[EEE Spectrum: A Fairer, Faster Internet Protocol

1 ~nfO

Sponsored By

Select Font Size: A A A SPECTRUM

A Fairer, Faster Internet Protocol
By Bob Briscoe

" ILLUSTRATION: QUICKHONEY

The Internet is founded on a very simple premise: shared
communications links are more efficient than dedicated channels
that lie idle much of the time.

And so we share. We share local area networks at work and
neighborhood links from home. And then we share again—at any
given time, a terabit backbone cable is shared among thousands of
fohlks surfing the Web, downloading videos, and talking on Internet
phones.

But there’s a profound flaw in the protocol that governs how
people share the Internet’s capacity. The protocol allows you to
seem to be polite, even as you elbow others aside, taking far more
resources than they do.

Network providers like Verizon and BT either throw capacity at the
problem or improvise formulas that attempt to penalize so-called
bandwidth hogs. Let me speak up for this much-maligned beast
right away: bandwidth hogs are not the problem. There is no need
to prevent customers from downloading huge amounts of material,

http://www.spectrum.ieee.org/print/7027

12715/700R NR-07 P\



[EEE Spectrum: A Fairer, Faster Internet Protocol

7"fO

so long as they aren’t starving others.

Rather than patching over the problem, my colleagues and I at BT
(formerly British Telecom) have worked out how to fix the root
cause: the Internet’s sharing protocol itself. It turns out that this
solution will make the Internet not just simpler but much faster
too.

You might be shocked to learn that the designers of the Internet
intended that your share of Internet capacity would be determined
by what your own software considered fair. They gave network
operators no mediating role between the conflicting demands of
the Internet’'s hosts—now over a billion personal computers, mobile
devices, and servers.

The Internet’s primary sharing algorithm is built into the
Transmission Control Protocol, a routine on your own computer
that most programs run—although they don’t have to. TCP is one
of the twin pillars of the Internet, the other being the Internet
Protocol, which delivers packets of data to particular addresses.
The two together are often called TCP/IP.

Your TCP routine constantly increases your transmission rate until
packets fail to get through some pipe up ahead—a tell-tale sign of
congestion. Then TCP very politely halves your bit rate. The billions
of other TCP routines around the Internet behave in just the same
way, in a cycle of taking, then giving, that fills the pipes while
sharing them equally. It’s an amazing global outpouring of
self-denial, like the “after you” protocol two people use when they
approach a door at the same time—but paradoxically, the Internet
version happens between complete strangers, even fierce
commercial rivals, billions of times every second.

The commercial stakes could hardly be higher. Services like
YouTube, eBay, Skype, and iTunes are all judged by how much
Internet capacity they can grab for you, as are the Internet phone
and TV services provided by the carriers themselves. Some of
these companies are opting out of TCP’s sharing regime, but most
still allow TCP to control how much they get—about 90 percent of
the 200 000 terabytes that cross the Internet each second.

This extraordinary spirit of global cooperation stems from the
Internet’s early history. In October 1986, Internet traffic
persistently overran available capacity—the first of a series of what
were called congestion collapses. The TCP software of the day
continued to try to retransmit, aggravating the problem and
causing everyone’s throughput to plummet for hours on end. By
mid-1987 Van Jacobson, then a researcher at Lawrence Berkeley
National Laboratory, had coded a set of elegant algorithms in a
patch to TCP. (For this he received the IEEE’s prestigious Koji
Kobayashi Computers and Communications Award in 2002.)

Jacobson’s congestion control accorded well with the defining
design principle of the Internet: traffic control is consigned to the
computers around the edges of the Internet (using TCP), while
network equipment only routes and forwards packets of data
(using IP).

