be a scaling function and a wavelet that generate an orthonormal basis. Suppose
that w()|=O((1+£)P?1) and |p(t)|=O((1+12)??1). The four following statements are
equivalent

1. The wavelet y has p vanishing moments
2. W (50) and its first p-1 derivatives are zero at w=0

3. "h(w) and its first p-1 derivaavef are zero at w=rw
4. for any 0<k<p 4dy (f) = Z n go(t —n) is a polynomial of degree k&




hints of the proof

Point 1. The decay of |p(t)| and |w(t)| imply that |“p(w)| and |y (w)| are p-times
differentiable

Point 2. The k-th order derivative of ¥ (@) is the F-transform of (~it)" y (¢)
thus

+ oo
7 (R) _ RPN

o0

(4) 1s equivalent to (3), which proves 2.

Point 3.
\P(w)=%g(§j®[§j 2(@)=e N (@+7)  thus
¥(20) = é 8(0)D(0) = (0+7)D(0)

since ¢ (O) ~+( by differentiating this expression we prove that 2. is equivalent to 3.

Finally, it is proved that 4. 1s equivalent to 1. and viceversa.




hints of the proof

Let us now prove that (4) implies (1). Since ¢ is orthogonal to {d(t — 1) },,e7z, it is also
orthogonal to the polynomials g for Ok <p. This family of polynomials is a basis of
the space of polynomials of degree at most p — 1. Thus, ¢ is orthogonal to any polynomial
of degree p— 1 and in particular to t* for 0=k < p. This means that s has p vanishing
moments.

A wavelet with p vanishing moments Kills polynomials up to degree p

S
40 - —

20 ]

—20 l ] I ] r




Wavelet properties

Support

— The larger the support, the more the singularities will spread along scales: it should be as short
as possible

BUT a wavelet with p vm will have a support at least 2p-1 -> trade-off

Theorem 7.5: Compact Support. The scaling function has a compact support if and only if
h has a compact support and their supports are equal. If the support of /2 and ¢ 1s [N, N,],
then the support of y 1s [(N,-N,+1)/2, (N,-N,+1)/2].

+ oo

1 [
fv[ﬂ]:E <¢ (E),‘:b(f—ﬂ)), %q;(%): Z hn] d(t — n).

n=-—m

+oo + oo
% P (g) = ;;:Z—oog[”] Gt —n)= ”:Z_m(— D' h[1—n]$(t—n).

If the supports of ¢ and h are equal to [Ny, N3], the sum on the right side has a support
equal to [Ny — N2+ 1, N2 =Ny +1]. Thus, & has a support equal to [(Ny —Nz2+1)/2,
(N, — Ny +1)/2]. |




Properties

Support

— To minimize the size of the support of the wavelet, we must synthesize conjugate mirror filters
with as few nonzero coefficients as possible

— However, the constraints imposed on orthogonal wavelets imply that if has p vanishing
moments, then its support is at least of size 2p-1 — trade off

— Daubechies wavelets are optimal in the sense that they have a minimum size support for a given
number of vanishing moments
» If fhas few isolated singularities and is very regular between singularities, we must choose a wavelet
with many vanishing moments to produce a large number of small wavelet coefficients <f, v, >. If the
density of singularities increases, it might be better to decrease the size of its support at the cost of
reducing the number of vanishing moments. Indeed, wavelets that overlap the singularities create high-
amplitude coefficients.

Regularity

— The regularity or smoothness has mostly a cosmetic influence on the error introduced by
quantizing or thresholding the coefficients. Such operation introduces a noise which is less
visible if it is smooth. Better quality is reached with smoother wavelets

» The Haar wavelet is not a good choice




Popular wavelet families

« Shannon, Meyer, Haar, and Battle-Lemari¢ Wavelets

— Starting point




Shannon wavelets

Shannon Wavelet

The Shannon wavelet is constructed from the Shannon multiresolution approxima-

tion,which approximates functions by their restriction to low-frequency intervals. It
corresponds to qb 1[—7 71 and h(w)

\/El[_ 7/2,7/2](w) for w € [—m, w]. We derive
from (7.82) that

~ exp(—iw/2) ftwe|—27, —m|JU|m, 27 ,
b= (P (THor2) Mo el 2m mallm. 2m (7.83)
0 otherwise,
and thus,

sin 2m(1 —1/2) B sinmm(r—1/2)
2m(r—1/2) m(r—1/2)

This wavelet is C* but has a slow asymptotic time decay. Since f(w) is zero in

the necighborhood of w =0, all its derivatives are zero at w = 0. Thus, Theorem
implies t]'nt iy has an infinite number of vanishing moments.

o

7.4

Since Mm) has a u)mp.u_t support we know that (#) is C”. However, |i(1)|
decays only like 7|~ at infinity because gb(m is discontinuous at * 7 and * 2.




