
*Corresponding author.
E-mail address: tekalp@sabanciuniv.edu.tr (A.M. Tekalp)

Signal Processing: Image Communication 15 (2000) 387}421

Face and 2-D mesh animation in MPEG-4

A. Murat Tekalp!," ,*, JoK rn Ostermann#

!Sabanci University, Engineering and Natural Sciences, Orhanli, 81474 Tuzla, Istanbul, Turkey
"Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627-0126, USA

#ATT Labs - Research, Room 3-231, 100 Schultz Dr., Red Bank, NJ 07701, USA

Abstract

This paper presents an overview of some of the synthetic visual objects supported by MPEG-4 version-1, namely
animated faces and animated arbitrary 2D uniform and Delaunay meshes. We discuss both speci"cation and compres-
sion of face animation and 2D-mesh animation in MPEG-4. Face animation allows to animate a proprietary face model
or a face model downloaded to the decoder. We also address integration of the face animation tool with the
text-to-speech interface (TTSI), so that face animation can be driven by text input. (2000 Elsevier Science B.V. All
rights reserved.

Keywords: MPEG-4; Face animation; Computer graphics; Deformation; VRML; Speech synthesizer; Electronic commerce

1. Introduction

MPEG-4 is an object-based multimedia com-
pression standard, which allows for encoding of
di!erent audio}visual objects (AVO) in the scene
independently. The visual objects may have natural
or synthetic content, including arbitrary shape
video objects, special synthetic objects such as
human face and body, and generic 2D/3D objects
composed of primitives like rectangles, spheres, or
indexed face sets, which de"ne an object surface by
means of vertices and surface patches. The syn-
thetic visual objects are animated by transforms
and special-purpose animation techniques, such as
face/body animation and 2D-mesh animation.
MPEG-4 also provides synthetic audio tools such

as structured audio tools and a text-to-speech inter-
face (TTSI). This paper presents a detailed overview
of synthetic visual objects supported by MPEG-4
version-1, namely animated faces and animated
arbitrary 2D uniform and Delaunay meshes. We
also address integration of the face animation tool
with the TTSI, so that face animation can be driven
by text input. Body animation and 3D mesh com-
pression and animation will be supported in
MPEG-4 version-2, and hence are not covered in
this article.

The representation of synthetic visual objects in
MPEG-4 is based on the prior VRML standard
[11}13] using nodes such as Transform, which de-
"nes rotation, scale or translation of an object, and
IndexedFaceSet describing 3D shape of an object by
an indexed face set. However, MPEG-4 is the "rst
international standard that speci"es a compressed
binary representation of animated synthetic
audio-visual objects. It is important to note that

0923-5965/00/$ - see front matter (2000 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 3 - 5 9 6 5 (9 9) 0 0 0 5 5 - 7

MPEG-4 only speci"es the decoding of compliant
bit streams in an MPEG-4 terminal. The encoders
do enjoy a large degree of freedom in how to
generate MPEG-4 compliant bit streams. Decoded
audio-visual objects can be composed into 2D and
3D scenes using the binary format for scenes (BIFS)
[13], which also allows implementation of anima-
tion of objects and their properties using the BIFS-
Anim node. We recommend readers to refer to an
accompanying article on BIFS for the details of
implementation of BIFS-Anim. Compression of
still textures (images) for mapping onto 2D or 3D
meshes is also covered in another accompanying
article. In the following, we cover the speci"cation
and compression of face animation and 2D-mesh
animation in Sections 2 and 3, respectively.

2. Face animation

MPEG-4 foresees that talking heads will serve an
important role in future customer service applica-
tions. For example, a customized agent model can
be de"ned for games or web-based customer service
applications. To this e!ect, MPEG-4 enables integ-
ration of face animation with multimedia com-
munications and presentations and allows face
animation over low bit-rate communication chan-
nels, for point to point as well as multi-point
connections with low delay. With AT&T's imple-
mentation of an MPEG-4 face animation system,
we can animate a face models with a data rate of
300}2000 bits/s. In many applications like Elec-
tronic Commerce, the integration of face animation
and text to speech synthesizer is of special interest.
MPEG-4 de"nes an application program interface
for TTS synthesizer. Using this interface, the syn-
thesizer can be used to provide phonemes and
related timing information to the face model. The
phonemes are converted into corresponding mouth
shapes enabling simple talking head applications.
Adding facial expressions to the talking head is
achieved using bookmarks in the text. This integra-
tion allows for animated talking heads driven just
by one text stream at a data rate of less than
200 bits/s [23]. Subjective tests reported in [25]
show that an Electronic Commerce web site with
talking faces gets higher ratings than the same web

site without talking faces. In an amendment to the
standard foreseen in 2000, MPEG-4 will add body
animation to its tool set, thus allowing the stand-
ardized animation of complete human bodies.

In the following sections, we describe how to
specify and animate 3D face models, compress
facial animation parameters, and integrate face
animation with TTS in MPEG-4. The MPEG-4
standard allows using proprietary 3D face models
that are resident at the decoder as well as transmis-
sion of face models such that the encoder can pre-
dict the quality of the presentation at the decoder.
In Section 2.1, we explain how MPEG-4 speci"es
a 3D face model and its animation using face de"ni-
tion parameters (FDP) and facial animation para-
meters (FAP), respectively. Section 2.2 provides
details on how to e$ciently encode FAPs. The
integration of face animation into an MPEG-4
terminal with text-to-speech capabilities is shown
in Section 2.3. In Section 2.4, we describe brie#y the
integration of face animation with MPEG-4 sys-
tems. MPEG-4 pro"les with respect to face anima-
tion are explained in Section 2.5.

2.1. Specixcation and animation of faces

MPEG-4 speci"es a face model in its neutral
state, a number of feature points on this neutral face
as reference points, and a set of FAPs, each corre-
sponding to a particular facial action deforming
a face model in its neutral state. Deforming a neu-
tral face model according to some speci"ed FAP
values at each time instant generates a facial anima-
tion sequence. The FAP value for a particular FAP
indicates the magnitude of the corresponding ac-
tion, e.g., a big versus a small smile or deformation
of a mouth corner. For an MPEG-4 terminal to
interpret the FAP values using its face model, it has
to have prede"ned model-speci"c animation rules
to produce the facial action corresponding to
each FAP. The terminal can either use its own
animation rules or download a face model and the
associated face animation tables (FAT) to
have a customized animation behavior. Since the
FAPs are required to animate faces of di!erent
sizes and proportions, the FAP values are de"ned
in face animation parameter units (FAPU). The
FAPU are computed from spatial distances

388 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Fig. 1. A face model in its neutral state and the feature points
used to de"ne FAP units (FAPU). Fractions of distances be-
tween the marked key features are used to de"ne FAPU (from
[14]).

Table 1
Facial animation parameter units and their de"nitions

IRISD0 Iris diameter
(by de"nition
it is equal to the
distance between upper
and lower eyelid) in
neutral face

IRISD"IRISD0/1024

ES0 Eye separation ES"ES0/1024
ENS0 Eye}nose separation ENS"ENS0/1024
MNS0 Mouth}nose separation MNS"MNS0/1024
MW0 Mouth width MW"MW0/1024
AU Angle unit 10E!5 rad

between major facial features on the model in its
neutral state.

In the following, we "rst describe what MPEG-4
considers to be a generic face model in its neutral
state and the associated feature points. Then, we
explain the facial animation parameters for this gen-
eric model. Finally, we show how to de"ne MPEG-4
compliant face models that can be transmitted from
the encoder to the decoder for animation.

2.1.1. MPEG-4 face model in neutral state
As the "rst step, MPEG-4 de"nes a generic face

model in its neutral state by the following proper-
ties (see Fig. 1):

f gaze is in direction of the Z-axis,
f all face muscles are relaxed,
f eyelids are tangent to the iris,
f the pupil is one-third of the diameter of the

iris,
f lips are in contact; the line of the lips is horizontal

and at the same height of lip corners,
f the mouth is closed and the upper teeth touch the

lower ones,
f the tongue is #at, horizontal with the tip of

tongue touching the boundary between upper
and lower teeth.

A FAPU and the feature points used to derive the
FAPU are de"ned next with respect to the face in
its neutral state.

2.1.1.1. Face animation parameter units. In order
to de"ne face animation parameters for arbitrary
face models, MPEG-4 de"nes FAPUs that serve to
scale facial animation parameters for any face
model. FAPUs are de"ned as fractions of distances
between key facial features (see Fig. 1). These fea-
tures, such as eye separation, are de"ned on a face
model that is in the neutral state. The FAPU allow
interpretation of the FAPs on any facial model in
a consistent way, producing reasonable results in
terms of expression and speech pronunciation. The
measurement units are shown in Table 1.

2.1.1.2. Feature points. MPEG-4 speci"es 84 fea-
ture points on the neutral face (see Fig. 2). The main
purpose of these feature points is to provide spatial
references for de"ning FAPs. Some feature points
such as the ones along the hairline are not a!ected
by FAPs. However, they are required for de"ning
the shape of a proprietary face model using feature
points (Section 2.1.3). Feature points are arranged
in groups like cheeks, eyes and mouth. The location
of these feature points has to be known for any
MPEG-4 compliant face model. The feature points
on the model should be located according to Fig. 2
and the hints given in Table 6.

2.1.2. Face animation parameters
The FAPs are based on the study of minimal

perceptible actions and are closely related to

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 389

Fig. 2. Feature points may be used to de"ne the shape of a proprietary face model. The facial animation parameters are de"ned by
motion of some of these feature points (from [14]).

390 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Table 2
FAP groups

Group Number of FAPs

1: Visemes and expressions 2
2: Jaw, chin, inner lowerlip, cornerlips,

midlip
16

3: Eyeballs, pupils, eyelids 12
4: Eyebrow 8
5: Cheeks 4
6: Tongue 5
7: Head rotation 3
8: Outer lip positions 10
9: Nose 4

10: Ears 4

Table 3
Visemes and related phonemes

Viseme no. Phonemes Example

0 None na
1 p, b, m put, bed, mill
2 f, v far, voice
3 T, D think, that
4 t, d tip, doll
5 k, g call, gas
6 tS, dZ, S chair, join, she
7 s, z sir, zeal
8 n, l lot, not
9 r red

10 A: car
11 e bed
12 I tip
13 Q top
14 U book

muscle actions [16,26,31,36]. The 68 parameters
are categorized into 10 groups related to parts of
the face (Table 2). FAPs represent a complete set of
basic facial actions including head motion, tongue,
eye and mouth control. They allow representation
of natural facial expressions (see Table 7). For each
FAP, the standard de"nes the appropriate FAPU,
FAP group, direction of positive motion and
whether the motion of the feature point is unidirec-
tional (see FAP 3, open jaw) or bi-directional (see
FAP 48, head pitch). FAPs can also be used to
de"ne facial action units [8]. Exaggerated ampli-
tudes permit the de"nition of actions that are nor-
mally not possible for humans, but are desirable for
cartoon-like characters.

The FAP set contains two high-level parameters,
visemes and expressions (FAP group 1). A viseme
(FAP 1) is a visual correlate to a phoneme. Only 14
static visemes that are clearly distinguished are
included in the standard set (Table 3). In order to
allow for coarticulation of speech and mouth
movement [6], the shape of the mouth of a speak-
ing human is not only in#uenced by the current
phoneme, but also the previous and the next pho-
neme. In MPEG-4, transitions from one viseme to
the next are de"ned by blending only two visemes
with a weighting factor. So far, it is not clear how
this can be used for high-quality visual speech
animation.

The expression parameter FAP 2 de"nes the six
primary facial expressions (Table 4, Fig. 3). In con-

trast to visemes, facial expressions are animated by
a value de"ning the excitation of the expression.
Two facial expressions can be animated simulta-
neously with an amplitude in the range of [0}63]
de"ned for each expression. The facial expression
parameter values are de"ned by textual descrip-
tions. The expression parameter allows for an e$-
cient means of animating faces. They are high-level
animation parameters. A face model designer cre-
ates them for each face model. Since they are
designed as a complete expression, they allow
animating unknown models with high subjective
quality [1,23].

Using FAP 1 and FAP 2 together with low-level
FAPs 3}68 that a!ect the same areas as FAPs
1 and 2, may result in unexpected visual representa-
tions of the face. Generally, the lower level FAPs
have priority over deformations caused by FAP
1 or 2. When specifying an expression with FAP 2,
the encoder may sent an init}face bit that deforms
the neutral face of the model with the expression
prior to superimposing FAPs 3-68. This deforma-
tion is applied with the neutral face constraints of
mouth closure, eye opening, gaze direction and
head orientation. Since the encoder does not know
how FAPs 1 and 2 are implemented, we recom-
mend using only those low-level FAPs that will not
interfere with FAPs 1 and 2.

