
E-mail address: r.h.koenen@research.kpn.com (R. Koenen)

Signal Processing: Image Communication 15 (2000) 463}478

Pro"les and levels in MPEG-4: Approach and overview

Rob Koenen

KPN Research, St. Paulusstraat, 4, 2264 XZ Leidschendam, Netherlands

Abstract

Pro"les and levels in MPEG-4 are standardised in order to give users a number of well-de"ned and well-chosen
conformance points. They serve two main purposes: (1) ensuring interoperability between MPEG-4 implementations,
and (2) allowing conformance to the standard to be tested. Pro"les exist not only for the Audio and Visual parts of the
standard (audio proxles and visual proxles), but also for the Systems part of the standard, in the form of graphics proxles,
scene graph proxles, and an object descriptor proxle. Di!erent pro"les are created for di!erent application environments.
The policy for de"ning pro"les is that they should enable as many applications as possible while keeping the number of
di!erent pro"les low. MPEG has de"ned a "rst set of pro"les for MPEG-4, but more are expected. MPEG will be
restrictive in de"ning any new pro"les, listening carefully to what its users have to say. (2000 Elsevier Science B.V.
All rights reserved.

Keywords: MPEG-4; Pro"le; Level; Conformance; MPEG-4 video; MPEG-4 audio; MPEG-4 Systems; Interoperability; Interworking

1. Introduction

An often encountered criticism of the MPEG-4
Standard concerns its size and complexity. The
complaint is that the standard is too big and un-
wieldy to implement. This is true } at least it would
have been without the existence of pro"les and
levels. (See [8,9] and the other articles in this issue
for an overview of the object-based multimedia
content representation standard MPEG-4.) This
paper will describe MPEG-4's Pro"les and Levels
and the philosophy behind their de"nition.

Pro"les are known from MPEG-2 Video [3]
where the most used pro"les are &Main' in end user
systems, and more recently &4 : 2 : 2' for professional

purposes. Both in MPEG-2 and MPEG-4, pro"les
limit the tool set that needs to be implemented; they
are created for users that wish to use only a part of
the standard. (Such &users' are usually industrial
consortia rather than end-users.) In fact, pro"les
can be regarded as a compromise between maximal
interoperability and minimal implementation
overhead. The essence of Pro"ling the MPEG-4
standard is, as this article will argue, about "nding
optimal balances and making the right trade-o!s.
The larger and more diverse a standard like
MPEG-4 becomes, the more di$cult it is to make
the right choices and to arrive at a transparent and
usable division into subsets while maintaining
interoperability between systems.

MPEG-4 not only de"nes visual (as in MPEG-2)
and audio pro"les, but also graphics pro"les, scene
graph pro"les, and one object descriptor pro"le.
Visual pro"les are, logically, de"ned in the visual
part of the standard (part 2 [4]); audio pro"les in

0923-5965/00/$ - see front matter (2000 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 3 - 5 9 6 5 (9 9) 0 0 0 5 8 - 2

the audio part (part 3 [5]) and the other three types
can be found in the Systems part of MPEG-4
(part 1 [6]). The DMIF part of the MPEG-4 Stan-
dard [7] does not have pro"les; they simply are not
needed, since implementing the whole part does not
incur signi"cant complexity over only implemen-
ting a subset.

First, we will explain the most important con-
cepts in Section 2. Section 3 will then describe the
procedure and policy that was developed for choos-
ing the needed pro"les, and, next, in Section 4, we
will describe the pro"les that are currently de"ned
and their envisioned application areas. Section 5
will then give an outlook to what may follow in
MPEG-4 Version 2 and beyond.

2. Pro5ling principles

The goal of de"ning pro"les and levels is twofold:
The "rst goal is to ensure interoperability. Imple-
mentations of a pro"le at a certain level result in
a decoder that behaves in a predictable way. Con-
tent encoded (e.g. by a real-time encoder) or
authored (e.g. for streaming from a server) for such
a combination will work on any decoder imple-
mentation thereof. The second goal is to allow
conformance testing to take place. A pro"le/level
combination gives a well-de"ned conformance
point. For such a conformance point, tests can be
devised to determine whether implementations of
the standard really operate as the standard speci-
"es. Typically, such tests de"ne input (bitstreams)
and expected decoder output (e.g. waveforms or
pixel values for decoded audio and video objects,
respectively).

Pro"les by themselves do not constitute a con-
formance point for the standard. To de"ne a con-
formance point, a level also is needed. Whereas the
pro"le restricts the tool set, the level de"nes the
bounds of complexity that can be expected in the
bitstream for a particular pro"le. Without a level
de"nition, the complexity that needs to be handled
by, say, a video decoder, could still be arbitrarily
complex as a pro"le does not specify, e.g. maximum
bit-rates, frequency, etc. The bound set by the level
needs to be observed by both the encoder and the
decoder. The decoder should at all times be capable

of handling a bitstream with maximum complexity,
and thus the level gives minimum implementation
bounds. For decoding hardware, the pro"le/level
combination gives minimum performance con-
straints to be observed at design and manufacture
time. For decoding software, the combination may
also imply resource availability to be monitored at
run time. (Note that a Pro"le/Level combination
is usually referred to as &pro"le@level', to be pro-
nounced as &a pro"le at a level'.)

The MPEG-4 Standard, like MPEG-1 and
MPEG-2, only de"nes the decoding process and
the syntax and semantics of the bitstream. The
encoding process is not speci"ed, with the restric-
tion that a valid bitstream must result. In spite of
this fact, pro"le/level combinations do impact en-
coding systems. To encoders, regardless of whether
implemented in hardware or software, a pro"le/
level combination gives implicit bounds to observe
while encoding a bitstream. The encoder should
constantly check whether the output bitstream is
still within the limits de"ned by the level. In prac-
tice, for &encoder' one should actually read the more
general term &authoring system' because MPEG-4
content could well be created from di!erent pre-
encoded objects. Summarising, a pro"le@level is an
upper bound on the complexity of the bitstream (to
be observed by the encoder), and a lower bound on
the capabilities of the decoder.

