
1. Rings and Modules

Recall that a ring is a system (R,+, ·, 0, 1) consisting of a set R, two binary operations,
addition (+) and multiplication (·), and two elements 0 6= 1 of R, such that (R,+, 0) is an
abelian group, (R, ·, 1) is a monoid (i.e., a semigroup with identity 1) and multiplication is left
and right distributive over addition. A ring whose multiplicative structure is abelian is called a
commutative ring.

Example 1.1. (1) Z, Q, R, C are commutative rings.
(2) Let K be a field; the ring K[x1, . . . , xn] of polynomials in the indeterminates x1, . . . , xn

is a commutative ring.
(3) Let K be a field; consider the ring R = Mn(K) of n× n-matrices with coefficients in K

with the usual ”rows times columns” product. Then R is a non-commutative ring

Definition 1.2. A left R-module is an abelian group M togheter with a map R ×M → M ,
(r,m) 7→ rm, such that for any r, s ∈ R and any x, y ∈M

M1 r(x+ y) = rx+ ry
M2 (r + s) = rx+ sx
M3 (rs)x = r(sx)
M4 1x = x

We write RM to indicate that M is a left R-module.

Example 1.3. (1) Any abelian group G is a left Z-module by defining, for any x ∈ G and
n > 0, nx = x+ · · ·+ x︸ ︷︷ ︸

n times

.

(2) Given a field K, any vector space V over K is a left K-module.
(3) Let R be the matrix ring Mn(K) and consider the vector space V = Kn. Given a matrix

A and a vector v ∈ V , let Av the usual ”rows times columns” product. Then V is a left
R-module.

(4) Any ring R is a left R-module, by using the left multiplication of R on itself. It is called
the regular module.

(5) Consider the zero element of the ring R. Then the abelian group {0} is trivially a left
R-module.

Remark 1.4. Consider M an abelian group and Endl(M) the ring of the endomorphism of M

acting on the left (i.e. fg(x) = f(g(x)). A representation of R in Endl(M) is a homomorphism
of ring

λ : R→ Endl(M), r 7→ λ(r)

From the properties of ring homomorphisms it follows that for any r, s ∈ R and x, y ∈M
(1) λ(r)(x+ y) = λ(r)x+ λ(r)y
(2) λ(r + s)x = λ(r)x+ λ(s)x
(3) λ(rs)x = λ(r)(λ(s)x)
(4) λ(1)x = x

In other words, we can consider λ(r) acting on the elements of M as a left multiplication by the
element r ∈ R: then we can define rx := λ(r)x, and this gives a structure of left R-module on

M . Conversely, to any left R-module M , we can associate a representation of R in Endl(M), by
defining λ(r) := rx.

Similarly, we define right R-modules:

Definition 1.5. A right R-module is an abelian group M togheter with a map M × R → M ,
(m, r) 7→ mr, such that for any r, s ∈ R and any x, y ∈M

M1 (x+ y)r = xr + yr
M2 x(r + s) = xr + xs
M3 x(rs) = (xr)s
M4 x1 = x

We write MR to indicate that M is a right R-module.

For the connection between right modules and representations see Exercise 4.5.
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If R is a commutative ring, then left R-modules and right R-modules coincide. Indeed, given
a left R-module M with the map R×M →M (r,m) 7→ rm, we can define a map M ×R→M
(m, r) 7→ mr := rm. This map satisfies the axioms of Definition 1.5 (Verify!) and so M is also a
right R-module. The crucial point is that, in the third axiom, since R is commutative we have
x(rs) = (rs)x = (sr)x = s(rx) = (rx)s = (xr)s.

Example 1.6. Consider the ring R = Mn(K) and V the vector space of the columns Mn×1(K).
This is in a obvious way a left R-module but not a right R-module. Similarly, the vector space
of the rows M1×n(K) is a right R-module but not a left R-module.

Exercise 1.7. Show that given RM , for any x ∈M and r ∈ R, we have

(1) r0 = 0
(2) 0x = 0
(3) r(−x) = (−r)x = −(rx)

Definition 1.8. Let RM be a left R-module. A subset L of M is a submodule of M if L is a
subgroup of M and rx ∈ L for any r ∈ R and x ∈ L (i.e. L is a left R-module under operations
inherit from M). We write L ≤M .

Example 1.9.

(1) Let G be a Z-module. The submodules of G are exactly the subgroups of G.
(2) Let K a field and V a K-module. The submodules of V are exactly the vector subspace

of K.
(3) Let R a ring. The submodules of the left R-module RR are the left ideals of R. The

submodules of the right R-module RR are the right ideals of R.

Definition 1.10. Let RM be a left R-module and L ≤ M . The quotient module M/L is the
quotient abelian group together with the map R×M/L→M/L given by (r, x) 7→ rx.

Remark 1.11. The map R ×M/L → M/L given by (r, x) 7→ rx is well-defined, since if x = y
then x− y ∈ L and hence r(x− y) = rx− ry ∈ L, that is rx = ry.

In this part of the course we mainly deal with left modules. So, in the following, unless
otherwise is stated, with module we always mean left module.

2. Homomorphisms of modules

Definition 2.1. Let RM and RN be R-modules. A map f : M → N is a homomorphism if
f(rx+ sy) = rf(x) + sf(y) for any x, y ∈M and r, s ∈ R.

Remark 2.2.

(1) From the definition it follows that f(0) = 0.
(2) Clearly if f and g are homomorphisms from M to N , also f + g is a homomorphism.

Since the zero map is obviously a homomorphism, the set HomR(M,N) = {f |f : M →
N is a homomorphism} is an abelian group.

(3) If f : M → N and g : N → L are homomorphisms, then gf : M → L is a homomorphism.
Thus the abelian group EndR(M) = {f |f : M →M is a homomorphism} has a natural
structure of ring, called the ring of endomorphisms of M . The identity homomorphism
idM : M →M , m 7→ m, is the unity of the ring.

Definition 2.3. Given a homomorphism f ∈ HomR(M,N), the kernel of f is the set Ker f =
{x ∈M |f(x) = 0}. The image of f is the set Im f = {y ∈ N |y = f(x) for x ∈M}.

It is easy to verify that Ker f ≤ M and Im f ≤ N . Thus we can define the cokernel of f as
the quotient module Coker f = N/ Im f .

A homomorphism f ∈ HomR(M,N) is called a monomorphism if Ker f = 0. f is called
an epimorphism if Im f = N . f is called isomorphism if it is both a monomorphism and an
epimorphism. If f is an isomorphism we write M ∼= N .

Remark 2.4. (1) For any submodule L ≤M there is a canonical monomorphism i : L→M ,
which is the usual inclusion, and a canonical epimorphism p : M → M/N which is the
usual quotient map.

(2) For any M the trivial map 0→M , 0 7→ 0, is a mono. The trivial map M → 0, m 7→ 0,
is an epi.
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(3) The monomorphisms, the epimorphisms and the isomorphisms are exactly the injective,
surjective and bijective homomorphisms.

Exercise 2.5. Show that f ∈ HomR(M,N) is an isomorphism if and only if there exist g ∈
HomR(N,M) such that gf = idM and fg = idN . In such a case g is unique. ( We usually
denote g as f−1).

Proposition 2.6. Any f ∈ HomR(M,N) induces an isomorphism M/Ker f ∼= Im f .

Proof. The induced map M/Ker f → Im f , m 7→ f(m) is a homomorphism. Moreover it is
clearly a mono and an epi. �

The usual homomorphism theorems which hold for groups hold also for homomorphisms of
modules.

Proposition 2.7. (1) If L ≤ N ≤M , then (M/L)/(N/L) ∼= M/L.
(2) If L,N ≤M , denote by L+N = {m ∈M |m = l+n for l ∈ L and n ∈ N}. Then L+N

is a submodule of M and (L+N)/N ∼= N/(N ∩ L).

Exercise 2.8. Prove the previous Proposition.

3. Exact Sequences

Definition 3.1. A sequence of homomorphisms of R-modules

· · · →Mi−1
fi−1→ Mi

fi→Mi+1
fi+1→ . . .

is called exact if Ker fi = Im fi−1 for any i.
An exact sequence of the form 0→M1 →M2 →M3 → 0 is called a short exact sequence

Observe that if L ≤ M , then the sequence 0 → L
i→ M

p→ M/L → 0, where i and p are
the canonical inclusion and quotient homomorphisms, is short exact (Verify!) Conversely, if

0 → M1
f→ M2

g→ M3 → 0 is a short exact sequence, then f is a mono, g is an epi, and
M3
∼= Coker f (Verify!).

The following result is very useful:

Proposition 3.2. Consider the commutative diagram with exact rows

0 // L
f

//

α

��

M
g

//

β

��

N

γ

��

// 0

0 // L′
f ′

// M ′
g′

// N ′ // 0

If α and γ are monomorphisms (epimorphims, or isomorphisms, respectively), then so is β

Proof. (1) Suppose α and γ are monomorphisms and let m such that β(m) = 0. Then
γ(g(m)) = 0 and so m ∈ Ker g = Im f . Hence m = f(l), l ∈ L and β(m) = β(f(l)) =
f ′(α(l)) = 0. Since f ′ and α are mono, we conclude l = 0 and so m = 0.

(2) Suppose α and γ are epimorphisms and let m′ ∈ M ′. Then g′(m′) = γ(g(m)), so
g′(m′) = g(β(m)); hence m′ − β(m) ∈ Ker g′ = Im f ′ and so m′ − β(m) = f ′(l′), l′ ∈ L′.
Let l ∈ L such that l′ = α(l): then m′ − β(m) = f ′(α(l)) = β(f(l)) and so we conclude
m′ = β(m− f(l)).

�

4. Exercises

Exercise 4.1. Let RM be a R-module and RR the regular module. Consider the abelian group
HomR(R,M) and the map ϕ : HomR(R,M) → M , f 7→ f(1). Verify that ϕ is an isomorphism
of Z-modules.

