1. RINGS AND MODULES

Recall that a ring is a system (R,+,-,0,1) consisting of a set R, two binary operations,
addition (4) and multiplication (-), and two elements 0 # 1 of R, such that (R,+,0) is an
abelian group, (R,-,1) is a monoid (i.e., a semigroup with identity 1) and multiplication is left
and right distributive over addition. A ring whose multiplicative structure is abelian is called a
commutative ring.

Example 1.1. (1) Z, Q, R, C are commutative rings.
(2) Let K be a field; the ring K|[z1,...,z,] of polynomials in the indeterminates z1,...,z,
is a commutative ring.
(3) Let K be a field; consider the ring R = M,,(K) of n X n-matrices with coefficients in K
with the usual "rows times columns” product. Then R is a non-commutative ring

Definition 1.2. A left R-module is an abelian group M togheter with a map R x M — M,
(r,m) — rm, such that for any r,s € R and any x,y € M

M1 r(z+y)=rz+ry

M2 (r+s)=rx+ sx

M3 (rs)x = r(sz)

M4 lz =2
We write gM to indicate that M is a left R-module.

Ezxample 1.3. (1) Any abelian group G is a left Z-module by defining, for any € G and
n>0nc=x+---+x.
—_————
n times

(2) Given a field K, any vector space V over K is a left K-module.

(3) Let R be the matrix ring M, (K) and consider the vector space V = K™. Given a matrix
A and a vector v € V, let Av the usual "rows times columns” product. Then V is a left
R-module.

(4) Any ring R is a left R-module, by using the left multiplication of R on itself. It is called
the regular module.

(5) Consider the zero element of the ring R. Then the abelian group {0} is trivially a left
R-module.

Remark 1.4. Consider M an abelian group and End'(M) the ring of the endomorphism of M
acting on the left (i.e. fg(x) = f(g(z)). A representation of R in End'(M) is a homomorphism
of ring
A:R— End (M), 7= A(r)

From the properties of ring homomorphisms it follows that for any r,s € R and z,y € M

(1) AMr)(x +y) = Ar)z + Alr)y

(2) A(r+ s)a = A(r)z + A(s)z

(3) Alrs)x = A(r)(A(s)x)

4) Nz ==
In other words, we can consider A(r) acting on the elements of M as a left multiplication by the
element r € R: then we can define rz := A(r)z, and this gives a structure of left R-module on

M. Conversely, to any left R-module M, we can associate a representation of R in Endl(M ), by
defining A(r) := rz.

Similarly, we define right R-modules:

Definition 1.5. A right R-module is an abelian group M togheter with a map M x R — M,
(m,r) — mr, such that for any r,s € R and any x,y € M

M1 (z+y)r=ar+yr

M2 z(r+s) =ar +xs

M3 z(rs) = (xr)s

M4 z1l==x
We write Mg to indicate that M is a right R-module.

For the connection between right modules and representations see Exercise 4.5.
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If R is a commutative ring, then left R-modules and right R-modules coincide. Indeed, given
a left R-module M with the map R x M — M (r,m) — rm, we can define a map M x R - M
(m,r) — mr = rm. This map satisfies the axioms of Definition 1.5 (Verify!) and so M is also a
right R-module. The crucial point is that, in the third axiom, since R is commutative we have
x(rs) = (rs)x = (sr)x = s(rz) = (rz)s = (zr)s.

Ezample 1.6. Consider the ring R = M,,(K) and V the vector space of the columns M, 1 (K).
This is in a obvious way a left R-module but not a right R-module. Similarly, the vector space
of the rows My, (K) is a right R-module but not a left R-module.

Exercise 1.7. Show that given p M, for any x € M and r € R, we have
(1) r0=0
(2) 0z =0
@) r(=z) = (=r)z = —(rz)
Definition 1.8. Let g M be a left R-module. A subset L of M is a submodule of M if L is a

subgroup of M and rx € L for anyr € R and x € L (i.e. L is a left R-module under operations
inherit from M ). We write L < M.

FEzample 1.9.

(1) Let G be a Z-module. The submodules of G are exactly the subgroups of G.

(2) Let K a field and V a K-module. The submodules of V' are exactly the vector subspace
of K.

(3) Let R a ring. The submodules of the left R-module gR are the left ideals of R. The
submodules of the right R-module Rp are the right ideals of R.

Definition 1.10. Let g M be a left R-module and L < M. The quotient module M/L is the
quotient abelian group together with the map R x M/L — M/L given by (r,T) — TT.

Remark 1.11. The map R x M/L — M/L given by (r,Z) — 7T is well-defined, since if T =7
then x — y € L and hence r(x — y) = ro — ry € L, that is 7T = 77.

In this part of the course we mainly deal with left modules. So, in the following, unless
otherwise is stated, with module we always mean left module.

2. HOMOMORPHISMS OF MODULES

Definition 2.1. Let gM and gN be R-modules. A map f : M — N is a homomorphism if
flrz+sy)=rf(z)+sf(y) for any x,y € M and r,s € R.

Remark 2.2.

(1) From the definition it follows that f(0) = 0.

(2) Clearly if f and g are homomorphisms from M to N, also f 4 g is a homomorphism.
Since the zero map is obviously a homomorphism, the set Homg(M,N) = {f|f : M —
N is a homomorphism} is an abelian group.

(3) If f: M — N and g : N — L are homomorphisms, then gf : M — L is a homomorphism.
Thus the abelian group Endg(M) = {f|f : M — M is a homomorphism} has a natural
structure of ring, called the ring of endomorphisms of M. The identity homomorphism
idps : M — M, m — m, is the unity of the ring.

Definition 2.3. Given a homomorphism f € Hompg(M, N), the kernel of f is the set Ker f =
{x € M|f(x) =0}. The image of f is the set Im f = {y € Ny = f(z) forxz € M}.

It is easy to verify that Ker f < M and Im f < N. Thus we can define the cokernel of f as
the quotient module Coker f = N/Im f.

A homomorphism f € Hompg(M,N) is called a monomorphism if Ker f = 0. f is called
an epimorphism if Im f = N. f is called isomorphism if it is both a monomorphism and an
epimorphism. If f is an isomorphism we write M = N.

Remark 2.4. (1) For any submodule L < M there is a canonical monomorphism i : L — M,
which is the usual inclusion, and a canonical epimorphism p : M — M /N which is the
usual quotient map.

(2) For any M the trivial map 0 — M, 0 — 0, is a mono. The trivial map M — 0, m — 0,
is an epi.
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(3) The monomorphisms, the epimorphisms and the isomorphisms are exactly the injective,
surjective and bijective homomorphisms.

Ezercise 2.5. Show that f € Hompg(M,N) is an isomorphism if and only if there exist g €
Hompg (N, M) such that gf = idy and fg = idy. In such a case g is unique. ( We usually
denote g as f71).

Proposition 2.6. Any f € Homg(M, N) induces an isomorphism M/Ker f = Im f.

Proof. The induced map M/Ker f — Im f, m — f(m) is a homomorphism. Moreover it is
clearly a mono and an epi. O

The usual homomorphism theorems which hold for groups hold also for homomorphisms of
modules.

Proposition 2.7. (1) If L< N < M, then (M/L)/(N/L) = M/L.
(2) If L,N < M, denote by L+ N ={m € M|m =1+n for l € L andn € N}. Then L+ N
is a submodule of M and (L + N)/N =2 N/(N N L).

Ezercise 2.8. Prove the previous Proposition.

3. EXACT SEQUENCES

Definition 3.1. A sequence of homomorphisms of R-modules

"'*)Mi_lfglMi&MH_l fi}l

is called exact if Ker f; = Im f;_1 for any 1.

An exact sequence of the form 0 — My — My — M3 — 0 is called a short exact sequence
Observe that if L < M, then the sequence 0 — L LM B M/L — 0, where ¢ and p are

the canonical inclusion and quotient homomorphisms, is short exact (Verify!) Conversely, if

0 — M EN My 2 My — 0 is a short exact sequence, then f is a mono, g is an epi, and
M3 = Coker f (Verify!).

The following result is very useful:

Proposition 3.2. Consider the commutative diagram with exact rows

0 LN 0
r g
0 L M N’ 0

If a and v are monomorphisms (epimorphims, or isomorphisms, respectively), then so is (3

Proof. (1) Suppose a and 7 are monomorphisms and let m such that S(m) = 0. Then
¥(g(m)) = 0 and so m € Kerg = Im f. Hence m = f(I), 1l € L and S(m) = B(f(1)) =
f'(a(l)) = 0. Since f’ and « are mono, we conclude [ = 0 and so m = 0.

(2) Suppose « and v are epimorphisms and let m’ € M’. Then ¢'(m') = v(g(m)), so
g'(m') = g(B(m)); hence m' — B(m) € Kerg’ = Im f’ and so m’ — 3(m) = f/(I'),I' e L.
Let I € L such that I’ = «(l): then m’ — B(m) = f'(a(l)) = B(f(1)) and so we conclude
m' = (m — f(1)).