An important note: MPEG-4 is an object-based
standard, and audiovisual scenes are composed of
di!erent objects. In this context, it is that Audio
and Visual Pro"les@Levels do not de"ne the max-
imum complexity per individual MPEG-4 object
but rather give bounds on the total of all objects in
the scene. We will explain below why this approach
was chosen.

We will now "rst give the relevant de"nitions
and terminology as used in MPEG before going
into more detail. These are extracted from the
MPEG-4 Requirements Document [12].

Object Type } An Object Type dexnes the syntax of
the bitstream for one single object that can repres-
ent a meaningful entity in the (Audio or Visual)
scene. (Note that this corresponds to a list of tools.
There are Audio Object Types and Visual Object
Types.)

464 R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478

1Note that scene description pro"les are in the MPEG-4
standard referred to as scene graph pro"les. This is also the term
used in this article.

Pro5le } A Proxle dexnes the set of a certain type
of tools that can be used in a certain MPEG-4
terminal. There are Audio, Visual, Graphics, Scene
Description,1 and Object Descriptor Proxles.
Level } A level is a specixcation of the constraints
and performance criteria on an Audio, Visual,
Graphics, Scene Description, or Object Descriptor
Proxle and thus on the corresponding tools.
Conformance Point } A Conformance point is
a specixcation of a particular Audio, Visual,
Graphics, Scene Description, or Object Descriptor
Proxle at a certain Level at which conformance
may be tested. Conformance Points establish nor-
mative parts of the MPEG-4 Standard.

Audio and visual pro"les are more than just
a list of tools. They de"ne the kinds of audio and
visual objects that the MPEG-4 terminal needs to
be able to decode and, hence, give a list of admis-
sible Elementary Stream types } perhaps with
a restriction on how they can be combined. (See
[2] for a discussion on Elementary Streams in
MPEG-4.)

In MPEG-2, (video) pro"les can be thought of
as containing only one single, rectangular object. In
MPEG-4, scenes can contain more than one object,
and the objects can be of di!erent nature. There-
fore, the concept of an object type is introduced, as
an intermediate level of de"nition between tools
and pro"les. Object types not only de"ne which
tools are needed to create an object in the scene, but
also how they can be combined. When a pro"le
consisted only of a list of tools, many more combi-
nations of tools would be possible than now al-
lowed in the pre-de"ned object types. Not all of
these would make sense and some of them would be
very hard to implement. Hence, object types are
a required step in the de"nition of a pro"le.

Graphics pro"les de"ne, in terms of BIFS nodes
(Binary Format for Scenes, see [14]), which graphi-
cal elements can be used in the scene. Scene De-
scription pro"les de"ne the scene description
capabilities required in the terminal, also in the

form of allowed BIFS nodes in the bitstream. Note
that there are two di!erent BIFS nodes. The "rst
type of nodes is used to create objects in the scene,
or to refer to elementary streams associated with
media objects. This is the type of node found in the
graphics pro"le. The second type of nodes is used to
build the scene structure and to de"ne object and
user interactions. These are called `scene graph
elementsa, and are found in the scene graph pro-
"les. Lastly, the object descriptor pro"les de"ne
required terminal capabilities in terms of object
descriptor and synchronisation layer tools. (See [2]
for a detailed explanation about these tools.) The
audio, visual and graphics pro"les can be called
media proxles as they govern the media elements in
the scene. Note that MPEG has chosen not to
prescribe which combinations of audio, visual and
graphics media pro"les are allowed. MPEG wants
to let the market decide this.

From the above, it can be concluded that pro"les
can only be made in combination with a certain
level. Some pro"les, however, currently have only
one level de"ned in which case mentioning the
(default) level could be omitted.

3. Pro5le policy and version management

The policy in de"ning MPEG-4 pro"les is aimed
at obtaining a minimum amount of pro"les/level
combinations that are as widely usable as possible.
This means both a low total number (giving a
&global' optimum) as well as a low number of di!er-
ent conformance points that address the same
application type (giving a &local' optimum). The
pro"le policy should be understood together with
the approach to version management. Let us "rst
discuss the version management before returning to
the pro"le policy. The fact that the MPEG-4
Standard is delivered in versions necessitates the
existence of version management procedures [10].
Currently there is MPEG-4 version 1, with version
2 scheduled for the end of 1999. New tools are
under consideration that are not part of version 2,
so it is likely that a version 3 will also see the light
of day. Technically, such a new version is issued
as an amendment of the standard. Versions of
MPEG-4 are meant for major improvements and

R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478 465

Fig. 1. Version 2 (e.g. of MPEG-4 Visual) includes all Version
1 pro"les and adds new ones. Pro"le E could be a superset of D,
but it could also be a subset of an existing pro"le with new tools
added. (E could even be a subset of D, which means that only
version 2 tools are used in this pro"le.)

enhancements of the tool set. New tools are only
added if they bring new functionalities or signi"-
cant gains in performance for the functionalities
already provided. This implies that a marginal in-
crease in, e.g., coding e$ciency is not enough rea-
son for adding a tool, which would make the
standard more complex, more expensive to imple-
ment, and less stable. A new version, by de"nition,
extends the standard in a backward compatible
way. This compatibility, notably in the area of
(audio and visual) coding tools, is preserved by
adding new pro"les to the existing set. These may
be supersets of existing pro"les, but they do not
have to be. It is important to note that an existing
pro"le will not be modi"ed in a new version. The
version management procedures as documented
within MPEG de"ne this as follows: &New Versions,
notably in the area of coding tools, are managed by
adding new proxles, signixcantly diwerent from exist-
ing ones. New Versions will not make changes to
existing proxles' [10]. See Fig. 1. (Another aspect of
version management is software version manage-
ment; MPEG requires software implementations to
be made available for all tools that are included in
the standard. A discussion of the MPEG software
version management process is outside the scope of
this article.)