The combination of near-universal usage and academic
endorsement has gradually elevated TCP’s way of sharing capacity
to the moral high ground, altering the very language engineers
use. From the beginning, equal rates were not just “equal,” they
were “fair.” Even if you don’t use TCP, your protocol is considered
suspect if it's not “TCP-friendly”—a cozy-sounding idea meaning it
consumes about the same bit rate as TCP would.

http://www.spectrum.ieee.org/print/7027

12/15/200R NOR-NY7 PN



[EEE Spectrum: A Fairer, Faster Internet Protocol

2nAnf0

Sadly, an equal bit rate for each data flow is likely to be
extremely unfair, by any realistic definition. It’s like insisting that
boxes of food rations must all be the same size, no matter how
oftehn each person returns for more or how many boxes are taken
each time.

Consider a neighborhood network with 100 customers, each of
whom has a 2-megabit-per-second access line connected to a
single shared 10 Mb/s regional link. The network provider can get
away with such a thin shared pipe because most of the
customers—let’s say 80 of the 100—don’t use it continuously, even
over the peak period. These people might think they are constantly
clicking at their browsers and getting new e-mail, but their data
transfers might be active perhaps only 5 percent of the time.

However, there are also 20 heavy users who download
continuously, perhaps using file-sharing programs that run
unattended. So at any one moment, data is flowing to about 24
users—all 20 heavy users, and 4 of the 80 light ones. TCP gives 20
shares of the bottleneck capacity to the heavy users and only 4 to
the light ones. In a few moments, the 4 light users will have
stepped aside and another 4 will take over their shares. However,
the 20 heavy users will still be there to claim their next 20 shares.
They might as well have dedicated circuits!

It gets even worse. Any programmer can just run the TCP routine
multiple times to get multiple shares. It's much like getting around
a food-rationing system by duplicating ration coupons.

This trick has always been recognized as a way to sidestep TCP’s
rules—the first Web browsers opened four TCP connections.
Therefore, it would have been remarkable if this ploy had not
become more common.

A number of such strategies evolved through innocent
experimentation. Take peer-to-peer file sharing—a common way to
exchange movies over the Internet, one that accounts for a large
portion of all traffic. It involves downloading a file from several
peers at once. This parallel scheme, sometimes known as
swarming, had become routine by 2001, built into such protocols
as BitTorrent.

The networking community didn’t immediately view connecting
with many machines as a circumvention of the TCP-friendliness
rule. After all, each transfer used TCP, so each data flow “correctly”
got one share of any bottleneck it encountered. But using parallel
connections to multiple machines was a new degree of freedom
that hadn’t been thought of when the rules were first written.
If_—'lairness should be defined as a relation between people, not data
OWS.

Peer-to-peer file sharing exposed both of TCP’s failings. First, a

file-sharing program might be active 20 times as often as your

Web browser, and second, it uses many more TCP connections,

typically 5 or even 50 times as many. Peer-to-peer thus takes 100

8r 1000 times as many shares of Internet bottlenecks as a browser
oes.

Returning to our 100 broadband customers: if they were just
browsing the Web and exchanging e-mail, each would get nearly
the full benefit of a 2 Mb/s access pipe—if 5 customers were active
at a time, they’d just squeeze into the 10Mb/s shared pipe. But if
even 20 users started continuous parallel downloading, the TCP
algorithm would send everyone else’s bit rate plummeting to an
anemic 20 kilobits per second—worse than dial-up! The problem

http://www.spectrum.ieee.org/print/7027

12/15/200R NOR-NY7 PN



[EEE Spectrum: A Fairer, Faster Internet Protocol

A nf O

isn't the peer-to-peer protocols; it's TCP’s sharing rules.

Why can’t the service provider simply upgrade that stingy 10
Mb/s shared pipe? Of course, some upgrades are necessary from
time to time. But as a general approach to the problem of sharing,
adding capacity is like throwing water uphill.

Imagine two competing Internet service providers, both with this
80:20 mix of light and heavy users. One provider quadruples its
capacity; the other doesn’t. But TCP still doles out the upgrader’s
capacity in the same way. So the light users, who used to have a
measly 20 kb/s share, now get a measly 80 kb/s—still barely
better than dial-up. But now the 80 light users must pay
substantially more for four times the long-distance capacity, which
they hardly get to use. No rational network operator would
upgrade under these conditions—it would lose most of its
customers.