U

4. EXERCISES

Exercise 4.1. Let pM be a R-module and pR the regular module. Consider the abelian group
Hompg(R, M) and the map ¢ : Homg(R, M) — M, f — f(1). Verify that ¢ is an isomorphism
of Z-modules.

Ezercise 4.2. Let pM and define Anng(M) = {r € R|rm = 0 for any m € M}. M is called
faithful if Anng(M) = 0. Verify that Anng(M) is an ideal of R. Verify that M has a natural
structure of R/ Anng(M)-module, given by the map R/ Anng(M) x M — M, (F,m) — rm.
Verify that M over R/ Anng(M) is a faithful module.
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Ezercise 4.3. Let f be a homomorphism of R-modules.
Show that f is a mono if and only if fg = 0 implies g = 0.
Show f is an epi if and only if gf = 0 implies g =0

Ezercise 4.4. Consider the ring R = ( IO{ g ) Show that P, = {( ]g 8 ) | k € K} and
0 k1 kl k2
Py, =/ 0k | k1, ko € K} are left submodules of g R. Show that Q1 = { 0 0 | k1, ko €
2

K} and Q2 = {( 8 2 ) | k € K} are right submodules of Rp

Ezercise 4.5. Consider M an abelian group and End" (M) the ring of the endomorphism of M
acting on the right (i.e. (x)fg = ((z)f)g. Show that any representation of R in End" (M)
corresponds to a right R-module Mp.



5. SUMS AND PRODUCTS OF MODULES

Let I be a set and {M; };cr a family of R-modules. The cartesian product [[; M; = {(x;)|z; €
M;} has a natural structure of left R-module, by defining the operations component-wise:

(zi)ier + (Yi)ier = (xi + Yi)ier, 7(Ti)ier = (ri)ier-
This module is called the direct product of the modules M;. It contains a submodule

@Mi = {(z;)|x; € M; and z; = 0 for almost all ¢ € I'}
I

Recall that ”almost all” means ”except for a finite number”. The module &;M; is called the
direct sum of the modules M;. Clearly if I is a finite set then [[, M; = {(x;)|x; € M;} = &1 M;.
For any component j € I there are canonical homomorphisms

HMZ'—>MJ', (mi)iej’—)l‘j and Mj—>HMi,xj»—>(0,0,...,xj,07...,0)
I I

called the projection on the j*"-component and the injection of the j*"-component. They are
epimorphisms and monomorphism, respectively, for any j € I. The same is true for ®;M;.
When M; = M for any ¢ € I, we use the following notations

[[Mi=M", @M=MD,  andif I={1,...,n}, &M; =M"
I I

Let kM be a module and {M;};c; a family of submodules of M. We define the sum of the
M; as the module

ZMi = {Z x;|z; € M; and z; = 0 for almost all ¢ € T}.
I iel
Clearly >, M; < M and it is the smallest submodule of M containing all the M;. (Notice

that in the definition of ), M; we need almost all the components to be zero in order to define
properly the sum of elements of M).

Remark 5.1. Let g M be a module and {M,};c; a family of submodules of M. Following the
previous definitions we can construct both the module &;M; and module 1 M; (which is a
submodule of M). We can define a homomorphism

a:@®rM; = M, (zi)ier — sz
i€l
Then Ima = Z[ M;. If a is a monomorphism, then &;M; = ZI M; and we say that the module
Y1 M; is the (internal) direct sums of its submodules M;. Often we omit the word ”internal”

and if M = )", M; and « is an isomorphism, we say that M is the direct sums of the submodules
M, and we write M = & M;.

Ezercise 5.2. Let gM be a module and {M;};c; a family of submodules of M. The following
are equivalent:

(1) « is an isomorphism
i 1 ] 1 1 Q 3 i
(2) if m € > ; M; , then m can be written in a unique way as sum of elements of the M,

6. SPLIT EXACT SEQUENCES
If L and N are R-modules, there is a short exact sequence, called split,
0 LS LeN™ N0, withig()=(1,0) my(,n)=mn, foranyle€ L,ne N.
More generally:

Definition 6.1. A short exact sequence 0 — L i) M % N — 0 is said to be split if there is an
isomorphism M = L & N such that the diagram

0 L—t w2 N 0
0 — " LN s N ——0

commutes.
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Proposition 6.2. The following properties of an exact sequence 0 — L LM% NS0 are
equivalent:

(1) the sequence is split

(2) there exists a homomorhism ¢ : M — L such that ¢ f =idg,

(3) there exists a homomorhism ¢ : N — M such that gy = idy

Proof. 1 = 2. Since the sequence splits, then there exists « as in Definition 6.1. Let ¢ = 7 oa.
So for any l € L of(l) = mpaf(l) = n(1,0) = L.
1 = 3 Similar (Verify!)
2=1. Define a: M — LB N, m — (¢(m),g(m)). Since af (1) = (p(f(1)),9(f({))) = (I,0) and
mya(m) = g(m) we get that the diagram
0 L—lsm—2snN 0
e

0——L——LdPN —N—=0

commutes. Finally, by Proposition 3.2, we conclude that « is an isomorphism.
2 = 3 Similar (Verify!) O

Definition 6.3. Given rL < M, L is a direct summand of M if there exists a submodule
rN <gr M such that M 1is the direct sum of L and N. N is called a complement of L. If M
does not admit direct summands it is said to be indecomposable.

By the results in the previous section, if L is a direct summand of M and N a complement
of L, it means that any m in M can be written in a unique way as m =1[0+mn,l € L andn € N.
D
We write M = L& N and L < M.
Ezample 6.4. (1) consider the Z-module Z/6Z. Then Z/6Z = 37 /6Z & 27Z/6Z. The regular
module 77 is indecomposable

(2) let K be a field and V' a K-module. Then, by a well-know result of linear algebra, any
L <V is a direct summand of V.

(3) Let R = ([O{ g Then R = P; & P,, where P, :{(

0 k
P2:{<0 k; >|k1,k26K}.

kE 0

0 0)|k€K}and

7. EXERCISES

Ezxercise 7.1. Let gL <r M. Show that L is a direct summand of M if and only if there exists
RN <z M such that L+ N =M and LN N =0.

Exercise 7.2. Let 0 — L LMA N 0 be a split exact sequence and « the isomorphism as in
Definition 6.1. Show that M = a1 (L) @ a}(N), a (L) 2 L, and a1 (N) = N.

8. FREE MODULES AND FINITELY GENERATED MODULES

Definition 8.1. A module gM is said to be generated by a family {x;};cr of elements of M if
each x € M can be written as © =y, r;2;, with r; € R for any i € I, and r; = 0 for almost
every 1 € I.

The {x;}icr are called a set of generator of M and we write M =< x;,i € I >.

If the coefficients r; are uniquely determined by x, the (x;);cr are called a basis of M.

The module M is said to be free if it admits a basis.

Proposition 8.2. A module rM is free if and only M = R for some set I.

Proof. The module R is free with basis (e;)icr, where e; is the canonical vector with all zero
components except for the i-th equal to 1.

Conversely if M is free with basis (;)ies, then we can define a homomorphism a : RY) — M,
(ri)ier +— ZI r;x;. It is easy to show that « is an isomorphism, as a consequence of the
definition of a basis: indeed, it is clearly an epi and if a(r;) = > rz; = 0, since the r; are
uniquely determined by 0, we conclude that r; = 0 for all 4, i.e. « is a mono. 0
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Given a free module M with basis (z;), then every homomorphism f : M — N is uniquely
determined by its value on the z; and the elements f(z;) can be chosen arbitrarily in N. Indeed,
chosen the f(x;), given x =Y r;x; € M, we construct f(x) = > r;f(x;). Since (z;);er is a basis
this is a good definition. (Notice: analogy with vector spaces!).

Proposition 8.3. Any module is quotient of a free module

Proof. Let M be an R-module. Since we can always choose I = M, the module M admits a set
of generators. Let (x;);er a set of generators for M and define a homomorphism « : R — M,
(ri)ier = Y_; rix;. Clearly « is an epi and so M = RY /Ker a O

Definition 8.4. A module g M is finitely generated it there exists a finite set of generators for
M. A module is cyclic if it can be generated by a single element.

By Proposition 8.3 g M is finitely generated if and only if there exists an epimorphism R™ — M
for some n € N. Similarly, g M is cyclic if and only if M = J, for a left ideal J < R.

FEzample 8.5. The regular module gR is cyclic, generated by the unity element R =<1 >

Proposition 8.6. Let gL < p M.

(1) If M is finitely generated, then M/L is finitely generated.
(2) If L and M/L are finitely generated, so is M

Proof. (1) If {z1,...,z,} is a set of generator of M, then {Z1,...,T,} is a set of generator
for M/L.
(2) Let < x1,...,2y >= L and < 7y,...,7,, >= M/L, where x1,...,Zpn,Y1,-..,Ym € M.
Let x € M and consider T = Ei:L...m r;¥; in M/L. Then x — Zi:l,...m ry; € L and
SO T = Dy Tl = D1 Ty Hence w =30,y vy 30500, Tt Le.
{z1,- . Tn,y1...,Ym} is a finite set of generators of M.
O

Notice that M finitely generated doesn’t imply L finitely generated. For example, let R be
the ring R = K|x;,4 € N]. Consider the regular module g R and its submodule L =< z;,i € N >.