Now that the versioning is clear, let us again
consider the pro"le policy. When the potential pro-

"les for MPEG-4 were "rst discussed in MPEG,
there were many requests for di!erent pro"les.
Sometimes the proposals were very close in terms
of tools to be included. With these many requests,
it was very clear that a strict policy was needed in
order to limit the amount of di!erent pro"les, espe-
cially in the visual part of the standard. Having too
many pro"les confuses the market place and is very
unhelpful in achieving interoperability. While pro-
"ling information is an integral part of the stan-
dard, de"ning a pro"le or a level is di!erent than
de"ning a tool because a pro"le does not a!ect the
syntax of the bitstream. (There is one exception:
a new value needs to be de"ned for the "eld that
signals the pro"le in the object descriptor.) This
implies that there is no &hurry' in de"ning pro"les
and that they can be added at a relatively late stage.
This is in contrast to the tools themselves, which
need to be rigorously tested and cross-checked with
other tools. In other words, the tools in the stan-
dard need to anticipate future needs while the pro-
"les can be de"ned when the requirements become
apparent. This means that MPEG can take a con-
servative attitude in de"ning pro"les.

As the de"nitions in Section 1 highlighted, audio
and visual pro"les are de"ned as a collection of
object types, admissible in the scene. For these
object types, basically the same rules apply as for
pro"les: any newly de"ned object type should di!er
from all existing ones, adding functionality or sig-
ni"cantly improving existing functionality. Such
functionality could be, e.g., error resilience, support
for interactivity, scalability, or compression e$-
ciency. Moreover, there needs to be enough evid-
ence that the proposed object type is actually useful
and will indeed be used. Potential new object types
in version 1 were not considered just on their own
merit, but also in relation with the other object
types on the table. The same rule applies for version
2: not only need the new object types be di!erent
from existing ones, but also from the other object
types under consideration; MPEG tries to merge
similar object types. The rule is that new objects are
only created if such merging is not possible, that is
**the tool in question cannot be added to an object
type already under consideration for dexnition in the
same version, without overly burdening it++ as MPEG
describes it in [11]. In practice, this means MPEG

466 R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478

seeks to ensure that applications do not have to
carry too many unnecessary tools.

A very similar procedure is applied in adding
new pro"les. They should be signi"cantly di!erent
from existing ones and (within a new version) from
each other. Also here MPEG looks at whether
proposed applications really need a new pro"le, as
they might make good use of an existing, possibly
more powerful pro"le without too much extra
burden. For pro"les de"ned after version 1, an
extra criterion is applied: there needs to be support
from parties that wish to implement the pro"le in
an MPEG-4 product. (While MPEG's require-
ments group asks companies for their commitment,
it will not ask them for precise deployment plans, as
these are often con"dential.)

For the last step in the process, the de"nition of
levels for a pro"le, the same strategy is applied: only
de"ne levels that are going to be used. As far as
producing the standard is concerned, adding levels
is a matter of merely &adding a line to a table'. This
can always be done when the need becomes appar-
ent; although the formal process is the same as for
any amendment, it requires far less technical work
than adding tools would. Thus MPEG is not con-
cerned with completely de"ning all possible levels
within a given pro"le, but rather only those that are
envisaged to be used.

Although, in principle, all the work in MPEG is
driven by the requirements, it may turn out that
tools in the standard have not found a &home' in
any of the pro"les, at least not yet. As long as the
number of these tools is low, this is not a problem.
The same happened in MPEG-2, where some tools
were not included in (Video) pro"les. Work on
tools is often started in advance of real market
need, based on anticipated requirements. When
later in the process the exact market requirements
take shape, some of the tools may not be as useful
as originally thought. (Note that the converse also
happens: needs become apparent that are unsup-
ported by tools. In such a case, quick action needs
to be taken, especially if the technology to ful"l the
requirements exists. In MPEG-4, this was the case
for the MPEG-4 "le format and the management
and protection of Intellectual Property.)

The pro"les in MPEG-2 Video are organised
as an almost complete hierarchical structure. This

implies that decoders capable of dealing with the
higher pro"les can by de"nition also understand
the ones &below'. In MPEG-4, hierarchy is imple-
mented where possible, but not pursued at all cost.
This policy was adopted because keeping a strict
hierarchy in MPEG-4 is much harder than in
MPEG-2, since there are more tools that suit more
diverse purposes. As an example to illustrate this,
consider MPEG-4 visual. A strict hierarchy could
be maintained for all the tools addressing compres-
sion e$ciency for rectangular objects. Di!erent ap-
plication areas, however, have di!erent needs for
choosing combinations of natural and synthetic
object types, and using those with or without scala-
bility, error resilience and shape representation.
Thus, a strict hierarchy across all of the Pro"les
cannot be maintained.

4. Overview of pro5les in MPEG-4

This section gives an overview of the pro"les that
are de"ned in version 1 of MPEG-4. It "rst lists the
media pro"les and then the non-media pro"les.
These non-media pro"les are de"ned in the Sys-
tems part of the standard and so are the graphics
media pro"les. The audio and visual media pro-
"les can be found in the audio [5] and visual [4]
parts of the standard, respectively. Fig. 2 provides
a graphical representation of the pro"les in
MPEG-4.

4.1. Media proxles

Media pro"les describe the object types that can
be used to create the scene, and tools that can be
used to create those object types. In this subsection,
we will describe the media pro"les and give
examples of the possible environments they can be
used in.

4.1.1. Visual
In this section, we will discuss the visual object

types and pro"les, as de"ned in MPEG-4 Visual
[4]. Level information will be supplied without too
much detail, as this would go beyond the scope of
this paper.

R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478 467

Fig. 2. An overview of the pro"le structure in MPEG-4. Note that the "gure does not list all pro"les, notably in the visual area. It is not
meant to re#ect hierarchical relationships.

4.1.1.1. Visual object types. As the visual pro"les
are de"ned using the visual object types, it is neces-
sary to discuss these before discussing the pro"les
themselves.

There are "ve di!erent object types for represent-
ing natural video information.

1. The Simple object type is an error resilient,
rectangular natural video object of arbitrary
height/width ratio, developed for low bit-rates.
It uses relatively simple and inexpensive coding
tools, based on I (Intra) and P (Predicted) VOPs
(Video Object Planes, the MPEG-4 term for
frames).

