NaCo Exam Solution

Instructor: Dr Giuditta Franco

December the 19th, 2017

1. Let a membrane system have [1c[2 ]2]1 as initial configuration, and rules R; = {a — bybo,
cby — cby’, by — baein |p, }. Input skin membrane is [; ]; and output membrane is [ ]s.

Show first 4 computational steps, starting from the input a®. Then explain which function
f(n) is computed by the system, if the number n is encoded by a™.

Sol.
Step 0. 1Q [ ]2]
Step 1. [1¢b3b3 [2 ]2]1;

Step 3. [1¢b1b] b3 [2 €5 Ja]1;

[1a
[

Step 2. [1cbib103 [2 € Joi;
[

Step 4. [1¢b;?b3 [5 €° ]2]1. HALT (no more rules may be applied)

We notice that input a® produces output e”. Analogously, one may verify that a™ produces

", then the system computes the function f(n) = n2.

2. Given a metabolic system with rules r; : ¢ = a, 72 : @ — b, 73 : a — be, r4 : b — bc,
rs : b — ab, and corresponding flux maps: u; = fi(a,b,c) = ab,uz = fa(a,b,c) = ¢ uz =
fala,b,c) = 2a,uy = fa(a,b,c) = a,us = f5(a,b,c) = ¢, compute its state X[1], by starting
from the initial state X[0] = (2,2,2). Explain the computational step to pass from X[0] to X[1].

Sol. By EMA:
[1] = A< U[0] + X[0]
4
1 -1 -1 0 1 4 2
In this case: A = 0 1 1 0 0 |,U[0]=] 4 [|,and X(0)=| 2 |, therefore
-1 0 1 10 2 2
2
0
X1 = 10
4

3. Prove that any regular language is decidable.

Sol. L € REG = M € FSA recognizing L, that is, M answers to the membership question
in a number of steps equal to the length of the input string.



Alternative Sol. Same proof seen in class to show that a monotonic grammar generates a
decidable language may be applied for a grammar of type 3 (which is monotonic as well).

. Enunciate the first theorem of Shannon.

Sol. The theorem claims that no code of an information source may reach an average
encoding length smaller than the entropy of the source:

H(X,p) S LC

where C is any code (surjective function from the encodings to the data) of an information
source (X, p), L¢ is its average length, defined as ), .~ |w|p(w), and H(X,p) is the entropy
of source (X, p).

. Exhibit one non-decidable language from the class RE.

Sol. Given an alphabet, first enumerate all possible words over the alphabet «;,7 € N, and
all possible grammars (of type 0) G;,7 € N. Given this algorithm: V(i,j) € Nx N if G,
has generated «; in j steps, then «; € K, we have defined an RE language

K= {Oél'/Oéi S L(Gl)}

We prove that K = {a; / a; & L(G;)} is not in RE (that is, the language is outside RE).
Indeed, by contradiction, if K would be in RE (since RE = L) then it would exists d € N
such that K = L(G,). Contradiction is obtained by the question: ay € K? In fact,

adef<:>ad€L(Gd)(:)adeK<:)ad§Zf.

By the Post theorem, to be decidable an RE language needs to have its complement con-
tained in RE. Therefore, K is non-decidable language from the class RE.

. Solve only one of the following exercises:

(a) Explain the quaternary recombination algorithm, and prove its correctness.

(b) Explain one DNA computing algorithm solving SAT, both in formal and implementa-
tion terms.

Sol (a). The quaternary recombination algorithm generates an n-dimensional DNA library
of binary strings starting from one pool Py containing four specific strings (all a-prefixed
and (-suffixed for given oligos av and 3): [ = X1 XoX3XyX5... X, [r = V1Y Y3Y,Y5... Y,
Is = X1YoX3YyXs ..., 1 = Y1 XoY3 XyuY5. . ..

Let P, and P2 be two copies of the pool Py = {al1 5, alsff, al3f3, alyf}.
for i =2,3,4,5 do

e perform XPCRx, on P, and X PCRy, on Ps;
e mix P:= P, U Py;
[ (Pl,PQ) = Spllt(P)



The above algorithm is correct, as for any binary assigment ajas...a,, there exists a se-
quence of recombination rules r,; (implemented by X PCR,;) which generates it starting
from the four axioms. Such a sequence may be infered by the following algorithm.