Shannon wavelets

-1+t "'JJ

Shannon scaling function (continuous) and wavelet (dashed) lines.




Meyer wavelets
Meyer Wavelets

A Meyer wavelet [375] is a frequency band-limited function that has a Fourier trans-
form that is smooth, unlike the Fourier transform of the Shannon wavelet. This
smoothness provides a much faster asymptotic decay in time. These wavelets are
constructed with conjugate mirror filters s (w) that are C" and satisfy

. V2 ifwel[—m/3, /3] —
hw)= o 8
"OZN0 ifwe[—m —2m/3]U[27/3. 7. (7.84)

The only degree of freedom is the behavior of h(w) in the transition bands
[—27/3, —m/3]U[m/3, 27 /3]. It must satisfy the quadrature condition

1h(w)|? + [h(w+m)|? =2, (7.85)

and to obtain C” junctions at || = /3 and |w| = 27 /3, the n first derivatives must
vanish at these abscissa. One can construct such functions that are C”.
The scaling function &(m) = ]_[;:1 27 1/2 5(2_19 w) has a compact support and one
can verify that
. 2712 h(w/2) if |o|<47/3

d(w) = _ , (7.86)
0 if |w|>4m/3.




Meyer wavelets

The resulting wavelet (7.82) is

[0 if |w|=27/3
. 2712 5(w/2) if 27 /3 < |w| <47/3 |
Y(w)=4 __,, . . o (7.87)
2712 exp(—iw/2) h(w/4) if 47/3<|w|<=8m/3
0 if |w|>8m/3.

The functions ¢ and i are C* because their Fourier transforms have a compact
quppuﬂ Since lzl((u) = (0 in the neighborhood of w = 0, all its derivatives are zero at
= (0, which proves that gb has an infinite number of vanishing moments.
It h is C" then ¢ and qb are also C". The discontinuities of the (72 + 1)™ derivative
of h are generally at the junction of the transition band |w| =7 /3, 27 /3, in which
case one can show that there exists A such that

b)) <A+t and || =AQ+ )L




Meyer wavelet: example
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Haar wavelets

Haar Wavelets

The Haar basis is obtained with a multiresolution of piecewise constant functions.

The scaling function is ¢ = 1 17. The filter h[n] given in (7.46) has two nonzero
coetficients equal to 2712 at n=0and n=1. Thus,

f

=0
% 7 (E) =”=Z_m(—1}“” h1—nld(t—n)= T (¢(r —1) —qf){f})

—1 ifO=1<1/2
W)= 1 ifl/2=¢<1 (7.90)
()  otherwise.

The Haar wavelet has the shortest support among all orthogonal wavelets. It is not

well adapted to approximating smooth functions because it has only one vanishing
moment.

“+ o0

reminder: \/_ ( ) Z glnl ot —n) Z (=D " h[1—n] bt —n).

n=—w n=—o




Battle-Lemari¢ wavelets

Battle-Lemarié Wavelets
Polynomial spline wavelets introduced by Battle [99] and Lemarie [345] are com-
puted from spline multiresolution approximations. The expressions of (?)(m) and
ﬂf(m) are given, respectively, by (7.18) and (7.48). For splines of degree m, fr(m)
and its first s derivatives are zero at w = 7. Theorem 7.4 derives that ¢y has m + 1
vanishing moments. It follows from (7.82) that

~ 't'Xp{_f{U/Z} 35_};-_;34-2{{1}/2_'_??'}
(w) =

wmt1 S2m+2(®) S2im+2(w/2)

This wavelet v has an exponential decay. Since it is a polynomial spline of degree
m,itis m — 1 times continuously differentiable. Polynomial spline wavelets are less
regular than Mever wavelets but have faster time asymptotic decay. For m odd, ¢ is
symmetric about 1/2. For m even, it is antisymmetric about 1/2. Figure 7.5 gives the
graph of the cubic spline wavelet ¢ corresponding to m2 = 3. For m = 1, Figure 7.9
displays linear splines ¢ and . The properties of these wavelets are further studied

in [15, 106, 164].




Battle-Lemari¢: example
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FIGURE 7.9

Linear spline Battle-Lemarié scaling function ¢ (a) and wavelet Jr (b).




Daubechies compactly supported wavelets
7.2.3 Daubechies Compactly Supported Wavelets

Daubechies wavelets have a support of minimum size for any given number p of
vanishing moments. Theorem 7.5 proves that wavelets of compact support are com-
puted with finite impulse-response conjugate mirror filters 2. We consider real causal
filters h[n], which implies that hisa trigonometric polynomial:

N-1
h(w) = Z hln]e” M,

n=0

To ensure that ¢ has p vanishing moments, Theorem 7.4 shows that 2 must have a
zero of order p at w = 7. To construct a trigonometric polynomial of minimal size,
we factor (1 + e ’?)? which is a minimum-size polynomial having p zeros at @ = 7:

. 1+e @\ .
h(w) = ﬁ(%) R(e™™). (7.91)
The difficulty is to design a polynomial R(e ") of minimum degree m such that h
satisfies
h(w)]? + [h(w+m)|)? = 2. (7.92)

As a result, 7 has N =m + p + 1 nonzero coefficients. Theorem 7.7 by Daubechies
[194] proves that the minimum degree of Ris m=p — 1.