2. The Simple Scalable object type is a scalable
extension of Simple, which gives temporal
and spatial scalability using Simple as the
base layer. The enhancement layer is still rectan-
gular.

3. The Core object type uses a tool superset of
Simple, giving better quality through the use of
bi-directional interpolation (B-VOPs), and it has
binary shape. It supports scalability based on
sending extra P (predicted) VOPs. Note that
binary shape can include a constant transpar-

ency but excludes the variable transparency of-
fered by grey-scale shape coding.

4. The Main object type is the video object that
gives the highest quality. Compared to Core, it
also supports grey-scale shape, sprites, and inter-
laced content in addition to progressive mater-
ial. (See [1] for an overview of MPEG-4 Video
and an explanation of what exactly a sprite is in
MPEG-4.)

5. The N-bit object type is equal to the Core object
type but it can vary the pixel depth from 4 to
12 bits for the luminance as well as the chro-
minance planes.

As can be seen in Table 1, the Simple object type
uses a subset of the tools in Core, and Core in
return uses a subset of the tools in Main. The
tools in the Simple Scalable object type are a super-
set of the tools in Simple, while the N-bit object
type is a superset of Core (and hence also of
Simple).

There is one special object type for representing
still natural visual information:

6. The Still Scalable Texture object type gives an
arbitrary shape still image that uses wavelet

468 R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478

T
ab

le
1

C
o
di

ng
to

o
ls

in
th

e
vi

su
al

ob
je

ct
ty

pe
s

O
b
je

ct
ty

pe
P

B
T
o
ol

s
Si

m
p
le

C
o
re

M
ai

n
Si

m
p
le

sc
al

ab
le

N
-b

it
A

n
im

at
ed

2D
m

es
h

B
as

ic
an

im
at

ed
te

xt
u
re

St
ill

sc
al

ab
le

te
xt

u
re

Si
m

p
le

fa
ce

B
as

ic
to

o
ls

z
I-

V
O

P
,P

-V
O

P
z

A
C

/D
C

p
re

di
ct

io
n

X
X

X
X

X
X

z
4-

M
V

,
u
n
re

st
ri
ct

ed
M

V

E
rr

or
re

si
lie

n
ce

z
Sl

ic
e

re
sy

n
ch

ro
ni

za
ti
o
n

z
D

at
a

pa
rt

it
io

n
in

g
X

X
X

X
X

X
z

R
ev

er
si
b
le

V
L

C

Sh
o
rt

he
ad

er
X

X
X

X
X

B
-V

O
P

X
X

X
X

X

M
et

h
o
d

1/
m

et
ho

d
2

q
ua

nt
iz

at
io

n
X

X
X

X

P
-V

O
P
-b

as
ed

te
m

p
o
ra

l
sc

al
ab

ili
ty

z
R

ec
ta

ng
u
la

r
X

X
X

X
z

A
rb

it
ra

ry
sh

ap
e

B
in

ar
y

sh
ap

e
X

X
X

X
X

G
re

y
sh

ap
e

X

In
te

rl
ac

e
X

Sp
ri
te

X

T
em

po
ra

l
sc

al
ab

ili
ty

(r
ec

ta
n
gu

la
r)

X

Sp
at

ia
l
sc

al
ab

ili
ty

(r
ec

ta
n
gu

la
r)

X

N
-b

it
(4
}
12

bi
t)

X

Sc
al

ab
le

st
ill

te
xt

u
re

X
X

X

2D
d
yn

am
ic

m
es

h
w

it
h

u
n
ifo

rm
to

p
o
lo

gy
X

X

2D
dy

na
m

ic
m

es
h

w
it
h

D
el

au
na

y
to

po
lo

gy
X

F
ac

ia
l
an

im
at

io
n

p
ar

am
et

er
s

X

R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478 469

coding for scalability and incremental download
and build-up.

The following object types use synthetic tools,
some of them in combination with natural video
texture:

7. The Animated 2D Mesh object type combines the
synthetic mesh (either rectangular or Delaunay
topology) with natural video. The natural video
coding uses the same tools as the Core object type.
This video can be mapped onto the mesh and
deformed by moving the points in the mesh. It
gives interesting animation possibilities. Note that
the object can be of arbitrary (binary) shape.

8. The Basic Animated Texture object type allows
mesh animation with arbitrary shape still images
(the same images as used for the still scalable
texture object type, see above).

9. The last object type is the Simple Face object
type, which has the tools for facial animation.
This object type does not de"ne what the face
looks like, and the animation can be applied to
any local model of choice. Note that MPEG-4
does include tools to download a pre-de"ned
face to the decoder, but these tools are not man-
datory in the simple face object type.

Table 1 (adapted from [4]) gives a list of the tools
used by the object types. A detailed explanation of
the tools goes beyond this article, please refer to the
standard itself [4] or to the article on MPEG-4
Visual in this issue [1].

4.1.1.2. Visual proxles. This visual pro"les deter-
mine which visual object types can be present in the
scene. This is also the way they are de"ned: as a list
of admissible object types. Quite a few of them
correspond to the most complicated object that
they support, and they also have similar names.
Table 2 gives an overview of the visual pro"les.
Below we will list the pro"les and mention some
application areas. Note again that these are only
suggestions and that pro"les were not designed for
speci"c applications. This is also why their names
are generic and refer to tools rather than applica-
tions or services.

1. The Simple Pro5le only accepts objects of type
Simple, and was created with low-complexity

applications in mind. The "rst usage is mobile
use of (audio)visual services, and the second is
putting very low-complexity video on the Inter-
net. Also small camera devices recording moving
video to, e.g., disk or memory chips, can make
good use of this pro"le. It supports up to four
objects in the scene with, at the lowest level,
a maximum total surface of a QCIF picture.
There are three levels for the Simple Pro"le with
bit-rates from 64 to 384 kbit/s. The levels also
de"ne the maximum total surface for the objects
and the amount of macroblocks per second that
the decoder needs to be able to decode. Further,
they de"ne the size of various (hypothetical)
bu!ers needed for decoding. While the max-
imum total object size is de"ned, the aspect ratio
is not prescribed. This gives maximum creative
freedom. It could be used for instance in a per-
sonal computer screen, where a very wide or
a very tall object could be created, or several
smaller objects in various places on the screen,
not con"ned to a typical QCIF area. The same
level philosophy is followed for restricting the
complexity of the natural video objects in all the
visual pro"les.

