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1. The phase problem 
The ultimate goal of an X-ray diffraction study of a protein crystal is to produce a model of the 
molecule, i.e a list of the coordinates of its atoms in some selected coordinate system. The model is 
built by fitting atoms to the electron density of the asymmetric unit of the crystal. We recall that the 
asymmetric unit is the smallest unit from which the crystal structure can be generated by making 
use of the symmetry operations of the space group of the crystal. The asymmetric unit can be one 
molecule, several molecules or a subunit of an oligomeric molecule. Knowing the electron density 
in the crystal, measured for example in electrons per Å3, is equivalent to knowing the relative 
position of the atoms. As seen in previous lessons, the electron density is the Fourier transform of 
the structure factors. In the case of a crystal the relationship between these two quantities can be 
expressed in a summation as follows: 
 
 

  ρ(x,y,z) = 1/V   Σ Σ Σ  Fhkl  e-2πi(hx+ky+lz) 
              h   k  l 
 
 
where  ρ(x,y,z) is the electron density, a function of the spatial coordinates x, y and z and h, k an l 
are three integers, V is a proportionality constant, the volume of the unit cell of the crystal and can 
be neglected since we are basically interested in relative values, Fhkl are the structure factors, in the 
case of  a crystal, a function of the three indexes, h, k and l, three integers. 
Structure factors are defined as the ratio of the  amplitude of the radiation scattered by the sample to 
that scattered by a single electron at the origin. In the case of a crystal their value is different from 0 
at defined positions in space which are characterized by the three integers, h, k and l. They are 
complex numbers and as such can be written as follows. 
 
     Fhkl = |Fhkl| eiφ 
 
where |Fhkl| is the amplitude and φ is the phase. Alternatively structure factors can be written as the 
sum of a real and an imaginary part 
 
     Fhkl =  Fr + i Fi  
 
where Fr  is the real and Fi the imaginary part 
Experimentally we can only measure the intensity of the radiation scattered by our sample which is 
the product of the structure factor times its complex conjugate.  
. 
     Ihkl = Fhkl . Fhkl* 
 
     Ihkl = |Fhkl| eiφ |Fhkl| e-iφ = |Fhkl|2 
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Thus the diffraction experiment yields only the structure factor amplitude and the phase term is not 
measured directly but has to be determined or estimated indirectly. This is one of the major 
obstacles in the road to a structure determination by X-ray diffraction methods and is known as “the 
phase problem”. In the sections that follows we will discuss how the phase problem is solved in 
macromolecular crystallography. 
 
2. The multiple isomorphous replacemente method. 
This is historically the first successful method used to solve macromolecular structures and 
although other phasing methods are currently available it can still be said that the M.I.R. method is 
still central in macromolecular crystallography. The method uses a minimum of two heavy atom 
isomorphous derivatives of the protein crystal. A perfect isomorphous derivative is one in which the 
native protein and the derivative crystal belong to identical space groups and have identical unit cell 
parameters. The only difference between the two is intensity changes in the reflections. The 
derivative is prepared by reacting native protein crystals with a “heavy atom” which means an atom 
with a large atomic scattering factor i.e with a large number of electrons. We recall that protein 
crystals have mother liquor channels that can be used as a route for heavy atoms to get in contact 
with the protein molecules and hopefully react in selected points substituting in the structure 
disordered solvent molecules. This method used to prepare the derivative is called by “soaking” and 
is usually the method of choice. Attempts to react the protein with the heavy atom in solution 
followed by crystallization used to be made but are currently not common since they often result in 
either the derivatized protein not crystallizing or in the formation of non-isomorphous crystals. 
If the heavy atom derivative has been successfully prepared, we can say that in it the total electron 
density is the sum of the electron density of the protein plus that of the heavy atom: 
 