Let us call I; the initial sequence containing «;_;; as subsequence, for i = 2,...,n, and let
¢, 81, S2 be string variables.

C = lg

forj=2,...,n—1

apply 7,1 ¢ ljit1 — s1, S2;

c:= 81

Sol (b). Namely, we choose to explain the Sakamoto’s algorithm solving SAT. (This algo-
rithm could have been explained much more shortly, as we have done in class).

An instance 3-SAT(n,m) is solved first by generating DNA molecules containing, for each
clause, one out of its three literals (that is, molecules with m literals, one for each clause
C; = lgl) vlé”) \/l:()f)7 i=1,2,...,m), and then by extracting all non-contradictory assignments
for the literals. These are the solutions of the instance.

INPUT: P = {aChaL Coy....Cr1Ly1Cp, Cou Ly B | |Cs| = |Ci| = 20 long sticky ends, |o| =
Bl =20 L; € {l ) l(l b |Lil =20, v, € Ly, i = 1,...,m, "y, restriction site of the enzyme Enz}.

ALGORITHM:

(a) P:= Lig(C(P)); \\ Assembly of 3™ assignments satisfying all clauses
(b) P= PCR( ,B)(P); \\ material amplification

(
(

)

c) P

d) P= Enz(C’ (P)); \\ sudden cooling, to form hairpins and immediate cut by the enzyme
)
)

H(P); \\ heating to get single filaments

(e) P = Elsoim+1)(P)); \\ selection of filaments of initial lenght
(

f) P = PCR(a,B)(P); \\ material amplification
(g) if PI(P)# () then X= Yes else X=NO

OQUTPUT: Value of X.

. Given the following pattern: (ab)™ + (be)™ with n, m € N, provide the corresponding regular
expression, the FSA recognizer, and a Chomsky grammar generating it.

Sol. Regual expression: (ab)* + (bc)*. Finite state automaton, recognizing (ab)* + (be)*:
qoa = q1

ab— g2

Q20— q1

qob — g3

g3¢ — g4

qab — g3

qo initial and final state, g2 and g4 final states.

Grammar (of type 3, directly deduced by the automaton above) generating (ab)* + (bc)*:
qo — aqi

q1 — bge

q1 — b

42 — aq

qo — bg3



q3 — Cq4

g3 — C

qa — bys

qo — A

where gy = S, and g1, g2, g3, g4 are non-terminal symbols.

Alternative grammar:
S—= A

S — abS

S —ab

S =5

S’ — beS’

S"— be

8. Give a definition for:

e Computation: Process performed on a physical system, assuming a finite number of
states (namely, an initial and a final one), by means of a list of instructions and a ter-
mination criterion.

e Natural Computing: It is an instance of computation inspired by or performed by nat-
ural systems.

e Information: A set of data which may be stored, transformed, and transmitted.
The information of an event is a function of its probability/distribution.

e Enzymatic paradox: Enzymes (are proteins which) catalize/activate biochemical reac-
tions, producing enzymes. Which of them comes first?

e (Given a dictionary D and a genome G) Average genomic positional coverage: The
average (over all the positions of the genome) number of words of D that cover each
position p. A position p of genome G is covered by the word G|[i,j] € D, if i <p < j.

e Minimal Forbidden Length: Let X denote the DNA alphabet, and G a genome. M FL =
min{k : Dy(G) # X*}, where Dy (G) is the dictionary of k-mers occurring in the genome.

e Optimal code: A code C is optimal if no code C’ exists with a smaller average length
(in other terms, Loy > Le for all other codes C”).

e Evolutionary computing: Computation inspired by evolution theories, both Darwinian
and Genetic drift.
More in details, we are given with a fitness function F and a generation mechanism G.
Over an initial population, evaluate the fitness function. While F is under a threshold,
select a subset and ezxpand it by G. Stop when F exceeds the threshold, or a prefixed
number of steps has been executed.
— Initialize S with a set S of possible solutions
— Evaluate a fitness level F over S, and while F is under a given threshold, do
% Select a subset S” of S
* Expand S’ into a population S according to G
— Output the population S reaching the fitness threshold.