But there is plenty of evidence that Internet service providers are
continuing to add capacity. This is partly explained by government
subsidies, particularly in the Far East. Equivalently, weak
competition, typical in the United States, allows providers to fund
continued investment through higher fees without the risk of losing
customers. But in competitive markets, common in Europe, service
proxide%s have had to attack the root cause: the way their capacity
Is shared.

Network providers often don’t allow TCP to give all the new
capacity straight to the heavy users. Instead they impose their
own sharing regimes on their customers, thus overriding the worst
effects of TCP’s broken regime. Some limit, or “throttle,” the
peak-time bit rate of the peer-to-peer customers. Others partition
the pipe to prevent heavy users encroaching on lighter ones.
Increasingly, the share of Internet capacity you actually get is the
result of this tussle between TCP and the service providers’
allocation schemes.

http://www.spectrum.ieee.org/print/7027

12/15/200R NOR-NY7 PN



[EEE Spectrum: A Fairer, Faster Internet Protocol

5 nAf0O

Bitrate

Light user Heavy user

Tirme

“Unfair” TCP sharing

Heavy users slowed ——
down by theattling

Bit rate

Throttling heavy usage
r'y

Bit rate

Time

Weighted TCP sharing

THROTTLE THIS: Throttling tries to correct today’s TCP system [left] by clamping
down on heavy users [center], but the technique misses a trick. With weighted TCP
sharing [right], light users can go superfast, so they finish sooner, while heavy users
slow onkly fleetingly, then catch up. All this can be done without any prioritization in the
network.

There’s a far better solution than fighting. It would allow light
browsing to go blisteringly fast but hardly prolong heavy
downloads at all. The solution comes in two parts. Ironically, it
begins by making it easier for programmers to run TCP multiple
times—a deliberate break from TCP-friendliness.

Programmers who use this new protocol to transfer data will be
able to say “behave like 12 TCP flows” or “behave like 0.25 of a
TCP flow.” They set a new parameter—a weight—so that whenever
your data comes up against others all trying to get through the
same bottleneck, you'll get, say, 12 shares, or a quarter of a
share. Remember, the network did not set these priorities. It's the
new TCP routine in your own computer that uses these weights to
control the number of shares it takes from the network.

At this point in my argument, people generally ask why everyone
won't just declare that they each deserve a huge weight. The
answer to the question involves a trick that gives everyone good
reason to use the weights sparingly—a trick I'll get to in a minute.
But first, let’s check how this scheme ensures the lightning-fast
browsing rates I just promised.

http://www.spectrum.ieee.org/print/7027

12715/700R NR-07 P\



[EEE Spectrum: A Fairer, Faster Internet Protocol

G nfO

The key is to set the weights high for light interactive usage, like
surfing the Web, and low for heavy usage, such as movie
downloading. Whenever these uses conflict, flows with the higher
weighting—those from the light users—will go much faster, which
means they will also finish much sooner. Then the heavy flows can
expand back to a higher bit rate sooner than otherwise. This is why
the heavy flows will hardly take any longer to complete. The
weighting scheme uses the same strategy as a restaurant manager
who says, “"Get those individual orders out right away, then come
serve this party of 12.” But today’s Internet has the balance of the
weights exactly the other way around.

That brings us to the second part of the problem: how can we
encourage everyone to flip the weights? This task means grappling
with something that is often called “the tragedy of the commons.”
A familiar example is global warming, where everyone happily
pursues what'’s best for them—Ileaving lights on, driving a big
car—despite the effect this may have on everyone else through the
buildup of carbon dioxide and other greenhouse gases.

On the Internet, what matters isn’t how many gigabytes you
download but how many you download when everyone else is
trying to do the same. Or, more precisely, it's the volume you
download weighted by the prevailing level of congestion. Let’s call
this your congestion volume, measured in bytes. Think of it as your
carbon footprint for the Internet.