9. EXERCISES

Ezxercise 9.1. Show that any submodule of zZ is finitely generated.
Ezxercise 9.2. Show that the Z-module Q is not finitely generated.
Ezercise 9.3. A module M is simple if L < M implies L = 0 or L = M (i.e. M doesn’t have
non trivial submodules).

(1) show that any simple module is cyclic

(2) Exhibit a cyclic module which is not simple.
Ezercise 9.4. Let R be a ring. An element e € R is idempotent if €2 = e. Show that

(1) if e is idempotent, then (1 — e) is idempotent and R = Re ® R(1 — e¢) (where Re and
R(1 — €) denote the cyclic modules generated by e and (1 — e), respectively)

(2) it R=1@® J, with T and J left ideals of R, then there exist idempotents e and f such
that 1=e+ f, [ = Reand J = Rf.



10. CATEGORIES AND FUNCTORS

This is very short introduction to the basic concepts of category theory. For more details
and for the set-theoretical foundation (in particular the distinction between sets and classes) we
refer to S. MacLane, Category for the working mathematician, Graduate Texts in Math., Vol 5,
Springer 1971.

Definition 10.1. A category C consists in:

(1) A class Obj(C), called the objects of C;

(2) for each ordered pair (C,C") of objects of C, a set Home(C, C") whose elements are called
morphisms from C to C’;

(3) for each ordered triple (C,C",C") of objects of C, a map

Hom¢(C,C") x Home (C!, C") — Home (C, C")

called composition of morphisms

such that the following axioms C1, C2, C8 hold:
(before stating the axioms, we introduce the notations o : ¢ — C’ for any a € Home(C, C"),
and Ba for the compostion of o € Home(C, C’) and 8 € Home(C’, C"))
C1: if (C,C") # (D, D), then Hom¢(C, C’") NHome (D, D’) =
C2:ifa:C—=C', pg:C"—=C", ~:C" — C" are morphisms, then y(Sa) = (v6)a
C3: for each object C' there exists 1o € Home(C, C), called identity morphism, such that
lca=aand flg =B forany a: C' — C and §: C — C".

Notice that, for any C' € Obj(C), the identity morphism 1¢ is unique. Indeed, if also 1
satisfies [C3], then 1¢ = 1ol = 1f.

A morphism « : C — C' is an isomorphism if there exists 5 : ¢/ — C such that fa = 1¢ and
aff = 1¢r. If « is an isomorphism, C and C’ are called isomorphic and we write C' = C".

Example 10.2. (1) The category Sets: the class of objects is the class of all sets; the mor-

phisms are the maps between sets with the usual compositions.

(2) The category Ab: the objects are the abelian groups; the morphisms are the group
homomorphisms with the usual compositions.

(3) The category R-Mod for a ring R: the objects are the left R-modules and the morphisms
are the module homomorphisms with the usual compositions.

(4) The category Mod-R for a ring R: the objects are the right R-modules and the mor-
phisms are the module homomorphisms with the usual compositions.

Notice that, given a category C, we can construct the dual category C°P, with Obj(CP) =
0Obj(C), Homeor (C,C") = Home (C’, C), and ax*f = 3-a, where x denotes the composition in C°P
and - the composition in C (C°P is obtained from C by "reversing the arrows”). Any statement
regarding a category C dualizes to a corresponding statement for CP.

Definition 10.3. Let B and C be two categories. A functor F' : B — C assigns to each object
B € B an object F(B) € C, and assigns to any morphism 8 : B — B’ in B a morphism
F(B8): F(B) — F(B') in C, in such a way:

Fl: F(Ba) = F(B)F(«) foranya:B — B, 3: B'"—- B" in B

F2: F(1) = 1p(m) for any B in B.

By construction, a functor F' : B — C defines a map for any B, B’ in B
Homp(B, B') — Home (F(B), F(B')), B~ F(B)

The functor F is called faithful if all these maps are injective and is called full it they are
surjective.

A functor F : B°? — (C is called a contravariant functor from B to C. In particular a
contravariant functor F assigns to any morphism 8 : B — B’ in B a morphism F(5) : F(B') —
F(B)inC.

Ezample 10.4. (1) Let B and C two categories. B is a subcategory of C if Obj(B) C Obj(C),
Homp (B, B’) C Hom¢ (B, B’) for any B, B’ objects of B, and the compositions in B and
C are the same. In this case there is a canonical functor B — C which is clearly faithful.
If this functor is also full, B is said a full subcategory of C.
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(2) Let M € R-Mod. As we have already observed Homp (M, N) is an abelian group for
any N € R-Mod. So we can define a functor (Verify the axioms!)

Homp(M,—) : R-Mod — Ab, N — Homp(M,N)
such that for any a: N — N’,
Hompg(M,a) : Homg(M, N) — Homg (M, N'), ¢ — ap

(3) Let M € R-Mod and consider the abelian group Hompg (N, M) for any N € R-Mod. So
we can define a contravariant functor (Verify the axioms!)

Homp(—, M) : (R-Mod)?? — Ab, N +— Hompg(N,M)
such that for any a: N — N,
Hompg (o, M) : Homp(N', M) — Homg(N', M), 9 — o

In these lectures we will deal mainly with categories having some kind of additive structure.
For instance in the category R-Mod, any set of morphisms Hompg(M, N) is an abelian group
and the composition preserves the sums.

Definition 10.5. A category C is called preadditive if each set Home(C, C") is an abelian group
and the compositions maps Home (C, C') x Home (C’, C"”) — Home (C, C”) are bilinear.

If B and C are preadditive categories, a functor F : B — C is additive if F(a + o) =
F(a)+ F(d) for o, : C = C".

Ezample 10.6. The category R-Mod is a preadditive category. If M € R-Mod, then Hompg (M, —)
and Hompg(—, M) are additive functors.

Definition 10.7. Let R and S two rings and let F : R-Mod — S-Mod be an additive functor.
F' is called left exact if, for any eract sequence 0 — L — M — N — 0 in R-Mod, the sequence
0 - F(L) - F(M) — F(N) in S-Mod is exact. F is called right exact if, for any ezact
sequence 0 - L — M — N — 0 in R-Mod, the sequence F(L) — F(M) — F(N) — 0 in
S-Mod is exact. The functor F is exact if it is both left and right exact.

In particular, if F' is exact then for any exact sequence in R-Mod 0 - L — M — N — 0, the
corresponding sequence 0 — F(L) — F(M) — F(N) — 0 in S-Mod is exact.

Proposition 10.8. Let X € R-Mod. The functor Hompg(X, —) is left exact

Proof. Let 0 — L L M % N = 0 be an exact sequence in R-Mod. Denoted by f* =
Hompg(X, f) and ¢* = Hompg(X,g), we have to show that the sequence of abelian groups

0 — Homp(X, L) 5 Hompg (X, M) £+ Homp(X, N) is exact. In particular, we have to show

that f* is a mono and that Im f* = Ker g*.

Let us start considering o : X — L such that f*(«) = 0. So for any z € X f*(«a)(x) =
fa(x) = 0. Since f is a mono we conclude a(z) = 0 for any x € X, that is a = 0.

Consider now 8 € Im f*; then there exists @« € Hompg(X, L) such that § = f*(a) = fa.
Hence g*(8) = g8 = gfa =0, since gf = 0. So we get Im f* < Ker g*.

Finally, let 5 € Kerg*, so that g8 = 0 This means Imf3 < Kerg = Im f. For any x € X
define « as a(x) = f(B(x)): « is well-defined since f is a mono and clearly f = fa = f*(«).
So we get Ker g* < Im f* O

In a similar way one prove that the functor Hompg(—, X) is left exact. Notice that, since
Hompg(—, X) is a contravariant functor, left exact means that for any exact sequence in R-Mod
0—L— M — N — 0, the corresponding sequence of abelian groups 0 — Hompg(N, X) —
Homp (M, X) — Hompg(L, X) is exact.

Remark 10.9. Notice that if F' is an additive functor and 0 — L LMA N 0 is a split exact

sequence in R-Mod, then 0 — F'(L) iy F(M) iy F(N) — 0 is split exact. Indeed, since there
exists ¢ such that ¢ f = idy, (see Proposition 6.2), F(¢)F(f) = idp(ry, so F'(f) is a split mono.
Similarly one show that F(g) is a split epi.

In particular, for a given module X € R-Mod the functors Homp (X, —) and Hompg(—, X)
could be not exact. Nevertheless, if 0 - L - M — N — 0 is a split exact sequence in R-Mod,
then the sequence 0 — Hompg(X, L)— Hompg (X, M)— Homp(X, N) — 0 and the sequence 0 —
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Homp(N, X)— Hompg(M, X)— Hompg(L, X) — 0 are split exact. In particular Homp(X, L &
N) = Hompg(X, L) ® Hom( X, N) and Homg(L © N, X) = Homg(L, X) ®@ Hom( N, X)

One often wishes to compare two functors with each other. So we introduce the following
notion:

Definition 10.10. Let F and G two functors B — C. A natural transformationn : F — G
is a family of morphisms np : F(B) — G(B), for any B € B, such that for any morphism
«a: B — B’ in B the following diagram in C is commutative

F(B) —2 G(B)

F(Q)J J/G(a)

F(B) -2 G(B')
If np is an isomorphism in C for any B € B, then n is called a natural equivalence.