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 391

Table 4
Primary facial expressions as de"ned for FAP 2

No. Expression name Textual description

1 Joy The eyebrows are relaxed. The mouth is open and the mouth corners pulled back toward the ears.

2 Sadness The inner eyebrows are bent upward. The eyes are slightly closed. The mouth is relaxed.

3 Anger The inner eyebrows are pulled downward and together. The eyes are wide open. The lips are pressed
against each other or opened to expose the teeth.

4 Fear The eyebrows are raised and pulled together. The inner eyebrows are bent upward. The eyes are tense
and alert.

5 Disgust The eyebrows and eyelids are relaxed. The upper lip is raised and curled, often asymmetrically.

6 Surprise The eyebrows are raised. The upper eyelids are wide open, the lower relaxed. The jaw is opened.

Fig. 3. Facial expressions.

2.1.3. Face model specixcation
Every MPEG-4 terminal that is able to decode

FAP streams has to provide an MPEG-4 com-
pliant face model that it animates (Section 2.1.3.1).
Usually, this is a model proprietary to the decoder.
The encoder does not know about the look of the
face model. Using a face de"nition parameter
(FDP) node, MPEG-4 allows the encoder to com-
pletely specify the face model to animate. This in-
volves de"ning the static geometry of the face
model in its neutral state using a scene graph
(Section 2.1.3.3), de"ning the surface properties and
de"ning the animation rules using face animation
tables (FAT) that specify how this model gets de-
formed by the facial animation parameters (Section
2.1.3.4). Alternatively, the FDP node can be used to
&calibrate' the proprietary face model of the decoder
(Section 2.1.3.2). However, MPEG-4 does not spec-
ify how to &calibrate' or adapt a proprietary face
model.

2.1.3.1. Proprietary face model. In order for a face
model to be MPEG-4 compliant, it has to be able
to execute all FAPs according to Sections 2.1.1 and
2.1.2. Therefore, the face model has to have at least
as many vertices as there are feature points that
can be animated. Thus, an MPEG-4 compliant face
model may have as little as 50 vertices. Such
a model would not generate a pleasing impression.
We expect to require at least 500 vertices for pleas-
ant and reasonable face models (Fig. 3).

A proprietary face model can be built in four
steps:

1. We build the shape of the face model and de"ne
the location of the feature points on the face
model according to Section 2.1.1 and Fig. 2.

2. For each FAP, we de"ne how the feature point
has to move. For most feature points, MPEG-4
de"nes only the motion in one dimension. As an
example, we consider FAP 54, which displaces
the outer right lip corner horizontally. Human
faces usually move the right corner of the lip
backward as they move it to the right. It is left up
to the face model designer to de"ne a subjective-
ly appealing face deformation for each FAP.

3. After the motion of the feature points is de"ned
for each FAP, we de"ne how the motion of
a feature point a!ects its neighboring vertices.
This mapping of feature point motion onto ver-
tex motion can be done using lookup tables like
FAT (Section 2.1.3.4) [24], muscle-based defor-
mation [16,31,36] or distance transforms [17].

392 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

4. For expressions, MPEG-4 provides only quali-
tative hints on how they should be designed
(Table 4). Similarly, visemes are de"ned by giv-
ing sounds that correspond to the required lip
shapes (Table 3). FAPs 1 and 2 should be de-
signed with care since they will mostly be used
for visually appealing animations.

Following the above steps, our face model is
ready to be animated with MPEG-4 FAPs. When-
ever a face model is animated, gender information
is provided to the terminal. MPEG-4 does not
require using a di!erent face model for male or
female gender. We recommend that the decoder
reads the gender information and, at a minimum,
deforms its model to be male or female. This avoids
the presentation of a female face with a male voice
and vice versa.

2.1.3.2. Face model adaptation. An encoder may
choose to specify the location of all or some feature
points. Then, the decoder is supposed to adapt its
own proprietary face model such that the model
conforms to the feature point positions. Since
MPEG-4 does not specify any algorithm for adapt-
ing the surface of the proprietary model to the new
feature point locations, we cannot specify the sub-
jective quality of a face model after its adaptation.
Face model adaptation allows also for download-
ing of texture maps for the face. In order to specify
the mapping of the texture map onto the propri-
etary face model, the encoder sends texture co-
ordinates for each feature point. Each texture coor-
dinate de"nes the location of one feature point on
the texture map. This does not allow for precise
texture mapping at important features like eyelids
or lips. Within the standard, this process of adapt-
ing the feature point locations of a proprietary
face model according to encoder speci"cations is
commonly referred to as &face model calibration'.
As stated above, MPEG-4 does not specify any
minimum quality of the adapted face model. There-
fore, we prefer to name this process &face model
adaptation'.

In [17], a method for face model adaptation is
proposed using an iterative approach based on
radial basis functions for scattered data interpola-
tion. For each feature point of the proprietary

model, a region of interest is de"ned. When a fea-
ture point moves, it deforms the model within this
region of interest. In order to achieve smooth surfa-
ces, an iterative algorithm was developed.

MPEG-4 allows for a second method of face
adaptation by sending an arbitrary mesh to the
decoder in addition to feature points. Whereas
a possible implementation of this approach is
described in [10], MPEG-4 will not mandate a spe-
ci"c implementation in the decoder nor will
MPEG-4 de"ne any conformance points for this
approach to face model calibration. Therefore, we
expect most MPEG-4 terminals not to provide this
feature.

The advantage of face model adaptation over
downloading a face model from the encoder to the
decoder is that the decoder can adapt its potentially
very sophisticated model to the desired shape.
Since MPEG-4 does not de"ne minimum qualities
for proprietary face models and a good adaptation
algorithm is fairly di$cult to implement, we expect
mostly disappointing results as also pointed out in
[1]. In order to somewhat limit the shortcomings,
we recommended that the encoder always sends the
entire set of feature points for face model adapta-
tion. Sending of partial data may result in com-
pletely unpredictable face representations. For
applications that wants to specify exactly, how the
contents is presented at the decoder, downloading
a face model using a scene graph seems to be the
preferred method (Sections 2.1.3.3 and 2.1.3.4).

2.1.3.3. Neutral face model using a scene graph. In
order to download a face model to the decoder, the
encoder speci"es the static geometry of the head
model with a scene graph using MPEG-4 BIFS.
For this purpose, BIFS provides the same nodes as
VRML. VRML and BIFS describe scenes as a col-
lection of nodes, arranged in a scene graph. Three
types of nodes are of particular interest for the
de"nition of a static head model. A Group node is
a container for collecting child objects: it allows for
building hierarchical models. For objects to move
together as a group, they need to be in the same
Transform group. The Transform node de"nes geo-
metric a$ne 3D transformations like scaling, rota-
tion and translation that are performed on its
children. When Transform nodes contain other

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 393

Fig. 4. Simpli"ed scene graph for a head model. The names of BIFS nodes are given in italics.

Transforms, their transformation settings have
a cumulative e!ect. Nested Transform nodes can be
used to build a transformation hierarchy. An In-
dexedFaceSet node de"nes the geometry (3D mesh)
and surface attributes (color, texture) of a poly-
gonal object. Texture maps are coded with the
wavelet coder of the MPEG still image coder [14].

Fig. 4 shows the simpli"ed scene graph for a face
model. Nested Transforms are used to apply rota-
tions about the x, y and z-axis one after another.
Embedded into these global head movements are
the rotations for the left and right eye. Separate
IndexedFaceSets de"ne the shape and the sur-
face of the face, hair, tongue, teeth, left eye and right
eye, thus allowing for separate texture maps. Since
the face model is speci"ed with a scene graph, this
face model can be easily extended to a head and
shoulder model. The surface properties of the face
can be speci"ed using colors or still images to
de"ne texture mapped models.

The shape of the face models may be generated
using interactive modelers, scanners or image anal-
ysis software [5,10].

2.1.3.4. Dexnition of animation rules using
FAT. FATs de"ne how a model is spatially de-

formed as a function of the amplitude of the FAPs.
Three BIFS nodes provide this functionality:
FaceDefTable, FaceDefTransform and FaceDef-
Mesh. These nodes are considered to be part of the
face model. Using FaceDefTransform nodes and
FaceDefMesh nodes, the FaceDefTable speci"es,
for a FAP, which nodes of the scenegraph are
animated by it and how [24].

Animation dexnition for a transform node. If
a FAP causes a transformation like rotation, trans-
lation or scale, a Transform node can describe this
animation. The FaceDefTable speci"es a FaceDef-
Transform node that de"nes the type of trans-
formation and a scaling factor for the chosen
transformation. During animation, the received
value for the FAP, the FAPU and the scaling factor
determine the actual value by which the model is
transformed.

Animation dexnition for an IndexedFaceSet node.
If a FAP like joy causes #exible deformation of the
face model, the FaceDefTable node uses a FaceDef-
Mesh node to de"ne the deformation of Indexed-
FaceSet nodes. The animation results in updating
vertex positions of the a!ected IndexedFaceSet
nodes. Moving the a!ected vertices as a piece-
wise linear function of FAP amplitude values

394 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Fig. 5. Piecewise linear approximation of vertex motion as a function of the FAP value.

approximates #exible deformations of an Indexed-
FaceSet. The FaceDefMesh de"nes for each a!ec-
ted vertex its own piecewise linear function by
specifying intervals of the FAP amplitude and 3D
displacements for each interval (see Table 5 for an
example). The VRML community started to de"ne
a Displacer Node that provides a similar function-
ality. However, the motion of a vertex is limited to
a straight line.

If P
m

is the position of the mth vertex of the
IndexedFaceSet in neutral state (FAP"0) and
Dmk is the 3D displacement that de"nes the piece-
wise linear function in the kth interval, then the
following algorithm is used to determine the new
position P@

m
of the same vertex after animation with

the given FAP value (Fig. 5):

1. Determine the interval listed in the FaceDef-
Mesh in which the received FAP value is lying.

2. If the received FAP is in the jth interval
[I

j
, I

j`1
] and 0"I

k
)I

j
, the new position

P @
m

of the mth vertex is given by

P @
m
"P

m
#FAPU*((Ik`1

!0)*D
m,k

#(I
k`2

!I
k`1

)*D
m,k`1

#2(I
j
!I

j~1
)*D

m,j~1

#(FAP!I
j
)*D

m, j
).

3. If FAP'I
.!9

, then P @
m

is calculated by using
the equation given in 2 and setting the index
j"max!1.

4. If the received FAP is in the jth interval
[I

j
, I

j`1
] and I

j`1
)I

k/0
, the new position

P @
m

of the mth vertex is given by

P @
m
"P

m
#FAPU*((Ij`1

!FAP)*D
m,j

#(I
j`2

!I
j`1

)*D
m,j`1

#2(I
k~1

!I
k~2

)*D
m,k~2

#(0!I
k~1

)*D
m,k~1

).

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 395

Fig. 6. Using MPEG-4 face animation tools, face and body of
this model can be downloaded and e$ciently animated by the
encoder that downloads the model to the decoder.

Table 5
Simpli"ed example of a FaceDefMesh and a FaceDefTransform

dFaceDefMesh
FAP 6 (stretch left corner lip)

IndexedFaceSet: Face
Interval borders: !1000, 0, 500, 1000
Displacements:

Vertex 50 1 0 0, 0.9 0 0, 1.5 0 4
Vertex 51 0.8 0 0, 0.7 0 0, 2 0 0

dFaceDefTransform
FAP 23 (yaw left eye ball)

Transform: LeftEyeX
Rotation scale factor: 0 !1 0 (axis) 1 (angle)

5. If FAP(I
1
, then P @

m
is calculated by using the

equation in 4 and setting the index j"1.
6. If for a given FAP and &IndexedFaceSet' the

table contains only one interval, the motion is
strictly linear:

P @
m
"P

m
#FAPU*FAP*D

m1
.

Strictly speaking, these animation rules are not
limited to faces. Using this technology, MPEG-4
allows for a very e$cient mechanism of animating
IndexedFaceSet and Transform nodes of arbitrary
objects with up to 68 FAPs. In Fig. 6, we see a head
and shoulder model that can be animated using 68
FAPs. Obviously, the interpretation of the FAPs by
the model are partially not according to the stan-
dard, since the standard does not de"ne a means for
moving an arm. Therefore, this model should only
be animated by an encoder that knows the inter-
pretation of FAPs by this model.

Example for a FaceDefTable. In Table 5, two
FAPs are de"ned by children of a FaceDefTable,
namely the FaceDefMesh and the FaceDefTrans-
form: FAP 6, which stretches the left corner lip, and
FAP 23, which manipulates the horizontal orienta-
tion of the left eyeball.