      ρPH  =  ρP + ρH 
 
If we Fourier transform this equation the result is that  
 
     FPH  =  FP + FH 
 
Where FPH is the structure factor of the derivative, FP is the structure factor of the protein and FH 
is the structure factor of the heavy atom in the unit cell of the protein, obviously a theoretical 
quantity since crystals of the space group and unit cell parameters of the protein containing only the 
heavy atom cannot be prepared. The experimental measurements that can be made are the 
intensities of native protein and derivative which, as we saw above, are proportional to the structure 
factor amplitudes of protein and derivative. Thus our problem is to derive the phases of  FP with the 
amplitudes | FP | and | FPH |. 
For any crystal we can calculate the structure factors if we know the positions of the atoms using 
the  following equation: 
 

            Fhkl   =  Σ fi e 2πi(hxi+kyi+lzi)  
              i   
 
where h, k and l are the indexes identifying each structure factor, fi is the atomic scattering factor of 

each atom in position (xi yi zi ) and the summation is done over all the atoms constituting the 
partial or total structure. 
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We will describe below how the position of the heavy atoms in the unit cell of the protein can be 
determined but for the time being let us assume that it has been done. If so we can the calculate FH, 
both the amplitude and the phase.  
 
     FH = | FH |  eiφ

Η  
 
We will now make use of two types of diagrams, vector diagrams in which structure factors are 
represented as vectors and the Harker constructions to explain the relationships between structure 
factors and phases. 
The three structure factors of the equation FPH  =  FP + FH are represented in a vector (or Argand) 
diagram below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we have measured the intensities of the native protein and one heavy atom derivative we know 
the amplitude of two structure factors, | FP | and | FPH |,  and if we have determined the substructure 
of one heavy atom derivative we know amplitude and phase of its contribution,  
FH = | FH |  eiφ

Η  
knowing the amplitude but not the phase of the native protein structure factor, FP is equivalent to 
knowing that the amplitude lies on a circle whose radius is  | FP |, we know the length but not the 
position of the vector representation of FP because there is an infinite number of possible phases 
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but the contribution of FH is completely defined in amplitude and phase in the vector diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and so if we now trace another circle with a radius equal to | FPH | but centred at the end of FH and 
not at the origin there are only two points that satisfy the condition that FPH  =  FP + FH , the 
intersections of the two circles, A and B and we have reduced the possible phases of FP , the 
structure factors of the protein from an infinite number to two!  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The next step is to choose between these two possible phases and in order to do so the simplest way 
is by preparing a second heavy atom derivative. Examination of the expression given above used to 
calculate  FH indicates clearly that the most important factor in preparing the second derivative is 
that the position of the atom should be different from that of the first. The atomic scattering factor 
has no influence on the phase which is the most important part to determine a very different FH that 
will let us choose easily the correct phase for the protein. 
The method is called multiple isomorphous replacement (M.I.R) because historically more than two 
derivatives were prepared to improve the quality of the protein phases. The reason is that there are 
many errors involved in the operation and more derivatives tended to imply better phases. 
Many variations of this basic ideas are used nowadays to phase protein crystals, the major problem 
of this method was and still is lack of isomorphism between the native protein and the derivatives. 
In the following section we discuss the methods used to determine the position of the heavy atoms 
in the unit cell of the protein 
 
3. Solving the heavy atom substructure  
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The classical method used to find the positions of the heavy atoms in the protein unit cell use the 
Patterson function calculated with the differences between the structure factor amplitudes of the 
derivative and the protein.  
The Patterson function is the Fourier transform of the intensities of the reflections of the crystal and 
as such presents some analogies with the electron density function. 
 
 

   P (x,y,z) = 1/V   Σ Σ Σ  Ihkl   e-2πi(hx+ky+lz) 
                     h   k  l 
 
 
since Ihkl = Fhkl . Fhkl*  =  |Fhkl|2  and   Fhkl   =  Σ fi e 2πi(hxi+kyi+lzi)  
              i   

Ihkl = Σ fi  fk  e 2πi [ h (xi- xk) + k (yi- yk) +l (zi- zk) ] 
 