Exercise 4.2. Let RM and define AnnR(M) = {r ∈ R|rm = 0 for any m ∈ M}. M is called
faithful if AnnR(M) = 0. Verify that AnnR(M) is an ideal of R. Verify that M has a natural
structure of R/AnnR(M)-module, given by the map R/AnnR(M) ×M → M , (r,m) 7→ rm.
Verify that M over R/AnnR(M) is a faithful module.



4

Exercise 4.3. Let f be a homomorphism of R-modules.
Show that f is a mono if and only if fg = 0 implies g = 0.
Show f is an epi if and only if gf = 0 implies g = 0

Exercise 4.4. Consider the ring R =

(
K K
0 K

)
. Show that P1 = {

(
k 0
0 0

)
| k ∈ K} and

P2 = {
(

0 k1

0 k2

)
| k1, k2 ∈ K} are left submodules of RR. Show thatQ1 = {

(
k1 k2

0 0

)
| k1, k2 ∈

K} and Q2 = {
(

0 0
0 k

)
| k ∈ K} are right submodules of RR

Exercise 4.5. Consider M an abelian group and Endr(M) the ring of the endomorphism of M
acting on the right (i.e. (x)fg = ((x)f)g. Show that any representation of R in Endr(M)
corresponds to a right R-module MR.
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5. Sums and products of modules

Let I be a set and {Mi}i∈I a family of R-modules. The cartesian product
∏
IMi = {(xi)|xi ∈

Mi} has a natural structure of left R-module, by defining the operations component-wise:

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I , r(xi)i∈I = (rxi)i∈I .

This module is called the direct product of the modules Mi. It contains a submodule⊕
I

Mi = {(xi)|xi ∈Mi and xi = 0 for almost all i ∈ I}

Recall that ”almost all” means ”except for a finite number”. The module ⊕IMi is called the
direct sum of the modules Mi. Clearly if I is a finite set then

∏
IMi = {(xi)|xi ∈Mi} = ⊕IMi.

For any component j ∈ I there are canonical homomorphisms∏
I

Mi →Mj , (xi)i∈I 7→ xj and Mj →
∏
I

Mi , xj 7→ (0, 0, . . . , xj , 0, . . . , 0)

called the projection on the jth-component and the injection of the jth-component. They are
epimorphisms and monomorphism, respectively, for any j ∈ I. The same is true for ⊕IMi.

When Mi = M for any i ∈ I, we use the following notations∏
I

Mi = M I ,
⊕
I

Mi = M (I), and if I = {1, . . . , n}, ⊕IMi = Mn

Let RM be a module and {Mi}i∈I a family of submodules of M . We define the sum of the
Mi as the module ∑

I

Mi = {
∑
i∈I

xi|xi ∈Mi and xi = 0 for almost all i ∈ I}.

Clearly
∑
IMi ≤ M and it is the smallest submodule of M containing all the Mi. (Notice

that in the definition of
∑
IMi we need almost all the components to be zero in order to define

properly the sum of elements of M).

Remark 5.1. Let RM be a module and {Mi}i∈I a family of submodules of M . Following the
previous definitions we can construct both the module ⊕IMi and module

∑
IMi (which is a

submodule of M). We can define a homomorphism

α : ⊕IMi →M, (xi)i∈I 7→
∑
i∈I

xi.

Then Imα =
∑
IMi. If α is a monomorphism, then ⊕IMi

∼=
∑
IMi and we say that the module∑

IMi is the (internal) direct sums of its submodules Mi. Often we omit the word ”internal”
and if M =

∑
IMi and α is an isomorphism, we say that M is the direct sums of the submodules

Mi and we write M = ⊕IMi.

Exercise 5.2. Let RM be a module and {Mi}i∈I a family of submodules of M . The following
are equivalent:

(1) α is an isomorphism
(2) if m ∈

∑
IMi , then m can be written in a unique way as sum of elements of the Mi

6. Split exact sequences

If L and N are R-modules, there is a short exact sequence, called split,

0→ L
iL→ L⊕N πN→ N → 0, with iL(l) = (l, 0) πN (l, n) = n, for any l ∈ L, n ∈ N.

More generally:

Definition 6.1. A short exact sequence 0→ L
f→M

g→ N → 0 is said to be split if there is an
isomorphism M ∼= L⊕N such that the diagram

0 // L
f

// M
g

//

α∼=
��

N // 0

0 // L
iL // L⊕N

πN // N // 0

commutes.
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Proposition 6.2. The following properties of an exact sequence 0 → L
f→ M

g→ N → 0 are
equivalent:

(1) the sequence is split
(2) there exists a homomorhism ϕ : M → L such that ϕf = idL
(3) there exists a homomorhism ψ : N →M such that gψ = idN

Proof. 1⇒ 2. Since the sequence splits, then there exists α as in Definition 6.1. Let ϕ = πL ◦α.
So for any l ∈ L ϕf(l) = πLαf(l) = πL(l, 0) = l.
1⇒ 3 Similar (Verify!)
2⇒ 1. Define α : M → L⊕N , m 7→ (ϕ(m), g(m)). Since αf(l) = (ϕ(f(l)), g(f(l))) = (l, 0) and
πNα(m) = g(m) we get that the diagram

0 // L
f

// M
g

//

α

��

N // 0

0 // L
iL // L⊕N

πN // N // 0

commutes. Finally, by Proposition 3.2, we conclude that α is an isomorphism.
2⇒ 3 Similar (Verify!) �

Definition 6.3. Given RL ≤R M , L is a direct summand of M if there exists a submodule

RN ≤R M such that M is the direct sum of L and N . N is called a complement of L. If M
does not admit direct summands it is said to be indecomposable.

By the results in the previous section, if L is a direct summand of M and N a complement
of L, it means that any m in M can be written in a unique way as m = l+ n, l ∈ L and n ∈ N .

We write M = L⊕N and L
⊕
≤M .

Example 6.4. (1) consider the Z-module Z/6Z. Then Z/6Z = 3Z/6Z⊕ 2Z/6Z. The regular
module ZZ is indecomposable

(2) let K be a field and V a K-module. Then, by a well-know result of linear algebra, any
L ≤ V is a direct summand of V .

(3) Let R =

(
K K
0 K

)
. Then R = P1 ⊕ P2, where P1 = {

(
k 0
0 0

)
| k ∈ K} and

P2 = {
(

0 k1

0 k2

)
| k1, k2 ∈ K}.

7. Exercises

Exercise 7.1. Let RL ≤R M . Show that L is a direct summand of M if and only if there exists

RN ≤R M such that L+N = M and L ∩N = 0.

Exercise 7.2. Let 0→ L
f→M

g→ N → 0 be a split exact sequence and α the isomorphism as in
Definition 6.1. Show that M = α−1(L)⊕ α−1(N), α−1(L) ∼= L, and α−1(N) ∼= N .

8. Free modules and finitely generated modules

Definition 8.1. A module RM is said to be generated by a family {xi}i∈I of elements of M if
each x ∈ M can be written as x =

∑
I rixi, with ri ∈ R for any i ∈ I, and ri = 0 for almost

every i ∈ I.
The {xi}i∈I are called a set of generator of M and we write M =< xi, i ∈ I >.
If the coefficients ri are uniquely determined by x, the (xi)i∈I are called a basis of M .
The module M is said to be free if it admits a basis.

Proposition 8.2. A module RM is free if and only M ∼= R(I) for some set I.

Proof. The module R(I) is free with basis (ei)i∈I , where ei is the canonical vector with all zero
components except for the i-th equal to 1.
Conversely if M is free with basis (xi)i∈I , then we can define a homomorphism α : R(I) → M ,
(ri)i∈I 7→

∑
I rixi. It is easy to show that α is an isomorphism, as a consequence of the

definition of a basis: indeed, it is clearly an epi and if α(ri) =
∑
rixi = 0, since the ri are

uniquely determined by 0, we conclude that ri = 0 for all i, i.e. α is a mono. �
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Given a free module M with basis (xi)I , then every homomorphism f : M → N is uniquely
determined by its value on the xi and the elements f(xi) can be chosen arbitrarily in N . Indeed,
chosen the f(xi), given x =

∑
rixi ∈M , we construct f(x) =

∑
rif(xi). Since (xi)i∈I is a basis

this is a good definition. (Notice: analogy with vector spaces!).

Proposition 8.3. Any module is quotient of a free module

Proof. Let M be an R-module. Since we can always choose I = M , the module M admits a set
of generators. Let (xi)i∈I a set of generators for M and define a homomorphism α : R(I) →M ,
(ri)i∈I 7→

∑
i rixi. Clearly α is an epi and so M ∼= R(I)/Kerα �

Definition 8.4. A module RM is finitely generated it there exists a finite set of generators for
M . A module is cyclic if it can be generated by a single element.

By Proposition 8.3 RM is finitely generated if and only if there exists an epimorphismRn →M
for some n ∈ N. Similarly, RM is cyclic if and only if M ∼= J , for a left ideal J ≤ R.

Example 8.5. The regular module RR is cyclic, generated by the unity element RR =< 1 >

Proposition 8.6. Let RL ≤ RM .

(1) If M is finitely generated, then M/L is finitely generated.
(2) If L and M/L are finitely generated, so is M

Proof. (1) If {x1, . . . , xn} is a set of generator of M , then {x1, . . . , xn} is a set of generator
for M/L.

(2) Let < x1, . . . , xn >= L and < y1, . . . , ym >= M/L, where x1, . . . , xn, y1, . . . , ym ∈ M .
Let x ∈ M and consider x =

∑
i=1,...m riyi in M/L. Then x −

∑
i=1,...m riyi ∈ L and

so x −
∑
i=1,...m riyi =

∑
j=1,...,n rjxj . Hence x =

∑
i=1,...m riyi +

∑
j=1,...,n rjxj , i.e.

{x1, . . . , xn, y1 . . . , ym} is a finite set of generators of M .
�

Notice that M finitely generated doesn’t imply L finitely generated. For example, let R be
the ring R = K[xi, i ∈ N]. Consider the regular module RR and its submodule L =< xi, i ∈ N >.

