- j_f s
ELSEVIER

Signal Processing: Image Communication 15 (2000) 387-421

SIGNAL PROCESSING:

IMAGE

COMMUNICATION

www.elsevier.nl/locate/image

Face and 2-D mesh animation in MPEG-4

A. Murat Tekalp*®-*, Jorn Ostermann®

2Sabanci University, Engineering and Natural Sciences, Orhanli, 81474 Tuzla, Istanbul, Turkey
*Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627-0126, USA
CATT Labs - Research, Room 3-231, 100 Schultz Dr., Red Bank, NJ 07701, USA

Abstract

This paper presents an overview of some of the synthetic visual objects supported by MPEG-4 version-1, namely
animated faces and animated arbitrary 2D uniform and Delaunay meshes. We discuss both specification and compres-
sion of face animation and 2D-mesh animation in MPEG-4. Face animation allows to animate a proprietary face model
or a face model downloaded to the decoder. We also address integration of the face animation tool with the
text-to-speech interface (TTSI), so that face animation can be driven by text input. © 2000 Elsevier Science B.V. All

rights reserved.

Keywords: MPEG-4; Face animation; Computer graphics; Deformation; VRML; Speech synthesizer; Electronic commerce

1. Introduction

MPEG-4 is an object-based multimedia com-
pression standard, which allows for encoding of
different audio-visual objects (AVO) in the scene
independently. The visual objects may have natural
or synthetic content, including arbitrary shape
video objects, special synthetic objects such as
human face and body, and generic 2D/3D objects
composed of primitives like rectangles, spheres, or
indexed face sets, which define an object surface by
means of vertices and surface patches. The syn-
thetic visual objects are animated by transforms
and special-purpose animation techniques, such as
face/body animation and 2D-mesh animation.
MPEG-4 also provides synthetic audio tools such

* Corresponding author.
E-mail address: tekalp@sabanciuniv.edu.tr (A.M. Tekalp)

as structured audio tools and a text-to-speech inter-
face (TTSI). This paper presents a detailed overview
of synthetic visual objects supported by MPEG-4
version-1, namely animated faces and animated
arbitrary 2D uniform and Delaunay meshes. We
also address integration of the face animation tool
with the TTSI, so that face animation can be driven
by text input. Body animation and 3D mesh com-
pression and animation will be supported in
MPEG-4 version-2, and hence are not covered in
this article.

The representation of synthetic visual objects in
MPEG-4 is based on the prior VRML standard
[11-13] using nodes such as Transform, which de-
fines rotation, scale or translation of an object, and
IndexedFaceSet describing 3D shape of an object by
an indexed face set. However, MPEG-4 is the first
international standard that specifies a compressed
binary representation of animated synthetic
audio-visual objects. It is important to note that

0923-5965/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PII: S0923-5965(99)00055-7

388 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

MPEG-4 only specifies the decoding of compliant
bit streams in an MPEG-4 terminal. The encoders
do enjoy a large degree of freedom in how to
generate MPEG-4 compliant bit streams. Decoded
audio-visual objects can be composed into 2D and
3D scenes using the binary format for scenes (BIFS)
[13], which also allows implementation of anima-
tion of objects and their properties using the BIFS-
Anim node. We recommend readers to refer to an
accompanying article on BIFS for the details of
implementation of BIFS-Anim. Compression of
still textures (images) for mapping onto 2D or 3D
meshes is also covered in another accompanying
article. In the following, we cover the specification
and compression of face animation and 2D-mesh
animation in Sections 2 and 3, respectively.

2. Face animation

MPEG-4 foresees that talking heads will serve an
important role in future customer service applica-
tions. For example, a customized agent model can
be defined for games or web-based customer service
applications. To this effect, MPEG-4 enables integ-
ration of face animation with multimedia com-
munications and presentations and allows face
animation over low bit-rate communication chan-
nels, for point to point as well as multi-point
connections with low delay. With AT&T’s imple-
mentation of an MPEG-4 face animation system,
we can animate a face models with a data rate of
300-2000 bits/s. In many applications like Elec-
tronic Commerce, the integration of face animation
and text to speech synthesizer is of special interest.
MPEG-4 defines an application program interface
for TTS synthesizer. Using this interface, the syn-
thesizer can be used to provide phonemes and
related timing information to the face model. The
phonemes are converted into corresponding mouth
shapes enabling simple talking head applications.
Adding facial expressions to the talking head is
achieved using bookmarks in the text. This integra-
tion allows for animated talking heads driven just
by one text stream at a data rate of less than
200 bits/s [23]. Subjective tests reported in [25]
show that an FElectronic Commerce web site with
talking faces gets higher ratings than the same web

site without talking faces. In an amendment to the
standard foreseen in 2000, MPEG-4 will add body
animation to its tool set, thus allowing the stand-
ardized animation of complete human bodies.

In the following sections, we describe how to
specify and animate 3D face models, compress
facial animation parameters, and integrate face
animation with TTS in MPEG-4. The MPEG-4
standard allows using proprietary 3D face models
that are resident at the decoder as well as transmis-
sion of face models such that the encoder can pre-
dict the quality of the presentation at the decoder.
In Section 2.1, we explain how MPEG-4 specifies
a 3D face model and its animation using face defini-
tion parameters (FDP) and facial animation para-
meters (FAP), respectively. Section 2.2 provides
details on how to efficiently encode FAPs. The
integration of face animation into an MPEG-4
terminal with text-to-speech capabilities is shown
in Section 2.3. In Section 2.4, we describe briefly the
integration of face animation with MPEG-4 sys-
tems. MPEG-4 profiles with respect to face anima-
tion are explained in Section 2.5.

2.1. Specification and animation of faces

MPEG-4 specifies a face model in its neutral
state, a number of feature points on this neutral face
as reference points, and a set of FAPs, each corre-
sponding to a particular facial action deforming
a face model in its neutral state. Deforming a neu-
tral face model according to some specified FAP
values at each time instant generates a facial anima-
tion sequence. The FAP value for a particular FAP
indicates the magnitude of the corresponding ac-
tion, e.g., a big versus a small smile or deformation
of a mouth corner. For an MPEG-4 terminal to
interpret the FAP values using its face model, it has
to have predefined model-specific animation rules
to produce the facial action corresponding to
each FAP. The terminal can either use its own
animation rules or download a face model and the
associated face animation tables (FAT) to
have a customized animation behavior. Since the
FAPs are required to animate faces of different
sizes and proportions, the FAP values are defined
in face animation parameter units (FAPU). The
FAPU are computed from spatial distances

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 389

Fig. 1. A face model in its neutral state and the feature points
used to define FAP units (FAPU). Fractions of distances be-
tween the marked key features are used to define FAPU (from

[14]).

between major facial features on the model in its
neutral state.

In the following, we first describe what MPEG-4
considers to be a generic face model in its neutral
state and the associated feature points. Then, we
explain the facial animation parameters for this gen-
eric model. Finally, we show how to define MPEG-4
compliant face models that can be transmitted from
the encoder to the decoder for animation.

2.1.1. MPEG-4 face model in neutral state

As the first step, MPEG-4 defines a generic face
model in its neutral state by the following proper-
ties (see Fig. 1):

gaze is in direction of the Z-axis,

all face muscles are relaxed,

eyelids are tangent to the iris,

the pupil is one-third of the diameter of the

iris,

e lips are in contact; the line of the lips is horizontal
and at the same height of lip corners,

e the mouth is closed and the upper teeth touch the
lower ones,

e the tongue is flat, horizontal with the tip of

tongue touching the boundary between upper

and lower teeth.

Table 1
Facial animation parameter units and their definitions

IRISDO Iris diameter

(by definition

it is equal to the
distance between upper
and lower eyelid) in
neutral face

ESO Eye separation

ENSO Eye-nose separation
MNSO Mouth-nose separation
MWO0 Mouth width

AU Angle unit

IRISD = IRISD0/1024

ES = ES0/1024
ENS = ENS0/1024
MNS = MNS0/1024
MW = MWO0/1024
10E — 5 rad

A FAPU and the feature points used to derive the
FAPU are defined next with respect to the face in
its neutral state.

2.1.1.1. Face animation parameter units. In order
to define face animation parameters for arbitrary
face models, MPEG-4 defines FAPUs that serve to
scale facial animation parameters for any face
model. FAPUs are defined as fractions of distances
between key facial features (see Fig. 1). These fea-
tures, such as eye separation, are defined on a face
model that is in the neutral state. The FAPU allow
interpretation of the FAPs on any facial model in
a consistent way, producing reasonable results in
terms of expression and speech pronunciation. The
measurement units are shown in Table 1.

2.1.1.2. Feature points. MPEG-4 specifies 84 fea-
ture points on the neutral face (see Fig. 2). The main
purpose of these feature points is to provide spatial
references for defining FAPs. Some feature points
such as the ones along the hairline are not affected
by FAPs. However, they are required for defining
the shape of a proprietary face model using feature
points (Section 2.1.3). Feature points are arranged
in groups like cheeks, eyes and mouth. The location
of these feature points has to be known for any
MPEG-4 compliant face model. The feature points
on the model should be located according to Fig. 2
and the hints given in Table 6.

2.1.2. Face animation parameters
The FAPs are based on the study of minimal
perceptible actions and are closely related to

390 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

3.14

/o\
< 3.2
Y XL
3.12 O 36

—o 3.4
-

3.10 3.9

Right eye Left éye

9.8
ry 12
W\(m] Nose 9°
o 9.14 9.13
9.10

10 o
° 9.3
.
O
9.9 9.2 m 0.1

Teeth 04 915 95

9.6 9.7

6.3
6.4 6.2

o Tongue

* Feature points affected by FAPs
o Other feature points

Fig. 2. Feature points may be used to define the shape of a proprietary face model. The facial animation parameters are defined by
motion of some of these feature points (from [14]).

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 391
Table 2 Table 3
FAP groups Visemes and related phonemes
Group Number of FAPs Viseme no. Phonemes Example
1: Visemes and expressions 2 0 None na
2: Jaw, chin, inner lowerlip, cornerlips, 16 1 p, b, m put, bed, mill
midlip 2 f,v far, voice
3: Eyeballs, pupils, eyelids 12 3 T,D think, that
4: Eyebrow 8 4 t,d tip, doll
5: Cheeks 4 5 kg call, gas
6: Tongue 5 6 tS, dZ, S chair, join, she
7: Head rotation 3 7 S, Z sir, zeal
8: Outer lip positions 10 8 n, | lot, not
9: Nose 4 9 r red
10: Ears 4 10 A car
11 e bed
12 I tip
13 Q top
14 U book

muscle actions [16,26,31,36]. The 68 parameters
are categorized into 10 groups related to parts of
the face (Table 2). FAPs represent a complete set of
basic facial actions including head motion, tongue,
eye and mouth control. They allow representation
of natural facial expressions (see Table 7). For each
FAP, the standard defines the appropriate FAPU,
FAP group, direction of positive motion and
whether the motion of the feature point is unidirec-
tional (see FAP 3, open jaw) or bi-directional (see
FAP 48, head pitch). FAPs can also be used to
define facial action units [8]. Exaggerated ampli-
tudes permit the definition of actions that are nor-
mally not possible for humans, but are desirable for
cartoon-like characters.

The FAP set contains two high-level parameters,
visemes and expressions (FAP group 1). A viseme
(FAP 1) is a visual correlate to a phoneme. Only 14
static visemes that are clearly distinguished are
included in the standard set (Table 3). In order to
allow for coarticulation of speech and mouth
movement [6], the shape of the mouth of a speak-
ing human is not only influenced by the current
phoneme, but also the previous and the next pho-
neme. In MPEG-4, transitions from one viseme to
the next are defined by blending only two visemes
with a weighting factor. So far, it is not clear how
this can be used for high-quality visual speech
animation.

The expression parameter FAP 2 defines the six
primary facial expressions (Table 4, Fig. 3). In con-

trast to visemes, facial expressions are animated by
a value defining the excitation of the expression.
Two facial expressions can be animated simulta-
neously with an amplitude in the range of [0-63]
defined for each expression. The facial expression
parameter values are defined by textual descrip-
tions. The expression parameter allows for an effi-
cient means of animating faces. They are high-level
animation parameters. A face model designer cre-
ates them for each face model. Since they are
designed as a complete expression, they allow
animating unknown models with high subjective
quality [1,23].