Thus the Patterson function is like an electron density of pseudo-atoms with atomic scattering 
factors that are the product of the actual scattering factors of all the possible combinations of the 
atoms effectively present in the unit cell and whose peaks are found in positions that correspond to 
the differences between the values of the actual coordinates of the atoms. 
In order to find the position of the heavy atom ideally one would like to have | FH | 2 but that 
amplitude is not available because it would be the scattering amplitude of the heavy atom in the unit 
cell of the protein and so is estimated as the difference | FPH |- | FP | 
 
and so to find the positions of the heavy atoms in the unit cell the difference Patterson function is 
calculated as follows 
 

 

   ∆P =  1/V   Σ Σ Σ  [ |FPH| -  |FP | ] 2  e-2πi(hx+ky+lz) 
                                   h   k   l 

 
After interpreting the Patterson map either manually or automatically by means of one of the very 
powerful existing computer programs one is in a position to calculate FH = | FH |  eiφ

Η  
and then proceed as described above. 
This method is by no means the only possibility to solve the substructure but it is historically the 
oldest, an alternative is the use of direct methods for phasing. Direct methods were originally 
developed for the determination of small molecule structures. They attempt to derive the structure 
factor phases directly from the amplitudes through the use of mathematical relationships. When 
applied to the problem of finding the position of the heavy atoms what is done is simulate a small 
molecule structure using as input the differences  |FPH| -  |FP |. 
If more than one derivative is used, the positions of the second, third, etc. heavy atoms is found 
using the difference Fourier methods which will be described in the last section of these notes. 
 
4. Using anomalous scattering. 
In all the equations we have seen so far the atomic scattering factor is consider to be a real number 
which is true if the wavelength used for the diffraction experiment is not near a wavelength 
absorbed by the atom. Since  
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Fhkl   =  Σ fi e 2πi(hxi+kyi+lzi) and   Ihkl = Fhkl . Fhkl* 
 
 

  I h k l =  Σ fi e 2πi(hxi+kyi+lzi) Σ fi e -2πi(hxi+kyi+lzi) 
 
and for the reflection with the same indexes but having opposite sign 
     
         =  Σ fi e -2πi(hxi+kyi+lzi) Σ fi e 2πi(hxi+kyi+lzi  
 
 
and thus   I h k l  =  

   
  

 
This relationship is known as Friedel’s law and it applies for as long as all the atomic 
scattering factors can be considered real numbers. The two reflections with identical 
indexes having opposite signs are called Friedel pairs. When the X-rays wavelength 
approaches the absorption edge wavelength of an atom its atomic scattering factor 
cannot be considered only real anymore, the phenomenon is called anomalous 
scattering and Friedel’s law is not valid anymore. 
In a vector representation the atomic scattering factor has now a real and an 
imaginary part as indicated in the following figure: 
 
 
 
 
 
 
 
 
 
 and  
                   fa = f + f ‘ + i f’’ 
 
Anomalous scattering is not important for the atoms that are normally found in proteins with the 
exception of sulphur which has a signal that by appropriately choosing the wavelength of the X-rays 
can be used for phasing. The phenomenon becomes important for atoms with a large number of 
electrons like those used for heavy atom phasing and measurement of the anomalous signal 
becomes thus an important complement of the isomorphous replacement method. 
If a heavy atom derivative has a non negligible anomalous signal the two reflections with indexes 
with opposite signs, that are called Bijvoet pairs instead of Friedel pairs, will not have equal 
intensities and there will be a measurable difference in the structure factor amplitudes of the two 
members of the pair. A vector representation of the two structure factors of the derivative, 
indicating with a plus and a minus the signs of the indexes of the Bijvoet pair and the two 
contributions of the anomalous scattterer is shown in the following figure: 
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There will be thus two different positions for the FH  vector representation corresponding to the two 
members of the Bijvoet pair and there will be two circles of slightly different radii centred on those 
two vectors corresponding to the two amplitudes of  FPH (+) and FPH (-).as shown in the following 
Harker diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If this diagram is superimposed with the circle representing the structure facture amplitude of the 
native protein,  | FP | 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It becomes clear that measurement of the Bijvoet pairs of a heavy atom derivative leads to  
unambiguous phasing of the protein structure factors. One might say that this is equivalent to 
having two heavy atom derivatives, but in fact it is better because in this second case the two sets of 
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structure factor measurements are provided by the same crystal and therefore lack of isomorphism 
between the two derivatives is no longer a problem 
 