2. The Simple Scalable Pro5le can supply
scalable coding in the same operational environ-
ments as foreseen for Simple, and has two levels
de"ned.

3. The Core Pro5le accepts Core and Simple object
types. It is useful for higher-quality interactive
services, combining good quality with limited
complexity and supporting arbitrary shape ob-
jects. Also mobile broadcast services could be
supported by this pro"le. The maximum bit-rate
is 384 kbit in Level 1 and 2 Mbit/s in Level 2.
While the levels do not prescribe the visual ses-
sion size, they are created with a certain session
size in mind, called the &typical visual session
size'. For Simple this was QCIF, for Core it is
QCIF and CIF for the two levels, respectively.
The amount of macroblocks is chosen such that
a scene using this typical session size can have
overlapping objects and still be &"lled'.

4. The Main Pro5le was created with broadcast
services in mind, addressing progressive as well
as interlaced material. It combines the highest
quality with the versatility of arbitrarily shaped

470 R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478

Table 2
Object types supported in the visual pro"les

Pro"le P

B Object types
Simple Simple

scaleable
Core Main N-bit Scaleable

texture
Simple FA Basic animated

texture
Hybrid

Simple @ @ @ @ @ @

Simple scalable @

Core @ @ @ @

Main @

N-bit @

Animated 2D mesh @

Basic animated texture @ @

Scalable texture @ @ @ @

Simple face @ @ @

Number of levels 3 2 2 3 1 3 2 2 2

object using grey-scale coding. The highest level
accepts up to 32 objects (of Simple, Core or
Main type) for a maximum total bit-rate of
38 Mbit/s.

5. The N-bit pro"le is useful for areas that use
thermal imagers, such as surveillance applica-
tions. Also medical applications may want to
use the enhanced pixel depth giving a larger
dynamic range in colour and luminance. It
accepts objects of type Simple, Core and N-bit.
Currently only one level is de"ned.

6. The Scaleable Texture Pro5le is meant for
audiographic applications. It was requested by
companies that want to build mobile devices,
which combine sound with synchronously dis-
played pictures, and possibly BIFS-based
graphics, in very simple terminals.

7. The Simple Face Pro5le accepts only objects of
type Simple Face. Depending on the level, either
one or a maximum of 4 faces can appear in the
scene, e.g., for a virtual meeting. Bit-rates
remain very low; even for the second level,
32 kbit/s is more than adequate for driving the
four faces.

8. The Hybrid Pro"le allows combining both natu-
ral and synthetic objects in the same scene while
keeping complexity reasonable. On the natural
side, it compares to the Core Pro"le, while on
the synthetic side, it adds animated meshes, scal-
able textures, and animated faces } a rich set of
tools for creating attractive hybrid natural and
synthetic content. This pro"le can be used to
place &real' objects into a synthetic world and
also to do the opposite, adding synthetic objects
to a natural environment.

9. The Basic Animated Texture Pro"le allows ani-
mation of still pictures and facial animation.
Attractive content can be created at very low
bit-rates.

A partial hierarchy exists in the visual pro"les,
the same hierarchy that we described above for the
corresponding object types. This means that Main
is a superset of Core, which in itself is a superset of
Simple. N-bit is a superset of Core. Simple Scalable
is a superset of Simple, in such a way that the
Simple pro"le can decode the base layer of Simple
Scalable bitstream.

R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478 471

4.1.2. Audio
We will "rst describe the object types and then

show how they are grouped into pro"les. While
there are quite many object types in the audio part
of the standard (13 plus the Null object type), the
amount of di!erent pro"les is low compared to the
visual side: four. Again, level information will only
be presented in broad lines.

4.1.2.1. Audio object types. For coding natural
sound, MPEG-4 includes the Advanced Audio
Coding (AAC) and Twin Vector Quantisation
(Twin VQ) algorithms. The following object types
exist:

1. The Advanced Audio Coding (AAC) Main object
type is very similar to } and compatible with
} the AAC Main pro"le that is de"ned in
MPEG-2 (ISO/IEC 13818-7). MPEG-4 AAC
adds the Perceptual Noise Shaping tool. The
object type has multi-channel capability, to give
"ve full channels plus a separate low-frequency
channel in one object.

2. The MPEG-4 AAC Low Complexity object type
is a low complexity version of the AAC Main
Object type.

3. The MPEG-4 AAC Scalable Sampling Rate ob-
ject type is the counterpart to the MPEG-2 AAC
Scalable Sampling Rate pro"le.

4. The MPEG-4 AAC LTP object type is similar to
the AAC Main object type with the long term
predictor replacing the MPEG-2 AAC pre-
dictor. This gives the same e$ciency with signi"-
cantly lower implementation cost.

5. The AAC Scalable object type allows a large
number of scalable combinations including
combinations with TwinVQ and CELP coder
tools as the core coders (see below). It supports
only mono or 2-channel stereo sound.

6. The TwinVQ object type is based on "xed-rate
vector quantisation instead of the Hu!man cod-
ing used in AAC. It operates at lower bit-rates
than AAC, supporting mono and stereo sound.
(TwinVQ stands for Transform domain
Weighted Interleave Vector Quantization).

MPEG-4 includes two di!erent algorithms for
coding speech, each operating at di!erent bit-rates,
plus a Text-to-Speech Interface:

7. The CELP object type uses Code Excited Linear
Prediction. It supports 8 kHz and 16 kHz samp-
ling rates at bit-rates from 4 to 24 kbit/s. CELP
bitstreams can be coded in a scalable way using
bit-rate scalability and bandwidth scalability.