Daubechies compactly supported wavelets

Theorem 7.7: Daubechies. A real conjugate mirror filter /4, such that “/(w) has p zeroes at
7, has at least 2p nonzero coefficients. Daubechies filters have 2p nonzero coefficients.

Theorem 7.9: Daubechies. If is a wavelet with p vanishing moments that generates an
orthonormal basis of L2(R), then it has a support of size larger than or equal to 2p—+1.

A Daubechies wavelet has a minimum-size support equal to [-p+1, p]. The support of the
corresponding scaling function is [0, 2p-1].




Daubechies wavelets: example

_ﬂ.-'a | | _ﬂ.-'a | | | | _ﬂ.-'i | | |
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FIGURE 7.10

Daubechies scaling function ¢ and wavelet ¢ with p vanishing moments.




Symlets

Symmlets
Daubechies wavelets are very asymmetric because they are constructed by selecting
the minimum-phase square root of Q(e ~'?) in (7.97). One can show [51] that filters
corresponding to a minimum-phase square root have their energy optimally concen-
trated near the starting point of their support. Thus, they are highly nonsymmetric,
which vields very asymmetric wavelets.,

To obtain a symmetric or antisymmetric wavelet, the filter 7 must be symmetric
or antisymmetric with respect to the center of its support, which means that i (w)
has a linear complex phase. Daubechies proved [194] that the Haar filter is the
only real compactly supported conjugate mirror filter that has a linear phase. The
Daubechies symmlet filters are obtained by optimizing the choice of the square
root R(e ') of Q(e_’ “) to obtain an almost linear phase. The resulting wavelets still
have a minimum support [—p + 1. p] with p vanishing moments, but they are more
symmetric, as illustrated by Figure 7.11 for p =8. The coeftficients of the symmlet
filters are in WaveLas. Complex conjugate mirror filters with a compact support
and a linear phase can be constructed [352], but they produce complex wavelet
coefficients that have real and imaginary parts that are redundant when the signal

is real.




Dubechies versus Symlets
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FIGURE 7.11

Daubechies (a) and symmlet (b) scaling functions and wavelets with p =8 vanishing
moments.




Coiflets

Coiflets
For an application in numerical analysis, Coifman asked Daubechies [194] to con-

struct a family of wavelets ¢ that have p vanishing moments and a minimum-size
support, with scaling functions that also satisfy

+@
d(t)dt=1 and[ Rd(tydi=0 for1=k<p. (7.99)

a0

4o

— 0




An approximation tour

Linear approximation

Projects the signal f over M vectors of the
ortho-normal basis B which are chosen a-priori
among the basis B, say the first M

M -1

fu = 2S84,

n=0

Approximation error

MI=[f — fulF = 17 P
n=M

choosing the first M vectors amounts to
reconstruct f at a given resolution. The
convergence properties similar as in the Fourier
domain

* Non-linear approximations

— The M vectors are chosen a posteriori

fu= 2S84,

nel M
Approximation error

AM1=|f — fulf = SIfd) P

nel,,

The error can be minimized by choosing the V%?t'(,)a >
corresponding to the highest "

In wavelet basis this amounts to an adaptive
approximation grid whose resolution is locally
increased where the signal is irregular!




Adaptive basis choice

Instead of choosing the basis a-priori, one could choose the best basis, depending on the
signal

The basis 1s chosen to minimize the non linear approximation error of f

Same problem as the choice of the optimal basis for stimulus representation in visual
perception

The optimal basis could be chosen for classes of signals, considered as random processes

— Gaussian processes — Karunen Loeve transform (KLT)

= Diagonalization of the covariance matrix which removes the inter-dependencies among the samples and
results in a set of independent coefficients (i.e. redundancy has been removed)

— Other kind of processes — no golden rule
» Images are not Gaussian and not stationary

= |n some cases wavelets do better




Adaptive basis

Wavelet packets

— The subband tree is progressively split according to the optimization of a cost function (i.e.
rate/distortion)

Matching pursuit

— Vectors are progressively selected from a dictionary, while optimizing the signal approximation
at each step

Key issue: a good basis should be able to provide a good description (approximation
properties) of the signal while being concise (sparseness properties)

— Classical approaches: approximation theory, information theory, estimation in noise...

— Perception based approaches: bring humans into the loop




Wavelet Packets
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