Two categories B and C are isomorphic if there exist functors F' : B — C and G : C — B such
that GF = 1z and F'G = 1¢. This is a very strong notion, in fact there are several and relevant
examples of categories B and C which have essentially the same structure, but where there is
a bijective correspondence between the isomorphism classes of objects rather than between the
individual objects. Therefore we define the following concept:

Definition 10.11. A functor F' : B — C is an equivalence if there exists a functor G :C — B
and natural equivalences GF — 1g and FG — 1¢

If the functor F' is contravariant and gives an equivalence between B°P and C, we say that F’
is a duality.

Proposition 10.12. A functor F : B — C is an equivalence if and only if it is full and faithful,
and every object of C is isomorphic to an object of the form F(B), with B € B.

11. EXERCISE

Ezercise 11.1. Let (P, <) be a partially ordered set. Let us define a category C in this way: the
objects of C are the elements of P, and with a unique morphism p — g whenever p < ¢, while
Home(p,q) = 0 if p £ ¢. Verify that the axioms [C1], [C2], [C3] are satisfied. This is an example
of a small category, i.e. a category where the class of objects is a set.

Exercise 11.2. Let ¢ : R — S be a homomorphism of rings. Each left S-module M has also
a structure of left R-module, defining rz := @(r)x for any x € M and any r € R. Let ¢* :
S-Mod — R-Mod, M — M, a — « for any M € S-Mod and for any o € Homg (M, N). Verify
that ¢* is an additive and faithful functor (called restriction of scalars)

FEzercise 11.3. A functor F is exact if and only if F(L) — F(M) — F(N) is exact whenever
L — M — N is exact.



11

12. PROJECTIVE MODULES

In general, for a given R-module M, the functor Hompg (M, —) is left exact but not right exact.
In this section we study the R-modules P for which Homp (P, —) is also right exact.

Definition 12.1. A module P € R-Mod is projective if Hompg (P, —) is an exact functor.

The right exactness is equivalent to require that for any M % N — 0 in R-Mod the homo-

morphism Hompg (P, M) Homn( ) Homp(P, N) is an epi, that is for any ¢ € Hompg(P, N) there
exists ¢ € Hompg (P, M) such that gy = ¢.

M—25N—>0

Ezample 12.2. Any free module is projective. Indeed, let R() a free R-module with (z;);es a
basis. Given M % N — 0 and ¢ : RY) — N in R-Mod, let m; € M such that g(m;) = o(x;) for
any ¢ € I. Define ¢(x;) = m; and, for z = > rz;, (x) = > rym;. We get that gip = ¢. Notice
that from the construction is clear that the homomorphism 1 could be not unique.

Proposition 12.3. Let P € R-Mod. The following are equivalent:
(1) P is projective
(2) P is a direct summand of a free module

(3) every exact sequence 0 — L LS pso splits.

Proof. 1 = 3 Let 0 — L LM % P 5 0 be an exact sequence in R-Mod and consider the
homorphism 1p : P — P. Since P is projective there exists ¢ : P — M such that g = 1p. By
Proposition 6.2 we conclude that the sequence splits.

3 = 2 The module P is a quotient of a free module, so there exist an exact sequence 0 — K EN
RO % p 5 0, which is split.

2= 1If RY) = P® L, then Homg (R, N) = Homg(P, N) ®Hompg(L, N) for any N € R-Mod.
So let us consider the homorphisms

M—295N—s0 and M—25N 0
K
Tv’ ; N T(%O)
N
P R

where (¢,0)(p +1) = @(p) +0(1) = p(p) for any p € P and | € L and « exists since R is
projective. Then a = (¢, ), with ¢ € Homg(P, N) and 8 € Hompg(L, N), where a(p +1) =
P(p) + B(1) for any p € P and I € L. Hence g(¢(p)) = g(a(p)) = ¢(p) for any p € P. So we

conclude that P is projective. O

Ezxample 12.4. (1) Let R be a principal ideal domain (for instance, R = Z). Then any
projective module is free. In particular, free abelian groups and projective abelian group
coincide.

(2) Let R = Z/6Z. Then Z/6Z = 3Z/6Z & 27 /6Z. The ideals 3Z/6Z and 2Z/6Z are
projective R-modules, but not free R-modules (why?)

Proposition 12.5. Let P € R-Mod. P is projective if and only if there exists a family (p;, x;)ic1
with ¢; € Homp(P,R) and x; € P such that for any x € P one has x = ), p;(x)x; where
vi(z) =0 for almost every i € I.

Proof. Let P be projective and let R() %P s0bea spli epi. Consider (e;);c; a basis of RU)
and define z; = ((e;). Observe that 5(3°, rie;) = >, miB(e;) = >, rix;. By Proposition 6.2,
there exists ¢ : P — RU) such that S¢ = idp, which induces homomorphisms ¢; = 7;¢ where
m; is the projection on the i-th component, so ¢;(x) € R for any i € I and ¢(z) = > pi(x).
Hence for any « € P one has z = fp(x) = (>, vi(z)) = >, wi(x)z;, so (¢s, x;)icr satisfies the
stated properties.
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Conversely, let (p;, x;)icr satisfy the statement and let § : RY — P, e; — x;. The ho-
momorphism § is an epi, since the family (z;);c; generates P, and B(>.r;) = > r;z;. Define
@: P — RY x> (). Then for any 2 € P one gets So(x) = (3 wi(z) = 3. wi(x)x; = 2.
By Proposition 6.2 we conclude that g is a split epi and so P is projective. O

Note that, from the results in the previous sections, the projective module g R plays a crucial
role in the category R-Mod, since for any M € R-Mod there exists an epi RY) — M — 0, for
some set I. A module with such property is called a generator and so R is a projective generator
for R-Mod.

In particular, for any M € R-Mod there exists a short exact sequence 0 - K — Py — M — 0,
with Py projective. The same holds for the module K, and so, iterating the argument, we can
construct an exact sequence

=P 2P >PFP—-M-=0

where all the P; are projectiveSuch a sequence is called a projective resolution of P. It is clearly
not unique.

It is natural to ask if, for a given M € R-Mod, there exists a projective module P and a
"minimal” epi P — M — 0, in the sense that fj;, : L — M is epi for no proper projective
submodule of P. More precisely, we define:

Definition 12.6. A homomorphism [ : M — N is right minimal if for any g € Endg(M) such
that fg = f, one gets g is an isomomorphism.

If Pyy is a projective module and Py — M is epimorphism right minimal, then Py is a projec-
tive cover of M.

Remark 12.7. Consider the diagram
0

T

P —— M ——0
N

" N 7 TQ
AN
P
where Pj; is a projective cover of M and P is a projective module. Since Pj; and P are
projective, there exist ¢ and ¥ such that the diagram commutes. Hence fi = g and gp = f,
so fip = f and, since f is an right minimal, we conclude ¥ is an iso. In particular ¢ is a
mono. Define 6 : P — Py as 6 = () 1p: then 0p = idp and so ¢ is a split mono (see
Proposition 6.2). We conclude that Py, is a direct summand of P. This explains the minimality
property of the projective cover announced above.
If also P is a projective cover of M, using the same argument we get that (1 is an iso, that
is ¢ = 1~ and Py is isomorphic to P. We have shown that the projective cover is unique
(modulo isomorphisms).

We state the following characterization of projective covers:

Theorem 12.8. Let P a projective module. Then P EN Vg 0 is a projective cover of M if
and only if Ker f is a superfluous submodule of P (i.e. for any submodule L < P, L+Ker f = P
implies L = P.)

Observe that, given M € R-Mod, a projective cover for M could not exist. A ring in which
any module admits a projective cover is called semiperfect
Let now M € R-Mod and suppose there exist a projective resolution of M

L PRBP AP R0

such that Py is a projective cover of M and P; is a projective cover of Ker f;_; for any i € N.
Such a resolution is called a minimal projective resolution of M.
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13. EXERCISE

Exercise 13.1. Let P, Pa,..., P, € R-Mod. Then ®;_; .. ,F; is projective if and only if P; is
projective for any i = 1,...,n.

Ezxercise 13.2. Let 0 = L — M — N — 0 a short exact sequence in R-Mod. If L and N are
projective, then M is projective

Ezxercise 13.3. Show that any abelian group nZ, n € N, is a projective Z-module.

14. BIMODULES

Definition 14.1. Let R and S rings. An abelian group M is a left R- right S-bimodule if M is a
left R-module and a right S-module such that the two scalar multiplications satisfy r(xs) = (rz)s
foranyre R, se€ S,z € M. We write gMg.

Ezample 14.2. Let M € R-Mod and consider S = End (M), the ring of homomorphism R-linear
of M, where homorphisms act on the right (i.e. mf = f(m) and m(fg) = g(f(m))). So M is a
right S-module (Verify!) and g Mg is a bimodule. Indeed (rm)f = f(rm) =rf(m) = r(mf) for
any r € R, me M and f € S.

