SIGNAL PROCESSING:

< IMAGE
) et s COMMUNICATION
ELSEVIER Signal Processing: Image Communication 15 (2000) 347-363
www.elsevier.nl/locate/image
The delivery layer in MPEG-4
G. Franceschini
CSELT, Centro Studi e Laboratori, Telecomunicazioni SpA, Via G. Reiss Romoli 274, 10148 Torino, Italy
Abstract

The MPEG-4 specifications have provided substantial progress in many areas of multimedia technology. Following
MPEG tradition, MPEG-4 focuses on media coding. However, a couple of innovative aspects other than media coding
characterise MPEG-4 with respect to its predecessors: the ability to code an audio-visual scene, and the ability to abstract
from the delivery technology. This paper focuses its attention on this later aspect, which is covered by part 6 of the
MPEG-4 specification: DMIF (Delivery Multimedia Integration Framework). The paper explains the motivations that
have driven the delivery technology abstraction, analyses the details of the DMIF architecture, and highlights the
practical impact on the “bits-on-the-wire” and on conformance issues. It is important not to forget, throughout this
paper, that the whole focus of this work is on real-time delivery of multimedia content. © 2000 Elsevier Science B.V. All

rights reserved.

Keywords: Delivery; Synchronization; Interface; DMIF; DAL QoS

1. Introduction

The MPEG-4 specifications have provided sub-
stantial progress in many areas of multimedia tech-
nology. Following MPEG tradition, MPEG-4
focuses on media coding. However, a couple of
innovative aspects other than media coding charac-
terise MPEG-4 with respect to its predecessors: the
ability to code an audio-visual scene, and the abil-
ity to abstract from the delivery technology.

This paper focuses its attention on this later
aspect, which is covered by part 6 of the MPEG-4
specification: DMIF (Delivery Multimedia Integra-
tion Framework) [8]. The main objective that mo-
tivated the DMIF effort has been the definition of
a separate delivery layer, so that the MPEG-4

E-mail address: guido.franceschini@cselt.it (G. Franceschini)

Systems specification does not enter the details of
the various delivery technologies (differently from
MPEG-1 and MPEG-2). Moreover, DMIF aimed
at enabling the simultaneous access, presentation
and synchronisation of MPEG-4 content carried
through different delivery technologies (here, and in
the rest of the paper, the term “delivery technology”
is used in a broad sense, which includes storage
technologies). These requirements motivated the
definition of the DMIF reference architecture, in-
cluding the definition of a uniform interface (the
DAI - DMIF/Application Interface) such that an
application making use of it is kept unaware of the
delivery technology details. DMIF has also defined
a generic signalling protocol able to fulfil the re-
quirements for multimedia streaming, and has spe-
cified how to integrate it with other existing
signalling protocols. Last but not least, DMIF has
been designed as a tool that fully supports the

0923-5965/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PII: S0923-5965(99)00053-3

348 G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363

MPEG-4 Systems [4] features, but that can also be
used in non MPEG-4 Systems-based applications.
Valid MPEG-4 Systems-based implementations
may exploit the DMIF reference architecture, if
designed to access, possibly concurrently, multiple
delivery technologies. Or develop their own, if tar-
geted to specific environments. The adoption of the
DMIF reference architecture, and in particular of
the DAL, is a local terminal decision. Interoperabil-
ity between terminals is only affected by the usage
of common specifications for the particular delivery
technology used, i.e. the only mandatory conform-
ance point is defined at the interface to the outside
world.

This paper explains the motivations that have
driven the delivery technology abstraction (Section
2), analyses the details of the DMIF architecture
(Section 3), shows how it works (Section 4) and
highlights the practical impact on the “bits-on-the-
wire” and on conformance issues (Section 5). It also
briefly describes the DMIF related software de-
veloped in the IMplementation 1 (IM1) group of
MPEG (Section 6). It is important not to forget,
throughout this paper, that the whole focus of
this work is on real-time delivery of multimedia
content.

2. The delivery layer abstraction
2.1. Background

In MPEG-1 and MPEG-2 the transport of the
encoded content represented an integral part of the
specifications. MPEG-1 defined how to store data
on a file, since local retrieval was the business case.
Similarly, MPEG-2 developed solutions for the two
promising business cases that it was facing: local
retrieval (again) and TV broadcast over dedicated
networks. Two different “Systems” of MPEG-2
were specified, Program Stream for the local
retrieval, Transport Stream for the broadcast scen-
ario. Each solution was optimised and specific for
the addressed delivery technology. MPEG-2 TS
(transport stream) [12] has been very successful,
and is now the transport protocol used to convey
the digital television signal over dedicated net-
works. However, it was designed and optimised for

“raw” transport mediums. MPEG-2 TS thus in-
cludes Data Link layer features (such as sync byte
and fixed packet length) as well as synchronisation
features (such as Clock References and Time
Stamps) at the same level, making these functional-
ities hardly separable. As a consequence, it is diffi-
cult and/or inefficient to transport MPEG-2
content over networks other than TV networks,
since Data Link layer features already exist in com-
puter networks. The carriage of MPEG-2 TS over
IP (or ATM) thus requires either the removal of the
replicated functionality (which is difficult) or the
acceptance of a duplication of them (which is inef-
ficient). In the IP case multiple solutions, each with
its pros and cons, have been defined by IETF
[16,3]; in the ATM case a single solution was
finally approved by the ATM Forum [1], consist-
ing in a quite inefficient mapping of a default of
2 MPEG-2 Transport Packets into eight ATM cells
with AALS.

As a conclusion, in MPEG-1 and MPEG-2 there
was a quite clear initial focus on particular delivery
technologies that resulted in a concentration of the
efforts and in the generation of optimised but
monolithic solutions. The later interest into other
delivery technologies lead to somehow sub-optimal
solutions.

2.2. The MPEG-4 approach to the delivery issue

Differently from its predecessor, MPEG-4 has
been targeted since the beginning to adapt to mul-
tiple operating scenarios (local retrieval, remote
interaction, broadcast or multicast) and delivery
technologies. Instead of defining a number of opti-
mised monolithic variations, the design choice was
to abstract the functionality that the delivery layer
has to provide, and focus the MPEG-4 Systems
activity on the common features. The goal is still to
produce effective solutions, however a demarcation
has been drawn between the aspects that can be
managed uniformly and independently from the
delivery technology (included in MPEG-4 Sys-
tems), and those that instead are impacted by the
delivery technology and by the operating scenario
(included in MPEG-4 DMIF). This demarca-
tion line is named DMIF-Application Interface
(DAI).