9. exercises

Exercise 9.1. Show that any submodule of ZZ is finitely generated.

Exercise 9.2. Show that the Z-module Q is not finitely generated.

Exercise 9.3. A module M is simple if L ≤ M implies L = 0 or L = M (i.e. M doesn’t have
non trivial submodules).

(1) show that any simple module is cyclic
(2) Exhibit a cyclic module which is not simple.

Exercise 9.4. Let R be a ring. An element e ∈ R is idempotent if e2 = e. Show that

(1) if e is idempotent, then (1 − e) is idempotent and R = Re ⊕ R(1 − e) (where Re and
R(1− e) denote the cyclic modules generated by e and (1− e), respectively)

(2) if R = I ⊕ J , with I and J left ideals of R, then there exist idempotents e and f such
that 1 = e+ f , I = Re and J = Rf .
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10. Categories and functors

This is very short introduction to the basic concepts of category theory. For more details
and for the set-theoretical foundation (in particular the distinction between sets and classes) we
refer to S. MacLane, Category for the working mathematician, Graduate Texts in Math., Vol 5,
Springer 1971.

Definition 10.1. A category C consists in:

(1) A class Obj(C), called the objects of C;
(2) for each ordered pair (C,C ′) of objects of C, a set HomC(C,C

′) whose elements are called
morphisms from C to C ′;

(3) for each ordered triple (C,C ′, C ′′) of objects of C, a map

HomC(C,C
′)×HomC(C

′, C ′′)→ HomC(C,C
′′)

called composition of morphisms

such that the following axioms C1, C2, C3 hold:
(before stating the axioms, we introduce the notations α : C → C ′ for any α ∈ HomC(C,C

′),
and βα for the compostion of α ∈ HomC(C,C

′) and β ∈ HomC(C
′, C ′′))

C1: if (C,C ′) 6= (D,D′), then HomC(C,C
′) ∩HomC(D,D

′) = ∅
C2: if α : C → C ′, β : C ′ → C ′′, γ : C ′′ → C ′′′ are morphisms, then γ(βα) = (γβ)α
C3: for each object C there exists 1C ∈ HomC(C,C), called identity morphism, such that

1Cα = α and β1C = β for any α : C ′ → C and β : C → C ′.

Notice that, for any C ∈ Obj(C), the identity morphism 1C is unique. Indeed, if also 1′C
satisfies [C3], then 1C = 1C1′C = 1′C .

A morphism α : C → C ′ is an isomorphism if there exists β : C ′ → C such that βα = 1C and
αβ = 1C′ . If α is an isomorphism, C and C ′ are called isomorphic and we write C ∼= C ′.

Example 10.2. (1) The category Sets: the class of objects is the class of all sets; the mor-
phisms are the maps between sets with the usual compositions.

(2) The category Ab: the objects are the abelian groups; the morphisms are the group
homomorphisms with the usual compositions.

(3) The category R-Mod for a ring R: the objects are the left R-modules and the morphisms
are the module homomorphisms with the usual compositions.

(4) The category Mod-R for a ring R: the objects are the right R-modules and the mor-
phisms are the module homomorphisms with the usual compositions.

Notice that, given a category C, we can construct the dual category Cop, with Obj(Cop) =
Obj(C), HomCop(C,C ′) = HomC(C

′, C), and α∗β = β ·α, where ∗ denotes the composition in Cop
and · the composition in C (Cop is obtained from C by ”reversing the arrows”). Any statement
regarding a category C dualizes to a corresponding statement for Cop.

Definition 10.3. Let B and C be two categories. A functor F : B → C assigns to each object
B ∈ B an object F (B) ∈ C, and assigns to any morphism β : B → B′ in B a morphism
F (β) : F (B)→ F (B′) in C, in such a way:

F1: F (βα) = F (β)F (α) for any α : B → B′, β : B′ → B′′ in B
F2: F (1B) = 1F (B) for any B in B.

By construction, a functor F : B → C defines a map for any B,B′ in B
HomB(B,B′)→ HomC(F (B), F (B′)), β 7→ F (β)

The functor F is called faithful if all these maps are injective and is called full it they are
surjective.

A functor F : Bop → C is called a contravariant functor from B to C. In particular a
contravariant functor F assigns to any morphism β : B → B′ in B a morphism F (β) : F (B′)→
F (B) in C.

Example 10.4. (1) Let B and C two categories. B is a subcategory of C if Obj(B) ⊆ Obj(C),
HomB(B,B′) ⊆ HomC(B,B

′) for any B,B′ objects of B, and the compositions in B and
C are the same. In this case there is a canonical functor B → C which is clearly faithful.
If this functor is also full, B is said a full subcategory of C.
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(2) Let M ∈ R-Mod. As we have already observed HomR(M,N) is an abelian group for
any N ∈ R-Mod. So we can define a functor (Verify the axioms!)

HomR(M,−) : R-Mod→ Ab, N 7→ HomR(M,N)

such that for any α : N → N ′,

HomR(M,α) : HomR(M,N)→ HomR(M,N ′), ϕ 7→ αϕ

(3) Let M ∈ R-Mod and consider the abelian group HomR(N,M) for any N ∈ R-Mod. So
we can define a contravariant functor (Verify the axioms!)

HomR(−,M) : (R-Mod)op → Ab, N 7→ HomR(N,M)

such that for any α : N → N ′,

HomR(α,M) : HomR(N ′,M)→ HomR(N ′,M), ψ 7→ ψα

In these lectures we will deal mainly with categories having some kind of additive structure.
For instance in the category R-Mod, any set of morphisms HomR(M,N) is an abelian group
and the composition preserves the sums.

Definition 10.5. A category C is called preadditive if each set HomC(C,C
′) is an abelian group

and the compositions maps HomC(C,C
′)×HomC(C

′, C ′′)→ HomC(C,C
′′) are bilinear.

If B and C are preadditive categories, a functor F : B → C is additive if F (α + α′) =
F (α) + F (α′) for α, α′ : C → C ′.

Example 10.6. The category R-Mod is a preadditive category. If M ∈ R-Mod, then HomR(M,−)
and HomR(−,M) are additive functors.

Definition 10.7. Let R and S two rings and let F : R-Mod → S-Mod be an additive functor.
F is called left exact if, for any exact sequence 0→ L→M → N → 0 in R-Mod, the sequence
0 → F (L) → F (M) → F (N) in S-Mod is exact. F is called right exact if, for any exact
sequence 0 → L → M → N → 0 in R-Mod, the sequence F (L) → F (M) → F (N) → 0 in
S-Mod is exact. The functor F is exact if it is both left and right exact.

In particular, if F is exact then for any exact sequence in R-Mod 0→ L→M → N → 0, the
corresponding sequence 0→ F (L)→ F (M)→ F (N)→ 0 in S-Mod is exact.

Proposition 10.8. Let X ∈ R-Mod. The functor HomR(X,−) is left exact

Proof. Let 0 → L
f→ M

g→ N → 0 be an exact sequence in R-Mod. Denoted by f∗ =
HomR(X, f) and g∗ = HomR(X, g), we have to show that the sequence of abelian groups

0 → HomR(X,L)
f∗→ HomR(X,M)

g∗→ HomR(X,N) is exact. In particular, we have to show
that f∗ is a mono and that Im f∗ = Ker g∗.

Let us start considering α : X → L such that f∗(α) = 0. So for any x ∈ X f∗(α)(x) =
fα(x) = 0. Since f is a mono we conclude α(x) = 0 for any x ∈ X, that is α = 0.

Consider now β ∈ Im f∗; then there exists α ∈ HomR(X,L) such that β = f∗(α) = fα.
Hence g∗(β) = gβ = gfα = 0, since gf = 0. So we get Im f∗ ≤ Ker g∗.

Finally, let β ∈ Ker g∗, so that gβ = 0 This means Imβ ≤ Ker g = Im f . For any x ∈ X
define α as α(x) = f←(β(x)): α is well-defined since f is a mono and clearly β = fα = f∗(α).
So we get Ker g∗ ≤ Im f∗ �

In a similar way one prove that the functor HomR(−, X) is left exact. Notice that, since
HomR(−, X) is a contravariant functor, left exact means that for any exact sequence in R-Mod
0 → L → M → N → 0, the corresponding sequence of abelian groups 0 → HomR(N,X) →
HomR(M,X)→ HomR(L,X) is exact.

Remark 10.9. Notice that if F is an additive functor and 0→ L
f→M

g→ N → 0 is a split exact

sequence in R-Mod, then 0→ F (L)
F (f)→ F (M)

F (g)→ F (N)→ 0 is split exact. Indeed, since there
exists ϕ such that ϕf = idL (see Proposition 6.2), F (ϕ)F (f) = idF (L), so F (f) is a split mono.
Similarly one show that F (g) is a split epi.

In particular, for a given module X ∈ R-Mod the functors HomR(X,−) and HomR(−, X)
could be not exact. Nevertheless, if 0→ L→ M → N → 0 is a split exact sequence in R-Mod,
then the sequence 0→ HomR(X,L)→HomR(X,M)→HomR(X,N)→ 0 and the sequence 0→
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HomR(N,X)→HomR(M,X)→HomR(L,X) → 0 are split exact. In particular HomR(X,L ⊕
N) = HomR(X,L)⊕Hom(X,N) and HomR(L⊕N,X) = HomR(L,X)⊕Hom(N,X)

One often wishes to compare two functors with each other. So we introduce the following
notion:

Definition 10.10. Let F and G two functors B → C. A natural transformation η : F → G
is a family of morphisms ηB : F (B) → G(B), for any B ∈ B, such that for any morphism
α : B → B′ in B the following diagram in C is commutative

F (B)
ηB //

F (α)

��

G(B)

G(α)

��

F (B′)
ηB′ // G(B′)

If ηB is an isomorphism in C for any B ∈ B, then η is called a natural equivalence.