5. The multiple wavelength anomalous dispersion (MAD) technique.  
In the presence of anomalous scattering the magnitude of the real and imaginary parts of the atomic 
scattering factor are strongly dependent on the wavelength of the X-rays used for the diffraction 
experiment 
Thus in the equation  
 
    fa = f + f’ + i f’’ 
 
f is independent of the wavelength and falls off with the scattering angle θ whereas the anomalous 
part of the scattering factor is strongly wavelength dependent but is virtually independent of the 
angle  θ. Perhaps more important is the fact that the wavelength dependence of f’ and f’’, the real 
and imaginary parts of the anomalous contribution is different.  
As the following figure shows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the minimum in the values of f’ is positioned at a slightly lower energy with respect to the 
maximum of f’’. A MAD experiment exploits this behaviour to extract phase information. 
A data set measured at the wavelength λ1 corresponding to the peak of f’’’ of the anomalous 
scatterer will show the largest differences in the Bijvoet pairs because the imaginary component of 
the anomalous contribution is a maximum. A data set measured at the minimum of the real 
component of the anomalous scattering contribution will present very large differences in the 
structure facture amplitude when compared to the values obtained measuring the same intensities at 
the wavelength λ3, distant from the maximum in f’’. Using data collected at these three different 
wavelengths one can set up the equations that will yield the phase information. It is a obvious 
requisite of the method the possibility to carefully select the wavelength for the different 
measurements which can only be done if the data are collected at a synchrotron. 
The advantage of this method is that usually all the data are measured from a single crystal which 
avoids the problems due to lack of isomorphism, a caveat is that the wavelengths have to be very 
carefully chosen, which is very simple in the case of  λ3 but more complicated in the case of λ1 and  
λ2. The method relies on the presence in the crystal of an anomalous scatterer that can give a 
measurable signal, and has become very popular to phase proteins that are recombinantly expressed 
in microorganisms. With the advent of the techniques of modern Molecular Biology it has, in fact, 
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become rather simple to substitute the amino acid methionine with selenomethionine, and thus 
replace a sulphur with a selenium at every position containing a methionine in the sequence. The 
presence of a rather limited number of selenium atoms in the unit cell is, in general sufficient, to 
generate an observable signal. 
 
6. The molecular replacement method. 
Is an alternative method of phasing which is based on positioning the model of a different, but 
rather similar molecule, or a fragment in the unit cell of the crystal whose structure is being 
determined. This operation is possible because more than 70,000 protein models are available in the 
protein data bank and chances are that the fold that our unknown belongs to is already present in the 
data set. This method of phasing is an obvious choice when trying to determine the three 
dimensional structure of a protein of a different species (and therefore quite similar) from one 
already solved. It is also very useful when dealing with protein complexes in which one or more 
partners have been studied and their X-ray structures solved. 
If X is the set of coordinates of the model to be used for phasing and X’ are the coordinates in the 
new crystal form the transformation one is trying to do is simply described by the following 
equation: 
 
    \X’  = [ C ] X  + t 
 
Where  [ C ]  is the matrix that rotates the coordinates so that the model is now oriented as the 
molecule present in the crystal and t is the translation that places the rotated model in the correct 
positions in the unit cell. The variables in this problem are thus six, three angles that rotate the 
model in the proper orientation and three translation vectors required to place it in the positions of 
the new unit cell. 
The basic idea behind the methods used to find these six variables is quite simply stated. From the 
model one has calculated structure factors that can be used to calculate intensities and from them a 
Patterson map can be produced. Another Patterson map can be calculated from the experimental X-
ray diffraction intensities of the other crystal form. The first of these two maps will depend on the 
orientation of the model and of its position in the new unit cell. If the model is oriented and 
positioned in the unit cell as the real molecules, the two Patterson maps should be closely 
correlated. 
In a Patterson map there are contributions due to all the vectors between atoms pairs present in the 
same or in different molecules. Those corresponding to atoms of the same molecule are shorter and 
are called self-Patterson vectors, while those that relate atoms present in different molecules are 
called cross-Patterson vectors. The first group of vectors depends only on the molecule and 
therefore is expected to be very similar for model and molecule in the crystal to be solved while the 
second group depends on the packing of the molecules in the two unit cells. 
The problem of finding the three variables required to position the model in the new unit cell is 
divided into two parts, in the first a rotation function is calculated in order to correctly orient the 
model, in the second part a  translation function is calculated to superimpose the model to the 
molecules. 
A rotation function can be defined as follows: 
 