Using FAP 1 and FAP 2 together with low-level
FAPs 3-68 that affect the same areas as FAPs
1 and 2, may result in unexpected visual representa-
tions of the face. Generally, the lower level FAPs
have priority over deformations caused by FAP
1 or 2. When specifying an expression with FAP 2,
the encoder may sent an init_face bit that deforms
the neutral face of the model with the expression
prior to superimposing FAPs 3-68. This deforma-
tion is applied with the neutral face constraints of
mouth closure, eye opening, gaze direction and
head orientation. Since the encoder does not know
how FAPs 1 and 2 are implemented, we recom-
mend using only those low-level FAPs that will not
interfere with FAPs 1 and 2.

392 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

Table 4
Primary facial expressions as defined for FAP 2

No. Expression name Textual description

1 Joy The eyebrows are relaxed. The mouth is open and the mouth corners pulled back toward the ears.

2 Sadness The inner eyebrows are bent upward. The eyes are slightly closed. The mouth is relaxed.

3 Anger The inner eyebrows are pulled downward and together. The eyes are wide open. The lips are pressed
against each other or opened to expose the teeth.

4 Fear The eyebrows are raised and pulled together. The inner eyebrows are bent upward. The eyes are tense
and alert.

5 Disgust The eyebrows and eyelids are relaxed. The upper lip is raised and curled, often asymmetrically.

6 Surprise The eyebrows are raised. The upper eyelids are wide open, the lower relaxed. The jaw is opened.

Joy Sadness Surprise
Fear

Anger Disgust

Fig. 3. Facial expressions.

2.1.3. Face model specification

Every MPEG-4 terminal that is able to decode
FAP streams has to provide an MPEG-4 com-
pliant face model that it animates (Section 2.1.3.1).
Usually, this is a model proprietary to the decoder.
The encoder does not know about the look of the
face model. Using a face definition parameter
(FDP) node, MPEG-4 allows the encoder to com-
pletely specify the face model to animate. This in-
volves defining the static geometry of the face
model in its neutral state using a scene graph
(Section 2.1.3.3), defining the surface properties and
defining the animation rules using face animation
tables (FAT) that specify how this model gets de-
formed by the facial animation parameters (Section
2.1.3.4). Alternatively, the FDP node can be used to
‘calibrate’ the proprietary face model of the decoder
(Section 2.1.3.2). However, MPEG-4 does not spec-
ify how to ‘calibrate’ or adapt a proprietary face
model.

2.1.3.1. Proprietary face model. 1In order for a face
model to be MPEG-4 compliant, it has to be able
to execute all FAPs according to Sections 2.1.1 and
2.1.2. Therefore, the face model has to have at least
as many vertices as there are feature points that
can be animated. Thus, an MPEG-4 compliant face
model may have as little as 50 vertices. Such
a model would not generate a pleasing impression.
We expect to require at least 500 vertices for pleas-
ant and reasonable face models (Fig. 3).

A proprietary face model can be built in four
steps:

1. We build the shape of the face model and define
the location of the feature points on the face
model according to Section 2.1.1 and Fig. 2.

2. For each FAP, we define how the feature point
has to move. For most feature points, MPEG-4
defines only the motion in one dimension. As an
example, we consider FAP 54, which displaces
the outer right lip corner horizontally. Human
faces usually move the right corner of the lip
backward as they move it to the right. It is left up
to the face model designer to define a subjective-
ly appealing face deformation for each FAP.

3. After the motion of the feature points is defined
for each FAP, we define how the motion of
a feature point affects its neighboring vertices.
This mapping of feature point motion onto ver-
tex motion can be done using lookup tables like
FAT (Section 2.1.3.4) [24], muscle-based defor-
mation [16,31,36] or distance transforms [17].

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 393

4. For expressions, MPEG-4 provides only quali-
tative hints on how they should be designed
(Table 4). Similarly, visemes are defined by giv-
ing sounds that correspond to the required lip
shapes (Table 3). FAPs 1 and 2 should be de-
signed with care since they will mostly be used
for visually appealing animations.

Following the above steps, our face model is
ready to be animated with MPEG-4 FAPs. When-
ever a face model is animated, gender information
is provided to the terminal. MPEG-4 does not
require using a different face model for male or
female gender. We recommend that the decoder
reads the gender information and, at a minimum,
deforms its model to be male or female. This avoids
the presentation of a female face with a male voice
and vice versa.

2.1.3.2. Face model adaptation. An encoder may
choose to specify the location of all or some feature
points. Then, the decoder is supposed to adapt its
own proprietary face model such that the model
conforms to the feature point positions. Since
MPEG-4 does not specify any algorithm for adapt-
ing the surface of the proprietary model to the new
feature point locations, we cannot specify the sub-
jective quality of a face model after its adaptation.
Face model adaptation allows also for download-
ing of texture maps for the face. In order to specify
the mapping of the texture map onto the propri-
etary face model, the encoder sends texture co-
ordinates for each feature point. Each texture coor-
dinate defines the location of one feature point on
the texture map. This does not allow for precise
texture mapping at important features like eyelids
or lips. Within the standard, this process of adapt-
ing the feature point locations of a proprietary
face model according to encoder specifications is
commonly referred to as ‘face model calibration’.
As stated above, MPEG-4 does not specify any
minimum quality of the adapted face model. There-
fore, we prefer to name this process ‘face model
adaptation’.

In [17], a method for face model adaptation is
proposed using an iterative approach based on
radial basis functions for scattered data interpola-
tion. For each feature point of the proprietary

model, a region of interest is defined. When a fea-
ture point moves, it deforms the model within this
region of interest. In order to achieve smooth surfa-
ces, an iterative algorithm was developed.

MPEG-4 allows for a second method of face
adaptation by sending an arbitrary mesh to the
decoder in addition to feature points. Whereas
a possible implementation of this approach is
described in [10], MPEG-4 will not mandate a spe-
cific implementation in the decoder nor will
MPEG-4 define any conformance points for this
approach to face model calibration. Therefore, we
expect most MPEG-4 terminals not to provide this
feature.

The advantage of face model adaptation over
downloading a face model from the encoder to the
decoder is that the decoder can adapt its potentially
very sophisticated model to the desired shape.
Since MPEG-4 does not define minimum qualities
for proprietary face models and a good adaptation
algorithm is fairly difficult to implement, we expect
mostly disappointing results as also pointed out in
[1]. In order to somewhat limit the shortcomings,
we recommended that the encoder always sends the
entire set of feature points for face model adapta-
tion. Sending of partial data may result in com-
pletely unpredictable face representations. For
applications that wants to specify exactly, how the
contents is presented at the decoder, downloading
a face model using a scene graph seems to be the
preferred method (Sections 2.1.3.3 and 2.1.3.4).

2.1.3.3. Neutral face model using a scene graph. In
order to download a face model to the decoder, the
encoder specifies the static geometry of the head
model with a scene graph using MPEG-4 BIFS.
For this purpose, BIFS provides the same nodes as
VRML. VRML and BIFS describe scenes as a col-
lection of nodes, arranged in a scene graph. Three
types of nodes are of particular interest for the
definition of a static head model. A Group node is
a container for collecting child objects: it allows for
building hierarchical models. For objects to move
together as a group, they need to be in the same
Transform group. The Transform node defines geo-
metric affine 3D transformations like scaling, rota-
tion and translation that are performed on its
children. When Transform nodes contain other

394

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

Root
Group
HeadTransformX
Transform
HeadTransformY
Transform
HeadTransformZ
Transform
1
f I | | I 1
Face Hair Tongue Teeth LeftEyeTransformX | | RightEyeTransformX
IndexedFaceSet IndexedFaceSet IndexedFaceSet IndexedFaceSet Transform Transform
LeftEyeTransformY | | RightEyeTransformY
Transform Transform
LeftEye RightEye
IndexedFaceSet IndexedFaceSet

Fig. 4. Simplified scene graph for a head model. The names of BIFS nodes are given in italics.

Transforms, their transformation settings have
a cumulative effect. Nested Transform nodes can be
used to build a transformation hierarchy. An In-
dexedFaceSet node defines the geometry (3D mesh)
and surface attributes (color, texture) of a poly-
gonal object. Texture maps are coded with the
wavelet coder of the MPEG still image coder [14].

Fig. 4 shows the simplified scene graph for a face
model. Nested Transforms are used to apply rota-
tions about the x, y and z-axis one after another.
Embedded into these global head movements are
the rotations for the left and right eye. Separate
IndexedFaceSets define the shape and the sur-
face of the face, hair, tongue, teeth, left eye and right
eye, thus allowing for separate texture maps. Since
the face model is specified with a scene graph, this
face model can be easily extended to a head and
shoulder model. The surface properties of the face
can be specified using colors or still images to
define texture mapped models.

The shape of the face models may be generated
using interactive modelers, scanners or image anal-
ysis software [5,10].

2.1.3.4. Definition of animation rules using
FAT. FATs define how a model is spatially de-

formed as a function of the amplitude of the FAPs.
Three BIFS nodes provide this functionality:
FaceDefTable, FaceDefTransform and FaceDef-
Mesh. These nodes are considered to be part of the
face model. Using FaceDefTransform nodes and
FaceDefMesh nodes, the FaceDefTable specifies,
for a FAP, which nodes of the scenegraph are
animated by it and how [24].

Animation definition for a transform node. If
a FAP causes a transformation like rotation, trans-
lation or scale, a Transform node can describe this
animation. The FaceDefTable specifies a FaceDef-
Transform node that defines the type of trans-
formation and a scaling factor for the chosen
transformation. During animation, the received
value for the FAP, the FAPU and the scaling factor
determine the actual value by which the model is
transformed.

Animation definition for an IndexedFaceSet node.
If a FAP like joy causes flexible deformation of the
face model, the FaceDefTable node uses a FaceDef-
Mesh node to define the deformation of Indexed-
FaceSet nodes. The animation results in updating
vertex positions of the affected IndexedFaceSet
nodes. Moving the affected vertices as a piece-
wise linear function of FAP amplitude values

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 395

A Displacement for
one coordinate of a
ol

vertex " Dt

Imnx-l Imux

FAP Value

Fig. 5. Piecewise linear approximation of vertex motion as a function of the FAP value.

approximates flexible deformations of an Indexed-
FaceSet. The FaceDefMesh defines for each affec-
ted vertex its own piecewise linear function by
specifying intervals of the FAP amplitude and 3D
displacements for each interval (see Table 5 for an
example). The VRML community started to define
a Displacer Node that provides a similar function-
ality. However, the motion of a vertex is limited to
a straight line.

If P, is the position of the mth vertex of the
IndexedFaceSet in neutral state (FAP =0) and
D, is the 3D displacement that defines the piece-
wise linear function in the kth interval, then the
following algorithm is used to determine the new
position P, of the same vertex after animation with
the given FAP value (Fig. 5):

1. Determine the interval listed in the FaceDef-
Mesh in which the received FAP value is lying.
2. If the received FAP is in the jth interval
[1;,1;+1] and 0 =1, <I;, the new position

P,, of the mth vertex is given by
P,, =P, + FAPUx((I;+; — 0)xD,,
+ (Tkr2 — Tiw 1)*Dy k11
+ ;= Ij—1)xD,, -1
+ (FAP —1;)*D,,).

3. If FAP > I,,,, then P,, is calculated by using
the equation given in 2 and setting the index
j=max — 1.

4. If the received FAP is in the jth interval
[1;,1;+1] and I;4; <I;—o, the new position
P,, of the mth vertex is given by

P,, =P, + FAPU«((I;+, — FAP)xD,,
+ sz = 1js)% 1
+ o (Igmy — Ii—2)#Dy s
+(0 = L—y)* Dy i)

396 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

Fig. 6. Using MPEG-4 face animation tools, face and body of
this model can be downloaded and efficiently animated by the
encoder that downloads the model to the decoder.