G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363 349

media aware
delivery unaware 5
ISO/IEC 14496-2 Visual Compression Laer Eletiisitary
ISO/IEC 14496-3 Audio Stream
. Interface
media unaware (ESI)
delivery unaware Sync Layer)
ISO/IEC 14496-1 Systems DMIF
Application
v Interface
media unaware (DAD)
delivery aware Delivery Layer
ISO/IEC 14496-6 DMIF

Fig. 1. MPEG-4 layered model.

This idea is depicted in Fig. 1 along with the
generic MPEG-4 layered model, which comprises
the Compression Layer, the Sync Layer (that is part
of Systems) and the Delivery Layer (DMIF).

The Compression Layer performs media encod-
ing and decoding of Elementary Streams and is
specified in [5] and [6]; the Sync Layer manages
Elementary Streams and their synchronisation and
hierarchical relations and is specified in [4]; the
Delivery Layer ensures transparent access to con-
tent irrespective of delivery technology and is speci-
fied in [8].

The separation of common and specific delivery
tasks has allowed to describe complementary
walkthroughs dealing, respectively, with the
application aspects (Systems part) and with the
delivery specific issues (DMIF part). In DMIF
there are separate walkthroughs for each opera-
tional scenario, all showing the same behaviour at
the DAL

2.3. The advantages of the Systems/DMIF approach

Since MPEG-4 targets multiple delivery tech-
nologies, the definition of a single, common syn-
chronisation layer syntax has been considered as
a useful unifying factor. This way all the details
related to the delivery technology are kept in the
delivery layer, below the synchronisation layer.
This makes it possible, by adopting the DMIF
architecture, to access, present and synchronise
MPEG-4 content transmitted over different deliv-
ery technologies, such as MPEG-2 TS and IP
multicast. Also simultaneously. Latest activities
related to the carriage of MPEG-4 signals in
MPEG-2 TS [14] or over RTP (Real Time Proto-

col, [18]) [2] have reduced the synchronisation
layer commonality to its semantic, in order to ad-
opt (and adapt to) the syntax already used in those
contexts. This change in philosophy could create
additional complexity in gateways, but does not
prevent the ability to simultaneously access, pres-
ent and synchronise MPEG-4 content transmitted
over different delivery technologies.

2.4. The requirements at the base of the DMIF
reference architecture

The DMIF reference architecture is based on the
requirement of hiding to the application the deliv-
ery technology details as well as the operational
scenario. DMIF thus considers uniformly three
major families of technologies that are based on
local retrieval, remote interactive or broadcast
scenarios (see Fig. 2). The definition of an architec-
ture that allows fulfilling the above requirements
represents an important step to favour the develop-
ment of truly multimedia applications. The identi-
fication of a common interface (from an
application’s point of view) to today’s and tomor-
row’s networks, encompassing both the QoS en-
abled networks, and the best effort model, is the
first DMIF requirement (that has been partially
reached in Version 1, since the best effort model is
not yet fully supported). This is particularly useful
in relation to Quality of Service (QoS) issues. As of
today the most widely used network is the Internet,
which is currently based on best effort techniques.
However, developments for adding QoS manage-
ment on IP-based networks already date several
years (RSVP: ReSerVation Protocol), while other
solutions, with quite different definitions in terms of
QoS parameters, have been produced in the ATM
context. As a result multiple QoS models are de-
fined and more or less used (and maybe others will
be defined in future). At least intranets could be
soon able to provide QoS on selected transport
technologies. Before DMIF, no unified interface
was defined to manage these different models, mak-
ing the development of QoS demanding applica-
tion strictly related to the technique used, thus
delivery technology aware.

The second, less obvious requirement of the
DMIF reference architecture is to also hide the

350 G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363

DMIF

The multimedia content delivery integration framework

Broadcast Technology
Cable,

Interactive Satellite,

Network Technology ete.

Storage Technology

CD,
DVD,
etc.

Internet,
ATM,
ctC.

Fig. 2. DMIF addresses the delivery integration of three major
technologies.

operational scenario details to the application. It
means managing the access to locally or remotely
retrieved streams, as well as broadcast/multicast
streams, through a common interface to the deliv-
ery system. The reasons for this requirement are
not that evident, since broadcast content is certain-
ly designed with different criteria than content
meant to be interactively retrieved. By implemen-
ting this requirement the obvious differences be-
tween operational scenarios would however have
no impact on the interface, nor on the way the
application manages the streamed content, but just
on the authoring process. For example, MPEG-4
scenes meant to be used in a broadcast environ-
ment will not activate features like reverse playing
that would be possible instead when playing con-
tent designed to work in a local or remote retrieval
environment. The advantage of this approach is
that it simplifies the design of applications using
both broadcast/multicast and retrieved content. As
an example, multimedia conferencing applications
could make use of a mixture of retrieved and multi-
cast content without any need to differently man-
age the streamed multimedia information received.
IP multicast could be used for audio and video
streams representing the conferee, or for slide
shows; IP unicast for “private” conversations; IP
unicast or multicast to access content external to
the conference itself. Even pre-downloaded content
could be locally played. All this could be integrated
in a single, harmonised presentation. Moreover, the
same application could perform quite differently

in an intranet able to manage QoS, or in the best
effort Internet. This would have not been possible if
a uniform interface were not defined.

3. The key elements of DMIF

There are a few fundamental elements that char-
acterise DMIF: the reference architecture, the
DMIF-Application Interface and the DMIF Sig-
nalling Protocol. These elements are presented in
the following subsections.

3.1. The reference architecture

The DMIF reference architecture is represented
in Fig. 3. The picture shows how the different
operational scenarios are uniformly modelled,
through the identification of four basic blocks: ori-
ginating application, originating DMIF, target
DMIF, and target application. The elements in the
upper part are meant to be part of the originating
terminal, while the elements in the bottom are part
of the target terminal (in the case of a remote
interactive scenario).

The originating DMIF module is meant to work
in co-operation with the target DMIF module to
provide a session-level service. The distinction be-
tween originating and target DMIF modules in the
local retrieval and broadcast scenario is a bit artifi-
cial, but has been left for uniformity with the re-
mote interactive scenario.

The originating application is the actual applica-
tion in the terminal, ¢.g. an MPEG-4 browser, or
a multimedia conferencing application. It is as-
sumed that it has in all cases a counter part, the
target application. The originating application in-
teracts with the target application through DMIF.
In the case of remote interactive operational scen-
arios, the two applications typically reside on sep-
arate hosts, and the communication between the
two is regulated by some signalling protocol, not
known by the applications themselves. DMIF has
elaborated a generic protocol to carry these signals
- the DMIF Signalling Protocol —, which is further
explained in Section 3.3. In the case of local storage
and multicast/broadcast scenarios, the target
application resides in the same terminal. In such

G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363 351

Originating
— DMIF
for Broadcast

Target DMIF

Broadcast
source

Target App.

Originating Gz G

J Originating
DMIF

for Local Files

DMIF Filter

Target DMIF

Target App.