FAP 6 deforms the IndexedFaceSet named Face.
For the piecewise-linear motion function three in-
tervals are de"ned: [!1000, 0], [0, 500] and [500,

1000]. Displacements are given for the vertices with
indices 50 and 51. The displacements for vertex 50
are (1 0 0), (0.9 0 0) and (1.5 0 4), the displacements
for vertex 51 are (0.8 0 0), (0.7 0 0) and (2 0 0). Given
a FAP amplitude of 600, the resulting displacement
for vertex 50 would be

P@
50

"P
50

#500*(0.9 0 0)T#100* (1.5 0 4)T

"P
50

#(600 0 400)T.

FAP 23 updates the rotation "eld of the Transform
node LeftEyeX. The rotation axis is (0, !1, 0), and
the neutral angle is 0 rad. The FAP value deter-
mines the rotation angle.

Fig. 7 shows two phases of a left eye blink (plus
the neutral phase) which have been generated using
a simple animation architecture [24].

The creation of the FaceDefMesh nodes for large
models can be time-consuming. However, the pro-
cess depicted in Fig. 8 uses a FaceDefTable gener-
ator that computes these tables from a set of face
models. The face model is described as a VRML
"le and read into the modeler. In order to design
the behavior of the model for one animation para-
meter, the model is deformed using the tools of the
modeler. The modeler may not change the topol-
ogy of the model. The modeler exports the de-
formed model as a VRML "le [12].

The FaceDefMesh generator compares the out-
put of the modeler with its input, the face model in
its neutral state. By comparing vertex positions of
the two models, the vertices a!ected by the newly
designed animation parameter are identi"ed. The

396 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Fig. 7. Neutral state of the left eye (left) and two deformed animation phases for the eye blink (FAP 19). The FAP de"nition de"nes the
motion of the eyelid in negative y-direction; the FaceDefTable de"nes the motion in one of the vertices of the eyelid in x and z directions.
Note that positive FAP values move the vertices downwards (Table 7).

Fig. 8. FaceDefMesh interface } The modeler is used to generate VMRL "les with the object in di!erent animated positions. The
generator computes one FaceDefMesh for each animation parameter.

generator computes for each a!ected vertex a 3D-
displacement vector de"ning the deformation and
exports this information in a FaceDefMesh table.
The renderer reads the VRML "le of the model and
the table in order to learn the de"nition of the new
animation parameter. Now, the renderer can use
the newly de"ned animation as required by the
animation parameters.

2.2. Coding of face animation parameters

MPEG-4 provides two tools for coding of facial
animation parameters. Coding of quantized and
temporally predicted FAPs using an arithmetic
coder allows for low delay FAP coding (Section
2.2.1). Alternatively, discrete cosine transform
(DCT) coding of a sequence of FAPs introduces

a larger delay but achieves higher coding e$ciency
(Section 2.2.2).

MPEG-4 provides a special mode (def}bit) that
allows downloading de"nitions of expressions and
visemes (FAPs 1 and 2) in terms of low-level FAPs.
Although the syntax for this capability is de"ned,
MPEG-4 does not require the decoder to store
a minimum number of these de"nitions. Therefore,
we recommend not using this tool until MPEG-4
provides clari"cations on this tool in a potential
future revision of the standard. Instead, we recom-
mend the use of the FAP Interpolation Table (FIT)
as described in Section 2.2.3.

2.2.1. Arithmetic coding of FAPs
Fig. 9 shows the block diagram for low delay

encoding of FAPs. The "rst set of FAP values

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 397

Fig. 9. Block diagram of the low delay encoder for FAPs.

FAP
0

at time instant 0 with is coded without pre-
diction (intra coding). The value of a FAP at time
instant k FAP

k
is predicted using the previously

decoded value FAP@
k~1

. The prediction error e@
is quantized using a quantization step size QP
that is speci"ed in Table 7 multiplied by a quan-
tization parameter FAP}QUANT with
0(FAP}QUANT(31. FAP}QUANT is identi-
cal for all FAP values at one time instant k. Using
the FAP-dependent quantization step size
QP,)FAP}QUANT assures that quantization er-
rors are subjectively evenly distributed between dif-
ferent FAPs. The quantized prediction error e@ is
arithmetically encoded using a separate adaptive
probability model for each FAP. Since the encod-
ing of the current FAP value depends only on one
previously coded FAP value, this coding scheme
allows for low-delay communications. At the de-
coder, the received data is arithmetically decoded,
dequantized and added to the previously decoded
value in order to recover the encoded FAP value.
When using FAP}QUANT'15, the subjective
quality of the animation deteriorates signi"cantly
such that we recommend not to increase
FAP}QUANT above 15 [1].

In order to avoid transmitting all FAPs for every
frame, the encoder can transmit a mask indicating
for which groups (Table 2) FAP values are trans-
mitted. The encoder can also specify for which
FAPs within a group values will be transmitted.
This allows the encoder to send incomplete sets of
FAPs to the decoder. FAP values that have been
initialized in an intra-coded FAP set are assumed
to retain those values if subsequently no update is
transmitted. However, the encoder can also signal
to the decoder that a previously transmitted FAP
value is not valid anymore.

The decoder can extrapolate values of FAPs that
have been invalidated or have never been speci"ed,
in order to create a more complete set of FAPs. The
standard provides only limited speci"cations on
how the decoder is supposed to extrapolate FAP
values. Examples are that if only FAPs for the left
half of a face are transmitted, the corresponding
FAPs of the right side have to be set such that the
face moves symmetrically. If the encoder only speci-
"es motion of the inner lip (FAP group 2), the
motion of the outer lip (FAP group 8) has to be
extrapolated in an unspeci"ed way. Letting the
decoder extrapolate FAP values may create unex-
pected results depending on the particular decoder.
However, the encoder can always prevent the de-
coder from using extrapolation by de"ning all
FAP values or de"ning FAP Interpolation Tables
(Section 2.2.3).

2.2.2. DCT coding of FAPs
The second tool that is provided for coding

FAPs is the discrete cosine transform applied to 16
consecutive FAP values. This introduces a signi"-
cant delay in the coding and decoding process.
Hence, this coding method is mainly useful for
applications where animation parameter streams
are retrieved from a database. After computing the
DCT of 16 consecutive values of one FAP, DC and
AC coe$cients are coded di!erently (Fig. 10).
Whereas the DC value is coded predictively using
the previous DC coe$cient as prediction, the AC
coe$cients are directly coded. The AC coe$cient
and the prediction error of the DC coe$cient are
linearly quantized. Whereas the quantizer step size
can be controlled, the ratio between the quantizer
step size of the DC coe$cients and the AC coe$-
cients is set to 1

4
. The quantized AC coe$cients are

encoded with one variable length code word (VLC)
de"ning the number of zero-coe$cients prior to the
next non-zero coe$cient and one VLC for the
amplitude of this non-zero coe$cient. The hand-
ling of the decoded FAPs with respect to masking
and interpolation is not changed (see Section 2.2.1).

Fig. 11 compares the coding performance of the
DCT FAP coder and the arithmetic FAP coder.
The PSNR is measured by comparing the ampli-
tude of the original and coded FAP averaging over
all FAPs. This PSNR does not relate to picture

398 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Fig. 10. Block diagram of the FAP encoder using DCT: DC coe$cients are predictively coded, AC coe$cients are directly coded (from
[22]).

Fig. 11. Rate distortion performance of the arithmetic and DCT coding mode of FAPs for the sequences Marco30 (30 Hz) and
Expressions (25 Hz) (from [1]).

quality but to the smoothness of temporal anima-
tion. In contrast to the arithmetic coder, the DCT
coder is not able to code FAPs with near lossless
quality. At low data rates, the DCT coder requires

up to 50% less data rate than the arithmetic coder
at the price of an increased coding delay. This
advantage in coding e$ciency disappears with in-
creasing "delity of the coded parameters.

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 399

Fig. 12. A FIG example for interpolating unspeci"ed FAP
values of the lip. If only the expression is de"ned, the FAPs get
interpolated from the expression. If all inner lip FAPs are
speci"ed, they are used to interpolate the outer lip FAPs.

2.2.3. FAP interpolation tables
As mentioned in Section 2.2.1, the encoder may

allow the decoder to extrapolate the values of some
FAPs from the transmitted FAPs [28]. Alterna-
tively, the decoder can specify the interpolation
rules using FAP interpolation tables (FIT). A FIT
allows a smaller set of FAPs to be sent for a facial
animation. This small set can then be used to deter-
mine the values of other FAPs, using a rational
polynomial mapping between parameters. For
example, the top inner lip FAPs can be sent and
then used to determine the top outer lip FAPs. The
inner lip FAPs would be mapped to the outer lip
FAPs using a rational polynomial function that is
speci"ed in the FIT.

A FAP interpolation graph (FIG) is used to
specify which FAPs are interpolated from other
FAPs. The FIG is a graph with nodes and directed
links. Each node contains a set of FAPs. Each link
from a parent node to a child node indicates that
the FAPs in a child node can be interpolated from
those of the parent node. In a FIG, a FAP may
appear in several nodes, and a node may have
multiple parents. For a node that has multiple
parent nodes, the parent nodes are ordered as 1st
parent node, 2nd parent node, etc. During the inter-
polation process, if this child node needs to be
interpolated, it is "rst interpolated from the 1st
parent node if all FAPs in that parent node are
available. Otherwise, it is interpolated from the 2nd
parent node, and so on. An example of FIG is

shown in Fig. 12. Each node has an ID. The numer-
ical label on each incoming link indicates the order
of these links.

Each directed link in a FIG is a set of interpola-
tion functions. Suppose F

1
, F

2
,2,F

n
are the FAPs

in a parent set and f
1
, f

2
,2, f

m
are the FAPs

in a child set. Then, there are m interpolation
functions denoted as f

1
"I

1
(F

1
, F

2
,2, F

n
),

f
2
"I

2
(F

1
, F

2
,2, F

n
), f

m
"I

m
(F

1
, F

2
,2, F

n
).

Each interpolation function I
k

() is in the form of
a rational polynomial

I(F
1
, F

2
,2, F

n
)

"

K~1
+
i/0
Aci

n
<
j/1

Flij
j BN

P~1
+
i/0
Abi

n
<
j/1

Fmij

j B, (1)

where K and P are the numbers of polynomial
products, c

i
and b

i
are the coe$cients of the ith

product. l
ij

and m
ij

are the power of F
j

in the ith
product. The encoder should send an interpolation
function table which contains all K, P, c

i
, b

i
, l

ij
, m

ij
to the decoder for each link in the FIG.

Here, we provide some simple examples where
the use of FIT can be useful to reduce the bit-rate
for transmitting FAPs:

1. Precise speci"cation of the extrapolation of
FAPs from their counterparts on the other side
of the face. If desired, this mechanism allows
even for unsymmetrical face animation.

2. Extrapolation of outer lip FAPs from inner lip
FAPs.

3. Extrapolation of eyebrow motion from FAP 34
(raise right middle eyebrow). This can be done
with linear polynomials.

4. De"nition of facial expression (FAPs 1 and 2)
using low-level FAPs instead of using the
def}bit.

In order to specify the FITs for the examples, linear
polynomials are usually su$cient. If it is desired to
simulating the varying elasticity of skin for large
FAP amplitudes, non-linear mappings might be
useful. Following example 3, we might want the
inner and outer eyebrows follow the middle eye-
brow "rst roughly linearly and then to a lesser
extent. This gives eyebrows with increasing curva-
ture as the FAP amplitude increases.

400 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Fig. 13. Block diagram showing the integration of a proprietary
Text-to-Speech Synthesizer into an MPEG-4 face animation
system.

2.3. Integration of face animation and text-to-speech
synthesis

MPEG-4 provides interfaces for a proprietary
text-to-speech (TTS) synthesizer [15] that allow
driving a talking head from text (see Fig. 13)
[4,6,16,18,19,37]. This section discusses the integra-
tion of face animation and TTS [27] allowing for
animation of a talking face using a TTS synthesizer
[23]. A key issue here is the synchronization of the
speech stream with the FAP stream. Synchroniza-
tion of a FAP stream with TTS synthesizers using
the TTS interfaces (TTSI) is only possible, if the
encoder sends prosody and timing information.
This is due to the fact that a conventional TTS
system driven by text only behaves as an asyn-
chronous source.