5. If FAP < 14, then P,, is calculated by using the
equation in 4 and setting the index j = 1.

6. If for a given FAP and ‘IndexedFaceSet’ the
table contains only one interval, the motion is
strictly linear:

P, =P, + FAPUxFAPxD,,,.

Strictly speaking, these animation rules are not
limited to faces. Using this technology, MPEG-4
allows for a very efficient mechanism of animating
IndexedFaceSet and Transform nodes of arbitrary
objects with up to 68 FAPs. In Fig. 6, we see a head
and shoulder model that can be animated using 68
FAPs. Obviously, the interpretation of the FAPs by
the model are partially not according to the stan-
dard, since the standard does not define a means for
moving an arm. Therefore, this model should only
be animated by an encoder that knows the inter-
pretation of FAPs by this model.

Example for a FaceDefTable. In Table 5, two
FAPs are defined by children of a FaceDefTable,
namely the FaceDefMesh and the FaceDefTrans-
form: FAP 6, which stretches the left corner lip, and
FAP 23, which manipulates the horizontal orienta-
tion of the left eyeball.

FAP 6 deforms the IndexedFaceSet named Face.
For the piecewise-linear motion function three in-
tervals are defined: [— 1000, 0], [0, 500] and [500,

Table 5
Simplified example of a FaceDefMesh and a FaceDefTransform

FaceDefMesh
FAP 6 (stretch left corner lip)
IndexedFaceSet: Face
Interval borders: — 1000, 0, 500, 1000
Displacements:
Vertex 501 00,0900,1.504
Vertex 510.800,0.700,200
FaceDefTransform
FAP 23 (yaw left eye ball)
Transform: LeftEyeX
Rotation scale factor: 0 — 1 0 (axis) 1 (angle)

1000]. Displacements are given for the vertices with
indices 50 and 51. The displacements for vertex 50
are (1 00), (0.9 0 0) and (1.5 0 4), the displacements
for vertex 51 are (0.8 0 0), (0.7 0 0) and (2 0 0). Given
a FAP amplitude of 600, the resulting displacement
for vertex 50 would be

P50 = Pso + 500%(0.900)" + 100(1.50 4)"
= Ps, + (600 0 400)".

FAP 23 updates the rotation field of the Transform
node LeftEyeX. The rotation axis is (0, — 1, 0), and
the neutral angle is 0 rad. The FAP value deter-
mines the rotation angle.

Fig. 7 shows two phases of a left eye blink (plus
the neutral phase) which have been generated using
a simple animation architecture [24].

The creation of the FaceDefMesh nodes for large
models can be time-consuming. However, the pro-
cess depicted in Fig. 8 uses a FaceDefTable gener-
ator that computes these tables from a set of face
models. The face model is described as a VRML
file and read into the modeler. In order to design
the behavior of the model for one animation para-
meter, the model is deformed using the tools of the
modeler. The modeler may not change the topol-
ogy of the model. The modeler exports the de-
formed model as a VRML file [12].

The FaceDefMesh generator compares the out-
put of the modeler with its input, the face model in
its neutral state. By comparing vertex positions of
the two models, the vertices affected by the newly
designed animation parameter are identified. The

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 397

FAP 19v Z4

Fig. 7. Neutral state of the left eye (left) and two deformed animation phases for the eye blink (FAP 19). The FAP definition defines the
motion of the eyelid in negative y-direction; the FaceDefTable defines the motion in one of the vertices of the eyelid in x and z directions.
Note that positive FAP values move the vertices downwards (Table 7).

Face Model

l l

FAP

Deformed
Face Models

Modeler

FaceDefMesh
Generator

FaceDefMesh

Tablos Renderer [—

}
@’Lil‘»

Fig. 8. FaceDefMesh interface - The modeler is used to generate VMRL files with the object in different animated positions. The
generator computes one FaceDefMesh for each animation parameter.

generator computes for each affected vertex a 3D-
displacement vector defining the deformation and
exports this information in a FaceDefMesh table.
The renderer reads the VRML file of the model and
the table in order to learn the definition of the new
animation parameter. Now, the renderer can use
the newly defined animation as required by the
animation parameters.

2.2. Coding of face animation parameters

MPEG-4 provides two tools for coding of facial
animation parameters. Coding of quantized and
temporally predicted FAPs using an arithmetic
coder allows for low delay FAP coding (Section
2.2.1). Alternatively, discrete cosine transform
(DCT) coding of a sequence of FAPs introduces

a larger delay but achieves higher coding efficiency
(Section 2.2.2).

MPEG-4 provides a special mode (def_bit) that
allows downloading definitions of expressions and
visemes (FAPs 1 and 2) in terms of low-level FAPs.
Although the syntax for this capability is defined,
MPEG-4 does not require the decoder to store
a minimum number of these definitions. Therefore,
we recommend not using this tool until MPEG-4
provides clarifications on this tool in a potential
future revision of the standard. Instead, we recom-
mend the use of the FAP Interpolation Table (FIT)
as described in Section 2.2.3.

2.2.1. Arithmetic coding of FAPs
Fig. 9 shows the block diagram for low delay
encoding of FAPs. The first set of FAP values

398 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

Arithmetic | >
Coder

" e
Quantizer

Frame
Delay

Fig. 9. Block diagram of the low delay encoder for FAPs.

FAP, at time instant 0 with is coded without pre-
diction (intra coding). The value of a FAP at time
instant k FAP, is predicted using the previously
decoded value FAP,_,. The prediction error ¢’
is quantized using a quantization step size QP
that is specified in Table 7 multiplied by a quan-
tization parameter FAP_QUANT with
0 < FAP_QUANT < 31. FAP_QUANT is identi-
cal for all FAP values at one time instant k. Using
the FAP-dependent quantization step size
QP,- FAP_QUANT assures that quantization er-
rors are subjectively evenly distributed between dif-
ferent FAPs. The quantized prediction error ¢ is
arithmetically encoded using a separate adaptive
probability model for each FAP. Since the encod-
ing of the current FAP value depends only on one
previously coded FAP value, this coding scheme
allows for low-delay communications. At the de-
coder, the received data is arithmetically decoded,
dequantized and added to the previously decoded
value in order to recover the encoded FAP value.
When using FAP_QUANT > 15, the subjective
quality of the animation deteriorates significantly
such that we recommend not to increase
FAP_QUANT above 15 [1].

In order to avoid transmitting all FAPs for every
frame, the encoder can transmit a mask indicating
for which groups (Table 2) FAP values are trans-
mitted. The encoder can also specify for which
FAPs within a group values will be transmitted.
This allows the encoder to send incomplete sets of
FAPs to the decoder. FAP values that have been
initialized in an intra-coded FAP set are assumed
to retain those values if subsequently no update is
transmitted. However, the encoder can also signal
to the decoder that a previously transmitted FAP
value is not valid anymore.

The decoder can extrapolate values of FAPs that
have been invalidated or have never been specified,
in order to create a more complete set of FAPs. The
standard provides only limited specifications on
how the decoder is supposed to extrapolate FAP
values. Examples are that if only FAPs for the left
half of a face are transmitted, the corresponding
FAPs of the right side have to be set such that the
face moves symmetrically. If the encoder only speci-
fies motion of the inner lip (FAP group 2), the
motion of the outer lip (FAP group &) has to be
extrapolated in an unspecified way. Letting the
decoder extrapolate FAP values may create unex-
pected results depending on the particular decoder.
However, the encoder can always prevent the de-
coder from using extrapolation by defining all
FAP values or defining FAP Interpolation Tables
(Section 2.2.3).

2.2.2. DCT coding of FAPs

The second tool that is provided for coding
FAPs is the discrete cosine transform applied to 16
consecutive FAP values. This introduces a signifi-
cant delay in the coding and decoding process.
Hence, this coding method is mainly useful for
applications where animation parameter streams
are retrieved from a database. After computing the
DCT of 16 consecutive values of one FAP, DC and
AC coefficients are coded differently (Fig. 10).
Whereas the DC value is coded predictively using
the previous DC coefficient as prediction, the AC
coefficients are directly coded. The AC coefficient
and the prediction error of the DC coefficient are
linearly quantized. Whereas the quantizer step size
can be controlled, the ratio between the quantizer
step size of the DC coefficients and the AC coeffi-
cients is set to 5. The quantized AC coefficients are
encoded with one variable length code word (VLC)
defining the number of zero-coefficients prior to the
next non-zero coefficient and one VLC for the
amplitude of this non-zero coefficient. The hand-
ling of the decoded FAPs with respect to masking
and interpolation is not changed (see Section 2.2.1).

Fig. 11 compares the coding performance of the
DCT FAP coder and the arithmetic FAP coder.
The PSNR is measured by comparing the ampli-
tude of the original and coded FAP averaging over
all FAPs. This PSNR does not relate to picture

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 399

DC
FAR PQe »| Quantizer VLC Coder >
—» DCT N

DC’

Delay

I) ‘ Runlength/ | __|
Quantizer —— > VLC Coder

Fig. 10. Block diagram of the FAP encoder using DCT: DC coefficients are predictively coded, AC coefficients are directly coded (from
[22]).

70

60 —

. =

o 40 4
=
& 30
20 & i
10
0 T T T T T T T T T T T
0 0.5 1 1.5 2 25 3 35 4 45 5 5.5 6
=—&—Expressions (frame-based) == Marco30 (frame-based) Bitrate (kbps)
=—o—Expressions (DCT-based) =a=Marco30 (DCT-based)

Fig. 11. Rate distortion performance of the arithmetic and DCT coding mode of FAPs for the sequences Marco30 (30 Hz) and
Expressions (25 Hz) (from [1]).

quality but to the smoothness of temporal anima- up to 50% less data rate than the arithmetic coder
tion. In contrast to the arithmetic coder, the DCT at the price of an increased coding delay. This
coder is not able to code FAPs with near lossless advantage in coding efficiency disappears with in-

quality. At low data rates, the DCT coder requires creasing fidelity of the coded parameters.

400 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

2.2.3. FAP interpolation tables

As mentioned in Section 2.2.1, the encoder may
allow the decoder to extrapolate the values of some
FAPs from the transmitted FAPs [28]. Alterna-
tively, the decoder can specify the interpolation
rules using FAP interpolation tables (FIT). A FIT
allows a smaller set of FAPs to be sent for a facial
animation. This small set can then be used to deter-
mine the values of other FAPs, using a rational
polynomial mapping between parameters. For
example, the top inner lip FAPs can be sent and
then used to determine the top outer lip FAPs. The
inner lip FAPs would be mapped to the outer lip
FAPs using a rational polynomial function that is
specified in the FIT.

A FAP interpolation graph (FIG) is used to
specify which FAPs are interpolated from other
FAPs. The FIG is a graph with nodes and directed
links. Each node contains a set of FAPs. Each link
from a parent node to a child node indicates that
the FAPs in a child node can be interpolated from
those of the parent node. In a FIG, a FAP may
appear in several nodes, and a node may have
multiple parents. For a node that has multiple
parent nodes, the parent nodes are ordered as 1st
parent node, 2nd parent node, etc. During the inter-
polation process, if this child node needs to be
interpolated, it is first interpolated from the 1st
parent node if all FAPs in that parent node are
available. Otherwise, it is interpolated from the 2nd
parent node, and so on. An example of FIG is

top_inner_lip FAPs
u

2
/

expression
(1)
bottom_inner_lip FAPs
6
1 2
raise_b_midlip 1 !
3
2
bottom_outer_lip FAPs
7

Fig. 12. A FIG example for interpolating unspecified FAP
values of the lip. If only the expression is defined, the FAPs get
interpolated from the expression. If all inner lip FAPs are
specified, they are used to interpolate the outer lip FAPs.

shown in Fig. 12. Each node has an ID. The numer-
ical label on each incoming link indicates the order
of these links.

Each directed link in a FIG is a set of interpola-
tion functions. Suppose Fy, F», ..., F, are the FAPs
in a parent set and fi,f5,...,f,, are the FAPs
in a child set. Then, there are m interpolation
functions denoted as f; =I1{(Fy,F,,...,F,),
f2=12(F1aF2a'“3Fn)s fmzlm(FlaFZa“'aFn)-
Each interpolation function I; () is in the form of
a rational polynomial

I(FlaFZs-“,Fn)

K—1 n P—-1 n
_y (F> / 5 (b,.n F> 1)
i=o \ j=1 i=0 j=1

where K and P are the numbers of polynomial
products, ¢; and b; are the coeflicients of the ith
product. [;; and m;; are the power of F; in the ith
product. The encoder should send an interpolation
function table which contains all K, P, ¢;, b;, [;;, m;;
to the decoder for each link in the FIG.