(_% Local
Storage

App

Originating
H DMIF —i—
for Remote srv

Sig
map

DAI DNI

Target DMIF Target
B App

DNI DAI

Flows between independent systems (normative)

Flows internal to a single system (either informative or out of DMIF scope)

Fig. 3. DMIF communication architecture.

scenarios, the target application will likely not cor-
respond to a “real” application, i.e. to a process, but
will still keep its conceptual role.

There are elements, at the DMIF-Application
Interface, that are considered opaque to DMIF,
and only understood by the target application. This
is true regardless of the operational scenario and of
the actual form that the target application assumes.
For instance MPEG-4 Elementary Stream ID are
not explicitly communicated at the DAI, but passed
as opaque data; only the target application has
knowledge that such data actually carries ES_IDs.
Another example relates to user commands, that
are carried transparently by DMIF, and only
understood by the target application. This ap-
proach allows to keep DMIF independent from
evolutions in the applications (MPEG-4 ES_IDs
may not be the universal method to identify
streams; moreover not all scenarios need to be
aware of the full list of user commands, and this
list could be quite application dependent). Thus,
DMIF is not limited to MPEG-4 Systems-based
applications.

Fig. 3 also shows further elements, such as the
DMIF Filter. This module is identified in the
DMIF specification to highlight the potential bene-

fit of the architecture. It represents a sort of con-
tainer for the various DMIF instances available in
a terminal, and its role is to select the appropriate
DMIF instance to provide a certain service, based
on the DMIF URL requested by the application.
The DMIF Filter (if implemented “smart”) is the
architectural element that enables the plug & play
of DMIF instances without any need to re-compile
nor re-link applications. An example of such
a “smart” implementation is given in Section 6. The
existence of a DMIF Filter does not impact the
DMIF-Application Interface as defined in DMIF,
but only the ability to support multiple, not ini-
tially known DMIF instances. This architectural
feature is important for systems willing to support
not yet known protocols/network environments,
and allows DMIF based applications to automati-
cally make use of new delivery technologies.
Another module shown in Fig. 3 is the Signalling
module (Sig Map). This element applies only to the
DMIF instances for remote interactive scenarios,
and is kept separate from the other DMIF elements
in order to highlight the role of the DMIF-Net-
work Interface (DNI). Particularly for the case of
remote interactive systems, DMIF factorises fea-
tures that do not depend from the actual underlying

352 G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363

transport technology (generic message flows and
protocol state machines) from features that are
instead specific of a certain network (such as sig-
nalling protocols). The DNI represents the border
between the generic and specific tasks of a DMIF
instance for remote interactive scenarios.

3.2. The DMIF-application interface

The DMIF-Application Interface (DAI) is a
semantic API that directly derives from the require-
ment of hiding the delivery technology and opera-
tional scenario details to the application: thus local
and remote retrieval are not different, at this API,
from multicast or broadcast. An MPEG-4 browser
using this API would be therefore able to access
and present multimedia content uniformly and in-
dependently of the operational scenario. In the
MPEG-4 context the DAI formalises the demarca-
tion line between part 1 (Systems) and part 6
(DMIF), and separates the elements and tools of
MPEG-4 that are conceptually network unaware
(defined in Systems) from those that instead relate
with the delivery technology (covered by DMIF); as
already mentioned however, the DMIF specifica-
tions and the DAI in particular are applicable as
well in other contexts. A significant part of the
design effort has been devoted to the identification
of the parameters that should be exposed at this
interface, focusing the study on the semantic value
that such parameters should carry. The scope rules
represent, maybe, the most significant value of this
interface, which is otherwise quite simple and
straightforward. These rules define which para-
meter have to be dealt with by which module in the
DMIF architecture: some parameters thus appear
as opaque data at the DAL

The DMIF Application Interface comprised the
following classes of primitives:

e Service primitives, which deal with the Control
Plane, and allow the management of service
sessions (DA_ServiceAttach() and DA_Ser-
viceDetach());

e Channel primitives, which deal with the Control
Plane, and allow the management of channels
(DA_ChannelAdd() and DA_ChannelDelete());

e Data primitives, which deal with the User Plane,
and serve the purpose of transferring data
through channels (DA_Data() and DA_User-
Command(), respectively, for real data and ap-
plication control data).

In addition to these primitives, additional func-
tions to initialise, reset, query the status, etc. have
to be implemented by a “real” interface. Moreover,
a “real” interface will be characterised by a specific
programming language as well as by the detailed
definition of its syntax. DMIF Version 1 specifica-
tion deliberately chose to not specify this kind of
details which have no impact on the concept and
on the model of DMIF, and limited itself to the
definition of just the primitives listed above and
of the exact semantic meaning of the relevant
parameters.!

This simple set of primitives (and associated
parameters) is sufficient to fully describe the behav-
iour of a DMIF instance. Moreover it implies, from
an MPEG-4 Systems perspective, the exact defini-
tion of the normative behaviour of an MPEG-4
receiver (MPEG-4 Systems defines, in terms of DAI
primitives, the operations that an MPEG-4 receiver
should perform to get access to and then control
streamed content).

Differently from the rest of the MPEG-4 speci-
fication, the DMIF part addresses both receiver
and sender roles. This has been done in order to
extend the delivery unawareness philosophy from
consumer only applications (which only act as re-
ceivers) to conversational applications as well
(which play both the receiver and sender role). This
has also allowed to maintain uniformity when de-
scribing the behaviour through complete walk-
throughs. However, many compression techniques
combine source and channel coding, and this is
not yet supported by the DAI defined in DMIF
Version 1. It is the author’s belief that the DMIF
sender side requires additions to actually support
these techniques, while the DMIF receiver side is
less troublesome. Nevertheless, it should be clear
that the adoption of the DMIF architecture is only

! There are currently demands for defining in DMIF Version
2 a precise syntax for C++ and Java.

G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363 353

tr 1

hh G -

FlexMux Channel

TEieJ'm»:m‘ary Streams

SL-Packetized Streams

—
—>

Sync Layer

2]

Cofigured by
ISO/IEC 14496-1
(MPEG-4 Systems)

DMIF-Application Interface

3
[FlexMux l| FlexMux |

TransMux Channel

FlexMux SlreIJms

optional use of
FlexMux Tool

Delivery Layer

AALS

TCP UDP MPEG2 ATM

1P IP TS

H223
GSTN mux v

Configured by
ISO/EC 14496-6
(MPEG-4 DMIF)

DAB

I T !

TransMux Streams

!

Fig. 4. The User Plane in an MPEG-4 terminal.

a local matter, which does not affect interoperabil-
ity between equipment.