Given a TTS stream that contains text or pros-
ody in binary form, the MPEG-4 TTSI decoder
decodes the gender, text and prosody information
according to the interface de"ned for the TTS syn-
thesizer. The synthesizer creates speech samples
that are handed to the compositor. The compositor
presents audio and if required video to the user.
The second output interface of the synthesizer
sends the phonemes of the synthesized speech as
well as start time and duration information for
each phoneme to the Phoneme/Bookmark-to-
FAP-Converter [23]. The converter translates the
phonemes and timing information into face anima-
tion parameters that the face renderer uses in order
to animate the face model. The precise method of
how the converter derives visemes from phonemes

is not speci"ed by MPEG and left to the implemen-
tation of the decoder. This also allows using a coar-
ticulation model at the decoder that uses the
current, previous and next phoneme in order to
derive the correct mouth shape.

Most speech synthesizers do not have a syn-
chronous behavior. This means that the time they
require to speak a sentence in not predictable.
Therefore, synchronizing the output of a TTS with
facial expressions de"ned in a FAP stream is not
possible. Bookmarks in the text of the TTS are used
to animate facial expressions and non-speech-
related parts of the face [23]. The start time of
a bookmark is derived from its position in the
text. When the TTS "nds a bookmark in the text it
sends this bookmark to the Phoneme/Bookmark-
to-FAP-Converter at the same time as it sends
the "rst phoneme of the following word. The
bookmark de"nes the start point and duration of
the transition to a new FAP amplitude. Conse-
quence: no additional delay, no look ahead in the
bit stream but no precise timing control on when
the amplitude will be reached relative to the spoken
text.

An example of a TTS stream with bookmarks is
given in Fig. 14 [23]. The renderer will generate the
visemes associated with each word, following the
timing information derived by the speech syn-
thesizer. It will also start to deform the model to
generate a smile with an amplitude of 40. To simu-
late a more natural expression, which typically goes
through three phases (onset, climax and relax),
a desired temporal behavior [20,22] for a pre-
scribed FAP can be speci"ed in the bookmark.
Three functions are de"ned: A linear interpolation
function and a Hermite function can be used
to specify the transition of a FAP from its current
value to the target value. A triangular function
can be speci"ed to linearly increase the amplitude
of a FAP to the target value and to decrease it
back to its starting amplitude. The bookmark
also speci"es the desired duration to reach the
FAP value in the bookmark. If another bookmark
appears before this duration, the renderer starts
to deform the face according to the newly speci-
"ed FAP information from the current position.
This is illustrated in Fig. 14 using Hermite
functions.

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 401

Fig. 14. Example for text with bookmarks for one facial expression (joy) and the related amplitude of the animated FAP. The syntax of
a bookmark is: SFAP 2 (expression) 1 (joy) amplitude 1 (joy) amplitude duration 3 (Hermite time curve)T. The amplitude of joy over time
is computed according to the bookmarks (see Section 2.1.2).

2.4. Integration with MPEG-4 systems

In order to use face animation in the context of
MPEG-4 systems, a BIFS scene graph has to be
transmitted to the decoder. The minimum scene
graph contains a Face node and a FAP node. The
FAP decoder writes the amplitude of the FAPs into
"elds of the FAP node. The FAP node might have
the children Viseme and Expression which are
FAPs requiring a special syntax (see Section 2.1.2).
This scene graph would enable an encoder to ani-
mate the proprietary face model of the decoder. If
a face model is to be controlled from a TTS system,
an AudioSource node is to be attached to the face
node.

In order to download a face model to the de-
coder, the face node requires an FDP node as
one of its children. This FDP node contains the
position of the feature points in the downloaded
model, the scene graph of the model and the
FaceDefTable, FaceDefMesh and FaceDefTrans-
form nodes required to de"ne the action caused
by FAPs. Fig. 15 shows how these nodes relate to
each other.

2.5. MPEG-4 proxles for face animation

MPEG-4 de"nes pro"les to which decoders have
to conform. A pro"le consists of objects de"ning the
tools of the pro"le. Levels of a pro"le and object
put performance and parameter limits on the tools.
MPEG-4 Audio, Visual and Systems de"ne parts of
face animation.

In Visual, the neutral face with its feature points
and FAPs, the coding of FAPs as well as the Pho-
neme/Bookmark-to-FAP-Converter with its inter-
face to TTSI are de"ned. The corresponding object
type is called Simple Face. The Simple Face object
allows animating a proprietary face model using
a FAP stream or from a TTSI provided that the
terminal supports MPEG-4 audio. Two levels are
de"ned for this object: At level 1, it requires to
animate one face model with a maximum bit-rate of
16 kbit/s and a render frame rate of at least 15 Hz.
At level 2, up to 4 faces can be animated with a total
bit-rate not to exceed 32 kbit/s and a render frame
rate of 60 Hz shareable between faces. This Simple
Face object is included in the following visual pro-
"les: Hybrid, Basic Animated Texture and Simple FA

402 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Fig. 15. Nodes of a BIFS scene graph that are used to describe and animate a face. The FaceSceneGraph contains the scene graph of the
static face. Here, it is assumed that the streams are already decoded.

(face animation). Whereas the Simple FA requires
only face animation capabilities, Basic Animated
Texture adds scaleable texture coding and mesh-
based animation of these textures. The Hybrid
pro"le adds video decoding according to the Core
pro"le (video and binary shape) [14].

In MPEG-4 audio, the TTSI with the bookmark
identi"ers for face animation as well as the interface
to the Phoneme/Bookmark-to-FAP-converter is
de"ned. It is part of all Audio pro"les. Using a TTS,
any Audio pro"le and a Visual pro"le containing
the Face object allows to de"ne interactive services
with face animation at extremely low data rates.
Without using a TTS, any Audio pro"le and a Vis-
ual pro"le containing the Face object allows to play
speech and animate the proprietary face model.

In order to enable the speci"cation of the face,
the BIFS node FDP and its children have to be
transmitted. This is possible for terminals that sup-
port the Complete Scene Graph pro"le and the
Complete Graphics pro"le.

3. 2D mesh animation

MPEG-4 version-1 supports 2D uniform or con-
tent-based (nonuniform) Delaunay triangular mesh

representation of arbitrary visual objects, that in-
cludes an e$cient method for animation of such
meshes. A simpli"ed block diagram of an MPEG-4
encoder/decoder supporting the 2D-mesh object
is depicted in Fig. 16, where the 2D-mesh object
can be used together with a video object or a still-
texture object encoder/decoder. We present the
basic concepts of 2D-mesh representation and ani-
mation in Section 3.1. Mesh analysis, discussed in
Section 3.2, refers to design or speci"cation of 2D
mesh data for video object editing or still-texture
animation. Section 3.3 describes 2D-mesh object
coding in detail. Finally, applications of 2D mesh in
video object editing and still texture animation are
presented in Section 3.4.

3.1. 2D mesh representation and animation

A 2D triangular mesh (or a mesh object plane) is
a planar graph that tessellates (partitions) a video
object plane or its bounding box into triangular
patches. The vertices of each patch are called node
points. A 2D mesh object, which consists of a se-
quence of mesh object planes (MOPs), is compactly
represented by mesh geometry at some key (intra)
MOPs and mesh motion vectors at all other (inter)

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 403

Fig. 16. Simpli"ed architecture of an encoder/decoder supporting the 2D-mesh object. Mesh analysis module extracts the 2D mesh data,
which is then encoded by the mesh encoder. The coded mesh representation is embedded in a BIFS elementary stream. At the receiver,
the 2D-mesh decoder is invoked automatically by the BIFS-Anim node.

MOPs. The mesh geometry refers to the location of
the node points on the key mesh object planes. 2D
mesh animation is accomplished by propagating
the 2D mesh de"ned on key MOPs using one
motion vector per node point per object plane until
the next key MOP. Both mesh geometry and
motion (animation) information are predictively
coded for an e$cient binary representation. The
mesh topology is always either uniform or De-
launay, hence there is no need for topology com-
pression. (The reader is referred to [7] for an
introduction to Delaunay meshes.)

Mesh-based motion modeling di!ers from
block-based motion modeling (that is used in natu-
ral video object coding) in that the triangular
patches overlap neither in the reference frame nor
in the current frame. Instead, triangular patches
in the current frame are mapped onto triangular
patches in the reference frame, and the texture
inside each patch in the reference frame is warped
onto the current frame using a parametric map-
ping, such as a$ne mapping, as a function of the
node point motion vectors. This process is called
texture mapping, which is an integral part of mesh
animation. The a$ne mapping between coordi-
nates (x@, y@) at time t@ and (x, y) at time t is given by
[29]

x"a
1
x@#a

2
y@#a

3
,

y"a
4
x@#a

5
y@#a

6
, (2)

where a
i
are the a$ne motion parameters. The six

degrees of freedom in the a$ne mapping matches
that of warping a triangle by the motion vectors of

its three vertices (with two degrees of freedom in
each). Furthermore, if proper constraints are im-
posed in parameter (node motion vector) estima-
tion, an a$ne transform can guarantee the
continuity of the mapping across the boundaries of
adjacent triangles. Thus, 2D mesh modeling corres-
ponds to non-uniform sampling of the motion "eld
at a number of salient feature points (node points),
from which a continuous, piecewise a$ne motion
"eld can be reconstructed. The fact that the mesh
structure constrains movements of adjacent image
patches has certain advantages and disadvantages:
Meshes are well-suited to represent mildly de-
formable but spatially continuous motion "elds.
However, they do not allow discontinuities in the
motion "eld; thus, cannot easily accommodate ar-
ticulated motions and self-occlusions.

3.2. 2D mesh analysis

The design of the mesh data associated with
a video object or animation is an encoder issue, and
hence is not normative. This section discusses an
example procedure for the reader's information,
where we design either uniform or content-based
meshes for intra MOPs and track them to deter-
mine the inter MOPs. The block diagram of the
procedure is depicted in Fig. 17. The "rst box is
explained in Section 3.2.1, and the next four in
Section 3.2.2.

3.2.1. Mesh design for intra MOPs
Intra meshes are either uniform or content-

based. A uniform mesh is designed over a

404 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Fig. 17. The 2D mesh design and tracking procedure. The feedback loop increments the frame counter. The process is re-initialized (i.e.,
a new intra MOP is inserted) if model failure region exceeds a threshold or a scene change is detected.

Fig. 18. A content-based mesh designed for the `Breama video
object.

rectangular region, which is generally the bounding
box of the VOP. It is speci"ed in terms of "ve
parameters: the number of nodes in the horizontal
and vertical directions, the horizontal and vertical
dimensions of each rectangular cell in half pixel
units, and the triangle split code that speci"es how
each cell is divided into two triangles (see Section
3.3.1.1). As a rule of thumb, we target the total
number of triangles over the bounding box to be
equal to that of the macroblocks that would be
obtained in natural VOP coding. A content-based
mesh may be designed to "t exactly on the corre-
sponding VOP. The procedure consists of three
steps: (i) approximation of the VOP contour by
a polygon through selection of N

"
boundary node

points; (ii) selection of N
*
interior node points; and

(iii) Delaunay triangulation to de"ne the mesh
topology. There are various methods for approxi-

mation of arbitrary-shaped contours by polygons
[3,30]. Interior node points may be selected to
coincide with high-gradient points or corner points
within the VOP boundary [3]. An example of
a content-based mesh is depicted in Fig. 18.

3.2.2. Mesh tracking
Motion data of the 2D mesh may represent the

motion of a real video object (for natural video
object compression and manipulation applications)
or may be synthetic (for animation of a still texture
map). In the former case, the motion of a natural
video object may be estimated by forward mesh
tracking. The latter requires special-purpose tools
and/or artistic skills. In forward mesh tracking, we
search in the current video object plane for the best
matching locations of the node points of the pre-
vious (intra or inter) mesh, thus tracking image
features until the next intra MOP. The procedure
applies for both uniform and content-based meshes.

Various techniques have been proposed for node
motion estimation for forward mesh tracking. The
simplest method is to form blocks that are centered
around the node points and then employ a closed-
form solution or block-matching to "nd motion
vectors at the node points independently [29,35].
Alternatively, hexagonal matching [21] and
closed-form matching [2] techniques "nd the opti-
mal motion vector at each node under the paramet-
ric warping of all patches surrounding the node
while enforcing mesh connectivity constraints at
the expense of more computational complexity.
Another method is iterative gradient-based optim-
ization of node point locations, taking into account
image features and mesh deformation criteria [34].
Hierarchical tracking methods may provide signi"-
cantly improved performance and robustness in

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 405

Fig. 19. Simpli"ed block diagram of 2D mesh object decoding.

Fig. 20. Types of uniform mesh topology: Code 00 } top-left to
right bottom; Code 01 } bottom-left to top right; Code 10
} alternate between top-left to bottom-right and bottom-left to
top-right; Code 11 } alternate between bottom-left to top-right
and top-left to bottom-right.

enforcing constraints to avoid foldovers [32,33].
We also recently proposed a semi-automatic (inter-
active) tool for accurate mesh object tracking [9].