Here, we provide some simple examples where
the use of FIT can be useful to reduce the bit-rate
for transmitting FAPs:

1. Precise specification of the extrapolation of
FAPs from their counterparts on the other side
of the face. If desired, this mechanism allows
even for unsymmetrical face animation.

2. Extrapolation of outer lip FAPs from inner lip
FAPs.

3. Extrapolation of eyebrow motion from FAP 34
(raise right middle eyebrow). This can be done
with linear polynomials.

4. Definition of facial expression (FAPs 1 and 2)
using low-level FAPs instead of using the
def_bit.

In order to specify the FITs for the examples, linear
polynomials are usually sufficient. If it is desired to
simulating the varying elasticity of skin for large
FAP amplitudes, non-linear mappings might be
useful. Following example 3, we might want the
inner and outer eyebrows follow the middle eye-
brow first roughly linearly and then to a lesser
extent. This gives eyebrows with increasing curva-
ture as the FAP amplitude increases.

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 401

2.3. Integration of face animation and text-to-speech
synthesis

MPEG-4 provides interfaces for a proprietary
text-to-speech (TTS) synthesizer [15] that allow
driving a talking head from text (see Fig. 13)
[4,6,16,18,19,37]. This section discusses the integra-
tion of face animation and TTS [27] allowing for
animation of a talking face using a TTS synthesizer
[23]. A key issue here is the synchronization of the
speech stream with the FAP stream. Synchroniza-
tion of a FAP stream with TTS synthesizers using
the TTS interfaces (TTSI) is only possible, if the
encoder sends prosody and timing information.
This is due to the fact that a conventional TTS
system driven by text only behaves as an asyn-
chronous source.

Given a TTS stream that contains text or pros-
ody in binary form, the MPEG-4 TTSI decoder
decodes the gender, text and prosody information
according to the interface defined for the TTS syn-
thesizer. The synthesizer creates speech samples
that are handed to the compositor. The compositor
presents audio and if required video to the user.
The second output interface of the synthesizer
sends the phonemes of the synthesized speech as
well as start time and duration information for
each phoneme to the Phoneme/Bookmark-to-
FAP-Converter [23]. The converter translates the
phonemes and timing information into face anima-
tion parameters that the face renderer uses in order
to animate the face model. The precise method of
how the converter derives visemes from phonemes

TTS Streal Proprietary Audio
_—Ig' Decoder [P Speech [T ‘LE
Synthesizer
2]
o
Phoneme/Bookmark g
to FAP Converter @
i g
Face Model Face Viieo
Renderer

Fig. 13. Block diagram showing the integration of a proprietary
Text-to-Speech Synthesizer into an MPEG-4 face animation
system.

is not specified by MPEG and left to the implemen-
tation of the decoder. This also allows using a coar-
ticulation model at the decoder that uses the
current, previous and next phoneme in order to
derive the correct mouth shape.

Most speech synthesizers do not have a syn-
chronous behavior. This means that the time they
require to speak a sentence in not predictable.
Therefore, synchronizing the output of a TTS with
facial expressions defined in a FAP stream is not
possible. Bookmarks in the text of the TTS are used
to animate facial expressions and non-speech-
related parts of the face [23]. The start time of
a bookmark is derived from its position in the
text. When the TTS finds a bookmark in the text it
sends this bookmark to the Phoneme/Bookmark-
to-FAP-Converter at the same time as it sends
the first phoneme of the following word. The
bookmark defines the start point and duration of
the transition to a new FAP amplitude. Conse-
quence: no additional delay, no look ahead in the
bit stream but no precise timing control on when
the amplitude will be reached relative to the spoken
text.

An example of a TTS stream with bookmarks is
given in Fig. 14 [23]. The renderer will generate the
visemes associated with each word, following the
timing information derived by the speech syn-
thesizer. It will also start to deform the model to
generate a smile with an amplitude of 40. To simu-
late a more natural expression, which typically goes
through three phases (onset, climax and relax),
a desired temporal behavior [20,22] for a pre-
scribed FAP can be specified in the bookmark.
Three functions are defined: A linear interpolation
function and a Hermite function can be used
to specify the transition of a FAP from its current
value to the target value. A triangular function
can be specified to linearly increase the amplitude
of a FAP to the target value and to decrease it
back to its starting amplitude. The bookmark
also specifies the desired duration to reach the
FAP value in the bookmark. If another bookmark
appears before this duration, the renderer starts
to deform the face according to the newly speci-
fied FAP information from the current position.
This is illustrated in Fig. 14 using Hermite
functions.

402 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421
FAP amplitude

A
631
404
201

Duration

in ms
I i i I >
1100 1700 2000 3000 4000

<FAP21401 40 2000 3>.text.<FAP2 163 163 600 3> text......... <FAP21010 1000 3>...text.....

Fig. 14. Example for text with bookmarks for one facial expression (joy) and the related amplitude of the animated FAP. The syntax of
a bookmark is: {FAP 2 (expression) 1 (joy) amplitude 1 (joy) amplitude duration 3 (Hermite time curve)). The amplitude of joy over time

is computed according to the bookmarks (see Section 2.1.2).

2.4. Integration with MPEG-4 systems

In order to use face animation in the context of
MPEG-4 systems, a BIFS scene graph has to be
transmitted to the decoder. The minimum scene
graph contains a Face node and a FAP node. The
FAP decoder writes the amplitude of the FAPs into
fields of the FAP node. The FAP node might have
the children Viseme and Expression which are
FAPs requiring a special syntax (see Section 2.1.2).
This scene graph would enable an encoder to ani-
mate the proprictary face model of the decoder. If
a face model is to be controlled from a TTS system,
an AudioSource node is to be attached to the face
node.

In order to download a face model to the de-
coder, the face node requires an FDP node as
one of its children. This FDP node contains the
position of the feature points in the downloaded
model, the scene graph of the model and the
FaceDefTable, FaceDefMesh and FaceDefTrans-
form nodes required to define the action caused
by FAPs. Fig. 15 shows how these nodes relate to
each other.

2.5. MPEG-4 profiles for face animation

MPEG-4 defines profiles to which decoders have
to conform. A profile consists of objects defining the
tools of the profile. Levels of a profile and object
put performance and parameter limits on the tools.
MPEG-4 Audio, Visual and Systems define parts of
face animation.

In Visual, the neutral face with its feature points
and FAPs, the coding of FAPs as well as the Pho-
neme/Bookmark-to-FAP-Converter with its inter-
face to TTSI are defined. The corresponding object
type is called Simple Face. The Simple Face object
allows animating a proprietary face model using
a FAP stream or from a TTSI provided that the
terminal supports MPEG-4 audio. Two levels are
defined for this object: At level 1, it requires to
animate one face model with a maximum bit-rate of
16 kbit/s and a render frame rate of at least 15 Hz.
Atlevel 2, up to 4 faces can be animated with a total
bit-rate not to exceed 32 kbit/s and a render frame
rate of 60 Hz shareable between faces. This Simple
Face object is included in the following visual pro-
files: Hybrid, Basic Animated Texture and Simple FA

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 403

AudioSource

TTSStream

FaceSceneGraph

FaceDefTable

FaceDefMesh

Transform

FaceDef

FAPStream

Fig. 15. Nodes of a BIFS scene graph that are used to describe and animate a face. The FaceSceneGraph contains the scene graph of the

static face. Here, it is assumed that the streams are already decoded.

(face animation). Whereas the Simple FA requires
only face animation capabilities, Basic Animated
Texture adds scaleable texture coding and mesh-
based animation of these textures. The Hybrid
profile adds video decoding according to the Core
profile (video and binary shape) [14].

In MPEG-4 audio, the TTSI with the bookmark
identifiers for face animation as well as the interface
to the Phoneme/Bookmark-to-FAP-converter is
defined. It is part of all Audio profiles. Using a TTS,
any Audio profile and a Visual profile containing
the Face object allows to define interactive services
with face animation at extremely low data rates.
Without using a TTS, any Audio profile and a Vis-
ual profile containing the Face object allows to play
speech and animate the proprietary face model.

In order to enable the specification of the face,
the BIFS node FDP and its children have to be
transmitted. This is possible for terminals that sup-
port the Complete Scene Graph profile and the
Complete Graphics profile.

3. 2D mesh animation

MPEG-4 version-1 supports 2D uniform or con-
tent-based (nonuniform) Delaunay triangular mesh

representation of arbitrary visual objects, that in-
cludes an efficient method for animation of such
meshes. A simplified block diagram of an MPEG-4
encoder/decoder supporting the 2D-mesh object
is depicted in Fig. 16, where the 2D-mesh object
can be used together with a video object or a still-
texture object encoder/decoder. We present the
basic concepts of 2D-mesh representation and ani-
mation in Section 3.1. Mesh analysis, discussed in
Section 3.2, refers to design or specification of 2D
mesh data for video object editing or still-texture
animation. Section 3.3 describes 2D-mesh object
coding in detail. Finally, applications of 2D mesh in
video object editing and still texture animation are
presented in Section 3.4.

3.1. 2D mesh representation and animation

A 2D triangular mesh (or a mesh object plane) is
a planar graph that tessellates (partitions) a video
object plane or its bounding box into triangular
patches. The vertices of each patch are called node
points. A 2D mesh object, which consists of a se-
quence of mesh object planes (MOPs), is compactly
represented by mesh geometry at some key (intra)
MOPs and mesh motion vectors at all other (inter)

404 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

D
[Mesh Analysis ﬁl E
xﬂkg
Video/Still Texture X
g Encoder]

video object

mesh geometry &

—>| Mesh Encoder I——b _.I Mesh Decoder ‘| motion vectors

Rendering

—| 2D Mesh

— Application

Video/Still Texture T
Decoder

user

interaction

Fig. 16. Simplified architecture of an encoder/decoder supporting the 2D-mesh object. Mesh analysis module extracts the 2D mesh data,
which is then encoded by the mesh encoder. The coded mesh representation is embedded in a BIFS elementary stream. At the receiver,
the 2D-mesh decoder is invoked automatically by the BIFS-Anim node.

MOPs. The mesh geometry refers to the location of
the node points on the key mesh object planes. 2D
mesh animation is accomplished by propagating
the 2D mesh defined on key MOPs using one
motion vector per node point per object plane until
the next key MOP. Both mesh geometry and
motion (animation) information are predictively
coded for an efficient binary representation. The
mesh topology is always either uniform or De-
launay, hence there is no need for topology com-
pression. (The reader is referred to [7] for an
introduction to Delaunay meshes.)

Mesh-based motion modeling differs from
block-based motion modeling (that is used in natu-
ral video object coding) in that the triangular
patches overlap neither in the reference frame nor
in the current frame. Instead, triangular patches
in the current frame are mapped onto triangular
patches in the reference frame, and the texture
inside each patch in the reference frame is warped
onto the current frame using a parametric map-
ping, such as affine mapping, as a function of the
node point motion vectors. This process is called
texture mapping, which is an integral part of mesh
animation. The affine mapping between coordi-
nates (x',)’) at time ¢’ and (x, y) at time ¢ is given by

[29]
X = alx’ + azy/ + as,
y =asx +asy + ag, (2

where g; are the affine motion parameters. The six
degrees of freedom in the affine mapping matches
that of warping a triangle by the motion vectors of

its three vertices (with two degrees of freedom in
each). Furthermore, if proper constraints are im-
posed in parameter (node motion vector) estima-
tion, an affine transform can guarantee the
continuity of the mapping across the boundaries of
adjacent triangles. Thus, 2D mesh modeling corres-
ponds to non-uniform sampling of the motion field
at a number of salient feature points (node points),
from which a continuous, piecewise affine motion
field can be reconstructed. The fact that the mesh
structure constrains movements of adjacent image
patches has certain advantages and disadvantages:
Meshes are well-suited to represent mildly de-
formable but spatially continuous motion fields.
However, they do not allow discontinuities in the
motion field; thus, cannot easily accommodate ar-
ticulated motions and self-occlusions.