Fig. 4 illustrates the User Plane in an MPEG-4
terminal, and specifically in the Delivery Layer:
Elementary Streams cross the DAI in individual
channels and are possibly multiplexed/demultip-
lexed in the Delivery Layer, thus generating the
so-called FlexMux Streams that are carried into the
so-called TransMux channels. TransMux channels
are in turn multiplexed by means that are charac-
teristics of the protocol stack used (e.g. IP port
numbers, ATM VCs, MPEG-2 PIDs...).

The Delivery layer is responsible for the config-
uration of the transport protocol stacks. Each
DMIF instance is in charge of configuring the exact
protocol stack for each channel, and of keeping
track of the associations of channels and transport
resources. Fig. 4 provides a sample of the (hypo-
thetical) choice of native transport protocol stacks.
It outlines the fact that either an Elementary
Stream or a group of streams multiplexed together
(e.g., with the MPEG-4 Systems FlexMux tool) can
be carried over a native transport.

3.3. The DMIF Signalling Protocol

The DMIF Signalling Protocol is a generic ses-
sion level protocol designed to fulfil the require-

ments for multimedia data streaming. The protocol
has been conceived with a look into the possible
future evolutions in networking technologies, and
supports features that are not readily available with
current techniques. Such features are QoS and re-
source management and operation over a variety of
networks, including heterogeneous networks. It
also allows logging of the resources consumed in
a session. The DMIF Signalling Protocol is used to
configure the protocol stacks at the peer ends. The
protocol stack may also include the FlexMux tool
specified in MPEG-4 Systems, and this possibility
is meant to be exploited by DMIF implementations
to optimise the network resource consumption
(such as the number of sockets used and QoS re-
quirements for each network connection). The
DMIF specification does not specify how to per-
form such optimisation, but provides the means
that make it possible.

The DMIF Signalling Protocol mostly derives
from the MPEG-2 DSM-CC User-to-Network
Protocol, which was specified in ISO/IEC 13818-6
[13] and meant to provide a signalling mechanism

2The latest trend in the joint IETF-MPEG activity for the
carriage of MPEG-4 signals over the Internet is to not exploit
the MPEG-4 Systems Flexmux tool, but an RTP multiplex (yet
to be completely defined).

354 G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363

for heterogeneous networks. It differs from DSM-
CC U-N in that it does not discriminate between
a client and a server role, thus allowing for not just
one-way communication. On the other hand,
DMIF Version 1 is only focused on homogeneous
networks, while future DMIF versions are expected
to cover the heterogeneous case as well. In other
words, the DSM-CC U-N protocol was designed to
solve a quite specific problem: session and connec-
tion set-up for video-on-demand services over het-
erogencous networks (access network technology
different from core network technology). The
DMIF Signalling Protocol is designed instead to
cover a much more generic case and focuses first on
homogeneous technologies (such as Internet).

The DMIF Signalling Protocol is a session-level
protocol. As such, it is somehow equivalent to the
FTP. In both cases the first step consists in opening
a session with a peer entity. This process may
include authorisation and other security checks,
which are however out of the scope of the DMIF
Signalling Protocol, that only supports the carriage
of user data. Once the session has been established,
a number of streams are selected and requested, just
like files are selected and requested in an FTP
session. However, in FTP files are immediately
downloaded, sequentially, on a specific socket. The
DMIF Signalling Protocol instead creates one
channel for each requested stream, possibly multi-
plexing multiple channels into a single socket by
means of the FlexMux tool. It does not download
the stream, not even start the streaming; it simply
sets up the channels and configures the protocol
stack. It is then up to the application to control the
streaming.

This protocol makes use of resource descriptors.
Resource descriptors are a generic, easily exten-
dible mechanism that makes any kind of resource
equally manageable by the protocol. Thus IP port
numbers and addresses are not different than ATM
VCs or VPs, or MPEG-2 TS resources. It is also
envisioned to use resource descriptors to require
transcoders or mixers, although there is currently
no fully specified walkthrough for such scenario.
The generic protocol is then made specific for each
specific network technology by integrating it with
the relevant signalling tools that characterise that
particular network. In cases where the native sig-

nalling tools are able to provide functionality de-
fined also by the DMIF Signalling Protocol, these
functionality are mapped instead of being duplic-
ated, thus optimising the total number of ex-
changed messages. Specific mappings of the DMIF
Signalling Protocol have been defined in DMIF
Version 1 for IP, IP with RSVP and ATM with
Q.2931, while in DMIF Version 2 [10] an addi-
tional mapping is being defined on top of H.245
signalling (for H.324 -mobile- terminals).

The DMIF Signalling Protocol supports the ex-
change of generic QoS information, and can be
therefore exploited over QoS enabled networks.
However other existing tools can be used instead.
In that case features which are unique to the DMIF
Signalling Protocol, such as the ability to configure
the MPEG-4 FlexMux, would be sacrificed. A po-
tential competitor to the DMIF Signalling Proto-
col in the Internet environment is the Real Time
Streaming Protocol (RTSP, [19]) defined by IETF-.
The specification of a DMIF instance supporting
RTSP is envisioned as one of the possible exten-
sions to the DMIF Version 1 specification. The
RTSP however mixes the roles of session and con-
nection set-up with the role of Stream Control, that
in MPEG-4 Systems and especially in DMIF have
been kept separate. This makes the integration of
RTSP in the DMIF framework a bit more complex.

4. Delivery of MPEG-4 content
4.1. The MPEG-4 tools

Three tools are used to fully describe an MPEG-
4 scene and locate its components:

e a scene description stream (BIFS), that describes
how a scene is composed, and refers to its compo-
nents through pointers to Object Descriptors;

e an Object Descriptor (OD) Stream, that de-
scribes each individual Elementary Stream in
a scene, including its unique identification (a 16
bit integer - ES_ID - , which is also used for
internal cross-references, or optionally also an
unconstrained identifier to locate the stream
by means other than a 16 bit number - the
ESURL - , which is however not used for
cross-references);

G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363 355

e a Stream Map Table that maps each ES_ID (or
ES URL) to its actual physical location.

Obviously, in addition to the above information,
the actual audio-visual content is streamed as well.

A consequence of this organisation is that the
scene description does not depend on the underly-
ing delivery technology, which allows to author the
BIFS stream just once, and use it in several different
contexts. The Object Descriptor Stream represents
a fully specified and almost completely delivery-
independent mechanism to carry the Object De-
scriptor Protocol. It is believed that the OD Stream
will be used in conjunction with the BIFS Stream,
but in principle, for restricted environments not
requiring the full set of MPEG-4 features (e.g. QoS
or IPMP) it is conceivable that mechanisms other
than an OD Stream may carry the reduced OD
Protocol features. Anyway, there is no such legacy
system identified so far. The third tool mentioned
above is instead deeply dependent on the delivery
mechanism.