3.3. 2D mesh object encoding/decoding

Mesh data consist of a list of node locations
(x

n
, y

n
) where n is the node index (n"0,2, N!1)

and a list of triangles t
m

where m is the triangle
index (m"0,2, M!1). Each triangle t

m
is speci-

"ed by a triplet Si, j, kT of the indices of the node
points that are the vertices of that triangle. The
syntax of the compressed binary representation of
intra and inter MOPs and the semantics of the
decoding process is normative in MPEG-4. Each
MOP has a #ag that speci"es whether the data that
follows is geometry data (intra MOP) or motion
data (inter MOP). A block diagram of the decoding
process is shown in Fig. 19. Mesh geometry decod-
ing computes the node point locations and recon-
structs a triangular mesh from them. Mesh motion
decoding computes the node motion vectors and
applies them to the node points of the previous
mesh to reconstruct the current mesh. The recon-
structed mesh is stored in the mesh data memory,
so that it can be used in motion decoding of the
next MOP. In the following, we "rst describe the
decoding of mesh geometry, and then the mesh
motion. We assume a pixel-based 2D coordinate
system, where the x-axis points to the right from
the origin, and the y-axis points down from the
origin.

3.3.1. Encoding/decoding of mesh geometry
The #ag mesh}type}code speci"es whether the

topology of an intra MOP is uniform or Delaunay.

In either case, the coded geometry information,
described in detail in the following, de"nes the 2D
mesh uniquely so that there is no need for explicit
topology compression.

3.3.1.1. Uniform mesh. A 2D uniform mesh can be
viewed as a set of rectangular cells, where each
rectangle is split into two triangles. Five parameters
are used to specify the node point locations and
topology of a uniform mesh. The top-left node
point of the mesh always coincides with the origin
of a local coordinate system. The "rst two para-
meters specify the number of nodes in the horizon-
tal and vertical direction of the mesh, respectively.
The next two parameters specify the horizontal and
vertical size of each rectangular cell in half pixel
units. This completes the layout and dimensions of
the mesh. The last parameter speci"es how each
rectangle is split to form two triangles: four choices
are allowed as illustrated in Fig. 20. An example of
a 2D uniform mesh is given in Fig. 21.

3.3.1.2. Delaunay mesh. A 2D Delaunay mesh is
speci"ed by the following parameters: (i) the total
number of node points N; (ii) the number of
node points N

"
that are on the boundary of the

mesh; and (iii) the coordinates p
n
"(x

n
, y

n
),

n"0, 2, N!1, of all node points. The origin of

406 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Fig. 21. Example of a uniform 2D mesh speci"ed by "ve
parameters, where nr}mesh}nodes}hor is equal to 5,
nr}mesh}nodes}vert is equal to 4, mesh}rect}size}hor and
mesh}rect}size vert are speci"ed as shown, and the tri-
angle}split}code is equal to &00'. Fig. 22. Decoded node points and reconstruction of mesh

boundary.

Fig. 23. Decoded triangular mesh obtained by constrained
Delaunay triangulation.

the local coordinate system is assumed to be at the
top left corner of the bounding box of the mesh.
Note that the number of nodes in the interior of the
mesh N

*
can be computed as

N
*
"N!N

"
(3)

The "rst node point, p
0
"(x

0
, y

0
), is decoded dir-

ectly, where the coordinates x
0

and y
0

are speci"ed
with respect to the origin of the local coordinate
system. All other node points are computed by
adding the decoded values dx

n
and dy

n
to the x-

and y-coordinates, respectively, of the last decoded
node point as follows:

x
n
"x

n~1
#dx

n
and y

n
"y

n~1
#dy

n
. (4)

The "rst N
"

node point coordinates that are en-
coded/decoded must correspond to the boundary
nodes in order to allow their identi"cation without
additional overhead. Thus, after receiving the "rst
N

"
locations, the decoder can reconstruct the

boundary of the mesh by connecting each pair of
successive boundary nodes, as well as the "rst and
the last, by straight-line edge segments. This is
illustrated with an example in Fig. 22.

The next N
*
coordinate values de"ne the interior

node points. Finally, the mesh is reconstructed by
applying constrained Delaunay triangulation to all
node points, where the boundary polygon forms
the constraint. Constrained triangulation of node
points p

n
contains triangles only to the interior of

the region de"ned by the boundary segments.
Furthermore, each triangle t

k
"Sp

l
, p

m
, p

n
T of

a constrained Delaunay triangulation satis"es the

property that the circumcircle of t
k

does not con-
tain any node point p

r
visible from all three vertices

of t
k
. A node point is visible from another node

point if a straight line between them falls entirely
inside or exactly on the constraining polygonal
boundary. An example of a mesh obtained by con-
strained triangulation of the node points in Fig. 22
is shown in Fig. 23.

3.3.2. Encoding/decoding of mesh motion
An inter MOP is de"ned by a set of 2D motion

vectors *
n
"(vx

n
, vy

n
) that are associated with each

node point p
n

of the previous MOP. We can then
reconstruct the locations of node points in the
current MOP by propagating the corresponding
node p

n
of the previous MOP. The triangular

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 407

topology of the mesh remains the same until the
next intra MOP. Node point motion vectors are
decoded predictively, i.e., the components of each
motion vector are predicted using those of two
previously decoded node points determined ac-
cording to a breadth-"rst traversal as described in
Section 3.3.2.1. Section 3.3.2.2 describes the predic-
tion process.

3.3.2.1. Mesh traversal. The order in which the
motion vector data is encoded/decoded is de"ned
by a breadth-"rst traversal of the triangles, which
depends only on the topology of the mesh. Hence,
the breadth-"rst traversal needs to be computed
once (and stored in the mesh data memory) for
every intra MOP as follows:

f First, we de"ne the top left mesh node as the
node n with the minimum x

n
#y

n
, assuming that

the origin of the local coordinate system is at the
top left. If there are more than one node with the
same value of x

n
#y

n
, then we choose the one

with the minimum y
n

among them. The initial
triangle is the triangle that contains the edge
between the top-left node of the mesh and the
next clockwise node on the mesh boundary. We
label the initial triangle with the number 0.

f Next, all other triangles are successively labeled
1, 2,2, M!1, where M is the number of tri-
angles in the mesh, as follows: among all labeled
triangles that have adjacent triangles which are
not yet labeled, we "nd the triangle with the
lowest label number. This triangle is called
the current triangle. We de"ne the base edge of
this triangle as the edge that connects this tri-
angle to the already labeled neighboring triangle
with the lowest number. In the case of the initial
triangle, the base edge is de"ned as the edge
between the top-left node and the next clockwise
node on the boundary. We de"ne the right edge
of the current triangle as the next counterclock-
wise edge of the current triangle with respect
to the base edge; and the left edge as the next
clockwise edge of the current triangle with re-
spect to the base edge. That is, for a triangle
t
k
"Sp

l
, p

m
, pnT, where the vertices are in clock-

wise order, if Sp
l
p
m
T is the base edge, then Sp

l
p
n
T

is the right edge and Sp
m

p
n
T is the left edge. Now,

we check if there is an unlabeled triangle adjacent
to the current triangle, sharing the right edge. If
there is such a triangle, we label it with the next
available number. Then we check if there is an
unlabeled triangle adjacent to the current tri-
angle, sharing the left edge. If there is such a tri-
angle, we label it with the next available number.

f This process continues until all triangles have
been labeled.

3.3.2.2. Motion vector prediction. The mesh mo-
tion bit stream is composed of prediction error
vectors e

n
"(ex

n
, ey

n
), whose components are vari-

able length coded. The ordering of the triangles
de"nes the order in which the motion vector data of
each node point is encoded/decoded, as described
in the following. First, motion vector data for the
top-left node n

0
of the mesh is retrieved from

the bitstream. No prediction can be used in coding
the motion vector of n

0
. Hence,

*
n0
"e

n0
. (5)

Then, the prediction error vector e
n1

for the next
clockwise node on the boundary with respect to the
top-left node is retrieved from the bit stream. Note
that only v

n0
can be used to predict v

n1
. That is,

*
n1
"*

n0
#e

n1
. (6)

We mark these "rst two nodes (that form the base
edge of the initial triangle) with the label &done'.
At this point the two nodes on the base edge of
any triangle in the sequential order as de"ned in
Section 3.3.2.1 are guaranteed to be labeled &done'
(indicating that their motion vectors have already
been decoded and may be used as predictors) when
we reach that triangle. Then, for each triangle, the
motion vectors of the two nodes of the base edge
are used to form a prediction for the motion vector
of the third node. If that third node is not already
labeled &done', the prediction vector w

n
is computed

by averaging the two motion vectors, as follows:

w
n
"0.5(xvx

m
#vx

l
#0.5y , xvy

m
#vy

l
#0.5y)

(7)

and its motion vector is given by

*
n
"w

n
#e

n
. (8)

Consequently, the third node is also labeled &done'.
If the third node is already labeled &done', then it is

408 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Fig. 24. Example for the breadth-"rst traversal of the triangles of a 2D mesh.

Fig. 25. An example of 2D augmented reality: The letters
`Fishy?a are synthetically overlaid on the video object &&Bream''
and they move in synchronization with the natural motion of
Bream [30].

simply ignored and we proceed to the next triangle.
Note that the prediction error vector is speci"ed
only for node points with a nonzero motion vector.
Otherwise, the motion vector is simply *

n
"(0, 0).

Finally, the horizontal and vertical components
of mesh node motion vectors are processed to lie
within a certain range, as in the case of video
block-motion vectors.

3.3.2.3. An example. An example of breadth-"rst
traversal for motion vector prediction is shown in
Fig. 24. The "gure on the left shows the traversal
after "ve triangles have been labeled, which deter-
mines the ordering of the motion vectors of six
node points (marked with a box). The triangle with
the label &3' is the ¤t triangle'; the base edge is
&b'; and the right- and left-edges are denoted by &r'
and &l', respectively. The next two triangles that will
be labeled are the triangles sharing the right and left
edges with the current triangle. After these two, the
triangle that is labeled &4' will be the next ¤t
triangle'. The "gure on the right shows the "nal
result, illustrating transitions between triangles and
the "nal ordering of the node points for motion
vector encoding/decoding.

3.4. Integration with MPEG-4 systems

2D mesh geometry and motion data are passed
on to an IndexedFaceSet2D node using the BIFS

animation-stream for rendering and/or texture
mapping (see the paper on BIFS in this issue). BIFS
animation is a general framework for streaming
parameters to certain "elds of some BIFS nodes.
Suppose a node (describing an object) is below
a Transform node in the scene description tree. We
can then animate the position of this object using
BIFS-Anim by streaming a sequence of x, y, z posi-
tions to the &translation' "eld of the Transform

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 409

Table 6
Location of feature points on a face model (Fig. 2). Recommended location constraints de"ne for some or all coordinates of a feature
point the value as a function of other feature points, i.e., feature points 2.1, 2.2, 2.3 and 7.1 have the same x-coordinate thus locating them
in the same yz-plane

Feature points Recommended location constraints

No. Text description x y z

2.1 Bottom of the chin 7.1.x
2.2 Middle point of inner upper

lip contour
7.1.x

2.3 Middle point of inner lower lip
contour

7.1.x

2.4 Left corner of inner lip contour
2.5 Right corner of inner lip contour
2.6 Midpoint between f.p. 2.2 and

2.4 in the inner upper lip contour
(2.2.x#2.4.x)/2

2.7 Midpoint between f.p. 2.2 and
2.5 in the inner upper lip contour

(2.2.x#2.5.x)/2

2.8 Midpoint between f.p. 2.3 and
2.4 in the inner lower lip contour

(2.3.x#2.4.x)/2

2.9 Midpoint between f.p. 2.3 and
2.5 in the inner lower lip contour

(2.3.x#2.5.x)/2

2.10 Chin boss 7.1.x
2.11 Chin left corner '8.7.x and (8.3.x
2.12 Chin right corner '8.4.x and (8.8.x
2.13 Left corner of jaw bone
2.14 Right corner of jaw bone
3.1 Center of upper inner left eyelid (3.7.x#3.11.x)/2
3.2 Center of upper inner right eyelid (3.8.x#3.12.x)/2
3.3 Center of lower inner left eyelid (3.7.x#3.11.x)/2
3.4 Center of lower inner right eyelid (3.8.x#3.12.x)/2
3.5 Center of the pupil of left eye
3.6 Center of the pupil of right eye
3.7 Left corner of left eye
3.8 Left corner of right eye
3.9 Center of lower outer left eyelid (3.7.x#3.11.x)/2
3.10 Center of lower outer right eyelid (3.7.x#3.11.x)/2
3.11 Right corner of left eye
3.12 Right corner of right eye
3.13 Center of upper outer left eyelid (3.8.x#3.12.x)/2
3.14 Center of upper outer right eyelid (3.8.x#3.12.x)/2
4.1 Right corner of left eyebrow
4.2 Left corner of right eyebrow
4.3 Uppermost point of the left

eyebrow
(4.1.x#4.5.x)/2 or x
coord of the uppermost
point of the contour

4.4 Uppermost point of the right
eyebrow

(4.2.x#4.6.x)/2 or x
coord of the uppermost
point of the contour

4.5 Left corner of left eyebrow
4.6 Right corner of right eyebrow
5.1 Center of the left cheek 8.3.y
5.2 Center of the right cheek 8.4.y
5.3 Left cheek bone '3.5.x and (3.7.x '9.15.y and (9.12.y
5.4 Right cheek bone '3.6.x and (3.12.x '9.15.y and (9.12.y
6.1 Tip of the tongue 7.1.x
6.2 Center of the tongue body 7.1.x
6.3 Left border of the tongue 6.2.z
6.4 Right border of the tongue 6.2.z