As with CO2, the way to cut back is to set limits. Imagine a world
where some Internet service providers offer a deal for a flat price
but with a monthly congestion-volume allowance. Note that this
allowance doesn’t limit downloads as such; it limits only those that
persist during congestion. If you used a peer-to-peer program like
BitTorrent to download 10 videos continuously, you wouldn’t bust
your allowance so long as your TCP weight was set low enough.
Your downloads would draw back during the brief moments when
flows came along with higher weights. But in the end, your video
downloads would finish hardly later than they do today.

On the other hand, your Web browser would set the weights high
for all its browsing because most browsing comes in intense
flurries, and so it wouldn’t use up much of your allowance. Of
course, server farms or heavy users could buy bigger congestion
quotas, and light users might get Internet access with a tiny
congestion allowance—for a lower flat fee.

But there’s a snag. Today Internet service providers can’t set
congestion limits, because congestion can easily be hidden from
them. As we've said, Internet congestion was intended to be
detected and managed solely by the computers at the edge—not
by Internet service providers in the middle. Certainly, the receiver
does send feedback messages about congestion back to the
sender, which the network could intercept. But that would just
encourage the receiver to lie or to hide the feedback—you don't
have to reveal anything that may be used as evidence against you.

Of course a network provider does know about packets it has had
to drop itself. But once the evidence is destroyed, it becomes
somewhat tricky to hold anyone responsible. Worse, most Internet
traffic passes through multiple network providers, and one network
cannot reliably detect when another network drops a packet.

Because Internet service providers can’t see congestion volume,
some limit the straight volume, in gigabytes, that each customer
can transfer in a month. Limiting total volume indeed helps to

balance things a little, but limiting congestion volume does much

http://www.spectrum.ieee.org/print/7027

12/15/200R NOR-NY7 PN



[EEE Spectrum: A Fairer, Faster Internet Protocol

7 Af 0

better, providing extremely fast connections for light users at no
real cost to the heavy users.

My colleagues and I have figured out a way to reveal congestion
so that limits can be enforced. We call it “refeedback” [see

0 Minimizing Congestion:
A Refeedback Primer

D Feedback path
B

O

W THe nEtwotkcan

The sander discard packets ifthe

reinserts batance of passing
feedback marks s canslistently
[refeedback) indeb. Inthis
inte the forward D diagram, it's all okay,
data flowas a%noane ischeating,
credit marks.

STARTHERE D

QUTCOME:

endsstill detect and roier
marnage congestion.

But packets they

sand have to

reveal how much

cafgastion they

wiil encounteron

their way through

the internet. Then

networks can

Computers at the Natwork @

D Feedback path
ol

Data packet D

Ellata packet

limit eucessive Thecongested flewr
cangestion as fautes marks

packets entarthe some packets

Internat. with adebit.

2

The recelver transfers debit
marksintarcongestion-
feedback packets.

ILLUSTRATION: QUICKHONEY

." Here's how it works. Recall that today the computers at each
end of an exchange of packets see congestion, but the networks
between them can’t. So we built on a technique called Explicit
Congestion Notification—the most recent change to the TCP/IP
standard, made in 2001. Equipment that implements that change
marks packets during impending congestion rather than doing
nothing until forced to drop them. The marks—just a change in a
single bit—let the network see congestion directly, rather than
inferring it from gaps in the packet stream. It's also particularly
neat to be able to limit congestion before anyone suffers any real
impairment.

Although the 2001 reform reveals congestion, it is only visible
downstream of any bottleneck as packets leave the network. Our
scheme of refeedback makes congestion visible to the upstream
network before it enters the Internet, where it can be limited.

Refeedback introduces a second type of packet marking—think of
these as credits and the original congestion markings as debits.
The sender must add sufficient credits to packets entering the

12715/700R NR-07 P\

http://www.spectrum.ieee.org/print/7027



[EEE Spectrum: A Fairer, Faster Internet Protocol

RAfO

network to cover the debit marks that are introduced as packets
squeeze through congested Internet pipes. If any subsequent
network node detects insufficient credits relative to debits, it can
discard packets from the offending stream.