Two categories B and C are isomorphic if there exist functors F : B → C and G : C → B such
that GF = 1B and FG = 1C . This is a very strong notion, in fact there are several and relevant
examples of categories B and C which have essentially the same structure, but where there is
a bijective correspondence between the isomorphism classes of objects rather than between the
individual objects. Therefore we define the following concept:

Definition 10.11. A functor F : B → C is an equivalence if there exists a functor G : C → B
and natural equivalences GF → 1B and FG→ 1C

If the functor F is contravariant and gives an equivalence between Bop and C, we say that F
is a duality.

Proposition 10.12. A functor F : B → C is an equivalence if and only if it is full and faithful,
and every object of C is isomorphic to an object of the form F (B), with B ∈ B.

11. exercise

Exercise 11.1. Let (P,≤) be a partially ordered set. Let us define a category C in this way: the
objects of C are the elements of P , and with a unique morphism p → q whenever p ≤ q, while
HomC(p, q) = 0 if p � q. Verify that the axioms [C1], [C2], [C3] are satisfied. This is an example
of a small category, i.e. a category where the class of objects is a set.

Exercise 11.2. Let ϕ : R → S be a homomorphism of rings. Each left S-module M has also
a structure of left R-module, defining rx := ϕ(r)x for any x ∈ M and any r ∈ R. Let ϕ∗ :
S-Mod → R-Mod, M 7→ M , α 7→ α for any M ∈ S-Mod and for any α ∈ HomS(M,N). Verify
that ϕ∗ is an additive and faithful functor (called restriction of scalars)

Exercise 11.3. A functor F is exact if and only if F (L) → F (M) → F (N) is exact whenever
L→M → N is exact.
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12. Projective modules

In general, for a given R-module M , the functor HomR(M,−) is left exact but not right exact.
In this section we study the R-modules P for which HomR(P,−) is also right exact.

Definition 12.1. A module P ∈ R-Mod is projective if HomR(P,−) is an exact functor.

The right exactness is equivalent to require that for any M
g→ N → 0 in R-Mod the homo-

morphism HomR(P,M)
HomR(P,g)→ HomR(P,N) is an epi, that is for any ϕ ∈ HomR(P,N) there

exists ψ ∈ HomR(P,M) such that gψ = φ.

M
g

// N // 0

P

ψ

``B
B

B
B
ϕ

OO

Example 12.2. Any free module is projective. Indeed, let R(I) a free R-module with (xi)i∈I a

basis. Given M
g→ N → 0 and ϕ : R(I) → N in R-Mod, let mi ∈M such that g(mi) = ϕ(xi) for

any i ∈ I. Define ψ(xi) = mi and, for x =
∑
rixi, ψ(x) =

∑
rimi. We get that gψ = ϕ. Notice

that from the construction is clear that the homomorphism ψ could be not unique.

Proposition 12.3. Let P ∈ R-Mod. The following are equivalent:

(1) P is projective
(2) P is a direct summand of a free module

(3) every exact sequence 0→ L
f→M

g→ P → 0 splits.

Proof. 1 ⇒ 3 Let 0 → L
f→ M

g→ P → 0 be an exact sequence in R-Mod and consider the
homorphism 1P : P → P . Since P is projective there exists ψ : P →M such that gψ = 1P . By
Proposition 6.2 we conclude that the sequence splits.

3⇒ 2 The module P is a quotient of a free module, so there exist an exact sequence 0→ K
f→

R(I) g→ P → 0, which is split.
2⇒ 1 If R(I) = P ⊕L, then HomR(R(I), N) = HomR(P,N)⊕HomR(L,N) for any N ∈ R-Mod.
So let us consider the homorphisms

M
g

// N // 0

P

ϕ

OO
and M

g
// N // 0

R(I)

α

aaD
D

D
D

(ϕ,0)

OO

where (ϕ, 0)(p + l) = ϕ(p) + 0(l) = ϕ(p) for any p ∈ P and l ∈ L and α exists since R(I) is
projective. Then α = (ψ, β), with ψ ∈ HomR(P,N) and β ∈ HomR(L,N), where α(p + l) =
ψ(p) + β(l) for any p ∈ P and l ∈ L. Hence g(ψ(p)) = g(α(p)) = ϕ(p) for any p ∈ P . So we
conclude that P is projective. �

Example 12.4. (1) Let R be a principal ideal domain (for instance, R = Z). Then any
projective module is free. In particular, free abelian groups and projective abelian group
coincide.

(2) Let R = Z/6Z. Then Z/6Z = 3Z/6Z ⊕ 2Z/6Z. The ideals 3Z/6Z and 2Z/6Z are
projective R-modules, but not free R-modules (why?)

Proposition 12.5. Let P ∈ R-Mod. P is projective if and only if there exists a family (ϕi, xi)i∈I
with ϕi ∈ HomR(P,R) and xi ∈ P such that for any x ∈ P one has x =

∑
i ϕi(x)xi where

ϕi(x) = 0 for almost every i ∈ I.

Proof. Let P be projective and let R(I) β→ P → 0 be a spli epi. Consider (ei)i∈I a basis of R(I)

and define xi = β(ei). Observe that β(
∑
i riei) =

∑
i riβ(ei) =

∑
i rixi. By Proposition 6.2,

there exists ϕ : P → R(I) such that βϕ = idP , which induces homomorphisms ϕi = πiϕ where
πi is the projection on the i-th component, so ϕi(x) ∈ R for any i ∈ I and ϕ(x) =

∑
ϕi(x).

Hence for any x ∈ P one has x = βϕ(x) = β(
∑
i ϕi(x)) =

∑
i ϕi(x)xi, so (ϕi, xi)i∈I satisfies the

stated properties.
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Conversely, let (ϕi, xi)i∈I satisfy the statement and let β : R(I) → P , ei 7→ xi. The ho-
momorphism β is an epi, since the family (xi)i∈I generates P , and β(

∑
ri) =

∑
rixi. Define

ϕ : P → R(I), x 7→
∑
ϕi(x). Then for any x ∈ P one gets βϕ(x) = β(

∑
ϕi(x)) =

∑
ϕi(x)xi = x.

By Proposition 6.2 we conclude that β is a split epi and so P is projective. �

Note that, from the results in the previous sections, the projective module RR plays a crucial
role in the category R-Mod, since for any M ∈ R-Mod there exists an epi R(I) → M → 0, for
some set I. A module with such property is called a generator and so R is a projective generator
for R-Mod.

In particular, for any M ∈ R-Mod there exists a short exact sequence 0→ K → P0 →M → 0,
with P0 projective. The same holds for the module K, and so, iterating the argument, we can
construct an exact sequence

· · · → Pi → · · · → P1 → P0 →M → 0

where all the Pi are projectiveSuch a sequence is called a projective resolution of P . It is clearly
not unique.

It is natural to ask if, for a given M ∈ R-Mod, there exists a projective module P and a
”minimal” epi P → M → 0, in the sense that f|L : L → M is epi for no proper projective
submodule of P . More precisely, we define:

Definition 12.6. A homomorphism f : M → N is right minimal if for any g ∈ EndR(M) such
that fg = f , one gets g is an isomomorphism.
If PM is a projective module and PM →M is epimorphism right minimal, then PM is a projec-
tive cover of M .

Remark 12.7. Consider the diagram

0

PM
f

//

ϕ

!!C
C

C
C M //

OO

0

P
ψ

aaC
C

C
C

g

OO

where PM is a projective cover of M and P is a projective module. Since PM and P are
projective, there exist ϕ and ψ such that the diagram commutes. Hence fψ = g and gϕ = f ,
so fψϕ = f and, since f is an right minimal, we conclude ψϕ is an iso. In particular ϕ is a
mono. Define θ : P → PM as θ = (ψϕ)−1ψ: then θϕ = idP and so ϕ is a split mono (see
Proposition 6.2). We conclude that PM is a direct summand of P . This explains the minimality
property of the projective cover announced above.

If also P is a projective cover of M , using the same argument we get that ϕψ is an iso, that
is ϕ = ψ−1 and PM is isomorphic to P . We have shown that the projective cover is unique
(modulo isomorphisms).

We state the following characterization of projective covers:

Theorem 12.8. Let P a projective module. Then P
f→ M → 0 is a projective cover of M if

and only if Ker f is a superfluous submodule of P (i.e. for any submodule L ≤ P , L+Ker f = P
implies L = P .)

Observe that, given M ∈ R-Mod, a projective cover for M could not exist. A ring in which
any module admits a projective cover is called semiperfect

Let now M ∈ R-Mod and suppose there exist a projective resolution of M

. . . P2
f2→ P1

f1→ P0
f0→M → 0

such that P0 is a projective cover of M and Pi is a projective cover of Ker fi−1 for any i ∈ N.
Such a resolution is called a minimal projective resolution of M .
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13. exercise

Exercise 13.1. Let P1, P2, . . . , Pn ∈ R-Mod. Then ⊕i=1,...,nPi is projective if and only if Pi is
projective for any i = 1, . . . , n.

Exercise 13.2. Let 0 → L → M → N → 0 a short exact sequence in R-Mod. If L and N are
projective, then M is projective

Exercise 13.3. Show that any abelian group nZ, n ∈ N, is a projective Z-module.

14. Bimodules

Definition 14.1. Let R and S rings. An abelian group M is a left R- right S-bimodule if M is a
left R-module and a right S-module such that the two scalar multiplications satisfy r(xs) = (rx)s
for any r ∈ R, s ∈ S, x ∈M . We write RMS.

Example 14.2. Let M ∈ R-Mod and consider S = EndrR(M), the ring of homomorphism R-linear
of M , where homorphisms act on the right (i.e. mf = f(m) and m(fg) = g(f(m))). So M is a
right S-module (Verify!) and RMS is a bimodule. Indeed (rm)f = f(rm) = rf(m) = r(mf) for
any r ∈ R, m ∈M and f ∈ S.