3.2. 2D mesh analysis

The design of the mesh data associated with
a video object or animation is an encoder issue, and
hence is not normative. This section discusses an
example procedure for the reader’s information,
where we design either uniform or content-based
meshes for intra MOPs and track them to deter-
mine the inter MOPs. The block diagram of the
procedure is depicted in Fig. 17. The first box is
explained in Section 3.2.1, and the next four in
Section 3.2.2.

3.2.1. Mesh design for intra MOPs
Intra meshes are either uniform or content-
based. A uniform mesh is designed over a

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

Boundary Node motion Hierarchical Model

Mesh tracking & vector post- motion failure
—»{ design node motion ¥ processing & vector — detection &
estimation quantization optimization mesh update

Fig. 17. The 2D mesh design and tracking procedure. The feedback loop increments the frame counter. The process is re-initialized (i.e.,
a new intra MOP is inserted) if model failure region exceeds a threshold or a scene change is detected.

Fig. 18. A content-based mesh designed for the “Bream” video
object.

rectangular region, which is generally the bounding
box of the VOP. It is specified in terms of five
parameters: the number of nodes in the horizontal
and vertical directions, the horizontal and vertical
dimensions of each rectangular cell in half pixel
units, and the triangle split code that specifies how
each cell is divided into two triangles (see Section
3.3.1.1). As a rule of thumb, we target the total
number of triangles over the bounding box to be
equal to that of the macroblocks that would be
obtained in natural VOP coding. A content-based
mesh may be designed to fit exactly on the corre-
sponding VOP. The procedure consists of three
steps: (i) approximation of the VOP contour by
a polygon through selection of N, boundary node
points; (ii) selection of N; interior node points; and
(i) Delaunay triangulation to define the mesh
topology. There are various methods for approxi-

mation of arbitrary-shaped contours by polygons
[3,30]. Interior node points may be selected to
coincide with high-gradient points or corner points
within the VOP boundary [3]. An example of
a content-based mesh is depicted in Fig. 18.

3.2.2. Mesh tracking

Motion data of the 2D mesh may represent the
motion of a real video object (for natural video
object compression and manipulation applications)
or may be synthetic (for animation of a still texture
map). In the former case, the motion of a natural
video object may be estimated by forward mesh
tracking. The latter requires special-purpose tools
and/or artistic skills. In forward mesh tracking, we
search in the current video object plane for the best
matching locations of the node points of the pre-
vious (intra or inter) mesh, thus tracking image
features until the next intra MOP. The procedure
applies for both uniform and content-based meshes.

Various techniques have been proposed for node
motion estimation for forward mesh tracking. The
simplest method is to form blocks that are centered
around the node points and then employ a closed-
form solution or block-matching to find motion
vectors at the node points independently [29,35].
Alternatively, hexagonal matching [21] and
closed-form matching [2] techniques find the opti-
mal motion vector at each node under the paramet-
ric warping of all patches surrounding the node
while enforcing mesh connectivity constraints at
the expense of more computational complexity.
Another method is iterative gradient-based optim-
ization of node point locations, taking into account
image features and mesh deformation criteria [34].
Hierarchical tracking methods may provide signifi-
cantly improved performance and robustness in

406 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

enforcing constraints to avoid foldovers [32,33].
We also recently proposed a semi-automatic (inter-
active) tool for accurate mesh object tracking [9].

3.3. 2D mesh object encoding/decoding

Mesh data consist of a list of node locations
(xy, yn) where n is the node index (n =0, ..., N — 1)
and a list of triangles t,, where m is the triangle
index (m =0, ..., M — 1). Each triangle ¢,, is speci-
fied by a triplet (i, j, k> of the indices of the node
points that are the vertices of that triangle. The
syntax of the compressed binary representation of
intra and inter MOPs and the semantics of the
decoding process is normative in MPEG-4. Each
MOP has a flag that specifies whether the data that
follows is geometry data (intra MOP) or motion
data (inter MOP). A block diagram of the decoding
process is shown in Fig. 19. Mesh geometry decod-
ing computes the node point locations and recon-
structs a triangular mesh from them. Mesh motion
decoding computes the node motion vectors and
applies them to the node points of the previous
mesh to reconstruct the current mesh. The recon-
structed mesh is stored in the mesh data memory,
so that it can be used in motion decoding of the
next MOP. In the following, we first describe the
decoding of mesh geometry, and then the mesh
motion. We assume a pixel-based 2D coordinate
system, where the x-axis points to the right from
the origin, and the y-axis points down from the
origin.

3.3.1. Encoding/decoding of mesh geometry
The flag mesh_type_code specifies whether the
topology of an intra MOP is uniform or Delaunay.

v

Coded
Dota Variable
—> Legh —f

8
—
v

Fig. 19. Simplified block diagram of 2D mesh object decoding.

In either case, the coded geometry information,
described in detail in the following, defines the 2D
mesh uniquely so that there is no need for explicit
topology compression.

3.3.1.1. Uniform mesh. A 2D uniform mesh can be
viewed as a set of rectangular cells, where each
rectangle is split into two triangles. Five parameters
are used to specify the node point locations and
topology of a uniform mesh. The top-left node
point of the mesh always coincides with the origin
of a local coordinate system. The first two para-
meters specify the number of nodes in the horizon-
tal and vertical direction of the mesh, respectively.
The next two parameters specify the horizontal and
vertical size of each rectangular cell in half pixel
units. This completes the layout and dimensions of
the mesh. The last parameter specifies how each
rectangle is split to form two triangles: four choices
are allowed as illustrated in Fig. 20. An example of
a 2D uniform mesh is given in Fig. 21.

3.3.1.2. Delaunay mesh. A 2D Delaunay mesh is
specified by the following parameters: (i) the total
number of node points N; (ii) the number of
node points Ny, that are on the boundary of the
mesh; and (iii) the coordinates p, = (x,, y,),
n=0, ..., N — 1, of all node points. The origin of

SNNZ

triangle_split_code == ‘00’ triangle_split_code == ‘01’

triangle_split_code == ‘10 triangle_split_code == 11’
Fig. 20. Types of uniform mesh topology: Code 00 - top-left to
right bottom; Code 01 - bottom-left to top right; Code 10
- alternate between top-left to bottom-right and bottom-left to
top-right; Code 11 - alternate between bottom-left to top-right
and top-left to bottom-right.

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 407

mesh_rect_size_hor

—

mesh_rect_size_vert I

Fig. 21. Example of a uniform 2D mesh specified by five
parameters, where nr_mesh_nodes_hor is equal to 5,
nr_mesh_nodes_vert is equal to 4, mesh_rect_size_hor and
mesh_rect_size vert are specified as shown, and the tri-
angle_split_code is equal to ‘00’.

the local coordinate system is assumed to be at the
top left corner of the bounding box of the mesh.
Note that the number of nodes in the interior of the
mesh N; can be computed as

N, =N — N, (3)

The first node point, py = (x¢, Vo), is decoded dir-
ectly, where the coordinates x, and y, are specified
with respect to the origin of the local coordinate
system. All other node points are computed by
adding the decoded values dx, and dy, to the x-
and y-coordinates, respectively, of the last decoded
node point as follows:

Xy =X,—1 +dx, and y, =y,-1 +dy,. 4

The first N, node point coordinates that are en-
coded/decoded must correspond to the boundary
nodes in order to allow their identification without
additional overhead. Thus, after receiving the first
N, locations, the decoder can reconstruct the
boundary of the mesh by connecting each pair of
successive boundary nodes, as well as the first and
the last, by straight-line edge segments. This is
illustrated with an example in Fig. 22.

The next N; coordinate values define the interior
node points. Finally, the mesh is reconstructed by
applying constrained Delaunay triangulation to all
node points, where the boundary polygon forms
the constraint. Constrained triangulation of node
points p, contains triangles only to the interior of
the region defined by the boundary segments.
Furthermore, each triangle t, = <{p;, p,pny Of
a constrained Delaunay triangulation satisfies the

P1s

P P2
P4
P,

P4 P2

Fig. 22. Decoded node points and reconstruction of mesh
boundary.

P4 P2 P3

Fig. 23. Decoded triangular mesh obtained by constrained
Delaunay triangulation.

property that the circumcircle of ¢, does not con-
tain any node point p, visible from all three vertices
of t,. A node point is visible from another node
point if a straight line between them falls entirely
inside or exactly on the constraining polygonal
boundary. An example of a mesh obtained by con-
strained triangulation of the node points in Fig. 22
is shown in Fig. 23.

3.3.2. Encoding/decoding of mesh motion

An inter MOP is defined by a set of 2D motion
vectors v, = (vx,, vy,) that are associated with each
node point p, of the previous MOP. We can then
reconstruct the locations of node points in the
current MOP by propagating the corresponding
node p, of the previous MOP. The triangular

408 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

topology of the mesh remains the same until the
next intra MOP. Node point motion vectors are
decoded predictively, i.e., the components of each
motion vector are predicted using those of two
previously decoded node points determined ac-
cording to a breadth-first traversal as described in
Section 3.3.2.1. Section 3.3.2.2 describes the predic-
tion process.

3.3.2.1. Mesh traversal. The order in which the
motion vector data is encoded/decoded is defined
by a breadth-first traversal of the triangles, which
depends only on the topology of the mesh. Hence,
the breadth-first traversal needs to be computed
once (and stored in the mesh data memory) for
every intra MOP as follows:

e First, we define the top left mesh node as the
node n with the minimum x, + y,, assuming that
the origin of the local coordinate system is at the
top left. If there are more than one node with the
same value of x, + y,, then we choose the one
with the minimum y, among them. The initial
triangle is the triangle that contains the edge
between the top-left node of the mesh and the
next clockwise node on the mesh boundary. We
label the initial triangle with the number 0.

e Next, all other triangles are successively labeled
1,2,...,M — 1, where M is the number of tri-
angles in the mesh, as follows: among all labeled
triangles that have adjacent triangles which are
not yet labeled, we find the triangle with the
lowest label number. This triangle is called
the current triangle. We define the base edge of
this triangle as the edge that connects this tri-
angle to the already labeled neighboring triangle
with the lowest number. In the case of the initial
triangle, the base edge is defined as the edge
between the top-left node and the next clockwise
node on the boundary. We define the right edge
of the current triangle as the next counterclock-
wise edge of the current triangle with respect
to the base edge; and the left edge as the next
clockwise edge of the current triangle with re-
spect to the base edge. That is, for a triangle
te = <{p1, Pm> Pn »> Where the vertices are in clock-
wise order, if {p,p,, > is the base edge, then {p;p, >
is the right edge and {p,,p,.> is the left edge. Now,

we check if there is an unlabeled triangle adjacent
to the current triangle, sharing the right edge. If
there is such a triangle, we label it with the next
available number. Then we check if there is an
unlabeled triangle adjacent to the current tri-
angle, sharing the left edge. If there is such a tri-
angle, we label it with the next available number.

e This process continues until all triangles have
been labeled.

3.3.2.2. Motion vector prediction. The mesh mo-
tion bit stream is composed of prediction error
vectors e, = (ex,, ey,), whose components are vari-
able length coded. The ordering of the triangles
defines the order in which the motion vector data of
each node point is encoded/decoded, as described
in the following. First, motion vector data for the
top-left node n, of the mesh is retrieved from
the bitstream. No prediction can be used in coding
the motion vector of n,. Hence,

Vp, = €y,- (5)
Then, the prediction error vector e, for the next
clockwise node on the boundary with respect to the

top-left node is retrieved from the bit stream. Note
that only v, can be used to predict v,,. That is,

UV, = Uy, + €, (6)

We mark these first two nodes (that form the base
edge of the initial triangle) with the label ‘done’.
At this point the two nodes on the base edge of
any triangle in the sequential order as defined in
Section 3.3.2.1 are guaranteed to be labeled ‘done’
(indicating that their motion vectors have already
been decoded and may be used as predictors) when
we reach that triangle. Then, for each triangle, the
motion vectors of the two nodes of the base edge
are used to form a prediction for the motion vector
of the third node. If that third node is not already
labeled ‘done’, the prediction vector w, is computed
by averaging the two motion vectors, as follows:

w, = 0.5(vx,, +vx; + 0.5], vy, + oy +0.5))
(7

and its motion vector is given by

v, =w, +e,. (8)

Consequently, the third node is also labeled ‘done’.
If the third node is already labeled ‘done’, then it is

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 409

simply ignored and we proceed to the next triangle.
Note that the prediction error vector is specified
only for node points with a nonzero motion vector.
Otherwise, the motion vector is simply v, = (0, 0).
Finally, the horizontal and vertical components
of mesh node motion vectors are processed to lie
within a certain range, as in the case of video
block-motion vectors.