4.2. The DMIF instance responsibilities

For each delivery technology a DMIF instance
needs to be specified which addresses:

e the control plane signalling tools,

e the protocol stack for the transport of MPEG-4
elementary streams,

e the mechanism to carry the Object Descriptor
Protocol (usually: an OD stream),

e the mechanism to carry the Stream Map Table
information.

All these aspects are essential for interoperability
purposes. The actual specification process for each
of the above issues need not be restricted to DMIF
or MPEG. Anyway, from an MPEG-4 Systems
perspective, a single, uniform walkthrough can be
depicted independently of how the above issues are
solved in the various cases.

4.3. The generic walkthrough
The DMIF reference architecture states that the

originating application accesses the multimedia
content through the DMIF-Application Interface.

The application requests are processed by a DMIF
Filter, which determines the actual DMIF instance
that should serve the request. The application will
not have any direct knowledge of the DMIF in-
stance actually activated: this is completely trans-
parent. An application can also concurrently use
more than one DMIF instance.

The generic walkthrough for an application
based on MPEG-4 Systems starts with the selection
of the service to activate. The service is identified by
a DMIF URL, and may further incorporate other
such URLs, that from a DMIF point of view will
refer to new “services”. The originating application
thus requests the activation of a service, and uses
the DA_ServiceAttach primitive of the DAI to cre-
ate a service session. The DMIF Filter examines
the DMIF URL passed by the application, and
determines the originating DMIF instance in
charge of providing the service. This module con-
tacts the target DMIF instance (trivially, in the case
of local storage and broadcast scenarios; using the
DMIF Signalling Protocol - or an equivalent
mechanism - in the case of remote interactive scen-
arios). The target DMIF instance in turn identifies
and contacts the target application; it also estab-
lishes a service session with it. In the case of remote
interactive scenarios a network session is estab-
lished as well, with network-wide significance, and
locally mapped by each DMIF peer to a locally
meaningful service session. The target application
finally locates the service and, if existing, returns
a positive answer that is forwarded back to the
originating application. In the case of applications
based on MPEG-4 Systems, the answer will also
include the (Initial) Object Descriptor for the re-
quested service. The application peers then use the
service session to create connections that are used
to transport streamed data.

For an application based on MPEG-4 Systems
the next action would consist in the parsing of the
Initial OD, and in the request to open channels for
the streams described there (typically, the BIFS and
OD streams). When the originating application
requests streams, it uses the DA_ChannelAdd
primitive of the DAI, indicating the Service they
belong to. It also indicates the requested streams in
the user data parameter, which is opaque to the
DMIF instance and transparently delivered to the

356 G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363

target application. The target application, by
means that depend on the specific delivery techno-
logy (in the case of local storage and broadcast
scenarios) or on the server implementation (in the
case of remote interactive scenarios), locates the
desired streams. In the case of remote interactive
scenarios the peer DMIF instances set-up the re-
quested channels using the appropriate protocol
(such as the DMIF Signalling Protocol for that
specific network). The QoS parameters that have
been exposed at the DAI in association with each
requested stream may influence the set-up of net-
work connections, depending on the criteria that
the sender side adopts to aggregate multiple ele-
mentary streams into a single socket (by means of
the MPEG-4 FlexMux or any other-to be speci-
fied — multiplex technique).

The sending application peer then uses the chan-
nel to deliver the streamed data (DA_Data primi-
tive of the DAI), according to the stream control
commands delivered by the receiving application
with some other mechanism (possibly the
DA_UserCommand primitive at the DAI).

An application based on MPEG-4 Systems
would, at this point, receive the BIFS and OD
streams, parse them, and request additional ele-
mentary streams, again through the DA_Chan-
nelAdd primitive of the DAI

When a stream is no more requested, the origin-
ating application uses the DA_ChannelDelete
primitive of the DAI to free the channel. When
a service is no more requested, the originating ap-
plication uses the DA_ServiceDetach primitive of
the DALI to free the service.

Fig. 5 provides a high-level view of a service
activation and of the beginning of data exchange in
the case of interactive scenarios; the high level
walkthrough consists of the following steps:

1. The originating application requests the activa-
tion of a service to its local DMIF instance:
a communication path between the originating
application and the originating DMIF instance
is established in the control plane (1), and asso-
ciated to a locally meaningful service session.

2. The originating DMIF instance contacts the
target DMIF instance: a communication path
between the originating DMIF instance and the

Originating Peer Target Peer
4
App Appl
| 3
2
DMIF DMIF
Instance Instance

Fig. 5. DMIF computational model.

target DMIF instance is established in the con-
trol plane (2), and associated to a network
unique network session.

3. The target DMIF instance identifies the target
application and forwards the service activation
request: a communication path between the tar-
get DMIF instance and the target application is
established in the control plane (3), and asso-
ciated to a locally meaningful service session.

4. The peer application creates channels (requests
flowing through communication paths 1, 2 and
3). The resulting channels in the user plane (4)
will carry the actual data exchanged by the ap-
plications.

4.4. Broadcast scenario

When accessing content in a broadcast or multi-
cast scenario the service is represented by a bundle
of streams that are delivered over a set of channels.
When the application requests a particular service
(identified through a specific DMIF URL), the tar-
get application module is supposed to parse the
URL and determine the service requested, retrieve
the Initial OD for that service (to be returned to the
originating application) and the associated Stream
Map Table (to be maintained internally). Once the
target application module has retrieved this piece
of information, it is able to satisfy further origin-
ating application requests for adding channels: by
comparing the requested ES_ID (or ES URL) with
the appropriate elements in the table, it will locate
the actual physical channel carrying the requested
stream. The Stream Map Table could be conveyed
in a number of ways. Current standardisation
activity is focusing in MPEG-2 TS broadcast, in
which case the Stream Map Table is conveyed by
extending the MPEG-2 Tables [14]. In the case of

G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363 357

IP Multicast there are a few hypothesis currently
under consideration: extend and use the Session
Description Protocol (SDP, [17]) in combination
with the Session Initiation Protocol (SIP, [11]) or
the Session Announcement Protocol (SAP, [15]); or
define a new multicast protocol to fulfil the peculiar
MPEG-4 requirements: there is an effort in this
direction in DMIF Version 2 [10]. Some more ideas
are given in Section 6.4.2. The main issue here is that
the Stream Map Table is, in general, dynamic, since
channels can be added or removed during a session.
While static Stream Map Table would be easily
managed with a few extensions of existing tools,
dynamic tables are not. The number of receivers and
the possibility to accommodate late tune-in are addi-
tional elements that impact the performances of
a solution. It is even conceivable that a mechanism
for retrieving static tables is adopted as a base, and
algorithms for dynamic updates are applied for just
the dynamic portion of them. In any case, no stable
solution is available at the moment.