Given a bimodule RMS and a left R-module N , the abelian group HomR(M,N) is natu-
rally endowed with a structure of left S-module, by defining (sf)(x) := f(xs) for any f ∈
HomR(M,N) and any x ∈ M . (Verify! crucial point: (s1(s2f))(x) = (s2f(xs1)) = f(xs1s2) =
((s1s2)f)(x)).

Similary, if RNT is a left R- right T -bimodule and M ∈ R-Mod, then HomR(M,N) is naturally
endowed with a structure of right T -module, by defining (ft)(x) := f(x)t (Verify! crucial point:
(f(t1t2))(x) = f(x)(t1t2) = (f(x))t1)t2 = ((ft1)(x))t2 = ((ft1)t2)(x)).

Moreover, one can show that if RMS and RNT are bimodules, then HomR(RMS ,RNT ) is a
left S- right T -bimodule (Verify!).

Arguing in a similar way for right R-modules, if SMR and TNR are bimodules, then the abelian
group HomR(SMR, TNR) is a left T - right S-bimodule, by (tf)(x) = t(f(x)) and (fs)(x) = f(sx).
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15. Injective modules

In this section we study the R-modules E for which HomR(−, E) is an exact functor. Observe
that many results we are going to show are dual of those proved for projective modules.

Definition 15.1. A module E ∈ R-Mod is injective if HomR(−, E) is an exact functor.

The exactness is equivalent to require that for any 0→ L
f→M in R-Mod the homomorphism

HomR(M,E)
HomR(f,E)→ HomR(L,E) is an epi, that is for any ϕ ∈ HomR(L,E) there exists

ψ ∈ HomR(M,E) such that ψf = ϕ.

0 // L

ϕ

��

f
// M

ψ
~~}

}
}

}

E

Any module is quotient of a projective module. Does the dual property hold? that is, given
any module M ∈ R-Mod, is it true that M embeds in a injective R-module? In the sequel we
will answer to this crucial question.

An abelian group G is divisible if, for any n ∈ Z and for any g ∈ G, there exists t ∈ G such
that g = nt. We are going to show that an abelian group is injective if and only if it is divisible.
We need the the following useful criterion to check whether a module is injective, known as
Baer’s Lemma.

Lemma 15.2. Let E ∈ R-Mod. The module E is injective if and only if for any left ideal J of
R and for any ϕ ∈ HomR(J,E) there exists ψ ∈ HomR(R,E) such that ψi = ϕ, where i is the

canonical inclusion 0→ J
i→ R.

The lemma states that it is sufficient to check the injectivity property only for left ideals of
the ring. In particular, the Baer’s Lemma says that E is injective if and only if for any RJ ≤ RR
and for any ϕ ∈ HomR(J,E) there exists y ∈ E such that ϕ(x) = xy for any x ∈ J .

Proposition 15.3. A module G ∈ Z-Mod is injective if and only if it is divisible.

Proof. Let us assume G injective, consider n ∈ Z and g ∈ G and the commutative diagram

0 // Zn i //

ϕ

��

Z

ψ
~~}

}
}

}

G

where ϕ(sn) = sg for any s ∈ Z and ψ exists since G is injective. Let t = ψ(1), t ∈ G. Then
ϕ(n) = ψ(i(n)) implies g = nt and we conclude that G is divisible.

Conversely, suppose G divisible and apply Baer’s Lemma. The ideal of Z are of the form Zn
for n ∈ Z, so we have to verify that for any ϕ ∈ HomZ(Zn,G) there exists ψ such that

0 // Zn i //

ϕ

��

Z

ψ
~~}

}
}

}

G

commutes. Let g ∈ G such that ϕ(n) = g. Since Z is a free Z-module, define ψ(1) = t where
g = nt and so ψ(r) = rt for any r ∈ Z. Hence ϕ(sn) = sg = snt = ψ(i(sn)). �

The result stated in the previous proposition holds for any Principal Ideal Domain R (see
Exercise 16.1).

Example 15.4. The Z-module Q is injective.

Remark 15.5. Any abelian group G embeds in a injective abelian group. Indeed, consider a short
exact sequence 0 → K → Z(I) → G → 0 and the canonical inclusion in Z-Mod 0 → Z → Q.
One easily check that Q(I)/K is divisible (Verify!) and so injective. Then we get the induced
monomorphism 0→ G ∼= Z(I)/K → Q(I)/K.
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Proposition 15.6. Let R be a ring. If D ∈ Z-Mod is injective, then HomZ(R,D) is an injective
left R-module

Proof. First notice that, since ZRR is a bimodule, HomZ(R,D) is naturally endowed with a
structure of left R-module. In order to verify that it is injective, we apply Baer’s Lemma. So let

RI ≤ RR and h : I → HomZ(R,D) an R-homomorphism. Then γ : I → D, a 7→ h(a)(1) defines
a Z-homomorphism and, since D is an injective abelian group, there exists γ : R → D which
extends γ. Now we have, for any a ∈ I and r ∈ R,

(aγ)(r) = γ(ra) = γ(ra) = [h(ra)](1) = [rh(a)](1) = [h(a)](r)

so h(a) = aγ for any a ∈ I. Hence we conclude HomZ(R,D) is injective by Baer’s Lemma. �

Corollary 15.7. Let M ∈ R-Mod. Then there exists an injective module E ∈ R-Mod and a
monomorphism 0→M → E.

Proof. Consider the isomorphism of Z-modules ϕ : HomR(R,M)→M , f 7→ f(1). Observe that
since RRR is a left R- right R-bimodule, then HomR(R,M) is naturally endowed with a structure
of left R-module. One easily check that ϕ is also R-linear, hence RM ∼= HomR(RR,M) ≤
HomZ(RR,M). By Remark 15.5, there is a mono of Z-modules 0 → M → G from which we
obtain a mono of R-modules 0 → HomZ(RR,M) → HomZ(RR, G), where HomZ(RR, G) is an
injective left R-module by Proposition 15.6. �

Since any module M embeds in a injective one, it is natural to ask whether there exists a
”minimal” injective module containing M .

Definition 15.8. A homomorphism f : M → N is left minimal if for any g ∈ EndR(N) such
that gf = f , one gets g is an isomomorphism.
If EM is an injective module and M → EM is a monomorphism left minimal, then EM is an
injective envelope of M .

Remark 15.9. Consider the diagram

0

��

0 // M
f

//

g

��

EM

ϕ
}}{

{
{

{

E

ψ
=={

{
{

{

where EM is an injective envelope of M and E is an injective module. Since EM and E are
injective, there exist ϕ and ψ such that the diagram commutes. Hence ψg = f and ϕf = g, so
ψϕf = f and, since f is left minimal, we conclude that ψϕ is an iso. In particular ϕ is a mono
and so it is a split mono. We conclude that EM is a direct summand of E. This explains the
minimality property of the injective envelope announced above.

If also E is an injective envelope of M , using the same argument we get that ϕψ is an iso,
that is ϕ is an iso and EM is isomorphic to E. We have shown that the injective envelope is
unique (modulo isomorphisms).

We state the following characterization of injective envelope.

Theorem 15.10. Let E be an injective module. Then 0 → M
f→ E is an injective envelope if

and only if Im f is an essential submodule of M (i.e. for any submodule L ≤ E, L∩ Im f 6= {0})

Proof. Suppose 0 → M
f→ E is an injective envelope and let L ≤ E such that L ∩ Im f = {0}.

Then Im f ⊕ L ≤ E and we can consider the commutative diagram

0 // M
f

//

f

��

Im f ⊕ L
(id,0)

zzuuuuuuuuu

i // E

ϕ

uuj j j j j j j j j j

E

where i is the canonical inclusion of Im f⊕L in E and ϕ exists since E is injective. Then ϕf = f
but ϕ is clearly not an iso.
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Conversely, let Im f be essential in M and let g ∈ EndR(E) such that gf = f . Since f is
an essential mono we conclude that g is a mono (see Exercise 16.4), so it is a split mono. In

particular, Im f ≤ Im g
⊕
≤ E, contradicting the essentiality of Im f . �

Not every module has a projective cover. Thus the next result is especially remarkable

Theorem 15.11. Every module has an injective envelope.

Proof. Let M ∈ R-Mod; by Corollary 15.7 there exists an injective module Q such that 0 →
M → Q. Consider the set {E′| M ≤ E′ ≤ Q andM essential in E′}. One easily check that it
is an inductive set so, by Zorn’s Lemma, it contains a maximal elemnt E. Let us show that E
is a direct summand of Q and so E is injective (see Exercise 16.3). To this aim, consider the set
{F ′|F ′ ≤ Q and F ′ ∩E = 0}. It is inductive so, again by Zorn’s Lemma, it contains a maximal
element F . Then there exists an obvious iso g : E ⊕ F/F → E and E ⊕ F/F ≤ Q/F : from the
maximality of F it follows that E ⊕ F/F ≤ Q/F is an essential inclusion (Verify!) so consider
the diagram

0 // E ⊕ F/F

g

��

j
// Q/F

ϕ

yytttttttttt

Q

where j is the canonical inclusion and ϕ exists since Q is injective. Moroever ϕ is a mono since
ϕj = g is a mono and j is an essential mono (see Exercise 16.4). It follows that M is essential
in E = Im g and E = Im g = ϕ(E ⊕ F/F ) is essential in Imϕ. Thus M is essential in Imϕ so,
from the maximality of E we conclude that E = Imϕ and hence ϕ(E ⊕ F/F ) = ϕ(Q/F ). Since
ϕ is a mono we conclude E ⊕ F = Q. �

Proposition 15.12. Let E ∈ R-Mod. The following are equivalent:

(1) E is injective

(2) every exact sequence 0→ E
f→M

g→ N → 0 splits.

Proof. 1⇒ 2 Consider the commutative diagram

0 // E
f

//

idE

��

M

ϕ
~~}

}
}

}

E

where ϕ exists since E is injective. Since ϕf = idE , by Proposition 6.2 we conclude that f is a
split mono.