410 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

7.1 top of spine (center of head
rotation)

8.1 Middle point of outer upper
lip contour

7.1.x

8.2 Middle point of outer lower lip
contour

7.1.x

8.3 Left corner of outer lip contour
8.4 Right corner of outer lip contour
8.5 Midpoint between f.p. 8.3 and

8.1 in outer upper lip contour
(8.3.x#8.1.x)/2

8.6 Midpoint between f.p. 8.4 and
8.1 in outer upper lip contour

(8.4.x#8.1.x)/2

8.7 Midpoint between f.p. 8.3 and
8.2 in outer lower lip contour

(8.3.x#8.2.x)/2

8.8 Midpoint between f.p. 8.4 and
8.2 in outer lower lip contour

(8.4.x#8.2.x)/2

8.9 Right hiph point of Cupid's bow
8.10 Left hiph point of Cupid's bow
9.1 Left nostril border
9.2 Right nostril border
9.3 Nose tip 7.1.x
9.4 Bottom right edge of nose
9.5 Bottom left edge of nose
9.6 Right upper edge of nose bone
9.7 Left upper edge of nose bone
9.8 Top of the upper teeth 7.1.x
9.9 Bottom of the lower teeth 7.1.x
9.10 Bottom of the upper teeth 7.1.x
9.11 Top of the lower teeth 7.1.x
9.12 Middle lower edge of nose

bone (or nose bump)
7.1.x (9.6.y#9.3.y)/2 or

nose bump
9.13 Left lower edge of nose bone (9.6.y#9.3.y)/2
9.14 Right lower edge of nose bone (9.6.y#9.3.y)/2
9.15 Bottom middle edge of nose 7.1.x

10.1 Top of left ear
10.2 Top of right ear
10.3 Back of left ear (10.1.y#10.5.y)/2
10.4 Back of right ear (10.2.y#10.6.y)/2
10.5 Bottom of left ear lobe
10.6 Bottom of right ear lobe
10.7 Lower contact point between

left lobe and face
10.8 Lower contact point between

right lobe and face
10.9 Upper contact point between

left ear and face
10.10 Upper contact point between

right ear and face
11.1 Middle border between hair and

forehead
7.1.x

11.2 Right border between hair and
forehead

(4.4.x

11.3 Left border between hair and
forehead

'4.3.x

11.4 Top of skull 7.1.x '10.4.z and (10.2.z
11.5 Hair thickness over f.p. 11.4 11.4.x 11.4.z
11.6 Back of skull 7.1.x 3.5.y

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 411

T
ab

le
7

F
A

P
de
"
n
it
io

n
s,

gr
ou

p
as

si
gn

m
en

ts
,
an

d
st

ep
si
ze

s.
F

A
P

na
m

es
m

ay
co

nt
ai

n
le

tt
er

s
w

it
h

th
e

fo
ll
ow

in
g

m
ea

ni
ng

:
l"

le
ft
,
r"

ri
gh

t,
t"

to
p
,
b
"

b
ot

to
m

,
i"

in
n
er

,
o
"

ou
te

r,
m
"

m
id

d
le

.T
he

qu
an

ti
ze

r
st

ep
-s

iz
e

is
a

sc
al

in
g

fa
ct

or
fo

r
co

di
ng

as
d
es

cr
ib

ed
in

S
ec

ti
o
n

2.
2

N
o
.

F
A

P
n
am

e
F
A

P
d
es

cr
ip

ti
o
n

U
n
it
s

U
n
io

rB
id

ir
P
o
sm

ot
io

n
G

rp
F
D

P
su

b
gr

p
n
u
m

Q
u
an

t
st

ep
si
ze

Q
P

M
in

/M
ax

I-
fr
am

e
qu

an
ti
ze

d
va

lu
es

M
in

/M
ax

P
-F

ra
m

e
qu

an
ti
ze

d
va

lu
es

1
V

is
em

e
S
et

of
va

lu
es

d
et

er
m

in
in

g
th

e
m

ix
tu

re
o
f
tw

o
vi

se
m

es
fo

r
th

is
fr
am

e
(e

.g
.
p
bm

,
fv

,
th

)

n
a

n
a

n
a

1
na

1
vi

se
m

e }
b
le

nd
:

#
63

vi
se

m
e }

b
le

nd
:

$
63

2
E
xp

re
ss

io
n

A
se

t
o
f
va

lu
es

d
et

er
m

in
in

g
th

e
m

ix
tu

re
o
f
tw

o
fa

ci
al

ex
pr

es
si
on

n
a

n
a

n
a

1
n
a

1
ex

p
re

ss
io

n }
in

te
ns

it
y1

,
ex

p
re

ss
io

n }
in

te
ns

it
y2

:
#

63

ex
p
re

ss
io

n }
in

te
ns

it
y1

,
ex

p
re

ss
io

n }
in

te
ns

it
y2

:
$

63

3
op

en
}
ja

w
V

er
ti
ca

l
ja

w
di

sp
la

ce
m

en
t

(d
o
es

no
t
a!

ec
t

m
o
ut

h
o
p
en

in
g)

M
N

S
U

D
o
w

n
2

1
4

#
10

80
#

36
0

4
lo

w
er
}
t }

m
id

lip
V

er
ti
ca

l
to

p
m

id
d
le

in
n
er

lip
di

sp
la

ce
m

en
t

M
N

S
B

D
o
w

n
2

2
2

$
60

0
$

18
0

5
ra

is
e }

b
}
m

id
lip

V
er

ti
ca

l
bo

tt
om

m
id

d
le

in
n
er

lip
di

sp
la

ce
m

en
t

M
N

S
B

U
p

2
3

2
$

18
60

$
60

0

6
st

re
tc

h
}
l }

co
rn

er
lip

H
o
ri
zo

n
ta

l
di

sp
la

ce
m

en
t
o
f

le
ft

in
ne

r
li
p

co
rn

er

M
W

B
L
ef

t
2

4
2

$
60

0
$

18
0

7
st

re
tc

h
}
r }

co
rn

er
lip

H
o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
ri
gh

t
in

n
er

lip
co

rn
er

M
W

B
R

ig
ht

2
5

2
$

60
0

$
18

0

8
lo

w
er
}
t }

lip
}
lm

V
er

ti
ca

l
di

s-
p
la

ce
m

en
t

of
m

id
p
o
in

t
be

tw
ee

n
le

ft
co

rn
er

an
d

m
id

dl
e

o
f
to

p
in

n
er

lip

M
N

S
B

D
o
w

n
2

6
2

$
60

0
$

18
0

412 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

9
lo

w
er
}
t }

lip
}
rm

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
m

id
po

in
t

be
tw

ee
n

ri
gh

t
co

rn
er

an
d

m
id

d
le

o
f
to

p
in

n
er

lip

M
N

S
B

D
o
w

n
2

7
2

$
60

0
$

18
0

10
ra

is
e }

b
}
lip
}
lm

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
m

id
po

in
t

b
et

w
ee

n
le

ft
co

rn
er

an
d

m
id

d
le

o
f
b
ot

to
m

in
ne

r
li
p

M
N

S
B

U
p

2
8

2
$

18
60

$
60

0

11
ra

is
e }

b
}
lip
}
rm

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
m

id
po

in
t

be
tw

ee
n

ri
gh

t
co

rn
er

an
d

m
id

d
le

o
f
b
ot

to
m

in
ne

r
li
p

M
N

S
B

U
p

2
9

2
$

18
60

$
60

0

12
ra

is
e }

l }
co

rn
er

lip
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
le

ft
in

n
er

lip
co

rn
er

M
N

S
B

U
p

2
4

2
$

60
0

$
18

0

13
ra

is
e }

r }
co

rn
er

lip
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
ri
gh

t
in

n
er

lip
co

rn
er

M
N

S
B

U
p

2
5

2
$

60
0

$
18

0

14
th

ru
st
}
ja

w
D

ep
th

di
sp

la
ce

-
m

en
t
o
f
ja

w
M

N
S

U
F
o
rw

ar
d

2
1

1
#

60
0

#
18

0

15
sh

ift
}
ja

w
S
id

e
to

si
de

di
s-

p
la

ce
m

en
t

of
ja

w
M

W
B

R
ig

ht
2

1
1

$
10

80
$

36
0

16
p
u
sh
}
b
}
lip

D
ep

th
di

s-
p
la

ce
m

en
t

of
b
o
tt
om

m
id

dl
e

lip

M
N

S
B

F
o
rw

ar
d

2
3

1
$

10
80

$
36

0

17
p
u
sh
}
t }

lip
D

ep
th

di
sp

la
ce

-
m

en
t
o
f
to

p
m

id
d
le

li
p

M
N

S
B

F
o
rw

ar
d

2
2

1
$

10
80

$
36

0

18
d
ep

re
ss
}
ch

in
U

p
w

ar
d

an
d

co
m

p
re

ss
in

g
m

o
ve

m
en

t
o
f
th

e
ch

in
(l
ik

e
in

sa
d
ne

ss
)

M
N

S
B

U
p

2
10

1
$

42
0

$
18

0

19
cl

o
se
}
t }

l }
ey

el
id

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
to

p
le

ft
ey

el
id

IR
IS

D
B

D
o
w

n
3

1
1

$
10

80
$

60
0

20
cl

o
se
}
t }

r }
ey

el
id

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
to

p
ri
gh

t
ey

el
id

IR
IS

D
B

D
o
w

n
3

2
1

$
10

80
$

60
0

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 413

T
ab

le
7

(C
o
n
ti
n
ue

d)

N
o
.