Given a bimodule gpMg and a left R-module N, the abelian group Hompg (M, N) is natu-
rally endowed with a structure of left S-module, by defining (sf)(x) := f(xs) for any f €
Homp(M,N) and any x € M. (Verify! crucial point: (s1(s2f))(z) = (saf(zs1)) = f(xs182) =
((5182) f)()).

Similary, if g N7 is a left R- right T-bimodule and M € R-Mod, then Homg(M, N) is naturally
endowed with a structure of right T-module, by defining (ft)(x) := f(z)t (Verify! crucial point:
(f(t1t2))(2) = F@)(hitz) = (F(2)tn)ta = (f01)(@))t2 = ((fH1)E2) ().

Moreover, one can show that if gRMg and gNp are bimodules, then Homp(grMg, gN7) is a
left S- right T-bimodule (Verify!).

Arguing in a similar way for right R-modules, if s My and 7 Ng are bimodules, then the abelian
group Hompg (s Mg, 7 Ng) is aleft T- right S-bimodule, by (¢f)(x) = t(f(x)) and (fs)(z) = f(sz).
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15. INJECTIVE MODULES

In this section we study the R-modules E for which Homp(—, E) is an exact functor. Observe
that many results we are going to show are dual of those proved for projective modules.

Definition 15.1. A module E € R-Mod is injective if Hompg(—, F) is an ezxact functor.

The exactness is equivalent to require that for any 0 — L 5 Min R-Mod the homomorphism
Hompg(M, E) Homn(f.E) Hompg(L, E) is an epi, that is for any ¢ € Hompg(L, E) there exists
¥ € Homg (M, E) such that ¢ f = .

04>L4f>M

Any module is quotient of a projective module. Does the dual property hold? that is, given
any module M € R-Mod, is it true that M embeds in a injective R-module? In the sequel we
will answer to this crucial question.

An abelian group G is divisible if, for any n € Z and for any g € G, there exists ¢t € G such
that g = nt. We are going to show that an abelian group is injective if and only if it is divisible.
We need the the following useful criterion to check whether a module is injective, known as
Baer’s Lemma.

Lemma 15.2. Let E € R-Mod. The module E is injective if and only if for any left ideal J of
R and for any ¢ € Hompg(J, E) there exists ¢ € Hompg(R, E) such that ¥i = @, where i is the

canonical inclusion 0 — J = R.

The lemma states that it is sufficient to check the injectivity property only for left ideals of
the ring. In particular, the Baer’s Lemma says that E is injective if and only if for any rJ < gR
and for any ¢ € Hompg(J, E) there exists y € E such that p(z) = ay for any = € J.

Proposition 15.3. A module G € Z-Mod is injective if and only if it is divisible.

Proof. Let us assume G injective, consider n € Z and g € G and the commutative diagram

OEZHA
v
s
L
JK ¥

where p(sn) = sg for any s € Z and 1 exists since G is injective. Let ¢t = ¢(1), t € G. Then
w(n) = ¢(i(n)) implies g = nt and we conclude that G is divisible.

Conversely, suppose G divisible and apply Baer’s Lemma. The ideal of Z are of the form Zn
for n € Z, so we have to verify that for any ¢ € Homg(Zn, G) there exists ¢ such that

OHZn%

e
s
©
7
JK ¥

G
commutes. Let g € G such that p(n) = g. Since Z is a free Z-module, define (1) = ¢ where
g =nt and so ¢ (r) = rt for any r € Z. Hence p(sn) = sg = snt = ¢(i(sn)). O

The result stated in the previous proposition holds for any Principal Ideal Domain R (see
Exercise 16.1).

Example 15.4. The Z-module Q is injective.

Remark 15.5. Any abelian group G embeds in a injective abelian group. Indeed, consider a short
exact sequence 0 — K — Z) — G — 0 and the canonical inclusion in Z-Mod 0 — Z — Q.
One easily check that Q) /K is divisible (Verify!) and so injective. Then we get the induced
monomorphism 0 — G = Z0 /K — QU /K.
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Proposition 15.6. Let R be a ring. If D € Z-Mod is injective, then Homy (R, D) is an injective
left R-module

Proof. First notice that, since zRp is a bimodule, Homyz(R, D) is naturally endowed with a
structure of left R-module. In order to verify that it is injective, we apply Baer’s Lemma. So let
rI < gR and h: I — Homz(R, D) an R-homomorphism. Then v : I — D, a — h(a)(1) defines
a Z-homomorphism and, since D is an injective abelian group, there exists 7 : R — D which
extends v. Now we have, for any a € I and r € R,

(@7)(r) =7(ra) = ~(ra) = [h(ra)](1) = [rh(a)](1) = [A(a)](r)

so h(a) = a7 for any a € I. Hence we conclude Homz(R, D) is injective by Baer’s Lemma. [

Corollary 15.7. Let M € R-Mod. Then there exists an injective module E € R-Mod and a
monomorphism 0 - M — FE.

Proof. Consider the isomorphism of Z-modules ¢ : Homg(R, M) — M, f — f(1). Observe that
since rRg is a left R- right R-bimodule, then Homg (R, M) is naturally endowed with a structure
of left R-module. One easily check that ¢ is also R-linear, hence gM = Hompg(Rgr, M) <
Homgz(Rgr, M). By Remark 15.5, there is a mono of Z-modules 0 — M — G from which we
obtain a mono of R-modules 0 — Homz(Rr, M) — Homgz(Rg, G), where Homz(Rp,G) is an
injective left R-module by Proposition 15.6. O

Since any module M embeds in a injective one, it is natural to ask whether there exists a
”minimal” injective module containing M.

Definition 15.8. A homomorphism f : M — N is left minimal if for any g € Endg(N) such
that gf = f, one gets g is an isomomorphism.

If Epy ois an injective module and M — Ejp; is a monomorphism left minimal, then Ep; is an
injective envelope of M.

Remark 15.9. Consider the diagram
0

|

0—— M — Ey

P s
gy -
R
X
E

where E)s is an injective envelope of M and F is an injective module. Since Fj; and F are
injective, there exist ¢ and @ such that the diagram commutes. Hence g = f and ¢f = g, so
Yof = f and, since f is left minimal, we conclude that 1y is an iso. In particular ¢ is a mono
and so it is a split mono. We conclude that E}; is a direct summand of F. This explains the
minimality property of the injective envelope announced above.

If also E' is an injective envelope of M, using the same argument we get that i is an iso,
that is ¢ is an iso and Fj; is isomorphic to E. We have shown that the injective envelope is
unique (modulo isomorphisms).

We state the following characterization of injective envelope.

Theorem 15.10. Let E be an injective module. Then 0 — M 4 Eisan injective envelope if
and only if Im f is an essential submodule of M (i.e. for any submodule L < E, LNIm f # {0})

Proof. Suppose 0 — M i> E is an injective envelope and let L < E such that L N Im f = {0}.
Then Im f & L < E and we can consider the commutative diagram

0— M —Lmfer—g

(id,0) -
fl -
— - Lp

E

where i is the canonical inclusion of Im f@ L in E and ¢ exists since E is injective. Then ¢f = f
but ¢ is clearly not an iso.
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Conversely, let Im f be essential in M and let g € Endgr(F) such that gf = f. Since f is
an essential mono we conclude that g is a mono (see Exercise 16.4), so it is a split mono. In

®
particular, Im f < Img < E, contradicting the essentiality of Im f. (]

Not every module has a projective cover. Thus the next result is especially remarkable
Theorem 15.11. Every module has an injective envelope.

Proof. Let M € R-Mod; by Corollary 15.7 there exists an injective module @} such that 0 —
M — Q. Consider the set {E'| M < E' < @ andM essential in E’}. One easily check that it
is an inductive set so, by Zorn’s Lemma, it contains a maximal elemnt F. Let us show that F
is a direct summand of @) and so E is injective (see Exercise 16.3). To this aim, consider the set
{F/|F' <@ and F' N E = 0}. Tt is inductive so, again by Zorn’s Lemma, it contains a maximal
element F'. Then there exists an obviousiso g: E® F/F — FE and E® F/F < Q/F: from the
maximality of F it follows that F @ F/F < Q/F is an essential inclusion (Verify!) so consider
the diagram

0— s BaF/F1 Q/F

%

where j is the canonical inclusion and ¢ exists since @ is injective. Moroever ¢ is a mono since
wj = g is a mono and j is an essential mono (see Exercise 16.4). It follows that M is essential
in E=Img and F =Img = p(E® F/F) is essential in Im . Thus M is essential in Im ¢ so,
from the maximality of E we conclude that E' = Im ¢ and hence p(E @ F/F) = ¢(Q/F). Since
© is a mono we conclude £ @ F = Q. O

Proposition 15.12. Let E € R-Mod. The following are equivalent:
(1) E is injective
(2) every exact sequence 0 — E LS N0 splits.

Proof. 1 = 2 Consider the commutative diagram

where ¢ exists since F is injective. Since ¢f = idg, by Proposition 6.2 we conclude that f is a
split mono.