2 ⇒ 1 By Corollary 15.7 there exists an exact sequence 0 → E → F → N → 0, where F is
an injective module. Since the sequence splits, we get that E is a direct summand of a injective
module, and so E is injective (see Exercise 16.3). �

Comparing the previous proposition with the analogous one for projective modules (see Propo-
sition 12.3), there is an evident difference. Speaking about projective modules, we saw that a
special role is played by the projective generator R. Does a module with the dual property exist?
An injective module E ∈ R-Mod such that any M ∈ R-Mod embeds in EIM , for a set IM , is
called an injective cogenerator of R-Mod. We will see in the sequel that such a module always
exists.

Remark 15.13. Dualizing what we showed in the projective case, for any module M ∈ R-Mod

there exists a long exact sequence 0→M
f0→ E0

f1→ E1
f2→ E2 → . . . , where the Ei are injective.

This is called an injective coresolution of M . If E0 is an injective envelope of M and Ei in
an injective envelope of Ker fi for any i ≥ 1, then the sequence is called a minimal injective
coresolution of M .
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16. Exercises

Exercise 16.1. Let R be a Principal Ideal Domain. Prove that an R-module is injective if and
only if it is divisible.

Exercise 16.2. Let G be a divisible abelian group. Then G(I) and G/N are divisible, for any set
I and for any subgroup N of G.

Exercise 16.3. Let Ei for i = 1, . . . , n in R-Mod. Then
⊕

i∈I Ei is injective if and only if Ei is
injective for any i = 1 . . . n.

Exercise 16.4. A monomorphism 0 → L → M is R-Mod is called essential monomorphism if
ImL is essential in M . Prove that if f is an essential morphism and gf is a mono, then g is a
mono.

Exercise 16.5. Let 0→M
f→ L and 0→ L

g→ N two essential monomorphism. Show that gf is
an essential monomorphism.
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17. On the lattice of submodules of M

Let M ∈ R-Mod and consider the partially ordered set LM = {L|L ≤ M}. Then LM is a
complete lattice, where for any N,L ∈ L, sup{N,L} = L + N and inf{N,L} = L ∩ N . The
greatest element of LM is M and the smallest if {0}.

Given an arbitrary module M ∈ R-Mod, it is natural to ask whether minimal or maximal
elements of L exist. They are exactly the maximal submodules of M and the simple submodules
of M , respectively. More precisely we introduce the following definitions:

Definition 17.1. A module S ∈ R-Mod is simple if L ≤ S implies L = {0} or L = S.
A submodule N ≤M is a maximal submodule of M if N ≤ L ≤M implies L = N or L = M .

Example 17.2. (1) Let K be a field. Then K is the unique ( modulo isomorphisms) simple
module in K-Mod.

(2) In Z-Mod any abelian group Z/Zp with p prime is a simple abelian group. So in Z-Mod
there are infinite simple modules.

(3) The regular module Z does not contain any simple submodule, since any ideal of Z is of
the form Zn and Zm ≤ Zn whenever n divides m.

In general, it is not true that any module contains a simple or a maximal submodule. Never-
theless we have the following result (see also Exercise 18.1)

Proposition 17.3. Let R be a ring and RI ≤ RR. There exists a maximal left ideal M of R
such that I ≤M ≤ R. In particular R adimits maximal left ideals.

Proof. Let F = {L|I ≤ L < R}. The set F is inductive since, given a sequence L0 ≤ L1 ≤ . . . ,
the left ideal

⋃
Li contains all the Li and it is a proper ideal of R. Indeed, if

⋃
Li = R, there

would exist an index j ∈ N such that 1 ∈ Lj and so Lj = R. So by Zorn’s Lemma, F has a
maximal element, which is clearly a maximal left ideal of R. �

Example 17.4. Consider the regular module Z. Then Zp is a maximal submodule of Z for any
prime number p. Moreover the ideal Zn is contained in Zp for any p such that p|n.

Remark 17.5. Let M ≤ R a maximal left ideal of R. Clearly R/M is a simple R-module, and
this shows that simple modules always exists in R-Mod, for any ring R.

Conversely, let S ∈ R-Mod be a simple module. So S = Rx for an element x ∈ S and let
AnnR(x) = {r ∈ R|rx = 0}. AnnR(x) is a maximal left ideal of R, since it is the kernel of the
epimorphism ϕ : R→ S, 1 7→ x, and hence S ∼= R/AnnR(x).

Finally, for any simple module S consider the module AnnR(S) = ∩x∈S AnnR(x). It is easy
to show that AnnR(S) is a two-sided ideal of R, called the annihilator of the simple module S
(see Exercise 18.2).

The simple modules play an crucial role in the study of the category R-Mod, for instance:

Proposition 17.6. Let E ∈ R-Mod be an injective module. The module E is a cogenerator of
R-Mod if and only if for any simple module S ∈ R-Mod there exists a mono 0→ S → EIS , for
a set IS.

Proof. Assume for any simple module S ∈ R-Mod there exists a mono 0 → S
fS→ EIS , for a

set IS . Then there exist j ∈ IS such that πj ◦ f : S → E is not the zero map. So, since
Ker(πj ◦ f) ≤ S, we get that for any simple module S there exists a mono πj ◦ f : S → E. Let
now M ∈ R-Mod, and x ∈ M , x 6= 0. So Rx ≤ M and Rx ∼= R/AnnR(x). By Proposition 17.3
there exists a maximal submodule M≤ R such that AnnR(x) ≤M. Consider the diagram

0 // Rx ∼= R/AnnR(x) //

��

M

ϕx

���
�

�
�

�
�

�
�

�

R/M∼= S

��

E

where ϕx : M → E exists since E is injective. In particular ϕx(x) 6= 0. Hence we can construct
a mono ϕ : M → EM , x 7→ (0, 0, . . . , 0, ϕx(x), 0, . . . , 0), where ϕx(x) is the xth position. �
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Corollary 17.7. Let {Sλ}λ∈Λ be a set of representative of the simple modules (modulo isomor-
phisms) in R-Mod. Then the injective envelope E(⊕Sλ) is a minimal injective cogenerator of
R-Mod

Proof. The injective module E(⊕Sλ) cogenerates all the simple modules, so by the previous
Proposition it is an injective cogenerator. If W is a injective cogenerator of R-Mod, since
Sλ ≤ W for any λ ∈ Λ (see the argument in the previous proof) one gets ⊕Sλ ≤ W . Since

E(⊕Sλ) is the injective envelope of ⊕Sλ, we conclude E(⊕Sλ)
⊕
≤W . �

Remark 17.8. If there is a finite number of simple modules in R-Mod (modulo isomorphisms),
S1, S2, . . . , Sn, then E(⊕Si) = ⊕E(Si) is a minimal injective cogenerator of R-Mod

Definition 17.9. Let M ∈ R-Mod. The socle of M is the submodule Soc(M) =
∑
{S|S is a simple

submodule of M}. The radical of M is the submodule Rad(M) = ∩{N |N is a maximal submodule of M}.

Remark 17.10. If M does not contain any simpe module, we set Soc(M) = 0. If M does not
contain any maximal submodule, we set Rad(M) = M .

In the next Proposition we list some important properties of the socle and of the radical of a
module. We leave the proofs for exercise.

Proposition 17.11. Let M ∈ R-Mod.

(1) Soc(M) = ⊕{S|S is a simple submodule of M}. In particular, Soc(M) is a semisimple
module.

(2) Soc(M) = ∩{L|L is an essential submodule of M}.
(3) Rad(M) =

∑
{U |U is a superfluous submodule of M}.

(4) Let f : M → N . Let f(Soc(M)) ≤ Soc(N) and f(Rad(M)) ≤ Rad(N).
(5) if M = ⊕λ∈ΛMλ, then Soc(M) = ⊕λ∈Λ Soc(Mλ) and Rad(M) = ⊕λ∈Λ Rad(Mλ).
(6) Rad(M/Rad(M)) = 0 and Soc(Soc(M)) = Soc(M).
(7) If M is finitely generated, then Rad(M) is a superfluous submodule of M .

Remark 17.12. It is clear that the radical can be described also by

Rad(M) = {x ∈M | ϕ(x) = 0 for every ϕ : M → S with S simple}

Indeed, given ϕ : M → S with S simple, the kernel of ϕ is a maximal submodule of M .
Conversely, if N is a maximal submodule of M , then consider π : M → M/N where M/N is
simple.

A crucial role is played by the radical of the regular module RR.

Definition 17.13. Let R be a ring. The Jacobson radical of R is the ideal Rad(RR). It is
denoted by J(R).

By the Remarks 17.5 and 17.12, the Jacobson radical of R can be described as the intersection
of the annihilators of the simple left R-modules AnnR(S). In particular it is two-sided ideal of
R.

Lemma 17.14. For every M ∈ R-Mod, J(R)M ≤ Rad(M)

Proof. Since J(R) annihilates any simple module S, all homomorphisms M → S are zero on
J(R)M so, by Remark 17.12, J(R)M ≤ Rad(M) �

Proposition 17.15 (Nakayma’s Lemma). Let M be a finitely generated R-module. If L is a
submodule of M such that L+ J(R)M = M , then L = M .

Proof. L+ J(R)M = M implies L+ Rad(M) = M and since Rad(M) is superfluous in M (see
Proposition ??) we get L = M . �

We conclude with the following characterization of J(R)

Proposition 17.16. J(R) = {r ∈ R|1− xr has a left inverse for any x ∈ R}
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18. exercise

Exercise 18.1. Let M ∈ R-Mod be finitely generated. Show that, for any L < M , there exists a
maximal submodule of M containing L. In particular, Rad(M) < M .

Exercise 18.2. Show that, for any simple module S ∈ R-Mod, AnnR(S) is a two-sided ideal of
R.

Exercise 18.3. Let p ∈ N a prime and M = { apn ∈ Q | a ∈ Z, n ∈ N}.
(1) Verify that Z ≤M ≤ Q in Z-Mod.
(2) Let Zp∞ = M/Z. Show that Zp∞ is a divisible group.
(3) show that any L ≤ Zp∞ is cyclic, generated by an element 1

pl
, l ∈ N.