4.5. Local retrieval scenario

When accessing content in a local retrieval scen-
ario the service is represented by a set of files that
co-operatively provide the required content. When
the originating application requests a particular
service (identified through a specific DMIF URL),
the target application module is supposed to parse
the URL and determine the service requested, re-
trieve the Initial OD for that service (to be returned
to the requesting application) and the associated
Stream Map Table (to be maintained internally).
The MPEG-4 file format (being specified in
MPEG-4 Systems Version 2 [9]) defines how to
describe these elements. Once the target applica-
tion module has retrieved this piece of information,
it is able to satisfy further originating application
requests for adding channels: by comparing the
requested ES_ID (or ES URL) with the appropriate
elements in the table, it will locate the actual con-
tent providing the requested stream.

4.6. Remote retrieval scenario

When accessing content in a remote retrieval
scenario the service is organised by the server.

When the originating application requests a par-
ticular service (identified through a specific DMIF
URL), the originating DMIF instance is supposed
to parse the initial part of the URL and determine
the server address; the target DMIF instance
in turn will identify the application executive
running the service requested, and a logical connec-
tion between originating and target applications
will be established. The server will provide
the Initial OD for that service, that will be returned
to the originating application, but not the Stream
Map Table. The Stream Map Table will be instead
generated incrementally on demand, as a result
of the application requesting a stream: this is
due to the fact that the Stream Map Table pro-
vides a map between Elementary Streams and
physical resources, and that such resources are
made available, in such operational scenario, only
on demand.

4.7. Other scenarios

Heterogeneous scenarios are already partly sup-
ported by DMIF Version 1 specifications. Hetero-
geneity is supported at a terminal, meaning that
several different delivery technology (and opera-
tional scenarios) may co-exist and even run concur-
rently and co-operatively. Heterogeneity is not yet
supported instead on a single connection: in other
words, it is not currently possible to deliver
MPEG-4 content over a sequence of different deliv-
ery technologies (e.g. MPEG-2 TS broadcast
followed by IP multicast). This is the kind of hete-
rogeneity provided by the MPEG-2 DSM-CC U-N
protocol from which the DMIF Signalling Proto-
col derives, and in future versions of the DMIF
specification it is planned to cover again this func-
tionality (consistently with the added DMIF
features).

5. DMIF in the MPEG-4 context

5.1. The real extent of DMIF specifications
(and conformance issues)

DMIF defines architecture, interfaces, protocols,
URLSs, etc. Apparently, DMIF provides a whole

358 G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363

new world that just ignores the existing compo-
nents. At a closer look however, it is exactly the
contrary. DMIF deliberately chose to specify
the very minimum needed to pave the ground to
the future exploitation of MPEG-4: it defines a ref-
erence architecture to consistently select and make
use of the existing tools, but does not force the
usage of any specific technology. The reference
architecture specifies what a DMIF instance should
provide, in terms of parameters and behaviour at
the interface with the application. It provides
a semantic specification of the DMIF-Application
Interface, to clearly define the scope of a DMIF
instance, and defines the parameters exposed at the
DAI based only on the semantic they carry, with-
out binding the interface to any specific current
technology: for example it supports a generic tem-
plate for the carriage of QoS metrics, to open the
door to future exploitation of QoS-enabled tech-
nologies. The DMIF reference architecture finally
specifies the behaviour (walkthrough) of a DMIF
instance for each of the envisioned scenarios. The
reference architecture (and the DAI) are just a local
matter for a terminal and do not impact on in-
teroperability between equipments. Interoperabil-
ity is affected instead by the particular DMIF
instances specifications, which define for both con-
trol and data plane the actual bits-on-the-wire.
Current and future envisioned specifications relate
to MPEG-4 File Format, IP, IP multicast,
MPEG-2 Transport and Program Streams, DAB,
ATM and H.324 terminals. As a consequence con-
formance for DMIF primarily addresses the bits on
the wire, in particular the DMIF Signalling Proto-
col, and only optionally the DAIL? It has to be
taken into account, however, that the DMIF in-
stances specifications are defined in conjunction
with other standardisation bodies, which creates
issues of “jurisdiction” for conformance testing.

5.2. The impact on Systems specification

DMIF has marginally impacted on the MPEG-4
Systems specification, in a way however which is

3 A conformance test suite for the DAI will be added if DMIF
Version 2 will specify a precise syntax for the DAL

very important to guarantee future evolutions.
MPEG-4 Systems has, with the DAI, a clear, deliv-
ery and operational scenario-independent mecha-
nism to describe the behaviour of an MPEG-4
Systems receiver. Systems walkthroughs can thus
be maintained unique and general. Also, in DMIF,
all walkthroughs start at the DAI, so that all deliv-
ery technologies are analysed consistently. One
major advantage of the DMIF effort consists in the
careful definition of the parameters to be exposed
at the DAL in their semantic meaning and scope
rules. This study, as well as the equivalent study of
the parameters to be included in the DMIF signall-
ing protocol, makes sure that the interface is not
tied to the specificity of a particular technology
(such as the MPEG-2 TS PIDs and Association
Tags), and that could be used also in heterogeneous
environments. The process of abstracting the sem-
antic requirements from the technology and opera-
tional scenario details has not been trivial, and this
is proven by the effort which is required to consis-
tently define the details of the DMIF instances
specifications. The DMIF reference architecture
and the DAI in particular thus make sure that
different delivery technologies and operational
scenarios can be used without affecting the Systems
features. As far as the bits-on-the-wire are con-
cerned, DMIF has allowed formalising how cross-
references between services should be resolved. In
order to uniformly manage cross-references it has
been decided to make use of a common syntax: the
URL. Thus cross-references in ObjectDescriptors,
which actually point to another ObjectDescriptor,
have to be expressed in the form of URLs. Such
URLs are part of the MPEG-4 content, thus
DMIF has had a real impact here. Moreover,
such URLs have a precise meaning: they do not
point to individual content, but to a “service”,
that hides the content. The “service” is actually
identified in MPEG-4 by an (usually Initial)Object
Descriptor.

As a conclusion, DMIF only minimally impacts
on MPEG-4 Systems, but by making sure that the
various tools are used coherently, it is extremely
helpful also as a formal instrument to verify the
consistency of specifications such as the MPEG-4
File Format, or for the integration in the MPEG-4
world of existing tools such as RTSP.