8. The HVXC (Harmonic Vector Excitation Cod-
ing) object type gives a parametric representa-
tion of 8 kHz, mono speech at "xed bit-rates
between 2 and 4 kbit/s and below 2 kbit/s using
a variable bit-rate mode, supporting pitch and
speed changes.

9. The TTSI (Text-to-Speech Interface) object type
gives an extremely low-bit-rate phonemic rep-
resentation of speech. The actual text-to-speech
synthesis is not speci"ed; only the interface is
de"ned. Bit-rates range from 0.2 to 1.2 kbit/s.
The synthesised speech can be synchronised
with a facial animation object (see above).

Lastly, a number of di!erent object types exist
for synthetic sound.

10. The Main Synthetic object type collects all
MPEG-4 Structured Audio tools. Structured
Audio is a way to describe methods of syn-
thesis, see [13]. It supports #exible, high-qual-
ity algorithmic synthesis using the Structured
Audio Orchestra Language (SAOL) music-syn-
thesis language, e$cient wavetable synthesis
with the Structured Audio Sample-Bank For-
mat (SASBF), and enables the use of high-
quality mixing and postproduction in the
Systems Audio BIFS tool set. Sound can be
described at &0 kbit/s' (meaning that sound con-
tinues without input } until it is stopped by an
explicit command) to 3}4 kbit/s for extremely
expressive sounds in the MPEG-4 Structured
Audio format.

11. The Wavetable Synthesis object type is a subset
of the Main Synthetic object type, making use of
the SASBF format and MIDI tools. It provides
relatively simple sampling synthesis. (MIDI
means Musical Instrument Digital Interface,
a popular wavetable format in wide use, [15]).

12. The General MIDI object type gives in-
teroperability with existing content (see above).
Unlike the Main Synthetic or Wavetable Syn-
thesis object types, it does not give completely

472 R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478

Table 3
Coding tools in the audio object types

Object type P

B Tools

N
u
ll

A
A

C
m

ain

A
A

C
L

C

A
A

C
SS

R

A
A

C
L

T
P

A
A

C
scalable

T
w

in
V

Q

C
E
L

P

H
V

X
C

T
T

SI

M
ain

syn
thetic

W
avetable

synth
esis

G
en

eral
M

ID
I

A
lgorith

m
ic

synthesis
an

d
aud

io
F
X

MPEG-2 AAC main X

MPEG-2AAC LC X X X

MPEG-2AAC SSR X

Noise shaping X X X X X

Long term prediction X X X

Tools for large-step scalability X

TwinVQ X

CELP X

HVXC X

TTSI X

Structured audio tools X X

SA sample bank format X X

MIDI

predictable (i.e., normative) sound quality and
decoder behaviour.

13. The Algorithmic Synthesis and AudioFX object
type provides SAOL-based synthesis capabili-
ties for very low-bit-rate terminals. (Note that
&FX' stands for &e!ects'.)

14. The NULL object type provides the possibility
to feed raw PCM data directly to the MPEG-4
audio compositor in order to allow mixing in of
local sound at the decoder. This means that
support for this object type is in the composi-
tor, not in the decoder, which explains why it
does not show up in the pro"le table below.

Table 3 gives a list of all the audio object types
and the tools they use. The list is taken from [5],
with &reserved' lines removed. For a complete ex-
planation of the audio tools, please refer to [5].

4.1.2.2. Audio proxles. While there are quite a few
di!erent object types in the audio area, there are
only four di!erent pro"les. They are explained
below, and in Table 4, which gives the object types
that are supported by each of the audio pro"les.
Remember that codec builders cannot claim con-
formance to object types, but only to pro"les at
a certain level.

R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478 473

Table 4
Object types in the audio pro"les

Pro"les P Speech Scalable Main Synthetic
B Object types

AAC main @
AAC SSR @
AAC LC @ @
AAC LTP @ @
AAC scalable @ @
TwinVQ @ @
CELP @ @ @
HVXC @ @ @
TTSI @ @ @
Main synthetic @ @
Wavetable synthesis @ @
General MIDI @ @
Algorithmic synthesis @ @

Number of levels 2 4 4 3

1. The application area for the Speech pro"le can
easily be deduced from its name. Two levels
are de"ned, determining whether either one or
a maximum of 20 objects can be present in the
(audio) scene.

2. A prime reason for de"ning the Scalable pro"le
was to allow good-quality, reasonable complex-
ity, low bit-rate audio on the Internet, an envi-
ronment in which bit-rate varies from user to
user and from one minute to the next. Scalability
allows making optimal use of available, and
even dynamically changing, bandwidth while
only having to encode and store the material
once. The scalable pro"le was not de"ned ex-
clusively for the Internet, however. Also in, e.g.,
broadcast situations, scalability can be a desir-
able feature. The scalable pro"le has four levels
that restrict the amount of objects in the scene,
the total amount of channels, and the sampling
frequency. The highest level employs the novel
concept of complexity units, to be explained
below.

3. Also the Synthetic pro"le has a telling name: it
groups all the synthetic object types. The main
application areas are found where good-quality

sound is needed at very low data rates, while the
sound source is usually not a microphone. There
are three levels which de"ne the amount of mem-
ory for data, the sampling rates, the amount of
TTSI objects, and some further processing re-
strictions.

4. The Main pro"le includes all object types. It is
useful in environments where processing power
is available to create very rich, highest-quality
audio scenes that may combine microphone-
recorded sources with synthetic ones. Example
application areas are the DVD and multimedia
broadcast. This pro"le has four levels, de"ned
in terms of complexity units. There are two dif-
ferent types of complexity units: processor
complexity units (PCU), speci"ed in millions
operations/s, and RAM complexity units (RCU),
speci"ed in terms of number of kWords. The
standard also speci"es the complexity units re-
quired for each object type. In this way, authors
have maximum freedom in choosing the right
object types and allocating resources among
them. An example makes this clear. The pro"le
could contain main AAC and wavetable syn-
thesis object types. A level could specify a max-
imum of two of each. This would prevent the
resources reserved for the AAC objects to be
used for a third and fourth wavetable synthesis
object, even though it would not break the de-
coder. With the complexity units, the author is
completely free to use decoder resources for any
combination of object types, as long as the types
are supported by the pro"le. (Note that in the
scalable pro"le, this type of level de"nition was
only used for the highest level, because the other
three levels can be expressed in simpler ways.
Here, only for the highest level will the decoder
be complex enough to bene"t from the type of
#exibility o!ered by the resource-based way of
de"ning levels.) For further details on audio
levels, see the Audio Final Draft International
Standard [5].