Conclude the the lattice of the subgroups of Zp∞ is a well-ordered chain and so Zp∞ does not
have any maximal subgroup.

19. Local rings

Definition 19.1. A ring R is a local ring if all the non-invertible elements form a proper ideal
of R.

In other words, setting U(R) = {x ∈ R| x is invertible}, R is a local ring if R \U(R) is a left
ideal of R. One easily shows that R \U(R) is a left ideal if and only if it is a two-sided ideal of
R (Verify!).

Proposition 19.2. Let R be a local ring. Then

(1) R \U(R) is the Jacobson radical J(R) of R.
(2) R/ J(R) is a division ring.
(3) there is a unique simple module (modulo isomorphisms) in R-Mod, S = R/ J(R). In

particular E(R/ J(R)) is the minimal injective cogenerator of R-Mod.
(4) The unique idempotent elements in R are 0 and 1.

Proof. 1) Given a ring R, any left ideal of R is contained in R \U(R). So, if R is local, R \U(R)
is the unique maximal ideal of RR. In particular R \U(R) is the Jacobson radical J(R) of R.
2) is obvious, since every element in R/ J(R) is invertible.
3) It follows since J(R) is the unique maximal ideal of R.
4) Let e an idempotent element in a ring R. Observe that from e(1 − e) = 0, if e is invertible
one gets e = 1. So, if R is local and e is a not invertible idempotent, then e ∈ R \U(R) = J(R)
and so the idempotent 1− e ∈ U(R) (otherwise we would have 1 ∈ J(R)). Hence, 1− e = 1 and
so e = 0. We conclude that the only idempotents in R are the trivial ones, i.e. 0 and 1. �

Remark 19.3. If R is a local ring, then RR is an indecomposable R-module, since the direct
summands of RR correspond to the idempotent elements of R (see Exercise 9.4).

If M ∈ R-Mod and EndR(M) is a local ring, then M is indecomposable. Indeed, to any
decomposition M = N ⊕L, we can associate an idempotent element πN ∈ EndR(M), πN : M →
M , n + l 7→ n. Thus πN = 0 or πN = idM in EndR(M), from which we get N = 0 or N = M ,
respectively.

20. Finite length modules

Let M ∈ R-Mod. A sequence 0 = N0 ≤ N1 ≤ · · · ≤ Ns−1 ≤ Ns = M of submodules of M is
called a filtration of M , with factors Ni/Ni−1, i = 1, · · · , s. The length of the filtration is the
number of non-zero factors.

Consider now a filtration 0 = N ′0 ≤ N ′1 ≤ · · · ≤ N ′t−1 ≤ Nt = M ; it is a refinement of the
latter one if {Ni| 0 ≤ i ≤ s} ⊆ {N ′i | 0 ≤ i ≤ t}.

Two filtrations ofM are said equivalent if s = t and there exists a permutation σ : {0, 1, · · · , s} →
{0, 1, · · · , s} such that Ni/Ni−1

∼= N ′σ(i)/N
′
σ(i−1), for i = 1, · · · , s.

Finally, a filtration 0 = N0 ≤ N1 ≤ · · · ≤ Ns−1 ≤ Ns = M of M is a composition series
of M if the factors Ni/Ni−1, i = 1, · · · , s, are simple modules. In such a case they are called
composition factors of M .

Theorem 20.1. Any two filtrations of M admit equivalent refinements.
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Proof. The proof follows from the following Lemma: Let U1 ≤ U2 ≤M and V1 ≤ V2 ≤M . Then

(U1 +U2 ∩V2)/(U1 +V1 ∩U2) ∼= (U2 ∩V2)/(U1 ∩V2) + (U2 +V1) ∼= (V1 +U2 ∩V2)/(V1 +U1 ∩V2)

In our setting, consider 0 = N0 ≤ N1 ≤ · · · ≤ Ns−1 ≤ Ns = M and 0 = L0 ≤ L1 ≤ · · · ≤ Ls−1 ≤
Lt = M two filtrations of M . For any 1 ≤ i ≤ s and 1 ≤ j ≤ t define Ni,j = Ni−1 + (Lj ∩Ni)
and Lj,i = Lj−1 + (Nj ∩ Li). Then

0 = N1,0 ≤ N1,1 ≤ · · · ≤ N1,t ≤ N2,0 ≤ · · · ≤ N2,t ≤ . . . Ns,t = M

is a refinement of the first filtration with factors Fi,j = Ni,j/Ni,j−1 and

0 = L1,0 ≤ L1,1 ≤ · · · ≤ L1,s ≤ L2,0 ≤ · · · ≤ L2,s ≤ . . . Lt,s = M

is a refinement of the second filtration with factorsGj,i = Lj,i/Lj,i−1. Clearly the two refinements
have the same length st and by the stated lemma Fi,j ∼= Gj,i. �

As a corollary of the previous Theorem, we get the following crucial result, known as Jordan-
Hölder Theorem:

Theorem 20.2 (Jordan-Hölder). Let M ∈ R-Mod a module with a composition series of length
l. Then

(1) Any filtration of M has length at most l and it can be refined in a composition series of
M .

(2) All the composition series of M are equivalent and have length l.

Proof. The proof follows by the previous proposition, since a composition series does not admit
any non trivial refinement. �

This leads to the following definition:

Definition 20.3. A module M ∈ R-Mod is of finite length if it admits a composition series.
The length l of any composition series of M is called the length of L, denoted by l(M).

Example 20.4. (1) Any vector space of finite dimension over a field K is a K-module of
finite length. Its length coincides with its dimension.

(2) The regular module ZZ is not of finite length.

In the following proposition we collect some relevant properties of finite length modules: some
of them are trivial, some of them need a short proof that we leave for exercise.

Proposition 20.5. Let M ∈ R-Mod be a finite length module. Then

(1) M is finitely generated
(2) for any N ≤M , N and M/N are of finite length
(3) If 0→ N →M → L→ 0 is an exact sequence, then l(M) = l(N) + l(L)
(4) M is a direct sums of indecomposable submodules.
(5) Soc(M) is an essential submodule of M
(6) M/Rad(M) is semisimple (i.e. direct sum of simple modules)
(7) M contains a finite number of simple modules

Proof. 4) IfM is indecomposable the statement is trivially true. Otherwise we argue by induction
on l(M). If M = V1 ⊕ V2, by point 3) we get that l(V1) < l(M) and l(V2) < l(M), so V1 and V2

are direct sums of indecomposable submodules.
5) Any L ≤ M has a composition series, so it contains a simple submodule, which is of course
also a simple submodule of M .
6) By induction on l(M/Rad(M))
7) Any simple submodule of M is a direct summand of Soc(M). Since Soc(M) is finitely
generated (by (1) and (2)), it has only a finite number of summands. �

For modules of finite length the converse of Remark 19.3 holds.

Lemma 20.6. Let M ∈ R-Mod a module of finite length l(M) = n. Then, for any f : M →M ,
one has M = Im fn ⊕Ker fn.
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Proof. Consider the sequence of inclusions · · · ≤ Im f2 ≤ Im f ≤ M . Since M has finite
length, the inclusions are trivial for almost every i ∈ N. In particular, there exists m such that
Im fm = Im f2m and we can assume m = n. Let now x ∈ M : hence fn(x) = f2n(y) for y ∈ M
and so x = fn(y)− (x− fn(y)) ∈ Im fn + Ker fn.

Moreover, from the sequence of inclusions 0 ≤ Ker f ≤ Ker f2 ≤ · · · ≤ M , arguing as before
we can assume Ker fn = Ker f2n. Consider now x ∈ Im fn ∩ Ker fn. So x = fn(y) and
fn(x) = f2n(y) = 0. Hence y ∈ Ker fn and so x = fn(y) = 0. �

Proposition 20.7. Let M ∈ R-Mod an indecomposable module of finite length. Then EndR(M)
is a local ring

Proof. Let f : M →M . Since M is indecomposable, by the previous lemma one easily conclude
that f is a mono if and only if it is an epi if and only if it is an iso if and only if fm 6= 0 for any
m ∈ N (see Exercise 21.1).

Thus let U = {f ∈ EndR(M)|f is invertible }. Let us show that EndR(M) \ U is an ideal
of EndR(M). So let f , g in EndR(M) \ U . The crucial point is to show that f + g is not
invertible (see Exercise 21.1). If f + g would be invertible, there would exist h ∈ U such that
(f + g)h = idM . Since g /∈ U , then gh /∈ U , so gh would be nilpotent. Let r such that (gh)r = 0:
from (idM −gh)(idM +gh + (gh)2 + · · · + (gh)r−1) = idM we would conclude fh ∈ U and so
f ∈ U . �

Theorem 20.8 (Krull-Remak-Schimdt-Azumaya). Let M ∼= A1 ⊕A2 ⊕ · · · ⊕Am ∼= C1 ⊕ C2 ⊕
· · · ⊕ Cn where EndR(Ai) is a local ring for any i = 1, · · · ,m and Cj is indecomposable for any
j = 1, · · · , n. Then n = m and there exists a bijection σ : {1, · · · , n} → {1, · · · , n} such that
Ai ∼= Cσ(i) for any i = 1, · · · , n.

Proof. By induction on m.
If m = 1, then M ∼= A1 is indecomposable and so we conclude.
If m > 1, consider the equalities

idAm
= πAm

iAm
= πAm

(

n∑
j=1

iCj
πCj

)iAm
=

n∑
j=1

πAm
iCj

πCj
iAm

,

where π and i are the canonical projections and inclusions. Since EndR(Am) is local, and in
any local ring the sum of not invertible elements is not invertible, there exist j such that α =
πAmiCj

πCj
iAm is invertible. We can assume j = n, and consider γ = α−1πAmiCn : Cn → Am.