F
A

P
n
am

e
F
A

P
d
es

cr
ip

ti
o
n

U
n
it
s

U
n
io

rB
id

ir
P
o
sm

ot
io

n
G

rp
F
D

P
su

b
gr

p
n
u
m

Q
u
an

t
st

ep
si
ze

Q
P

M
in

/M
ax

I-
fr
am

e
qu

an
ti
ze

d
va

lu
es

M
in

/M
ax

P
-F

ra
m

e
qu

an
ti
ze

d
va

lu
es

21
cl

o
se
}
b }

l }
ey

el
id

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
b
ot

to
m

le
ft

ey
el

id

IR
IS

D
B

U
p

3
3

1
$

60
0

$
24

0

22
cl

o
se
}
b }

r }
ey

el
id

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
b
ot

to
m

ri
gh

t
ey

el
id

IR
IS

D
B

U
p

3
4

1
$

60
0

$
24

0

23
ya

w
}
l }

ey
eb

al
l

H
o
ri
zo

n
ta

l
o
ri
-

en
ta

ti
on

of
le

ft
ey

eb
al

l

A
U

B
L
ef

t
3

n
a

12
8

$
12

00
$

42
0

24
ya

w
}
r }

ey
eb

al
l

H
o
ri
zo

n
ta

l
o
ri
-

en
ta

ti
on

of
ri
gh

t
ey

eb
al

l

A
U

B
L
ef

t
3

n
a

12
8

$
12

00
$

42
0

25
p
it
ch
}
l }

ey
eb

al
l

V
er

ti
ca

l
or

ie
n
ta

ti
o
n

o
f
le

ft
ey

eb
al

l
A

U
B

D
o
w

n
3

n
a

12
8

$
90

0
$

30
0

26
p
it
ch
}
r }

ey
eb

al
l

V
er

ti
ca

l
or

ie
nt

at
io

n
of

ri
gh

t
ey

eb
al

l
A

U
B

D
o
w

n
3

n
a

12
8

$
90

0
$

30
0

27
th

ru
st
}
l }

ey
eb

al
l

D
ep

th
di

sp
la

ce
m

en
t

o
f
le

ft
ey

eb
al

l
E
S

B
F
o
rw

ar
d

3
n
a

1
$

60
0

$
18

0

28
th

ru
st
}
r }

ey
eb

al
l

D
ep

th
di

sp
la

ce
m

en
t

of
ri
gh

t
ey

eb
al

l
E
S

B
F
o
rw

ar
d

3
n
a

1
$

60
0

$
18

0

29
d
il
at

e }
l }

p
up

il
D

il
at

io
n

of
le

ft
p
u
p
il

IR
IS

D
B

G
ro

w
in

g
3

5
1

$
42

0
$

12
0

30
d
il
at

e }
r }

p
u
p
il

D
ila

ti
on

of
ri
gh

t
p
u
p
il

IR
IS

D
B

G
ro

w
in

g
3

6
1

$
42

0
$

12
0

31
ra

is
e }

l }
i }

ey
eb

ro
w

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
le

ft
in

n
er

ey
eb

ro
w

E
N

S
B

U
p

4
1

2
$

90
0

$
36

0

32
ra

is
e }

r }
i }

ey
eb

ro
w

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
ri
gh

t
in

n
er

ey
eb

ro
w

E
N

S
B

U
p

4
2

2
$

90
0

$
36

0

33
ra

is
e }

l }
m
}
ey

eb
ro

w
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
le

ft
m

id
dl

e
ey

eb
ro

w

E
N

S
B

U
p

4
3

2
$

90
0

$
36

0

414 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

34
ra

is
e }

r }
m
}
ey

eb
ro

w
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
ri
gh

t
m

id
d
le

ey
eb

ro
w

E
N

S
B

U
p

4
4

2
$

90
0

$
36

0

35
ra

is
e }

l }
o
}
ey

eb
ro

w
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
le

ft
ou

te
r

ey
eb

ro
w

E
N

S
B

U
p

4
5

2
$

90
0

$
36

0

36
ra

is
e }

r }
o
}
ey

eb
ro

w
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
ri
gh

t
o
ut

er
ey

eb
ro

w

E
N

S
B

U
p

4
6

2
$

90
0

$
36

0

37
sq

u
ee

ze
}
l }

ey
eb

ro
w

H
o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
le

ft
ey

eb
ro

w

E
S

B
R

ig
ht

4
1

1
$

90
0

$
30

0

38
sq

u
ee

ze
}
r }

ey
eb

ro
w

H
o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
ri
gh

t
ey

eb
ro

w

E
S

B
L
ef

t
4

2
1

$
90

0
$

30
0

39
p
u
!
}
l }

ch
ee

k
H

o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
le

ft
ch

ee
ck

E
S

B
L
ef

t
5

1
2

$
90

0
$

30
0

40
p
u
!
}
r }

ch
ee

k
H

o
ri
zo

nt
al

d
is
-

p
la

ce
m

en
t

of
ri
gh

t
ch

ee
ck

E
S

B
R

ig
ht

5
2

2
$

90
0

$
30

0

41
lif

t }
l }

ch
ee

k
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
le

ft
ch

ee
k

E
N

S
U

U
p

5
3

2
$

60
0

$
18

0

42
lif

t }
r }

ch
ee

k
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
ri
gh

t
ch

ee
k

E
N

S
U

U
p

5
4

2
$

60
0

$
18

0

43
sh

ift
}
to

n
gu

e }
ti
p

H
o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
to

n
gu

e
ti
p

M
W

B
R

ig
ht

6
1

1
$

10
80

$
42

0

44
ra

is
e }

to
n
gu

e }
ti
p

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
to

n
gu

e
ti
p

M
N

S
B

U
p

6
1

1
$

10
80

$
42

0

45
th

ru
st
}
to

ng
u
e }

ti
p

D
ep

th
di

sp
la

ce
-

m
en

t
o
f
to

n
gu

e
ti
p

M
W

B
F
o
rw

ar
d

6
1

1
$

10
80

$
42

0

46
ra

is
e }

to
n
gu

e
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
to

n
gu

e
M

N
S

B
U

p
6

2
1

$
10

80
$

42
0

47
to

n
gu

e }
ro

ll
R

o
lli

n
g

o
f
th

e
to

n
gu

e
in

to
U

sh
ap

e

A
U

U
C

o
nc

av
e

u
p-

w
ar

d
6

3,
4

51
2

#
30

0
#

60

48
h
ea

d }
p
it
ch

H
ea

d
pi

tc
h

an
gl

e
fr
o
m

to
p

o
f
sp

in
e

A
U

B
D

o
w

n
7

n
a

17
0

$
18

60
$

60
0

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 415

T
ab

le
7

(C
o
n
ti
n
ue

d)

N
o
.

F
A

P
n
am

e
F
A

P
d
es

cr
ip

ti
o
n

U
n
it
s

U
n
io

rB
id

ir
P
o
sm

ot
io

n
G

rp
F
D

P
su

b
gr

p
n
u
m

Q
u
an

t
st

ep
si
ze

Q
P

M
in

/M
ax

I-
fr
am

e
qu

an
ti
ze

d
va

lu
es

M
in

/M
ax

P
-F

ra
m

e
qu

an
ti
ze

d
va

lu
es

49
h
ea

d }
ya

w
H

ea
d

ya
w

an
gl

e
fr
o
m

to
p

o
f
sp

in
e

A
U

B
L
ef

t
7

n
a

17
0

$
18

60
$

60
0

50
h
ea

d }
ro

ll
H

ea
d

ro
ll

an
gl

e
fr
o
m

to
p

o
f
sp

in
e

A
U

B
R

ig
ht

7
n
a

17
0

$
18

60
$

60
0

51
lo

w
er
}
t }

m
id

lip
}
o

V
er

ti
ca

l
to

p
m

id
d
le

ou
te

r
lip

di
sp

la
ce

m
en

t
M

N
S

B
D

o
w

n
8

1
2

$
60

0
$

18
0

52
ra

is
e }

b
}
m

id
lip
}
o

V
er

ti
ca

l
bo

tt
om

m
id

d
le

o
u
te

r
li
p

di
sp

la
ce

m
en

t

M
N

S
B

U
p

8
2

2
$

18
60

$
60

0

53
st

re
tc

h
}
l }

co
rn

er
lip
}
o

H
o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
le

ft
ou

te
r

lip
co

rn
er

M
W

B
L
ef

t
8

3
2

$
60

0
$

18
0

54
st

re
tc

h
}
r }

co
rn

er
lip
}
o

H
o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
ri
gh

t
ou

te
r

lip
co

rn
er

M
W

B
R

ig
ht

8
4

2
$

60
0

$
18

0

55
lo

w
er
}
t }

lip
}
lm
}
o

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
m

id
po

in
t

b
et

w
ee

n
le

ft
co

rn
er

an
d

m
id

d
le

o
f
to

p
ou

te
r

lip

M
N

S
B

D
o
w

n
8

5
2

$
60

0
$

18
0

56
lo

w
er
}
t }

lip
}
rm
}
o

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
m

id
po

in
t

be
tw

ee
n

ri
gh

t
co

rn
er

an
d

m
id

d
le

o
f
to

p
ou

te
r

lip

M
N

S
B

D
o
w

n
8

6
2

$
60

0
$

18
0

57
ra

is
e }

b
}
lip
}
lm
}
o

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
m

id
po

in
t

b
et

w
ee

n
le

ft
co

rn
er

an
d

m
id

d
le

o
f
b
ot

to
m

o
ut

er
lip

M
N

S
B

U
p

8
7

2
$

18
60

$
60

0

58
ra

is
e }

b
}
lip
}
rm
}
o

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
m

id
po

in
t

be
tw

ee
n

ri
gh

t
co

rn
er

an
d

m
id

d
le

o
f
b
ot

to
m

o
ut

er
lip

M
N

S
B

U
p

8
8

2
$

18
60

$
60

0

416 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

59
ra

is
e }

l }
co

rn
er

lip
}
o

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
le

ft
ou

te
r

lip
co

rn
er

M
N

S
B

U
p

8
3

2
$

60
0

$
18

0

60
ra

is
e }

r }
co

rn
er

lip
}
o

V
er

ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
ri
gh

t
ou

te
r

lip
co

rn
er

M
N

S
B

U
p

8
4

2
$

60
0

$
18

0

61
st

re
tc

h
}
l }

n
o
se

H
o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
le

ft
si
d
e

o
f
n
os

e

E
N

S
B

L
ef

t
9

1
1

$
54

0
$

12
0

62
st

re
tc

h
}
r }

no
se

H
o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
ri
gh

t
si
d
e

o
f
n
os

e

E
N

S
B

R
ig

ht
9

2
1

$
54

0
$

12
0

63
ra

is
e }

n
os

e
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
n
os

e
ti
p

E
N

S
B

U
p

9
3

1
$

68
0

$
18

0

64
be

nd
}
no

se
H

o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
n
o
se

ti
p

E
N

S
B

R
ig

ht
9

3
1

$
90

0
$

18
0

65
ra

is
e }

l }
ea

r
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
le

ft
ea

r
E
N

S
B

U
p

10
1

1
$

90
0

$
24

0

66
ra

is
e }

r }
ea

r
V

er
ti
ca

l
di

sp
la

ce
-

m
en

t
o
f
ri
gh

t
ea

r
E
N

S
B

U
p

10
2

1
$

90
0

$
24

0

67
p
u
ll }

l }
ea

r
H

o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
le

ft
ea

r

E
N

S
B

L
ef

t
10

3
1

$
90

0
$

30
0

68
p
u
ll }

r }
ea

r
H

o
ri
zo

n
ta

l
d
is
-

p
la

ce
m

en
t

of
ri
gh

t
ea

r

E
N

S
B

R
ig

ht
10

4
1

$
90

0
$

30
0

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 417

node. In this case, the x, y, z positions are quantized
and encoded by an arithmetic coder. Both 2D mesh
animation and face animation are special cases of
BIFS-Anim in that the coding of the respective
animation parameters is speci"ed in the Visual part
of MPEG-4. These coded bit streams are just wrap-
ped into the BIFS-Anim stream.

In order to use the BIFS-Anim framework, we
need to de"ne an AnimationStream node in the
scene, which points to the encoded parameter
stream using an object-descriptor (just like in the
case of a video-stream). The animation-stream de-
coder knows where to pass this data by means of
a unique node-ID, e.g., that of the Indexed-
FaceSet2D node, which must be speci"ed when
setting up the animation-stream. From the node-
ID, the animation-stream decoder can infer the
node itself and its type. If the type is Indexed-
FaceSet2D, then the animation stream decoder
knows that it must pass the encoded data to the
2Dmesh decoder, which in turn will update the
appropriate "elds of the IndexedFaceSet2D node.
Texture mapping onto the IndexedFaceSet2D is
similar to that in VRML and is explained in the
Systems part of the standard.

3.5. Applications of the 2D mesh object

Apart from providing the ability to animate gen-
eric still texture images with arbitrary synthetic
motion, the 2D mesh object representation may
also enable the following functionalities:

1. Video object compression
f Mesh modeling may yield improved com-

pression e$ciency for certain types of video
objects by only transmitting the texture maps
associated with a few intra MOPs and recon-
struct all others by 2D mesh animation of
these still texture maps. This is called self-
trans"guration of a natural video object.

2. Video object manipulation
f 2D augmented reality: Merging virtual (com-

puter generated) images with real video ob-
jects to create enhanced display information.
The computer-generated images must remain
in perfect registration with the real video
objects, which can be achieved by 2D mesh

tracking of video objects. 2D augmented real-
ity application is demonstrated in Fig. 25.

f Editing texture of video objects: Replacing
a natural video object in a clip by another
video object. The replacement video object
may be extracted from another natural video
clip or may be trans"gured from a still image
object using the motion information of the
object to be replaced (hence the need for
a temporally continuous motion representa-
tion). This is called synthetic-object-trans-
"guration.

f Spatio-temporal interpolation: Mesh motion
modeling provides more robust motion-com-
pensated temporal interpolation (frame rate
up-conversion).

3. Content-based video indexing
f Mesh representation provides accurate object

trajectory information that can be used to
retrieve visual objects with speci"c motion.

f Mesh representation provides vertex-based
object shape representation which is more
e$cient than the bitmap representation for
shape-based object retrieval.

4. Conclusions

MPEG-4 integrates synthetic and natural con-
tent in multimedia communications and docu-
ments. In particular, two types of synthetic visual
objects are de"ned in version 1: animated faces and
animated 2D meshes. MPEG-4 de"nes a complete
set of animation parameters tailored towards ani-
mation of the human face. In order to enable
animation of a face model over low bit-rate com-
munication channels, for point to point as
well as multi-point connections, MPEG-4 encodes
the facial animation parameters using temporal
prediction. Face models can be animated
with a data rate of 300}2000 bits/s. MPEG-4
also de"nes an application program interface for
TTS synthesizer. Using this interface, the syn-
thesizer can be used to provide phonemes and
related timing information to the face model.
This allows for animated talking heads driven just
by one text stream.