3.3.2.3. An example. An example of breadth-first
traversal for motion vector prediction is shown in
Fig. 24. The figure on the left shows the traversal
after five triangles have been labeled, which deter-
mines the ordering of the motion vectors of six
node points (marked with a box). The triangle with
the label ‘3’ is the ‘current triangle’; the base edge is
‘b’; and the right- and left-edges are denoted by ‘1’
and T, respectively. The next two triangles that will
be labeled are the triangles sharing the right and left
edges with the current triangle. After these two, the
triangle that is labeled ‘4’ will be the next ‘current
triangle’. The figure on the right shows the final
result, illustrating transitions between triangles and
the final ordering of the node points for motion
vector encoding/decoding.

3.4. Integration with MPEG-4 systems

2D mesh geometry and motion data are passed
on to an IndexedFaceSet2D node using the BIFS

Fig. 25. An example of 2D augmented reality: The letters
“Fishy?” are synthetically overlaid on the video object “Bream”
and they move in synchronization with the natural motion of
Bream [30].

animation-stream for rendering and/or texture
mapping (see the paper on BIFS in this issue). BIFS
animation is a general framework for streaming
parameters to certain fields of some BIFS nodes.
Suppose a node (describing an object) is below
a Transform node in the scene description tree. We
can then animate the position of this object using
BIFS-Anim by streaming a sequence of x, y, z posi-
tions to the ‘translation’ field of the Transform

e

3 Y 5

Fig. 24. Example for the breadth-first traversal of the triangles of a 2D mesh.

410

Table 6

Location of feature points on a face model (Fig. 2). Recommended location constraints define for some or all coordinates of a feature
point the value as a function of other feature points, i.e., feature points 2.1, 2.2, 2.3 and 7.1 have the same x-coordinate thus locating them

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

in the same yz-plane

Feature points

Recommended location constraints

No. Text description x y
2.1 Bottom of the chin 7.1.x
22 Middle point of inner upper 7.1.x
lip contour
2.3 Middle point of inner lower lip 7.1.x
contour
2.4 Left corner of inner lip contour
2.5 Right corner of inner lip contour
2.6 Midpoint between f.p. 2.2 and (2.2.x + 2.4.x)/2
2.4 in the inner upper lip contour
2.7 Midpoint between f.p. 2.2 and (2.2.x + 2.5.x)/2
2.5 in the inner upper lip contour
2.8 Midpoint between f.p. 2.3 and (2.3.x +24.x)2
2.4 in the inner lower lip contour
29 Midpoint between f.p. 2.3 and (2.3.x +2.5x)2
2.5 in the inner lower lip contour
2.10 Chin boss 7.1.x
211 Chin left corner >8.7xand <83.x
212 Chin right corner > 84.x and < 8.8.x
213 Left corner of jaw bone
2.14 Right corner of jaw bone
31 Center of upper inner left eyelid (3.7.x + 3.11.x)/2
3.2 Center of upper inner right eyelid (3.8.x + 3.12.x)/2
33 Center of lower inner left eyelid (3.7.x + 3.11.x)/2
34 Center of lower inner right eyelid (3.8.x + 3.12.x)/2
35 Center of the pupil of left eye
3.6 Center of the pupil of right eye
3.7 Left corner of left eye
38 Left corner of right eye
39 Center of lower outer left eyelid (3.7.x +3.11.x)/2
3.10 Center of lower outer right eyelid (3.7.x + 3.11.x)/2
3.11 Right corner of left eye
3.12 Right corner of right eye
3.13 Center of upper outer left eyelid (3.8.x + 3.12.x)/2
3.14 Center of upper outer right eyelid (3.8.x + 3.12.x)/2
4.1 Right corner of left eyebrow
42 Left corner of right eyebrow
43 Uppermost point of the left (4.1.x +4.5.x)/2 or x
eyebrow coord of the uppermost
point of the contour
4.4 Uppermost point of the right (4.2.x +4.6.x)/2 or x
eyebrow coord of the uppermost
point of the contour
4.5 Left corner of left eyebrow
4.6 Right corner of right eyebrow
5.1 Center of the left cheek 8.3.y
5.2 Center of the right cheek 8.4.y
5.3 Left cheek bone >35xand <3.7x >9.15yand <9.12.y
5.4 Right cheek bone >36.x and <3.12x >9.15yand <9.12.y
6.1 Tip of the tongue 7.1.x
6.2 Center of the tongue body 7.1.x
6.3 Left border of the tongue
6.4 Right border of the tongue

7.1
8.1
8.2
8.3
8.4
8.5
8.6

8.7

9.13

10.2
10.3
10.4
10.5
10.6
10.7

10.8

10.9

10.10

11.4
11.5
11.6

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

top of spine (center of head
rotation)

Middle point of outer upper
lip contour

Middle point of outer lower lip
contour

Left corner of outer lip contour

Right corner of outer lip contour

Midpoint between f.p. 8.3 and
8.1 in outer upper lip contour
Midpoint between f.p. 8.4 and
8.1 in outer upper lip contour
Midpoint between f.p. 8.3 and
8.2 in outer lower lip contour
Midpoint between f.p. 8.4 and
8.2 in outer lower lip contour

Right hiph point of Cupid’s bow

Left hiph point of Cupid’s bow
Left nostril border

Right nostril border

Nose tip

Bottom right edge of nose
Bottom left edge of nose
Right upper edge of nose bone
Left upper edge of nose bone
Top of the upper teeth
Bottom of the lower teeth
Bottom of the upper teeth
Top of the lower teeth
Middle lower edge of nose
bone (or nose bump)

Left lower edge of nose bone
Right lower edge of nose bone
Bottom middle edge of nose
Top of left ear

Top of right ear

Back of left ear

Back of right ear

Bottom of left ear lobe
Bottom of right ear lobe
Lower contact point between
left lobe and face

Lower contact point between
right lobe and face

Upper contact point between
left ear and face

Upper contact point between
right ear and face

Middle border between hair and

forehead

Right border between hair and
forehead

Left border between hair and
forehead

Top of skull

Hair thickness over f.p. 11.4
Back of skull

7.1.x

7.1.x

(8.3.x + 8.1.x)/2
(8.4.x + 8.1.x)/2
(8.3.x + 8.2.x)/2

(8.4.x + 8.2.x)/2

7.1.x

7.1.x
7.1.x
7.1.x
7.1.x
7.1.x

7.1.x

7.1.x
<44x
>43.x

7.1.x

11.4.x
7.1.x

(9.6.y +9.3.y)/2 or
nose bump

(9.6.y +9.3.y)/2
(9.6.y +9.3.y)/2

(10.1y + 10.5.y)/2
(102.y + 10.6.y)/2

411

> 104.z and <10.2.z

114z

3.5y

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

412

di rouur

doy jo oppprw
pue IoUI0d 39|
uoMm)9q Jurodpru
Jo juowoerd

081 + 009 + [4 9 [4 umod 4 SN -SIp [BONIOA wy=dim1m1omol 8
Jou109 dif Jouul
131 Jo judwaoerd
081 F 009 F [4 S [4 sy 4 M -SIp [eJU0ZLIOH dI[IouI00~I"(01ax)s L
Jou10o dif Iouur 39|
Jo Juowoedsip
081 F 009 F [4 14 [4 BT 4 M [eJUOZLIOH dI[IOUI0d™[~YolaIIs 9
Juowede[dsip
diy 1ouur ajpprw
009 + 0981 + [4 € [4 dn 4 SN Wonoq [edNIA dipru-q-osel S
Juowede[dsip
di rouur o[pprur
08T + 009 + [4 4 [4 umodg 4 SN doy [eonop dijpruy—1omof 4
(Suruado ynow
100J& J0U $90P)
Juoweoe[dsip
09¢ + 080T + 4 T 4 umo(J N SNIW Me[[BO1IOA mef~uado ¢
€9 F :ghusuoyur g9 + :gAusuojur uolssa1dxa [eroej
—uorssordxo —uorssordxo 0M} JO 2INJXIW
‘1 K3suajur ‘1 K31suaiur 9y} SuUTUIULIAIOP
—uorssordxo —uorssordxo I Bu I BU eu 'U Son[eA JO J3S uorssoxdxyg T
(G
‘wqd "3-9) owrey
SIY) 10J SOWIASIA
0M} JO 2INJXIW
€9 F €9+ oY} SuruImINAp
pUS[qOUWIASIA PUS[QTOWASIA 1 Bu 1 Bu Bu 'U son[eA Jo 19§ QWIASIA 1
son[eA paznuenb
son[ea p dznuenb Qwey-| dO azis wnu
owrelf-d Xe/ Uz XBJAL/UTIAL doys juend) diSqns g4 din uonowsoq apiglomun syun uondrosap dvq oweu Jv4 ON

7' UOI)09S Ul PaqLIdsap se SuIpod 1oy 103oe) Suleos e st ozis-dojs 1oznjuenb oy, 9[pprw = w ‘10In0 = 0
‘rouur = 1 ‘wonoq = q ‘doy =13 S = 1 ‘)J9[= [:SururOW FUIMO[[OJ dY} YIIM SIS UIBJU0d AewW sdweu Jy. 'sozis dojs pue ‘syuowugisse dnoid ‘suonuygap v
L 319eL

413

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

009 F

009 +

081 +

09¢ +

09¢ +

09¢ F

0871 +

081 F

081 F

009 +

009 +

081 +

0801 +

0801 +

oy +

0801 +

0801 +

0801 +

009 +

009 F

009 F

0981 +

0981 +

009 +

0T

umo(q

umo(q

dn

plemioq

plemioq

3y

plemioq

dn

dn

dn

dn

umo(g

dSIydI

dsIdl

SNIA

SNIA

SNIA

MIN

SNIN

SNIN

SNIN

SNIN

SNIN

SNIN

prjoko
1ysu doy jo juowr
-00R[dSIP [BOILIOA

prako
1J91 do} jo juow
-ooe[dsIp TeOTIIOA

(ssoupes

ur 1)) uryo

9} JO JUSWAAOW
Surssardwos
pue premdn

diy o[ppru
doy jo jusw
-ooe[dsip pdog

dry oppprwr woyjoq
Jo juowaoerd

-sip pdog

mel jo juowooeld
-SIp 9pIs 01 9pIg
mel jo juow
-ooerdsip yideq

Jou109 dif Iouur
Y31 Jo Judw
-ooe[dsIp [EO1IOA

Iou100 dif
Jouur 3Jo[Jo juou
-ooe[dsIp [BO1IOA

dip 1euur woyjoq jo
SIppIW PuUE IQUIOD
JYSLI udamlaq
jutodprur jo juowr
-ooe[dsIp [EO1IIOA
dip 1euur woyoq jo
S[ppIW PUEB ISUIOD
3J9] USOMIdq
jutodprur jo judw
-o0e[dsIp [EO1IOA

diy souur doy jo
J[PpPIW PUB IAUIOD
JYSLI Udam}aq
jutodprur jo juaur
-ooe[dsIp [RONIOA

PI[9A9~17)~9s0[d

PIPAS~ 17179500

uryo-ssoxdop

di—1—ysnd

dy-q-ysnd

Melyrys

melisnay)

dijrouroo-1-osrer

dijrouroo—|-oesrer

w—di—q-osrer

wy—di—qoesrer

wa—di—1-1omo]

0¢

61

8T

Ll

91

Sl

4!

€l

4!