4.1.3. Graphics
Graphics pro"les regulate which of the graphics

and textual elements can be used to build a scene.
They are expressed in terms of BIFS nodes.
Although these are de"ned in the Systems part of

474 R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478

Table 5
BIFS nodes in the graphics pro"les

Graphics pro"les

Graphics tools
("BIFS Nodes)

Simple 2D Complete 2D Complete

Appearance X X X
Box X
Bitmap X X X
Background X
Background2D X X
Circle X X
Color X X
Cone X
Coordinate X
Coordinate2D X X
Curve2D X X
Cylinder X
DirectionalLight X
ElevationGrid X
Expression X
Extrusion X
Face X
FaceDefMesh X
FaceDefTable X
FaceDefTransform X
FAP X
FDP X
FIT X
Fog X
FontStyle X X
IndexedFaceSet X
IndexedFaceSet2D X X
IndexedLineSet X
IndexedLineSet2D X X
LineProperties X X
Material X
Material2D X X
Normal X
PixelTexture X X
PointLight X
PointSet X
PointSet2D X X
Rectangle X X
Shape X X X
Sphere X
SpotLight X
Text X X
TextureCoordinate X X
TextureTransform X X
Viseme X

the standard, they are really media pro"les like the
audio and visual ones, and hence we list them now.
Three hierarchical graphics pro"les are de"ned in
MPEG-4: Simple 2D, Complete 2D and Complete.
They di!er in the routines (BIFS Nodes) to be
supported at the decoder. Simple 2D provides
the basic functionalities needed to create a visual
scene with visual objects, without giving additional
graphical elements. Complete 2D allows elements
like bitmaps, backgrounds, circles, boxes and
lines, all in a #at space. These elements have char-
acteristics like line width and colour. Note that
BIFS commands exist to change attributes, e.g., the
colour of a circle. Complete contains the full
set of BIFS graphics nodes with which com-
plete and elaborate three-dimensional graphics
can be created. It adds to Complete 2D, for
example, the sphere, the cone, 3D boxes, etc., but
also directional lighting. Note that &#at' video
material can be projected into this space on an
arbitrary plane.

Table 5 lists the BIFS nodes that need to be
implemented to comply to each of the graphics
pro"les. The table was taken from [6]; for an ex-
planation of the table see either [6], or [14] in this
issue.

4.2. Systems proxles

4.2.1. Scene graph
The scene graph pro"les de"ne what types of

transformational capabilities need to be supported
by the terminal. As in the case of the graphics
pro"les, this is de"ned in terms of the scene graph
elements (BIFS nodes) that the decoding terminal
needs to be able to understand. Examples are trans-
lations, (3-D) rotations, but also elements like input
sensors with which interactive behaviour can be
created. The scene graph pro"les follow a structure
similar to the graphics pro"les, with one pro"le
added for audio-only scenes. Thus we have Audio,
Simple 2D, Complete 2D and Complete. Also the
target applications are very much the same as those
for the graphics pro"les with Simple 2D providing
placement capabilities, Complete 2D adding, for
instance, rotation to that, and Complete giving the
capability to do arbitrary transformations in a 3D
space.

R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478 475

Table 6
BIFS nodes for the scene graph pro"les

Scene graph tools Scene graph pro"les

A
udio

Sim
p
le

2D

C
om

plete
2D

C
om

plete

Anchor X X
AudioBu!er X X X
AudioDelay X X X
AudioFX X X X
AudioMix X X X
AudioSwitch X X X
Billboard X
Collision X
Composite2DTexture X X
Composite3DTexture X
Form X X
Group X X X X
Inline X X
Layer2D X X
Layer3D X
Layout X X
ListeningPoint X X
LOD X
NavigationInfo X
OrderedGroup X X X
QuantizationParameter X X
Sound X
Sound2D X X X X
Switch X X
Transform X
Transform2D X X X
Viewpoint X
WorldInfo X X
Node Update X X
Route Update X X
Scene Update X X X X
AnimationStream X X
Script ? X
ColorInterpolator X X
Conditional X X
CoordinateInterpolator2D X X
CoordinateInterpolator X
CylinderSensor X
DiscSensor X X
NormalInterpolator X
OrientationInterpolator X
PlaneSensor2D X X
PlaneSensor X
PositionInterpolator X
PositionInterpolator2D X X
ProximitySensor X
ProximitySensor2D X X
ROUTE X X
ScalarInterpolator X X
SphereSensor X
TermCap X X
TimeSensor X X
TouchSensor X X
VisibilitySensor X
Valuator X X

476 R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478

Table 6 lists the BIFS nodes for the scene graph
pro"les. Also this table was based on [6]; for an
explanation of the table and the BIFS nodes, see
either [6], or [14] in this issue.

For a few BIFS nodes, their presence is not just
inferred from the scene graph pro"le but follows
logically from the audio and visual pro"les that the
terminal implements. For instance, any audio pro-
"le would require AudioClip and AudioSource to
be present, and the Core visual pro"le will require
the Texture, Background 2D, Background and
MovieTexture BIFS nodes. The presence of these
nodes can always be inferred from the chosen audio
and visual pro"les, and the Systems part of the
MPEG-4 standard provides a few tables that list
these required nodes.