Since γπCn
iAm

= α−1, we get that γ is a split epimorphism. Since Cn is indecomposable, we
conclude γ is an iso, and so Cn ∼= Am. Then apply induction to get the thesis. �

The previous theorem says that if M is a module which is a direct sum of modules with
local endomorphism rings, then any two direct sum decompositions of M into indecomposable
direct summands are isomorphic. We conclude that the modules of finite length admits a unique
(modulo isomorphisms) decomposition in indecomposable modules

21. Exercises

Exercise 21.1. Let M an indecomposable R- module of finite length and f ∈ EndR(M). Show
that the following are equivalent:

(1) f is a mono
(2) f is an epi
(3) f is an iso
(4) f is not nilpotent.

In particular, if f is not invertible, then gf is not invertible for any g ∈ EndR(M). Which of the
previous implications hold also if M is of finite length but not indecomposable?

Exercise 21.2. Let M be an R-module.

(1) Let M1,M2 ≤ M such that M1 +M2 = M . Show that M/M1 ∩M2
∼= M1/M1 ∩M2 ⊕

M2/M1 ∩M2.
(2) Suppose Rad(M) = M1 ∩M2, where M1 and M2 are maximal submodules of M . Show

that M/Rad(M) = S1 ⊕ S2 where S1 and S2 are simple R-modules.
(3) Let M be a finite length R-module. Show that M/Rad(M) is semisimple.
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22. Finite dimensional K-algebras

Definition 22.1. Let K be a field. A K-algebra Λ is a ring with a map K × Λ→ Λ, k 7→ ka,
such that Λ is a K-module and k(ab) = a(kb) = (ab)k for any k ∈ K and a, b ∈ Λ. Λ is finite
dimensional if dimK(Λ) <∞.

In other words, a K-algebra is a ring with a further structure of K-vector space, compatible
with the ring structure.

Remark 22.2. Any element k ∈ K can be identify with an element of Λ by means of K×Λ→ Λ,
k 7→ k · 1. Thanks to this identification, we get that K ≤ Λ so any Λ-module is in particular a
K-module.

Example 22.3. (1) The ringMn(K) is a finite dimensionalK-algebra. with dimK(Mn(K)) =
n2. Any element k ∈ K is identified with the diagonal matrix with k on the diagonal
elements.

(2) The ring K[x] is a K-algebra, not finite dimensional.

Proposition 22.4. Let Λ be a finite dimensional K-algebra. Then M ∈ Λ-Mod is finitely
generated if and only if dimK(M) <∞.

Proof. Assume dimK(Λ) = n and {a1, . . . , an} a K-basis.

If {m1, . . . ,mr} is a set of generator of M as Λ-module, then one verifies that {aimj}j=1,...,r
i=1,...,n

is a set of generators for M as K-module.
Conversely, if M is generated by {m1, . . . ,ms} as K-module, since K ≤ Λ, one gets that M

is generated by {m1, . . . ,ms} also as Λ-module.
�

In the following we denote by Λ-mod the full subcategory of Λ-Mod consisting on the finitely
generated Λ-modules.

Corollary 22.5. Any finitely generated module M ∈ Λ-mod is a finite length module, and
l(M) ≤ dimK(M).

Proof. Since any M ∈ Λ-mod is a finite dimensional vector space, M admits a composition series
in K-mod of length n, where dimK(M) = n. So any filtration of M in Λ-Mod is at most of
length n and any refinement is a refinement also in K-mod. Thus we conclude. �

Proposition 22.6. Let M,N ∈ Λ-mod. Then HomΛ(M,N) is a finitely generated K-module.
In particular, Γ = EndΛ(M) is a finite dimensional K-algebra and MΓ is finitely generated.

Proof. The K-module HomΛ(M,N) is a K-submodule of HomK(M,N), and the latter is finitely
generated by a well-known result of linear algebra. Thus HomΛ(M,N) is finitely generated as
K-module. In particular, Γ = HomΛ(M,M) is a finite dimensional K-algebra. Since M has a
natural structure of right Γ-module and it is a finitely generated K-module, it is also a finitely
generated Γ-module. �

In the sequel, let Λ be a finite dimensional K-algebra.

Since ΛΛ is of finite length, it admits a unique decomposition in indecomposable submodules.
The indecomposable summands of a ring are in correspondence with the idempotent elements, so
there exists a set {e1, e2, . . . , en} of idempotents of Λ such that ΛΛ = Λe1⊕ . . .Λen. Moreover we
can assume 1 = e1+· · ·+en and one easily shows that eiej = 0 for any i 6= j (a set of idempotents
with this property is called orthogonal). Finally since Λei are indecomposable, each idempototent
ei is primitive (i.e. it cannot be a sum of two non-zero orthogonal idempotents, see Exercise 23.1).
Notice that ΛΛ = e1Λ⊕· · ·⊕enΛ is a decomposition in indecomposable summands of the regular
right module ΛΛ. From this discussion it follows that, for i = 1, . . . , n, the Pi = Λei are the
indecomposable projective left Λ-modules and the Qi = eiΛ are the indecomposable projective
right Λ-modules (Why?).

Consider the functor D : Λ-mod → mod-Λ, M 7→ D(M) = HomK(ΛM,K). For simplicity,
we denote by D the analogous functor D : mod-Λ → Λ-mod, N 7→ D(N) = HomK(NΛ,K).
For any M ∈ Λ-mod define the evaluation morphism δM : M → D2(M), x 7→ δM (x), where
δM (x) : D(M)→ K, ϕ 7→ ϕ(x). One easily verify that δM is an isomorphism for anyM ∈ Λ-mod.
Similarly one define δN for any N ∈ mod-Λ, which is an iso for any N .
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It turns out that δ : D2 → 1 is a natural transformation which defines a duality between Λ-mod
and mod-Λ. So P is indecomposable projective in Λ-mod if and only if D(P ) is indecomposable
injective in mod-Λ. S is simple in Λ-mod if and only if D(S) is simple in mod-Λ (Why?)

Thanks to the duality (D,D), we conclude that D(ΛΛ) is the minimal injective cogenerator of
Λ-mod and the Ei = D(Qi) are the unique indecomposable injective modules in Λ-mod. Observe
that if S and T are non isomorphic simple modules in Λ-mod, then their injective envelopes E(S)
and E(T ) are non isomorphic indecomposable injective modules (Why?). We conclude that there
is a finite number of simple left Λ-modules S1, S2, . . . Sn.

Observe that in mod-Λ there exist injective envelopes so, thanks to the duality, we get that
in Λ-mod there exist projective covers. Let us see how to compute injective envelopes and
projective covers.

First observe that, denoted by J = J(Λ), for anyM ∈ Λ-mod the submodule JM is superfluous
in M 17.11. In particular J e1 is superfluous in Λei, so Λei is the projective cover of Λei/ J ei
(see 12.8). Moreover, since Λei is indecomposable, we get that Λei/ J ei is a simple module (see
Exercise 23.2) and so J e1 is a maximal submodule of Λei. We conclude that Si = Λei/ J ei is a
complete list of the simple modules in Λ-mod. Similarly, Ti = eiΛ/ei J is a complete list of the
simple modules in mod-Λ. Notice that, as a consequence of the the above discussion, we get that
J e1 is the radical of Λei (Why?). One can show that the same result holds for any M ∈ Λ-mod:
Rad(M) = JM .

Since Si = D(Ti), we get that Ei = D(Qi) is the injective envelope of Si.
How to compute injective envelopes and projective covers for any M ∈ Λ-mod? Since it is

of finite length, M/Rad(M) and Soc(M) are semisimple. Let M/Rad(M) = S1 ⊕ · · · ⊕ Sr
(eventually with a certain multiplicity). Then P (M) = P (S1) ⊕ · · · ⊕ P (Sr). Similarly, if
Soc(M) = S1 ⊕ · · · ⊕ Sm, then E(M) = E(S1)⊕ · · · ⊕ E(Sm). (see Exercises 23.3 and 23.4).

To conclude: in Λ-mod the simples are the Si = Λei/ J ei, the indecomposable projectives
are the Pi = Λei, the indecomposable injectives are the Ei = D(eiΛ). The regular module ΛΛ
is the minimal projetive generator of Λ-mod and D(ΛΛ) is the minimal injective cogenerator of
Λ-mod. Moreover Pi is the projective cover of Si and Ei is the injective envelope of Si.

In mod-Λ the simples are the Ti = Λei/ J ei = D(Si), the indecomposable projectives are the
Qi = eiΛ, the indecomposable injectives are the Fi = D(Λei). The regular module ΛΛ is the
minimal projetive generator of mod-Λ and D(ΛΛ) is the minimal injective cogenerator of mod-Λ.
Moreover Qi is the projective cover of Ti and Fi is the injective envelope of Ti.

23. Exercises

Exercise 23.1. A idempotent element e ∈ Λ is called primitive if it is not a sum of two non zero
orthogonal idempotents. Show that Λe is indecomposable if and only if e is primitive.

Exercise 23.2. Let Λ a finite dimensional algebra. Let M = N1 ⊕ N2 and assume that P1 and
P2 are projective covers of N1 and N2, respectively. Show that P1 ⊕ P2 is the projective cover
of M . Similarly, assume that E1 and E2 are the injective envelopes of N1 and N2, respectively,
then E1 ⊕ E2 is the injective envelope of M .

Exercise 23.3. Let M ∈ Λ-mod and Soc(M) = S1 ⊕ . . . Sr. Show that there exists an essential
monomorphism 0 → M → E(S1) ⊕ · · · ⊕ E(Sr) and conclude that E(M) = E(Soc(M)) =
E(S1)⊕ · · · ⊕ E(Sr).(Hint: Soc(M) is essential in M , so...)

Exercise 23.4. Let M ∈ Λ-mod and M/Rad(M) = S1⊕. . . Sr. Show that there exists a superflu-
ous epimorphism M → P (S1)⊕ · · · ⊕ P (Sr)→ 0 and conclude that P (M) = P (M/Rad(M)) =
P (S1)⊕ · · · ⊕ P (Sr). (Hint: Rad(M) is superfluous in M , so...)