I

0t

MOIQIAD
S[pPpIW 39 jo jusut

09¢ + 006 + 4 € 4 dn g SNA -eoe[dsip [eOnIoA moOIQafoTwWIT[TASIEI €€
MOIQoLD
Iouur Jy3u Jo juouwr
09¢€ F 006 F (4 4 4 dn d SNA -00B[dSIp [BONIOA MOIQIAOTITITOSIEI ¢
M01qa43
H Jauur 3Jo[Jo judwa
N 09¢ F 006 F 4 I 4 dan 4 SN -oov[dsIp [pOnIA moIqafoTITTOsTRI ¢
W ndnd
S 0Tl F 0Ty F I 9 € Suimo1n 4 dSidl Su jo uone[q dnd=1-oreqrp - g
M(ndnd
= 0Tl F 0Ty F I S € Surmorn 4 asndl Yol Jo uone[iq [dnd-[~orepp - 67
m [1eqaka 1ysu jo
m 081 + 009 + 1 r'u ¢ premioq q9 Sq uowede(dsp yidoq [1eqoko—1-1snay) 8T
g [1eqa42 o[Jo
S 081 F 009 F I Bu € pIemiIo] q Sd 1uowooeldsip yido [[eqoko—[msnay) /T
V
¥ Ireqo4s y3u jo
.1m 00€ + 006 8T1 eu € umoQ 4 1V UONEIUSLIO [EJIOA [legeko—i—yond 97
)
5 [1eqa4o 1507 Jo
g 00€ + 006 + 8TI vu € umoQ g 1V UONEIUSLIO [EDIIOA freqako-[—youd ¢g
IS
& Ireqoks
m Y311 Jo uoneud
& 0Ty F 00TT F 8Tl eu € | a4 v -110 [eJUOZLIOH lleqako—i—mel g
W reqoks
m 1J9[Jo uonejus
3 ozy + 00TT + 8C1 eu € W1 4 nv -1O [BJUOZLIOH freqakomed €7
QS
- prjaka s
< wol10q JO juawt
£ ore F 009 F I 14 € dn 4 QSIII -eoe[dsip [eoniop preAeTi—qTesop 7T
~
< preka 19|
< wo0}joq Jo jusawr
ore F 009 ¥ I € € dn 4 aSidl -eoe[dsip [eoniop preAeoT[TqTesop IT
sanjea UQNSGMSU
son[ea p daznuenb Qweyy-| dO ozis wnu
awerld-d xmz\ﬂwz xmz\ﬁwz Q@um HENSO Quwﬂzw dd4 Qumu uonowsod Jiprgroruny sjun GOSQCOmoﬁ dvAd aweu dvA ‘ON

414

(ponunuoD) £ AqeL

415

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

009 F

ocy +

0Ty +

0Ty +

0Ty +

081 +

081 +

00€ +

00€ +

00¢ F

00¢ +

09¢ +

09¢€ +

09¢ +

0981 +

00¢ +

0801

+

+l

080T

0801

+

080T +

009 +

009 F

006 +

006 +

006 F

006 +

006 +

006 +

006 +

umo(q

piem

-dn oa®OUO)

dn

plemioq

dn

sy

dan

dan

sy

Wl

eS|

W3y

dn

dn

dn

nv

nv

SNIA

MIN

SNIA

MIN

SN

SNd

Sd

Sd

Sd

Sd

SNA

SN

SN

ouids jo doy woiy
J[3ue youd peoy

adeys
N our an3uo}
ay) Jo 3uioy

on3uo} Jo juouwr
-00R[dSIP [BOILIDA

dn on3uo) jo juswr
-ooedsip yideq

dn anguoy jo juowr
-00B[dSIP [BOIIOA

dn an3uoy
Jo jJuowaoerd
-SIp [B)UOZIIOH

ooy 1ySuI Jo Juow
-00e[dsIp [BO11IOA

Jo9Yd JI[Jo Juow
-00R[dSIP [BOIIOA

No99yd Y1
Jo juowooerd
-SIp [BIUOZLIOH

099y
1391 Jo uowaded
-SIp [BIUOZIIOH

MO0IQoKd
1311 Jo Judwaoerd
-SIp [BJUOZILIOH

M01qa43
3391 Jo juoswaoeld
-SIp [BJUOZIIOH

MOIQIAD
19)n0 Y31 JO JudW
-90e[dsIp [BONIOA

MOIQOAD
19110 JJ[JO JudW
-ooe[dsIp [BO11IOA

M01qQaKd J[ppIw
Y31 Jo Judw
-o0e[dsIp [RONIOA

yoyd-peay

[fo1~on3uo}

on3uo)asrer

dn—on3uol-isniy}

dn—on3uoj—asrer

dn—on3uol—yIys

Foao-1m

SERE el

Yoayo—1—ynd

Yoayo—[—pgnd

M01qaKa~I0zaonbs

M0I1qoko~[~ozoanbs

M01qoA0~0~I~0sIRl

M01qaK~0~asTeI

M01qaKo-w—I-asTel

8Y

Ly

9y

Sy

124

34

(44

Iy

oy

6¢

8¢

LE

9¢

93

143

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

416

dif 191n0 wojoq jo
J[ppIw puB JIAUIOD
JYSLI UdamM)aq
jutodprur jo juow
009 + 0981 + 4 8 8 dn 4 SNIN -00p[dsIp [ponIop o~wu—dyTqTosIel g¢

di] 19In0 Wol0q Jo
d[ppIuWl pue IdUIOD
1J9] UdaMIaq
jurodprur jo juouwr
009 F 0981 + 4 L 8 dn g4 SN -ooe[dsIp [eonte oTwdimqTester /g

diy 19100 doy jo
J[ppIw puB IAUI0D
JYSLI udamlaq
jurodprw jo judw

08T + 009 + 4 9 8 umoq 4 SN -ooe[dsIp [eon1oA 0~ wiu—diTImIoMOl 9
di 101n0 doy jo
JIPpIW puUB IAUIOD
1J9] U2aMI2q
jurodprur jo juow

081 F 009 F [4 S 8 umodg 4 SNIN -ooe[dsIp [eone o~ w~diTimIemMol ¢
10u10 dif 193N0

Y311 Jo judwaoe[d o—dirouIod

081 + 009 + [4 I 8 3y 4 M -SIp [B1UOZLIOH “ITyoens pe

1ouI0d dif 191n0
1J91 Jo juowaoeld o—dirourod

081 + 009 + [€ 8 W1 4 M -SIp [BIUOZLIOH TTyoIens g
Juowede[dsip
di] 19100 S[ppIw

009 F 0981 + [4 [4 8 dn 4 SNIN wonoq [eonap o~dipru—q-asier gg
juoweoedsip di 19In0

081 + 009 + [4 I 8 umoq 4 SNIN a[pprwr doy [eonIop O~ dIpIuT)IOMO] [
ouids jo doj wouy

009 ¥ 0981 F 0L1 LU w3y a4 v o[3ue [j01 peoH 1I01peay 0§
ourds jo doy woiy

009 F 0981 + 0LT eu L W1 4 nv o[gue MmeA peoy mef-peay G

sonfeA pazruenb
son[ea p daznuenb Qweyy-| dO azis wnu
owel-d XBJA/UIN XBIA[/UIA doysjuend) diSqns Jqq din uonowsod Ipiglomun) - Syun) uonduosap JvA Jweu v ON

(ponunuoD) £ AqeL

417

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

00¢ +

00€ +

ove +

ove +

081

+

0Cl +

—+

0CI1

+l

081

081 +

006 +

006 +

006 +

006 F

006 +

089 F

ovs +

ovs +

009 +

009 +

01

o1

01

01

sy

W1

dan

dn

sy

dn

sy

Wl

dn

dn

SNd

SNA

SNA

SNd

SNA

SNd

SNA

SNA

SNIN

SNIA

189 Y31
Jo juowaoerd
-SIp [BIUOZLIOH

180 159
Jo juowaoerd
-SIp [BIUOZLIOH

189 JyS1I Jo Juow
-00R[dSIP [BOIIOA

189 1J9[JO JUdW
-00R[dSIP [BOIIDA

dn
asou jo juowdoed
-SIP [BIUOZLIOH

dn asou jo juowr
-00e[dSsIp [BO1IOA

950U JO OPIS
1311 Jo judwaoe[d
-SIp [BIUOZLIOH

950U JO OPIS
1391 Jo juowaoeld
-SIp [BJUOZLIOH

Jou109 dif I9INO
143U Jo juouwr
-o0e[dsIp [EO1IIOA

1ou100 dif
19)N0 339 JO JudW

18017 Ind

Ieo—[nd

TeO~I0sIel

IeoT[osIel

asou~puaq

asou—osrel

9SOU~I~YDIOIIS

As0U~YOIAIIS

0~ dijIou100-1-9s1e1

-ooeldsIp [eontop 0~dI[IouI00-[~asIEI

89

L9

99

S9

¥9

€9

9

19

09

65

418 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

node. In this case, the x, y, z positions are quantized
and encoded by an arithmetic coder. Both 2D mesh
animation and face animation are special cases of
BIFS-Anim in that the coding of the respective
animation parameters is specified in the Visual part
of MPEG-4. These coded bit streams are just wrap-
ped into the BIFS-Anim stream.

In order to use the BIFS-Anim framework, we
need to define an AnimationStream node in the
scene, which points to the encoded parameter
stream using an object-descriptor (just like in the
case of a video-stream). The animation-stream de-
coder knows where to pass this data by means of
a unique node-ID, e.g., that of the Indexed-
FaceSet2D node, which must be specified when
setting up the animation-stream. From the node-
ID, the animation-stream decoder can infer the
node itself and its type. If the type is Indexed-
FaceSet2D, then the animation stream decoder
knows that it must pass the encoded data to the
2Dmesh decoder, which in turn will update the
appropriate fields of the IndexedFaceSet2D node.
Texture mapping onto the IndexedFaceSet2D is
similar to that in VRML and is explained in the
Systems part of the standard.

3.5. Applications of the 2D mesh object

Apart from providing the ability to animate gen-
eric still texture images with arbitrary synthetic
motion, the 2D mesh object representation may
also enable the following functionalities:

1. Video object compression

e Mesh modeling may yield improved com-
pression efficiency for certain types of video
objects by only transmitting the texture maps
associated with a few intra MOPs and recon-
struct all others by 2D mesh animation of
these still texture maps. This is called self-
transfiguration of a natural video object.

2. Video object manipulation
e 2D augmented reality: Merging virtual (com-
puter generated) images with real video ob-
jects to create enhanced display information.
The computer-generated images must remain
in perfect registration with the real video
objects, which can be achieved by 2D mesh

tracking of video objects. 2D augmented real-
ity application is demonstrated in Fig. 25.

e Editing texture of video objects: Replacing
a natural video object in a clip by another
video object. The replacement video object
may be extracted from another natural video
clip or may be transfigured from a still image
object using the motion information of the
object to be replaced (hence the need for
a temporally continuous motion representa-
tion). This is called synthetic-object-trans-
figuration.

e Spatio-temporal interpolation: Mesh motion
modeling provides more robust motion-com-
pensated temporal interpolation (frame rate
up-conversion).

3. Content-based video indexing

e Mesh representation provides accurate object
trajectory information that can be used to
retrieve visual objects with specific motion.

e Mesh representation provides vertex-based
object shape representation which is more
efficient than the bitmap representation for
shape-based object retrieval.

4. Conclusions

MPEG-4 integrates synthetic and natural con-
tent in multimedia communications and docu-
ments. In particular, two types of synthetic visual
objects are defined in version 1: animated faces and
animated 2D meshes. MPEG-4 defines a complete
set of animation parameters tailored towards ani-
mation of the human face. In order to enable
animation of a face model over low bit-rate com-
munication channels, for point to point as
well as multi-point connections, MPEG-4 encodes
the facial animation parameters using temporal
prediction. Face models can be animated
with a data rate of 300-2000 bits/s. MPEG-4
also defines an application program interface for
TTS synthesizer. Using this interface, the syn-
thesizer can be used to provide phonemes and
related timing information to the face model.
This allows for animated talking heads driven just
by one text stream.