2 = 1 By Corollary 15.7 there exists an exact sequence 0 - E — F' — N — 0, where F' is
an injective module. Since the sequence splits, we get that E is a direct summand of a injective
module, and so F is injective (see Exercise 16.3). O

Comparing the previous proposition with the analogous one for projective modules (see Propo-
sition 12.3), there is an evident difference. Speaking about projective modules, we saw that a
special role is played by the projective generator R. Does a module with the dual property exist?
An injective module E € R-Mod such that any M € R-Mod embeds in E'™ | for a set Iy, is
called an injective cogenerator of R-Mod. We will see in the sequel that such a module always
exists.

Remark 15.13. Dualizing what we showed in the projective case, for any module M € R-Mod

there exists a long exact sequence 0 — M e Ey By by 53 FEy — ..., where the E; are injective.
This is called an injective coresolution of M. If Ey is an injective envelope of M and E; in
an injective envelope of Ker f; for any 7 > 1, then the sequence is called a minimal injective
coresolution of M.
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16. EXERCISES
Ezercise 16.1. Let R be a Principal Ideal Domain. Prove that an R-module is injective if and
only if it is divisible.
Ezercise 16.2. Let G be a divisible abelian group. Then GY) and G/N are divisible, for any set
I and for any subgroup N of G.

Ezercise 16.3. Let E; for i =1,...,n in R-Mod. Then ,; E; is injective if and only if Ej is
injective for any : = 1...n.

Ezxercise 16.4. A monomorphism 0 — L — M is R-Mod is called essential monomorphism if
Im L is essential in M. Prove that if f is an essential morphism and gf is a mono, then g is a
mono.

Exercise 16.5. Let 0 — M 2 L and 0 — L % N two essential monomorphism. Show that gf is
an essential monomorphism.
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17. ON THE LATTICE OF SUBMODULES OF M

Let M € R-Mod and consider the partially ordered set £y; = {L|L < M}. Then Ly is a
complete lattice, where for any N, L € £, sup{N,L} = L + N and inf{N,L} = LN N. The
greatest element of £, is M and the smallest if {0}.

Given an arbitrary module M € R-Mod, it is natural to ask whether minimal or maximal
elements of £ exist. They are exactly the maximal submodules of M and the simple submodules
of M, respectively. More precisely we introduce the following definitions:

Definition 17.1. A module S € R-Mod is simple if L < S implies L = {0} or L= 5.
A submodule N < M is a maximal submodule of M if N < L < M implies L =N or L =M.

Ezample 17.2. (1) Let K be a field. Then K is the unique ( modulo isomorphisms) simple
module in K-Mod.
(2) In Z-Mod any abelian group Z/Zp with p prime is a simple abelian group. So in Z-Mod
there are infinite simple modules.
(3) The regular module Z does not contain any simple submodule, since any ideal of Z is of
the form Zn and Zm < Zn whenever n divides m.

In general, it is not true that any module contains a simple or a maximal submodule. Never-
theless we have the following result (see also Exercise 18.1)

Proposition 17.3. Let R be a ring and rI < grR. There exists a mazimal left ideal M of R
such that I < M < R. In particular R adimits maximal left ideals.

Proof. Let F = {L|I < L < R}. The set F is inductive since, given a sequence Lo < Ly < ...,
the left ideal |J L; contains all the L; and it is a proper ideal of R. Indeed, if |JL; = R, there
would exist an index j € N such that 1 € L; and so L; = R. So by Zorn’s Lemma, F has a
maximal element, which is clearly a maximal left ideal of R. (|

Ezxample 17.4. Consider the regular module Z. Then Zp is a maximal submodule of Z for any
prime number p. Moreover the ideal Zn is contained in Zp for any p such that p|n.

Remark 17.5. Let M < R a maximal left ideal of R. Clearly R/M is a simple R-module, and
this shows that simple modules always exists in R-Mod, for any ring R.

Conversely, let S € R-Mod be a simple module. So S = Rx for an element z € S and let
Anng(z) = {r € Rjrz = 0}. Anng(x) is a maximal left ideal of R, since it is the kernel of the
epimorphism ¢ : R — S, 1 — z, and hence S = R/Anng(x).

Finally, for any simple module S consider the module Anng(S) = Nyes Anng(x). It is easy
to show that Anng(S) is a two-sided ideal of R, called the annihilator of the simple module S
(see Exercise 18.2).

The simple modules play an crucial role in the study of the category R-Mod, for instance:

Proposition 17.6. Let E € R-Mod be an injective module. The module E is a cogenerator of
R-Mod if and only if for any simple module S € R-Mod there exists a mono 0 — S — Els | for
a set Ig.

Proof. Assume for any simple module S € R-Mod there exists a mono 0 — S 3 E's_ for a
set Ig. Then there exist j € Is such that mj o f : § — E is not the zero map. So, since
Ker(m; o f) < S, we get that for any simple module S there exists a mono m; 0 f : S — E. Let
now M € R-Mod, and x € M, z #0. So Rz < M and Rx = R/Anng(z). By Proposition 17.3
there exists a maximal submodule M < R such that Anng(z) < M. Consider the diagram

0—— Rx 2 R/Anng(x) —— M
//
| /
/
R/IM=S 7
J y
7/
%4
E

where ¢, : M — E exists since F is injective. In particular ¢, (x) # 0. Hence we can construct
amono ¢: M — EM 2+ (0,0,...,0,¢0,(z),0,...,0), where o, (z) is the z*" position. O

P
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Corollary 17.7. Let {Sx}xea be a set of representative of the simple modules (modulo isomor-
phisms) in R-Mod. Then the injective envelope E(®Sy) is a minimal injective cogenerator of
R-Mod

Proof. The injective module E(®S)) cogenerates all the simple modules, so by the previous
Proposition it is an injective cogenerator. If W is a injective cogenerator of R-Mod, since
Sy < W for any A € A (see the argument in the previous proof) one gets @Sy < W. Since

o
E(®S)) is the injective envelope of @Sy, we conclude E(®S)) < W. O

Remark 17.8. If there is a finite number of simple modules in R-Mod (modulo isomorphisms),
S1, Sa, ..., Sy, then E(®S;) = @E(S;) is a minimal injective cogenerator of R-Mod

Definition 17.9. Let M € R-Mod. The socle of M is the submodule Soc(M) = > {S|S is a simple
submodule of M}. The radical of M is the submodule Rad(M) = N{N|N is a maximal submodule of M }.

Remark 17.10. If M does not contain any simpe module, we set Soc(M) = 0. If M does not
contain any maximal submodule, we set Rad(M) = M.

In the next Proposition we list some important properties of the socle and of the radical of a
module. We leave the proofs for exercise.

Proposition 17.11. Let M € R-Mod.

(1) Soc(M) = ®{S|S is a simple submodule of M}. In particular, Soc(M) is a semisimple
module.

2) Soc(M) =nN{LI|L is an essential submodule of M?}.

3) Rad(M) = > _{U|U is a superfluous submodule of M}.

4) Let f : M — N. Let f(Soc(M)) < Soc(N) and f(Rad(M)) < Rad(N).

5) if M = ®xeaMy, then Soc(M) = @rea Soc(My) and Rad(M) = @®xep Rad(M)y).

6) Rad(M/Rad(M)) =0 and Soc(Soc(M)) = Soc(M).

7) If M is finitely generated, then Rad(M) is a superfluous submodule of M.

Remark 17.12. Tt is clear that the radical can be described also by
Rad(M) = {z € M| ¢(z) =0 for every ¢ : M — S with S simple}

Indeed, given ¢ : M — S with S simple, the kernel of ¢ is a maximal submodule of M.
Conversely, if N is a maximal submodule of M, then consider 7 : M — M/N where M/N is
simple.

A crucial role is played by the radical of the regular module rR.

Definition 17.13. Let R be a ring. The Jacobson radical of R is the ideal Rad(rR). It is
denoted by J(R).

By the Remarks 17.5 and 17.12, the Jacobson radical of R can be described as the intersection
of the annihilators of the simple left R-modules Anng(S). In particular it is two-sided ideal of
R.

Lemma 17.14. For every M € R-Mod, J(R)M < Rad(M)

Proof. Since J(R) annihilates any simple module S, all homomorphisms M — S are zero on
J(R)M so, by Remark 17.12, J(R)M < Rad(M) O

Proposition 17.15 (Nakayma’s Lemma). Let M be a finitely generated R-module. If L is a
submodule of M such that L + J(R)M = M, then L = M.

Proof. L+ J(R)M = M implies L + Rad(M) = M and since Rad(M) is superfluous in M (see
Proposition ??) we get L = M. O

We conclude with the following characterization of J(R)

Proposition 17.16. J(R) = {r € R|1 — xr has a left inverse for any © € R}



20

18. EXERCISE

Ezercise 18.1. Let M € R-Mod be finitely generated. Show that, for any L < M, there exists a
maximal submodule of M containing L. In particular, Rad(M) < M.

Ezercise 18.2. Show that, for any simple module S € R-Mod, Anng(S) is a two-sided ideal of
R.