G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363 359

6. An implementation: IM1

The DMIF reference architecture has been al-
ready validated by some implementation. One such
implementation has been developed by the IM1
group (IMplementation 1), in the MPEG commun-
ity. This group was activated in April 97 to verify
the functionality of the MPEG-4 Systems specifica-
tion, and the software produced has progressed
with time, including also the DMIF architecture.
The IM1 software is freeware and will be included
in the MPEG-4 reference software [7]; additional
modules exist that have been integrated in IM1 but
not donated. As far as the DMIF part is concerned,
the key aspects of the reference architecture consti-
tute an integral part of the IM1 freeware code. They
include the DMIF Filter and the MPEG-4 Flex-
Demux, as well as a DMIF instance for accessing
streaming content from local files (in both a so-
called TRIvial File format — TRIF -, defined inter-
nally to IM1, and MPEG-4 File Format - MP4 -).
The author has participated in the definition of the
interfaces and lead the development of various
other DMIF instances (for delivering MPEG-4
content over MPEG-2 Transport Stream, over IP
multicast and over IP unicast). The various ele-

ments of these implementations are described in the
following sections.

6.1. The DMIF architecture

The essential elements in the IM1 software for
the DMIF architecture are represented in Fig. 6,
highlighted in grey. Note that the picture references
the IM1-2D Player, which represents the applica-
tion against which the DMIF part has been exten-
sively tested. The DMIF software architecture in
IM1 only considers the “client” side that acts as
a receiver only. It is basically made of the DMIF
Filter and of the DMIF instances. Moreover, the
implementation effort obviously includes the integ-
ration of the DMIF software in the “core” of the
MPEG-4 Systems code. The DMIF part, as all
the IM1 software, is implemented in C++, for the
WindowsNT(4.0) operating system.

6.2. The interfaces

The IM1 implementation defines the DMIF-Ap-
plication Interface (DAI) as a set of methods of two
classes, one implemented in an object in the DMIF
Filter, the other one implemented as a sink object

DMIF related software
3 DMIF Instance: 4.4l
IM1-2D g E
L el T~
S ; é DMIF Instance: B.d!l
Player E Eh'.:
=
8 DMIF Instance: C.dll
DAI DPI (internal
DMIF/Plug-in Interface)
Windows Registry
[HKEY_CURRENT_USER\Software\MPEG-4\IMI\DMIFServices\Client]
”A-Service"="A.dIl"
»B-Service"="B.dll"
"C-Service"="C.dIl"

Fig. 6. Software elements in the IM1 implementation for DMIF.

360 G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363

in the application, for callbacks. The interface
between the DMIF Filter and the various DMIF
instances (DPI - DMIF/Plug-in Interface) is
realised as well by means of a couple of classes
definitions, one for each direction of the flow. In
particular the interface defines a base class from
which all DMIF instances shall inherit their own
specific derived class. The derived class character-
ises the DMIF instance, but the DMIF Filter only
invokes the methods defined in the base class. This
allows the DMIF Filter to control DMIF instances
that are not known in advance, and thus ensures
one key feature of the DMIF architecture, that is to
allow fully independence of an application from the
delivery technology used.

6.3. The DMIF Filter

The DMIF Filter implementation is the key ele-
ment to support the DMIF reference architecture,
since it represents the entity that is able to identify
and load the appropriate DMIF instance, and
make sure that new DMIF instances can be used
without any need to re-compile or re-link any ap-
plication code. The originating application issues
a DA_ServiceAttach() call providing the URL
identifying the required service. This function is
implemented by the DMIF Filter, which examines
the URL to identify the correct DMIF instance to
activate. This step is performed, in the IM1 imple-
mentation, with the help of the Windows registry:
all available DMIF instances are in fact registered
in a well-known branch of the registry (DMIF
instances are implemented as DLLs in IM1). The
DMIF Filter, based on the registry content, loads,
tests and possibly unloads the registered DLLs, one
at a time, until the correct one is found. Each DLL
represents a DMIF instance implementation, and
provides a particular method to test whether it is
capable to access a service as identified by the URL
or not. With this approach, a new DMIF instance
can be added at run time in a system, or just
updated, and be activated seamlessly through ap-
propriate URLs. Once a DMIF instance (DLL) has
been activated, the DA_ServiceAttach() call is for-
warded to it for further processing; further flows
through the DAI are then directly processed by
that DMIF instance.

6.4. DMIF instances in IM1

Five DMIF instances have been integrated so far
in the IM1 platform, with the goal of validating the
key concept of the DMIF reference architecture,
that is the ability to hide to the application the
delivery technologies as well as the operational
scenarios. Thus, at least an instance for each scen-
ario (local retrieval, broadcast, multicast and re-
mote retrieval) has been developed and successfully
integrated.

6.4.1. The local retrieval scenario

Part of the free software developed in IMI1 is
represented by the DMIF instances for local re-
trieval. There are two such instances: one for read-
ing files formatted according to a “Trivial File
Format” internally defined and developed in IM1;
another one for reading files formatted according
to the “MPEG-4 File Format” being specified in
MPEG-4 Systems Version 2. The first one has been
widely used for tests and demos in the past, while
the second one has been recently released, and has
a value as reference software.

6.4.2. The multicast scenario

A DMIF instance has been integrated in IM1 to
work with IP multicast. This instance, whose im-
plementation has been lead by the author, has not
been freely released, and does not represent any
“official” use of MPEG-4 over IP multicast: the
correct mechanism to use MPEG-4 in combination
with the IP multicast technology is instead still
under study. This implementation simply aimed at
demonstrating the conceptual correctness of the
DMIF reference architecture and of the DAI,
in particular its ability to uniformly handle the
multicast scenario. This instance is implemented
as a single DLL and has been used in various
demos.

The DMIF instance implemented simply ad-
opted the UDP/IP protocol stack for carrying the
MPEG-4 (flexmultiplexed) elementary streams,
while the current joint IETF-MPEG activities are
working on a Real Time Protocol based solution
[2]. The Object Descriptor Protocol is carried,
in this implementation, as a usual OD stream.
While conceptually a different approach is possible

G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363 361

DMIF Instance

for (client side)
Remote retrieval

Other
DMIF
Instances

DMIF Instance
for (server side)
Remote retrieval

DMIF Filter

daemon
(client side)

DMIF
daemon
(server side)

for Multicast
TP Multicast £ source
5}
iz DMIF Instance
g for)
z Local retrieval % Tl
DMIF Instance DMIF Sigmee

Other
DMIF
Instances

DMIF Instance
for (server side)
Remote retrieval

DMIF Filter

Fig. 7. Software modules in the DMIF implementation integrated in IM1.

(e.g. appending OD information as part of a Ses-
sion Description Protocol [17] description), the
selected solution was the simplest to implement
(and is probably also the best solution).

6.4.3. The remote retrieval scenario

The retrieval scenario implementation is by far
the most complex, since it includes also a server
part and a connection management entity. The
implementation integrated in IM1, that has been
lead by the author and has not been freely released,
is made of the following modules:

e DMIF instance (client side) for remote retrieval
(DLL loaded in the IM1 player process space).

e DMIF daemon (client side) for connection man-
agement.

e DMIF daemon (server side) for connection man-
agement.

e DMIF instance (server side) for remote retrieval
(DLL loaded in the target application process
space).

e DMIF Filter for the server side.

e target applications (a simple media pump, for
basic play/stop commands, and a smart media

pump, for additional stream controls - e.g.,
pause, fast forward, ... -).