4.2.2. Object descriptor proxles
The last type of pro"le is the object descriptor

pro"le. According to the Systems of the MPEG-4
standard [6], such a pro"le speci"es allowed con-
"gurations of the object descriptor and sync layer
tools. The object descriptor contains all descriptive
information, while the sync layer tool provides the
syntax to convey, among others, timing informa-
tion for elementary streams. The main reason for
wanting to subject the object descriptor to pro"ling
lies reducing the amount of asynchronous opera-
tions and the necessary permanent storage. Cur-
rently, only one, default object descriptor pro"le
exists, termed Core. It was created to allow the
creation of levels, which in turn is necessary to
reduce, e.g., the amount of di!erent time bases that
a system needs to support simultaneously. No
levels have been de"ned yet, however. This may
happen in Version 2 of the MPEG-4 standard.

5. Version 2 and beyond

Pro"ling in Version 1 has proved di$cult, mostly
because the tool set is so wide and diverse. It is
possible that not every de"ned pro"le will be used,
notably in the visual area. MPEG has decided
to be very strict in the de"nition of new pro"les.
Companies asking for a new pro"le are required
to clearly state that they want to use it for real
products. Companies are also required to show

that the already existing pro"les are not suitable for
the target application. New pro"les are currently
under consideration. In the audio area, probably
one or more new, error resilient pro"les will be
de"ned. In the visual area, new pro"les will likely
include one targeted at real-time operation in
error-prone environments, one or more pro"les
with additional scalability and perhaps a new pro-
"le, intended for high-end services, including multi-
media broadcast.

Work in MPEG is ongoing for amendments
(additions) to the standard, beyond Version 2.
MPEG has started research on MPEG-4 for Stu-
dio applications, notably in the visual area, which
requires considerably higher bit-rates than are cur-
rently supported. If this work is indeed continued
(and there is every reason to believe that it will)
then several new (visual) pro"les are anticipated.
Another research item probably leading to one or
more new visual pro"les is visual "ne-grain scala-
bility, a much desired feature already present in
MPEG-4 audio.

6. Conclusion

MPEG-4 pro"les and levels are meant for inter-
operability and conformance checking. MPEG-4
pro"les start from MPEG-2 principles, consistently
applied to all parts of the standard. The fact that an
MPEG-4 scene is potentially composed of multiple
objects implies that pro"les and levels must give
bounds for the total of objects in the scene rather
than for individual ones. MPEG-4 pro"ling is not
complete yet; more pro"les are expected, although
MPEG will not add pro"les liberally } there must
be plans for deploying new pro"les and levels
before they can get accepted and standardised.

Acknowledgements

The author would like to thank the MPEG com-
munity for the interesting discussions and meetings,
that led to this paper. Special thanks go to Fer-
nando Pereira, for his tireless e!orts with respect to
MPEG Pro"les and for his thorough review of and
contributions to this paper.

R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478 477

References

[1] E. Ebrahimi, C. Horne, MPEG-4 natural video coding
} An overview, Signal Processing: Image Communication
15 (4}5) (2000) 365}385.

[2] C. Herpel, A. Eleftheriadis, MPEG-4 systems: Elementary
stream management, Signal Processing: Image Commun-
ication 15 (4}5) (2000) 299}320.

[3] ISO/IEC, ISO/IEC International Standard 13813-2,
MPEG-2 Video, Spring 1999.

[4] ISO/IEC, ISO/IEC International Standard 14469-2,
MPEG-4 Visual, Spring 1999.

[5] ISO/IEC, ISO/IEC International Standard 14469-3,
MPEG-4 Audio, Spring 1999.

[6] ISO/IEC, ISO/IEC International Standard 14469-1,
MPEG-4 Systems, Spring 1999.

[7] ISO/IEC, ISO/IEC International Standard 14469-1,
MPEG-4 DMIF, Spring 1999.

[8] R.H. Koenen, MPEG-4 }Multimedia for our time, IEEE
Spectrum 36 (2) (February 1999) 26}33.

[9] R. Koenen, F. Pereira, L. Chiariglione, MPEG-4: Context
and objectives, Signal Processing: Image Communication
9 (4) (1997) 295}304.

[10] MPEG Requirements Group, MPEG-4 Version Manage-
ment Procedures, Doc. ISO/MPEG N2200. MPEG
Tokyo Meeting, March 1998.

[11] MPEG Requirements Group, MPEG-4 Pro"ling Policy,
Doc. ISO/MPEG N2565. MPEG Roma Meeting, Decem-
ber 1998.

[12] MPEG Requirements Group, MPEG-4 Requirements
Document, Doc. ISO/MPEG N2723. MPEG Seoul Meet-
ing, March 1999.

[13] E.D. Scheirer, Y. Lee, J.-W. Yang, Synthetic and SNHC
audio in MPEG-4, Signal Processing: Image Communica-
tion 15 (4}5) (2000) 445}461.

[14] J. Signès, Y. Fisher, A. Eleftheriadis, MPEG-4's binary
format for scene description, Signal Processing: Image
Communication 15 (4}5) (2000) 321}345.

[15] www.midi.org

Rob Koenen received his
&Ingenieur' (MSEE) degree from
Delft University of Technology,
the Netherlands, in 1989. He
studied electrical engineering,
specialising in information the-
ory. After having worked for
this university for one year, de-
veloping knowledge-based ad-

visory systems, he joined the Video Coding group
of KPN Research in 1990. There he has researched
various aspects of audiovisual communication,
working as a project manager and later co-
ordinator of the group. His projects have ad-
dressed: image coding research, audiovisual
communication for the hard-of-hearing and for
elderly people, interactive broadband multimedia
services for residential users, mobile multimedia

services, the strategic deployment of new multi-
media services and more recently subjective and
objective methods of audiovisual quality assess-
ment. He has participated in several European col-
laborative research projects dealing with MPEG
technology, and was a member of the Management
Committee of COST 211 ter for several years. As an
MPEG delegate, he has played a key role in the
development of the MPEG-4 standard since 1993,
and in de"ning the upcoming MPEG-7 standard
since 1995.

Ir. Koenen now works as a senior advisor/pro-
ject leader with the Multimedia Technology group
of KPN Research. He is the chairman of the
MPEG Requirements subgroup. He is also an asso-
ciate editor of the IEEE Transactions on Circuits
and Systems for Video Technology.

478 R. Koenen / Signal Processing: Image Communication 15 (2000) 463}478