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 419

2D meshes provide means to represent and/or
animate generic 2D objects. MPEG-4 version-1
accommodates both uniform and Delaunay 2-D
meshes. 2-D meshes with arbitrary topology can
be realized as a special case of 3D generic meshes
(which will become available in MPEG-4 version 2)
and can be animated using the BIFS-Anim elemen-
tary stream. Experimental results indicate that
coding efficiency of the 2D dynamic mesh repres-
entation (for uniform and Delaunay meshes) de-
scribed in this paper is significantly better when
compared to that of 2D generic mesh animation
using BIFS-Anim.

It is important to note that both face animation
and 2D mesh animation may be used as represen-
tations of real video objects for highly efficient
compression (model-based coding) or to generate
completely synthetic video objects (virtual or
augmented reality). Of course, the model-based
coding application requires powerful video object
analysis tools to estimate the animation parameters
that would imitate real video objects.

Acknowledgements

The authors would like to thank Dr. Peter van
Beek for his contributions and Prof. Yao Wang and
Prof. F. Pereira for their review of the manuscript.

References

[1] G.Abrantes, F. Pereira, MPEG-4 facial animation techno-
logy: survey, implementation and results, IEEE CSVT 9 (2)
(1999) 290-305.

[2] Y. Altunbasak, A.M. Tekalp, Closed-form connectivity
preserving solutions for motion compensation using 2-D
meshes, IEEE Trans. Image Process. 6 (9) (September
1997) 1255-1269.

[3] Y. Altunbasak, A.M. Tekalp, Occlusion-adaptive, con-
tent-based mesh design and forward tracking, IEEE Trans.
Image Process. 6 (9) (September 1997) 1270-1280.

[4] C. Bregler, M. Covell, M. Slaney, Video rewrite: driving
visual speech with audio, in: Proceedings of ACM SIG-
GRAPH 97, Computer Graphics Proceedings, Annual
Conference Series, 1997.

[5] L. Chen, J. Ostermann, T. Huang, Adaptation of a
generic 3D human face model to 3D range data, in:
Wang et al. (Eds.), First IEEE Workshop on Multimedia
Signal Processing, IEEE, Princeton, NJ, June 1997,
pp. 274-279.

[6] M.M. Cohen, D.W. Massaro, Modeling coarticulation in
synthetic visual speech, In: M. Thalmann, D. Thalmann
(Eds.), Computer Animation *93, Springer, Tokyo.

[7] M. de Berg, M. van Kreveld, M. Overmars, O. Scharzkopf,
Computational Geometry — Algorithms and Applications,
Springer, Berlin, 1997.

[8] P. Ekman, W.V. Friesen, Manual for the Facial Action
Coding System, Consulting Psychologist Press, Inc., Palo
Alto, CA, 1978.

[9] P.E. Eren, N. Zhuang, Y. Fu, A.M. Tekalp, Interactive
object-based analysis and manipulation of digital video, in:
IEEE Workshop on Multimedia Signal Processing,
Redondo Beach, CA, December 1998.

[10] M. Escher, N.M. Thalmann, Automatic 3D cloning
and real-time animation of a human face, in: Proceedings
of Computer Animation 97, Geneva, 1997.

[11] J. Hartman, J. Wernecke, The VRML Handbook,
Addison-Wesley, Reading, MA, 1996.

[12] ISO/IEC 14772-1, Information Technology - Computer
Graphics and Image Processing — The Virtual Reality
Modeling Language — Part 1: Functional specification and
UTF-8 encoding, 1997.

[13] ISO/IEC IS 14496-1 Systems, 1999.

[14] ISO/IEC IS 14496-2 Visual, 1999.

[15] ISO/IEC IS 14496-3 Audio, 1999.

[16] P. Kalra, A. Mangili, N. Magnenat-Thalmann, D. Thal-
mann, Simulation of facial muscle actions based on
rational free form deformations, in: Proceedings of Euro-
graphics 92, 1992, pp. 59-69.

[17] F. Lavagetto, R. Pockaj, The facial animation engine:
toward a high-level interface for the design of MPEG-4
compliant animated faces, IEEE CSVT 9 (2) (1999)
277-289.

[18] S. Morishima, Modeling of facial expression and emotion
for human communication system, Display 17 (1996)
15-25.

[19] S. Morishima, H. Harashima, A media conversion from
speech to facial image for intelligent man-machine inter-
face, IEEE J. Selected Areas Commun. 9 (4) (May 1991)
594-600.

[20] S. Murakami, H. Tadokoro, Generation of facial expres-
sions based on time functions, in: Proceedings of
IWSNHC3DI, Rhodes, September 1997, pp. 212-215.

[21] Y. Nakaya, H. Harashima, Motion compensation based
on spatial transformations, IEEE Trans. Circuits Systems
Video Technol. 4 (3) (June 1994) 339-356.

[22] J. Ostermann, Animation of synthetic faces in MPEG-4,
Computer Animation 98, Philadelphia, June 1998, pp.
49-55.

[23] J. Ostermann, M. Beutnagel, A. Fischer, Y. Wang, Integra-
tion of talking heads and text-to-speech synthesizers for
visual TTS, in: ICSLP 99, Australia, December 1999.

[24] J. Ostermann, E. Haratsch, An animation definition inter-
face: Rapid design of MPEG-4 compliant animated faces
and bodies, in: International Workshop on Synthetic—
Natural Hybrid Coding and Three Dimensional Imaging,
Rhodes, Greece, 5-9 September 1997, pp. 216-219.

420 A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421

[25] 1. Pandzic, J. Ostermann, D. Millen, User evaluation:
synthetic talking faces for interactive services, The Visual
Computer (Special Issue on Real-time Virtual Worlds)
(1999) in press.

[26] F.I. Parke, Parameterized models for facial animation,
IEEE Comput. Graphics Appl. 2 (November 1982) 61-68.

[27] R. Sproat, J. Olive, An approach to text-to-speech syn-
thesis, In: W.B. Kleijn, K.K. Paliwal (Eds.), Speech Coding
and Synthesis, Elsevier, Amsterdam, 1995.

[28] H. Tao, H.H. Chen, W. Wu, T.S. Huang, Compression of
facial animation parameters for transmission of talking
heads, IEEE CSVT 9 (2) (1999) 264-276.

[297 A.M. Tekalp, Digital Video Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1995.

[30] A.M. Tekalp, P.J.L. van Beek, C. Toklu, B. Gunsel, Two-
dimensional mesh-based visual object representation for
interactive synthetic/natural digital video, Proc. IEEE 86
(6) (June 1998) 1029-1051.

[31] D. Terzopolous, K. Waters, Physically-based facial
modeling, analysis and animation, J. Visualization Com-
put. Animation 1 (1990) 73-80.

[32] C. Toklu, A.T. Erdem, M.I. Sezan, A.M. Tekalp, Tracking
motion and intensity variations using hierarchical 2-D
mesh modeling, Graphical Models Image Process. 58 (6)
(November 1996) 553-573.

[33] P.J.L. van Beek, A.M. Tekalp, N. Zhuang, 1. Celasun,
M. Xia, Hierarchical 2D mesh representation, tracking,
and compression for object-based video, IEEE Trans.
Circuits Systems Video Technol. 9 (2) (March 1999)
353-369.

[34] Y. Wang, O. Lee, Active mesh- A feature seeking and
tracking image sequence representation scheme, IEEE
Trans. Image Process. 3 (5) (September 1994) 610-624.

[35] Y. Wang, J. Ostermann, Evaluation of mesh-based motion
estimation in H.263 like coders, IEEE Trans. Circuits
Systems Video Technol. (1998) 243-252.

[36] K. Waters, A muscle model of animating three dimen-
sional facial expression, Comput. Graphics. 22 (4) (1987)
17-24.

[37] K. Waters, T. Levergood, An automatic lip-synchroniza-
tion algorithm for synthetic faces, in: Proceedings of the
Multimedia Conference, San Francisco, CA, September
1994, ACM, New York, pp. 149-156.

A. Murat Tekalp received B.S.
degree in Electrical Engineer-
ing, and B.S. degree in Mathe-
matics from Bogazici
University, Istanbul, Turkey in
1980, with the highest honors,
and M.S. and Ph.D. degrees
in Electrical, Computer and
Systems Engineering from
Rensselaer Polytechnic Insti-

tute (RPI), Troy, New York, in 1982 and 1984,
respectively. From December 1984 to August 1987,
he was a research scientist, and then a senior re-
search scientist at Eastman Kodak Company,
Rochester, New York. He joined the Electrical En-
gineering Department at the University of Roches-
ter, Rochester, New York, as an Assistant Professor
in September 1987, where he is currently a Profes-
sor. His current research interests are in the area of
digital image and video processing, including ob-
ject-based video representations, motion tracking,
image/video segmentation, video filtering and res-
toration, image/video compression, and multi-
media content description.

Prof. Tekalp is a senior member of IEEE, and
a member of Sigma Xi. He received the NSF Re-
search Initiation Award in 1988, Fulbright Scholar
Award in 1999, and named as Distinguished Lec-
turer by IEEE Signal Processing Society in 1998.
He is listed in Marquis Who’sWho in America
Science and Engineering, 4th and 5th editions, and
Who’sWho in the World, 17th Edition. He has
chaired the IEEE Signal Processing Society Tech-
nical Committee on Image and Multidimensional
Signal Processing (January 1996-December 1997).
He has served as an Associate Editor for the IEEE
Trans. on Signal Processing (1990-1992), and IEEE
Trans. on Image Processing (1994-1996). He has
also been guest editor for recent special issues of
Proceedings of the IEEE (on Multimedia Signal
Processing, May/June 1998), IEEE Transactions
on Image Processing (on Image and Video Process-
ing for Digital Libraries, to appear), Signal Process-
ing: Image Communication (on Real-Time Video
over the Internet, September 1999). At present, he is
on the editorial boards of Academic Journals
Graphical Models and Image Processing, and Vis-
ual Communication and Image Representation,
and the EURASIP journal Signal Processing: Im-
age Communication. He is also an Associate Editor
for the Kluwer Journal Multidimensional Systems
and Signal Processing. He was appointed as the
Technical Program Chair for the 1991 IEEE Signal
Processing Society Workshop on Image and Multi-
dimensional Signal Processing, the Special Sessions
Chair for the 1995 IEEE International Conference
on Image Processing, and the Technical Program
Co-Chair for IEEE ICASSP 2000 (to be held in

A.M. Tekalp, J. Ostermann | Signal Processing: Image Communication 15 (2000) 387-421 421

Istanbul, Turkey). He is the founder and first Chair-
man of the Rochester Chapter of the IEEE Signal
Processing Society. He was elected as the Chair of
the Rochester Section of IEEE in 1994-1995. Dr.
Tekalp is the author of the Prentice Hall book
Digital Video Processing (1995).

Jorn Ostermann studied Electri-
cal Engineering and Commun-
ications Engineering at the
University of Hannover and
Imperial College London, re-
spectively. He received Dipl.-
Ing. and Dr.-Ing. from the Uni-
versity of Hannover in 1988 and
1994, respectively.

From 1988 till 1994, he worked as a Research
Assistant at the Institut fiir Theoretische Nachrich-
tentechnik conducting research in low bit-rate and
object-based analysis-synthesis video coding. In
1994 and 1995 he worked in the Visual Commun-
ications Research Department at AT&T Bell Labs.

He has been working with Image Processing and
Technology Research within AT&T Labs-Re-
search since 1996.

From 1993 to 1994, he chaired the European
COST 211 sim group coordinating research in low
bitrate video coding. Within MPEG-4, he organ-
ized the evaluation of video tools to start defining
the standard. Currently, he chairs the Adhoc
Group on Coding of Arbitrarily-shaped Objects in
MPEG-4 Video. Jorn was a scholar of the German
National Foundation.

In 1998, he received the AT&T Standards Recog-
nition Award and the ISO award. He is a member
of IEEE, the IEEE Technical Committee on Multi-
media Signal Processing, and the IEEE CAS Visual
Signal Processing and Communications (VSPC)
Technical Committee.

His current research interests are video
coding, computer vision, 3D modeling, face
animation, coarticulation of acoustic and visual
speech, computer-human interfaces, and speech
synthesis.