A comprehensive scheme of the modules integ-
rated in the IM1 platform is shown in Fig. 7, where
the light grey area defines the borders of a terminal,
the dark grey area defines the borders of a process,
and each box corresponds to a separate software
module (library or application).

This implementation makes use of the DMIF
Signalling Protocol for IP networks for establish-
ing the communication channels. This implementa-
tion supports Quality of Service management only
in terms of interfaces and of management of uncon-
strained QoS parameters; however no “real” QoS
is supported yet. A number of activities are in
progress, in contexts other than IM1, to implement
the monitoring of the objective QoS delivered (e.g.
RTP/RTCP for the Internet), and strategies for
aggregating Elementary Streams into FlexMux
Streams.

Activities are also in progress to unify the client
and server interfaces, as well as the client and server
DLLs and daemons, thus allowing the exploitation
of this software for applications based on MPEG-4

362 G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363

but other than an MPEG-4 browser (e.g. conferenc-
ing applications, where a terminal acts as both
a receiver and a transmitter).

7. Conclusions

The DMIF specification defines an architecture
that is open to future evolutions in the delivery
technology, and that is able, if actually imple-
mented in the terminals, to protect investments in
the development of multimedia applications.
DMIF also provides support, with the DMIF Sig-
nalling Protocol, to log resource consumption in
a session, which represents the minimum require-
ment to enable per-consumption charging models.
It therefore represents an interesting piece of tech-
nology for both application developers and telecom
operators. The correctness of the DMIF reference
architecture concepts and specifications (the DAI)
has been validated and demonstrated by the IM1
implementation, and the key software modules are
part of the reference code for MPEG-4.

As far as interoperability is concerned, it only
relates to the specification of the particular DMIF
instance to be used in the addressed delivery tech-
nology, not to the adoption of the DMIF reference
architecture in a terminal.

Acknowledgements

This paper reflects the hard work of various
individuals, but a special acknowledgement is due
to Vahe Balabanian, chairman of the MPEG Deliv-
ery group during the development of DMIF
Version 1, to Zvi Lifshitz, soul of the MPEG IM1
group, and to Mauro Rossi and Gianluca Di
Cagno, who dedicated most of their time in devel-
oping, integrating and exercising the various
DMIF software releases.

References

[1] ATM Forum, Audiovisual Multimedia Services: Video on
Demand Specification 1.0, 1995.

[2] M. Civanlar, V. Balabanian, A. Basso, S. Casner,
C. Herpel, C. Perkins, RTP payload format for MPEG-4
Streams, Internet-Draft draft-ietf-avt-rtp-mpeg4-
0O1.txt (work in progress).

[3] M. Civanlar, G. Cash, B. Haskell, RTP payload format for
bundled MPEG, RFC2343, 1998.

[4] Coding Of Audio-Visual Objects: Systems, ISO/IEC
14496-1 Final Draft International Standard, ISO/IEC
JTC1/SC29/WG11 N2501, November 1998.

[5] Coding Of Audio-Visual Objects: Visual, ISO/TEC 14496-
2 Final Draft International Standard, ISO/IEC JTC1/
SC29/WG11 N2502, November 1998.

[6] Coding Of Audio-Visual Objects: Audio, ISO/IEC 14496-
3 Final Draft International Standard, ISO/IEC JTCl1/
SC29/WG11 N2503, November 1998.

[7] Coding Of Audio-Visual Objects: Reference Software,
ISO/IEC 14496-5 Draft Text of Final Draft International
Standard, ISO/IEC JTC1/SC29/WG11 N2505, November
1998.

[8] Coding Of Audio-Visual Objects: Delivery Multimedia
Integration Framework, ISO/IEC 14496-6 Final Draft
International Standard, ISO/IEC JTC1/SC29/WG11
N2506, November 1998.

[9] Coding Of Audio-Visual Objects: Systems, ISO/IEC
13818-1/Proposed Draft Amendment 1, ISO/IEC JTC1/
SC29/WG11 N2739, March 1999.

[10] Coding Of Audio-Visual Objects: Delivery Multimedia
Integration Framework, ISO/IEC -6/Proposed Draft
Amendment 1, ISO/IEC JTC1/SC29/WGI11 N2720,
March 1999.

[11] E. Schooler, H. Schulzrinne, M. Handley, SIP: session
initiation protocol, Internet-Draft draft-ietf-mmusic-
sip-11.txt (work in progress).

[12] Generic Coding Of Moving Pictures and Associated
Audio: Systems, ISO/IEC 13818-1, 1994.

[13] Generic Coding Of Moving Pictures and Associated
Audio: Digital Storage Media Command & Control,
ISO/IEC 13818-6, 1996.

[14] Generic Coding Of Moving Pictures and Associated
Audio: Systems, ISO/IEC 13818-1/Final Proposed Draft
Amendment 7, ISO/IEC JTC1/SC29/WGI11 N2664,
March 1999.

[15] M. Handley, V. Jacobson, SAP: session announcement
protocol, Internet-Draft draft-ietf-mmusic-sap-00.txt
(work in progress).

[16] D. Hoffman. G. Fernando, V. Goyal, M. Civanlar, RTP
payload format for MPEG1/MPEG?2 video, RFC2250,
1998.

[17] V.Jacobson, M. Handley, SDP: session description proto-
col, RFC 2327, 1998.

[18] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP:
a transport protocol for real-time applications, RFC 1889,
1996.

[19] H. Schulzrinne, A. Rao, R. Lanphier, Real time streaming
protocol (RTSP), RFC 2326, 1998.

G. Franceschini | Signal Processing: Image Communication 15 (2000) 347-363 363

Guido Franceschini received the
Electronic Engineering Degree
from the Politecnico of Torino
in October 1989. In 1990 he
joined CSELT, where he was
originally involved in the design
and implementation of early
ATM terminals. He has then
been involved in the implemen-
tation of a DAVIC compliant Video on Demand
system. He is currently working at an MPEG-4
prototype, with a focus on delivery, synchroniza-

tion and server aspects. Since 1993 he has been
participating to the ISO/IEC Moving Picture Ex-
pert Group, to work on the MPEG-2 Systems and
then on the MPEG-2 DSMCC specifications. He
has been heavily involved in the specification of
MPEG-4 Systems and MPEG-4 DMIF. He acted
as editor for MPEG-4 DMIF Version 1, and
chaired in 1999 the MPEG Delivery subgroup.
From 1994 to 1996 he has been also participating
to the ATM Forum, in the Service Aspects and
Applications subgroup.