Ezercise 18.3. Let p € N a prime and M = {ﬁ €Q|a€Z,neN}.
(1) Verify that Z < M < Q in Z-Mod.
(2) Let Zpo = M/Z. Show that Zy is a divisible group.
(3) show that any L < Z, is cyclic, generated by an element ﬁ, leN.

Conclude the the lattice of the subgroups of Zy~ is a well-ordered chain and so Zp~ does not
have any maximal subgroup.

19. LOCAL RINGS

Definition 19.1. A ring R is a local ring if all the non-invertible elements form a proper ideal

of R.

In other words, setting U(R) = {z € R| z is invertible}, R is a local ring if R\ U(R) is a left
ideal of R. One easily shows that R\ U(R) is a left ideal if and only if it is a two-sided ideal of
R (Verify!).

Proposition 19.2. Let R be a local ring. Then

(1) R\ U(R) is the Jacobson radical J(R) of R.

(2) R/J(R) is a division ring.

(3) there is a unique simple module (modulo isomorphisms) in R-Mod, S = R/J(R). In
particular E(R/ J(R)) is the minimal injective cogenerator of R-Mod.

(4) The unique idempotent elements in R are 0 and 1.

Proof. 1) Given a ring R, any left ideal of R is contained in R\ U(R). So, if R is local, R\ U(R)
is the unique maximal ideal of gR. In particular R\ U(R) is the Jacobson radical J(R) of R.
2) is obvious, since every element in R/ J(R) is invertible.

3) It follows since J(R) is the unique maximal ideal of R.

4) Let e an idempotent element in a ring R. Observe that from e(1 —e) = 0, if e is invertible
one gets e = 1. So, if R is local and e is a not invertible idempotent, then e € R\ U(R) = J(R)
and so the idempotent 1 — e € U(R) (otherwise we would have 1 € J(R)). Hence, 1 —e =1 and
so e = 0. We conclude that the only idempotents in R are the trivial ones, i.e. 0 and 1. O

Remark 19.3. If R is a local ring, then rR is an indecomposable R-module, since the direct
summands of rR correspond to the idempotent elements of R (see Exercise 9.4).

If M € R-Mod and Endgr(M) is a local ring, then M is indecomposable. Indeed, to any
decomposition M = N @ L, we can associate an idempotent element 7 € Endg(M), 7y : M —
M, n+1+ n. Thus 7y =0 or 7y = idps in Endg(M), from which we get N =0 or N = M,
respectively.

20. FINITE LENGTH MODULES

Let M € R-Mod. A sequence 0 = Ny < N7 <--- < Ny 1 < Ny = M of submodules of M is
called a filtration of M, with factors N;/N;_1,i =1,---,s. The length of the filtration is the
number of non-zero factors.

Consider now a filtration 0 = Nj < Ny < --- < N/_; < N; = M; it is a refinement of the
latter one if {V;| 0 <i < s} C{N/|0<i<t}.

Two filtrations of M are said equivalent if s = ¢ and there exists a permutation o : {0,1,--- s} —
{0,1,---, s} such that N;/N;_; = C’r(i)/]\ft’y(ifl)7 fori=1,---,s.

Finally, a filtration 0 = Ny Ny < --- < Ng_1 < Ng =M of M is a composition series
of M if the factors N;/N;_1, i = 1,---,s, are simple modules. In such a case they are called
composition factors of M.

I IA

Theorem 20.1. Any two filtrations of M admit equivalent refinements.
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Proof. The proof follows from the following Lemma: Let Uy < U < M and Vi3 < Vo < M. Then
(U1 +UanVa) /(U1 +ViNUs) = (U NVa) /(U1 NVa) + (U + V1) =2 (Vi+ U N Vo) /(Vi+ Ui N V)

In our setting, consider 0 = Ng < N3 <--- < Ny 1 < Ny=Mand0=Ly <1 <---<Ls 1 <
L, = M two filtrations of M. For any 1 <i < sand 1 <j <t define N; ; = N;_1 + (L; N N;)
and Lj;=L;j_1+ (Nj N Lz) Then

0=Nipg<N 1 < <N <Nopg<---<Noy <...Ngy =M
is a refinement of the first filtration with factors F; ; = N; ;/N; j—1 and
0=L10< 11 < <L KL< <Ly <... L1 s =M

is a refinement of the second filtration with factors G ; = L; ;/L;—1. Clearly the two refinements
have the same length st and by the stated lemma F; ; =2 G ;. 0

As a corollary of the previous Theorem, we get the following crucial result, known as Jordan-
Holder Theorem:

Theorem 20.2 (Jordan-Hélder). Let M € R-Mod a module with a composition series of length
l. Then

(1) Any filtration of M has length at most | and it can be refined in a composition series of
M.
(2) All the composition series of M are equivalent and have length [.

Proof. The proof follows by the previous proposition, since a composition series does not admit
any non trivial refinement. O

This leads to the following definition:

Definition 20.3. A module M € R-Mod is of finite length if it admits a composition series.
The length | of any composition series of M is called the length of L, denoted by l(M).

Example 20.4. (1) Any vector space of finite dimension over a field K is a K-module of
finite length. Its length coincides with its dimension.
(2) The regular module zZ is not of finite length.

In the following proposition we collect some relevant properties of finite length modules: some
of them are trivial, some of them need a short proof that we leave for exercise.

Proposition 20.5. Let M € R-Mod be a finite length module. Then

(1) M is finitely generated

2) for any N < M, N and M /N are of finite length

) If0 = N = M — L — 0 is an exact sequence, then [(M) =1(N)+ (L)
) M s a direct sums of indecomposable submodules.

) Soc(M) is an essential submodule of M

) M/Rad(M) is semisimple (i.e. direct sum of simple modules)

) M contains a finite number of simple modules

(
(3
(4
(5
(6
(7

Proof. 4) If M is indecomposable the statement is trivially true. Otherwise we argue by induction
on [(M). If M =V} & Va, by point 3) we get that I(V}) < I(M) and (V) < (M), so V; and V3
are direct sums of indecomposable submodules.

5) Any L < M has a composition series, so it contains a simple submodule, which is of course
also a simple submodule of M.

6) By induction on [(M/Rad(M))

7) Any simple submodule of M is a direct summand of Soc(M). Since Soc(M) is finitely
generated (by (1) and (2)), it has only a finite number of summands. O

For modules of finite length the converse of Remark 19.3 holds.

Lemma 20.6. Let M € R-Mod a module of finite length (M) = n. Then, for any f: M — M,
one has M = Im f" @ Ker f".
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Proof. Consider the sequence of inclusions --- < Imf?2 < Imf < M. Since M has finite
length, the inclusions are trivial for almost every ¢ € N. In particular, there exists m such that
Im f™ = Im f>™ and we can assume m = n. Let now € M: hence f"(z) = f>"(y) fory € M
and so x = f"(y) — (z — f™*(y)) € Im f™ + Ker f™.

Moreover, from the sequence of inclusions 0 < Ker f < Ker f2 < --- < M, arguing as before
we can assume Ker f* = Ker f2*. Consider now x € Im f* N Ker f*. So z = f"(y) and
f™(z) = f?*(y) = 0. Hence y € Ker f* and so x = f*(y) = 0. O

Proposition 20.7. Let M € R-Mod an indecomposable module of finite length. Then Endg(M)
is a local ring

Proof. Let f: M — M. Since M is indecomposable, by the previous lemma one easily conclude
that f is a mono if and only if it is an epi if and only if it is an iso if and only if f™ # 0 for any
m € N (see Exercise 21.1).

Thus let U = {f € Endr(M)|f is invertible }. Let us show that Endr(M) \ U is an ideal
of Endr(M). So let f, g in Endr(M) \ U. The crucial point is to show that f + ¢ is not
invertible (see Exercise 21.1). If f + g would be invertible, there would exist h € U such that
(f+g)h =idys. Since g ¢ U, then gh ¢ U, so gh would be nilpotent. Let r such that (gh)" = 0:
from (idps —gh)(idas +gh + (gh)? + -+ + (gh)"™1) = idy we would conclude fh € U and so

felU. O
Theorem 20.8 (Krull-Remak-Schimdt-Azumaya). Let M =2 Ay @ Ao @ - P A, 2 C1 DCy @
-+ @ C,, where Endg(A4;) is a local ring for any i =1,--- ,m and C; is indecomposable for any
j=1,---,n. Then n = m and there exists a bijection o : {1,--- ., n} = {1,--- ,n} such that

A 2 Cyyy foranyi=1,--- n.

Proof. By induction on m.

If m =1, then M = A; is indecomposable and so we conclude.