418 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

2D meshes provide means to represent and/or
animate generic 2D objects. MPEG-4 version-1
accommodates both uniform and Delaunay 2-D
meshes. 2-D meshes with arbitrary topology can
be realized as a special case of 3D generic meshes
(which will become available in MPEG-4 version 2)
and can be animated using the BIFS-Anim elemen-
tary stream. Experimental results indicate that
coding e$ciency of the 2D dynamic mesh repres-
entation (for uniform and Delaunay meshes) de-
scribed in this paper is signi"cantly better when
compared to that of 2D generic mesh animation
using BIFS-Anim.

It is important to note that both face animation
and 2D mesh animation may be used as represen-
tations of real video objects for highly e$cient
compression (model-based coding) or to generate
completely synthetic video objects (virtual or
augmented reality). Of course, the model-based
coding application requires powerful video object
analysis tools to estimate the animation parameters
that would imitate real video objects.

Acknowledgements

The authors would like to thank Dr. Peter van
Beek for his contributions and Prof. Yao Wang and
Prof. F. Pereira for their review of the manuscript.

References

[1] G. Abrantes, F. Pereira, MPEG-4 facial animation techno-
logy: survey, implementation and results, IEEE CSVT 9 (2)
(1999) 290}305.

[2] Y. Altunbasak, A.M. Tekalp, Closed-form connectivity
preserving solutions for motion compensation using 2-D
meshes, IEEE Trans. Image Process. 6 (9) (September
1997) 1255}1269.

[3] Y. Altunbasak, A.M. Tekalp, Occlusion-adaptive, con-
tent-based mesh design and forward tracking, IEEE Trans.
Image Process. 6 (9) (September 1997) 1270}1280.

[4] C. Bregler, M. Covell, M. Slaney, Video rewrite: driving
visual speech with audio, in: Proceedings of ACM SIG-
GRAPH 97, Computer Graphics Proceedings, Annual
Conference Series, 1997.

[5] L. Chen, J. Ostermann, T. Huang, Adaptation of a
generic 3D human face model to 3D range data, in:
Wang et al. (Eds.), First IEEE Workshop on Multimedia
Signal Processing, IEEE, Princeton, NJ, June 1997,
pp. 274}279.

[6] M.M. Cohen, D.W. Massaro, Modeling coarticulation in
synthetic visual speech, In: M. Thalmann, D. Thalmann
(Eds.), Computer Animation '93, Springer, Tokyo.

[7] M. de Berg, M. van Kreveld, M. Overmars, O. Scharzkopf,
Computational Geometry } Algorithms and Applications,
Springer, Berlin, 1997.

[8] P. Ekman, W.V. Friesen, Manual for the Facial Action
Coding System, Consulting Psychologist Press, Inc., Palo
Alto, CA, 1978.

[9] P.E. Eren, N. Zhuang, Y. Fu, A.M. Tekalp, Interactive
object-based analysis and manipulation of digital video, in:
IEEE Workshop on Multimedia Signal Processing,
Redondo Beach, CA, December 1998.

[10] M. Escher, N.M. Thalmann, Automatic 3D cloning
and real-time animation of a human face, in: Proceedings
of Computer Animation '97, Geneva, 1997.

[11] J. Hartman, J. Wernecke, The VRML Handbook,
Addison-Wesley, Reading, MA, 1996.

[12] ISO/IEC 14772-1, Information Technology } Computer
Graphics and Image Processing } The Virtual Reality
Modeling Language } Part 1: Functional speci"cation and
UTF-8 encoding, 1997.

[13] ISO/IEC IS 14496-1 Systems, 1999.
[14] ISO/IEC IS 14496-2 Visual, 1999.
[15] ISO/IEC IS 14496-3 Audio, 1999.
[16] P. Kalra, A. Mangili, N. Magnenat-Thalmann, D. Thal-

mann, Simulation of facial muscle actions based on
rational free form deformations, in: Proceedings of Euro-
graphics 92, 1992, pp. 59}69.

[17] F. Lavagetto, R. Pockaj, The facial animation engine:
toward a high-level interface for the design of MPEG-4
compliant animated faces, IEEE CSVT 9 (2) (1999)
277}289.

[18] S. Morishima, Modeling of facial expression and emotion
for human communication system, Display 17 (1996)
15}25.

[19] S. Morishima, H. Harashima, A media conversion from
speech to facial image for intelligent man-machine inter-
face, IEEE J. Selected Areas Commun. 9 (4) (May 1991)
594}600.

[20] S. Murakami, H. Tadokoro, Generation of facial expres-
sions based on time functions, in: Proceedings of
IWSNHC3DI, Rhodes, September 1997, pp. 212}215.

[21] Y. Nakaya, H. Harashima, Motion compensation based
on spatial transformations, IEEE Trans. Circuits Systems
Video Technol. 4 (3) (June 1994) 339}356.

[22] J. Ostermann, Animation of synthetic faces in MPEG-4,
Computer Animation 98, Philadelphia, June 1998, pp.
49}55.

[23] J. Ostermann, M. Beutnagel, A. Fischer, Y. Wang, Integra-
tion of talking heads and text-to-speech synthesizers for
visual TTS, in: ICSLP 99, Australia, December 1999.

[24] J. Ostermann, E. Haratsch, An animation de"nition inter-
face: Rapid design of MPEG-4 compliant animated faces
and bodies, in: International Workshop on Synthetic}
Natural Hybrid Coding and Three Dimensional Imaging,
Rhodes, Greece, 5}9 September 1997, pp. 216}219.

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 419

[25] I. Pandzic, J. Ostermann, D. Millen, User evaluation:
synthetic talking faces for interactive services, The Visual
Computer (Special Issue on Real-time Virtual Worlds)
(1999) in press.

[26] F.I. Parke, Parameterized models for facial animation,
IEEE Comput. Graphics Appl. 2 (November 1982) 61}68.

[27] R. Sproat, J. Olive, An approach to text-to-speech syn-
thesis, In: W.B. Kleijn, K.K. Paliwal (Eds.), Speech Coding
and Synthesis, Elsevier, Amsterdam, 1995.

[28] H. Tao, H.H. Chen, W. Wu, T.S. Huang, Compression of
facial animation parameters for transmission of talking
heads, IEEE CSVT 9 (2) (1999) 264}276.

[29] A.M. Tekalp, Digital Video Processing, Prentice-Hall,
Englewood Cli!s, NJ, 1995.

[30] A.M. Tekalp, P.J.L. van Beek, C. Toklu, B. Gunsel, Two-
dimensional mesh-based visual object representation for
interactive synthetic/natural digital video, Proc. IEEE 86
(6) (June 1998) 1029}1051.

[31] D. Terzopolous, K. Waters, Physically-based facial
modeling, analysis and animation, J. Visualization Com-
put. Animation 1 (1990) 73}80.

[32] C. Toklu, A.T. Erdem, M.I. Sezan, A.M. Tekalp, Tracking
motion and intensity variations using hierarchical 2-D
mesh modeling, Graphical Models Image Process. 58 (6)
(November 1996) 553}573.

[33] P.J.L. van Beek, A.M. Tekalp, N. Zhuang, I. Celasun,
M. Xia, Hierarchical 2D mesh representation, tracking,
and compression for object-based video, IEEE Trans.
Circuits Systems Video Technol. 9 (2) (March 1999)
353}369.

[34] Y. Wang, O. Lee, Active mesh- A feature seeking and
tracking image sequence representation scheme, IEEE
Trans. Image Process. 3 (5) (September 1994) 610}624.

[35] Y. Wang, J. Ostermann, Evaluation of mesh-based motion
estimation in H.263 like coders, IEEE Trans. Circuits
Systems Video Technol. (1998) 243}252.

[36] K. Waters, A muscle model of animating three dimen-
sional facial expression, Comput. Graphics. 22 (4) (1987)
17}24.

[37] K. Waters, T. Levergood, An automatic lip-synchroniza-
tion algorithm for synthetic faces, in: Proceedings of the
Multimedia Conference, San Francisco, CA, September
1994, ACM, New York, pp. 149}156.

A. Murat Tekalp received B.S.
degree in Electrical Engineer-
ing, and B.S. degree in Mathe-
matics from Bogazici
University, Istanbul, Turkey in
1980, with the highest honors,
and M.S. and Ph.D. degrees
in Electrical, Computer and
Systems Engineering from
Rensselaer Polytechnic Insti-

tute (RPI), Troy, New York, in 1982 and 1984,
respectively. From December 1984 to August 1987,
he was a research scientist, and then a senior re-
search scientist at Eastman Kodak Company,
Rochester, New York. He joined the Electrical En-
gineering Department at the University of Roches-
ter, Rochester, New York, as an Assistant Professor
in September 1987, where he is currently a Profes-
sor. His current research interests are in the area of
digital image and video processing, including ob-
ject-based video representations, motion tracking,
image/video segmentation, video "ltering and res-
toration, image/video compression, and multi-
media content description.

Prof. Tekalp is a senior member of IEEE, and
a member of Sigma Xi. He received the NSF Re-
search Initiation Award in 1988, Fulbright Scholar
Award in 1999, and named as Distinguished Lec-
turer by IEEE Signal Processing Society in 1998.
He is listed in Marquis Who'sWho in America
Science and Engineering, 4th and 5th editions, and
Who'sWho in the World, 17th Edition. He has
chaired the IEEE Signal Processing Society Tech-
nical Committee on Image and Multidimensional
Signal Processing (January 1996}December 1997).
He has served as an Associate Editor for the IEEE
Trans. on Signal Processing (1990}1992), and IEEE
Trans. on Image Processing (1994}1996). He has
also been guest editor for recent special issues of
Proceedings of the IEEE (on Multimedia Signal
Processing, May/June 1998), IEEE Transactions
on Image Processing (on Image and Video Process-
ing for Digital Libraries, to appear), Signal Process-
ing: Image Communication (on Real-Time Video
over the Internet, September 1999). At present, he is
on the editorial boards of Academic Journals
Graphical Models and Image Processing, and Vis-
ual Communication and Image Representation,
and the EURASIP journal Signal Processing: Im-
age Communication. He is also an Associate Editor
for the Kluwer Journal Multidimensional Systems
and Signal Processing. He was appointed as the
Technical Program Chair for the 1991 IEEE Signal
Processing Society Workshop on Image and Multi-
dimensional Signal Processing, the Special Sessions
Chair for the 1995 IEEE International Conference
on Image Processing, and the Technical Program
Co-Chair for IEEE ICASSP 2000 (to be held in

420 A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421

Istanbul, Turkey). He is the founder and "rst Chair-
man of the Rochester Chapter of the IEEE Signal
Processing Society. He was elected as the Chair of
the Rochester Section of IEEE in 1994}1995. Dr.
Tekalp is the author of the Prentice Hall book
Digital Video Processing (1995).

JoK rn Ostermann studied Electri-
cal Engineering and Commun-
ications Engineering at the
University of Hannover and
Imperial College London, re-
spectively. He received Dipl.-
Ing. and Dr.-Ing. from the Uni-
versity of Hannover in 1988 and
1994, respectively.

From 1988 till 1994, he worked as a Research
Assistant at the Institut fuK r Theoretische Nachrich-
tentechnik conducting research in low bit-rate and
object-based analysis-synthesis video coding. In
1994 and 1995 he worked in the Visual Commun-
ications Research Department at AT&T Bell Labs.

He has been working with Image Processing and
Technology Research within AT&T Labs}Re-
search since 1996.

From 1993 to 1994, he chaired the European
COST 211 sim group coordinating research in low
bitrate video coding. Within MPEG-4, he organ-
ized the evaluation of video tools to start de"ning
the standard. Currently, he chairs the Adhoc
Group on Coding of Arbitrarily-shaped Objects in
MPEG-4 Video. JoK rn was a scholar of the German
National Foundation.

In 1998, he received the AT&T Standards Recog-
nition Award and the ISO award. He is a member
of IEEE, the IEEE Technical Committee on Multi-
media Signal Processing, and the IEEE CAS Visual
Signal Processing and Communications (VSPC)
Technical Committee.

His current research interests are video
coding, computer vision, 3D modeling, face
animation, coarticulation of acoustic and visual
speech, computer-human interfaces, and speech
synthesis.

A.M. Tekalp, J. Ostermann / Signal Processing: Image Communication 15 (2000) 387}421 421