To keep out of such trouble, every time the receiver gets a
congestion (debit) mark, it returns feedback to the sender. Then
the sender marks the next packet with a credit. This reinserted
feedback, or refeedback, can then be used at the entrance to the
Internet to limit congestion—you do have to reveal everything that
may be used as evidence against you.

Refeedback sticks to the Internet principle that the computers on
the edge of the network detect and manage congestion. But it
enables the middle of the network to punish them for providing
misinformation.

The limits and checks on congestion at the borders of the Internet
are trivial for a network operator to add. Otherwise, the refeedback
scheme does not require that any new code be added to the
network’s equipment; all it needs is that standard congestion
notification be turned on. But packets need somewhere to carry
the second mark in the “IP” part of the TCP/IP formula.
Fortuitously, this mark can be made, because there is one last
unused bit in the header of every IP packet.

In 2005, we prepared a proposal documenting all the technical
details and presented it to the Internet Engineering Task Force
(IETF), the body that oversees Internet standards.

At this point, the story gets personal. Because I had set myself
the task of challenging the entrenched principle of
TCP-friendliness—equality of flow rates for all TCP connections—I
decided to talk only about the change to IP, omitting any mention
of weighted TCP. Instead I played up some other motivations for
adding refeedback to IP. I even showed how refeedback could
enforce equal flow rates—pandering to my audience’s faith while
denying my own. But I just looked like yet another mad researcher
pushing a solution without a problem.

After a year of banging my head against a wall, I wrote an angry
but—I trust—precise attack on the dogma that equal flow rates
were “fair.” My colleagues got me to tone it down before I posted it
to the IETF; evidently I'd softened it enough at least to be invited
to present my ideas at a plenary session in San Diego late in 2006.
The next day, a nonbinding straw poll of the large audience
showed widespread doubt about using TCP-friendliness as a
definition of fairness. Elwyn Davies of the Internet Architecture
Board e-mailed me, saying, “You have identified a real piece of
myopia in the IETF.”

I was hardly the first to challenge these myths. In 1997 Frank P.
Kelly, a professor at the University of Cambridge, put together
some awe-inspiringly elegant and concise mathematical arguments
to prove that the same weighted sharing would maximize the value
that users get from their Internet throughput. However, to create
the right incentives, he proposed varying the prices charged for the
packets as they were received, and everyone balked. People like to
control, in advance, what they will pay.

Objections to Kelly’s pricing scheme blinded the Internet
community to all the other insights in his work—particularly the
message that equalizing flow rates was not a desirable goal. That's
why my team built the refeedback mechanism around his earlier
ideas—to limit congestion within flat fees, without dynamic pricing.

http://www.spectrum.ieee.org/print/7027

12/15/200R NOR-NY7 PN



[EEE Spectrum: A Fairer, Faster Internet Protocol

OnfO

Everyone’s subsequent obsession with bandwidth hogs, and thus
with volume, is also misdirected. What matters is congestion
volume—the CO2 of the Internet.

Meanwhile, our immediate task is to win support in the Internet
community for limiting congestion and for a standards working
group at the IETF to reveal the Internet’s hidden congestion. The
chosen mechanism may be refeedback, but I won’t be miffed if
something better emerges, so long as it makes the Internet as
simple and as fast.

About the Author

BOB BRISCOE describes how to ease Internet congestion by
remaking the way we share bandwidth in “A Fairer, Faster
Internet” [p. 42 He says the problem isn’t bandwidth hogs but the
Internet’s sharing protocol itself. Briscoe is chief researcher at BT's
Networks Research Centre, in England. He is working with the
Trilogy Project to fix the Internet’s architecture.

To Probe Further

Details on Internet fairness and the refeedback project can be
found at .

http://www.spectrum.ieee.org/print/7027

12/15/200R NOR-NY7 PN