If m > 1, consider the equalities

n n
idAm = 7TAmiAm =TA,, (Z icjﬂcj)iAm = ZTFAmicjﬂ'CjiAm,
j=1 j=1

where 7 and ¢ are the canonical projections and inclusions. Since Endg(A,,) is local, and in
any local ring the sum of not invertible elements is not invertible, there exist j such that o =
FAmicjf,WcjiAm is invertible. We can assume j = n, and consider v = a‘lwAmicn :C, — A,
Since Y7, ia, = o~ !, we get that v is a split epimorphism. Since C,, is indecomposable, we
conclude + is an iso, and so C,, & A,,. Then apply induction to get the thesis. O

The previous theorem says that if M is a module which is a direct sum of modules with
local endomorphism rings, then any two direct sum decompositions of M into indecomposable
direct summands are isomorphic. We conclude that the modules of finite length admits a unique
(modulo isomorphisms) decomposition in indecomposable modules

21. EXERCISES

Ezercise 21.1. Let M an indecomposable R- module of finite length and f € Endg(M). Show
that the following are equivalent:
(1) fis a mono
(2) fisan epi
(3) fisaniso
(4) f is not nilpotent.
In particular, if f is not invertible, then gf is not invertible for any g € Endg(M). Which of the
previous implications hold also if M is of finite length but not indecomposable?

Ezercise 21.2. Let M be an R-module.
(1) Let Ml,Mg S M such that M1 + Mg = M. Show that M/M1 N M2 = Ml/Ml N M2 D
My /M; 0 Ms.
(2) Suppose Rad(M) = My N My, where M; and My are maximal submodules of M. Show
that M/Rad(M) = S1 ® Se where S; and Sy are simple R-modules.
(3) Let M be a finite length R-module. Show that M/Rad(M) is semisimple.
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22. FINITE DIMENSIONAL K-ALGEBRAS

Definition 22.1. Let K be a field. A K-algebra A is a ring with a map K x A — A, k — ka,
such that A is a K-module and k(ab) = a(kb) = (ab)k for any k € K and a,b € A. A is finite
dimensional if dimg (A) < 0.

In other words, a K-algebra is a ring with a further structure of K-vector space, compatible
with the ring structure.

Remark 22.2. Any element k € K can be identify with an element of A by means of K x A — A,
k — k- 1. Thanks to this identification, we get that KX < A so any A-module is in particular a
K-module.

Ezample 22.3. (1) Thering M, (K) is a finite dimensional K-algebra. with dimg (M, (K)) =
n?. Any element k € K is identified with the diagonal matrix with k on the diagonal
elements.

(2) The ring K|[z] is a K-algebra, not finite dimensional.

Proposition 22.4. Let A be a finite dimensional K-algebra. Then M € A-Mod is finitely
generated if and only if dimg (M) < oco.

Proof. Assume dimg(A) =n and {aq,...,a,} a K-basis.
If {m1,...,m,} is a set of generator of M as A-module, then one verifies that {a,m; }Z;l;
is a set of generators for M as K-module.
Conversely, if M is generated by {mi,...,ms} as K-module, since K < A, one gets that M
is generated by {mi,...,ms} also as A-module.
O

In the following we denote by A-mod the full subcategory of A-Mod consisting on the finitely
generated A-modules.

Corollary 22.5. Any finitely generated module M € A-mod is a finite length module, and
(M) < dimg(M).

Proof. Since any M € A-mod is a finite dimensional vector space, M admits a composition series
in K-mod of length n, where dimg (M) = n. So any filtration of M in A-Mod is at most of
length n and any refinement is a refinement also in K-mod. Thus we conclude. O

Proposition 22.6. Let M, N € A-mod. Then Homu (M, N) is a finitely generated K-module.
In particular, T' = Endp (M) is a finite dimensional K -algebra and My is finitely generated.

Proof. The K-module Homy (M, N) is a K-submodule of Homg (M, N), and the latter is finitely
generated by a well-known result of linear algebra. Thus Homy (M, N) is finitely generated as
K-module. In particular, I' = Homy (M, M) is a finite dimensional K-algebra. Since M has a
natural structure of right I'-module and it is a finitely generated K-module, it is also a finitely
generated I'-module. O

In the sequel, let A be a finite dimensional K-algebra.

Since pA is of finite length, it admits a unique decomposition in indecomposable submodules.
The indecomposable summands of a ring are in correspondence with the idempotent elements, so
there exists a set {e1, €a,...,e,} of idempotents of A such that \A = Ae; @... Ae,. Moreover we
can assume 1 = e;+- - -+e,, and one easily shows that e;e; = 0 for any i # j (a set of idempotents
with this property is called orthogonal). Finally since Ae; are indecomposable, each idempototent
e; is primitive (i.e. it cannot be a sum of two non-zero orthogonal idempotents, see Exercise 23.1).
Notice that Ay = e1A®---Pe,A is a decomposition in indecomposable summands of the regular
right module Ay. From this discussion it follows that, for ¢ = 1,...,n, the P, = Ae; are the
indecomposable projective left A-modules and the @Q; = e;A are the indecomposable projective
right A-modules (Why?).

Consider the functor D : A-mod — mod-A, M — D(M) = Homg (, M, K). For simplicity,
we denote by D the analogous functor D : mod-A — A-mod, N — D(N) = Hompg (Ny, K).
For any M € A-mod define the evaluation morphism 8§y : M — D*(M), z +— &pr(x), where
Im(x) : D(M) — K, ¢ — @(x). One easily verify that das is an isomorphism for any M € A-mod.
Similarly one define 6 for any N € mod-A, which is an iso for any N.
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It turns out that § : D? — 1 is a natural transformation which defines a duality between A-mod
and mod-A. So P is indecomposable projective in A-mod if and only if D(P) is indecomposable
injective in mod-A. S is simple in A-mod if and only if D(S) is simple in mod-A (Why?)

Thanks to the duality (D, D), we conclude that D(A,) is the minimal injective cogenerator of
A-mod and the E; = D(Q);) are the unique indecomposable injective modules in A-mod. Observe
that if S and T" are non isomorphic simple modules in A-mod, then their injective envelopes E(S)
and E(T) are non isomorphic indecomposable injective modules (Why?). We conclude that there
is a finite number of simple left A-modules S1,S>,....5,.

Observe that in mod-A there exist injective envelopes so, thanks to the duality, we get that
in A-mod there exist projective covers. Let us see how to compute injective envelopes and
projective covers.

First observe that, denoted by J = J(A), for any M € A-mod the submodule J M is superfluous
in M 17.11. In particular Je; is superfluous in Ae;, so Ae; is the projective cover of Ae;/ Je;
(see 12.8). Moreover, since Ae; is indecomposable, we get that Ae;/ Je; is a simple module (see
Exercise 23.2) and so Je; is a maximal submodule of Ae;. We conclude that S; = Ae;/ Je; is a
complete list of the simple modules in A-mod. Similarly, T; = e;A/e; J is a complete list of the
simple modules in mod-A. Notice that, as a consequence of the the above discussion, we get that
J ey is the radical of Ae; (Why?). One can show that the same result holds for any M € A-mod:
Rad(M) =J M.

Since S; = D(T;), we get that F; = D(Q;) is the injective envelope of S;.

How to compute injective envelopes and projective covers for any M € A-mod? Since it is
of finite length, M/Rad(M) and Soc(M) are semisimple. Let M/Rad(M) = S1&---® S,
(eventually with a certain multiplicity). Then P(M) = P(S1) ® --- & P(S,). Similarly, if
Soc(M)=S51® - ® Sy, then E(M) = E(S1) ® -+ ® E(Sy,). (see Exercises 23.3 and 23.4).

To conclude: in A-mod the simples are the S; = Ae;/ Je;, the indecomposable projectives
are the P; = Ae;, the indecomposable injectives are the E; = D(e;A). The regular module A
is the minimal projetive generator of A-mod and D(A,) is the minimal injective cogenerator of
A-mod. Moreover P; is the projective cover of S; and F; is the injective envelope of S;.

In mod-A the simples are the T; = Ae;/ Je; = D(S;), the indecomposable projectives are the
Q; = e;A, the indecomposable injectives are the F; = D(Ae;). The regular module Ay is the
minimal projetive generator of mod-A and D(5A) is the minimal injective cogenerator of mod-A.
Moreover @); is the projective cover of T; and F; is the injective envelope of Tj;.

23. EXERCISES

Exercise 23.1. A idempotent element e € A is called primitive if it is not a sum of two non zero
orthogonal idempotents. Show that Ae is indecomposable if and only if e is primitive.

Exercise 23.2. Let A a finite dimensional algebra. Let M = N; @& Ny and assume that P; and
P, are projective covers of N1 and Ns, respectively. Show that P, & P» is the projective cover
of M. Similarly, assume that F; and E5 are the injective envelopes of N1 and Na, respectively,
then E; & F5 is the injective envelope of M.

Ezercise 23.3. Let M € A-mod and Soc(M) = S1 @ ... S,. Show that there exists an essential
monomorphism 0 — M — E(S1) @ -+ @ E(S,) and conclude that E(M) = E(Soc(M)) =
E(S1)®---® E(Sy).(Hint: Soc(M) is essential in M, so...)

FEzercise 23.4. Let M € A-mod and M/ Rad(M) = S1...S,. Show that there exists a superflu-
ous epimorphism M — P(S1) @& --- ® P(S,) — 0 and conclude that P(M) = P(M/Rad(M)) =
P(S1)® -+ @ P(Sy). (Hint: Rad(M) is superfluous in M, so...)