 
   R(C)  =  ∫  Pcryst (u) Pmod (Cu) du 
                  v 
 
where C is the matrix that rotates the coordinates of the model, and Pcryst (u) is the Patterson 
function of the crystal.  
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This function should have a maximum when the two Pattersons overlap and that should happen 
when the model has been properly rotated. 
Once the orientation of the model has been defined, the second step is to correctly place it in the 
new unit cell. When the model is translated in the new unit cell, symmetry related molecules move 
accordingly and, when all the models are in their correct position, the Patterson they generate will 
superimpose with those of the experimental Patterson function. So in principle, finding the 
translation vectors is rather similar to rotating appropriately the model but the vectors used are 
different, in the case of the rotation it is the self Patterson vectors while for the translation it is the 
cross-Patterson vectors that have to be used. This principle has been implemented in the definition 
of several translation functions which are described in detail in the references given at the end of 
this chapter. Here we will briefly consider one of them. The Patterson function due to the cross 
vectors of molecules 1 & 2 can be calculated as 
 
   P12(u)  =  ∫  ρ1(x) ρ2(x+u) dx 
                     v 
if molecule 1 is translated in the unit cell, molecule 2 will also move to satisfy the symmetry 
operations of the space group and the function P12 will change its value. If Pobs is the experimental 
Patterson function, i.e the function calculated with the experimental intensities, then a translation 
function T (t) can be defined as follows: 
 
 
    T (t)  =  ∫  Pobs(u) P12(u, t)  du 
                       v 
this function will have a maximum when the two Pattersons superimpose. 
The first step after a solution of the rotation and translation problem has been found is to check the 
position of the model in the new unit cell, the different molecules should obviously not clash and 
should be at reasonable distances from one another. If a convincing solution has been found then 
one can proceed with rigid body refinement (see below), first with the entire molecule and, in a 
second stage, with the elements of secondary structure. Eventually the phases calculated with the 
model have to be used along with the observed structure factor amplitudes to calculate electron 
density maps to be used for fitting the correct side chains and then proceed with the refinement of 
the structure. 
 
7. Interpretation of the electron-density maps and model building 
If a phase for the structure factors of the protein is available, then an electron density map of the 
crystal asymmetric unit can be calculated using the equation 
 
      

  ρ(x,y,z) = 1/Vc   Σ Σ Σ  Fhkl  e-2πi(hx+ky+lz) 
              h   k  l 
 
note that the number of structure factors that have to be measured and phased can be large, in 
general several thousand, and their number is related to the resolution of the electron density map. 
In a standard plate or frame (electronic plate) the reflections corresponding to the low resolution 
information are those close to the centre and we can imagine in the plate circles of different radii 
that correspond to different resolutions that can be easily calculated using Bragg’s law. The larger 
the radius the higher the resolution. And so in general we speak of  5.0, 3.5 o 2.0 Å resolution maps. 
Electron density maps calculated at different resolutions contain different amounts of information 
and there is a minimum threshold below which tracing a new chain becomes very difficult if not 
impossible. This limit is usually placed at around 3.0 – 3.5 Å. If the phases are reasonable and the 
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resolution is high enough tracing the chain is, in general not difficult. Having information on the 
amino acid sequence of the protein is very important although not essential if the resolution is say 
higher that 2.0 Å. Some amino acids can be very easily distinguishable whereas others are not, for 
example the electron density of the side chain of a threonine and a valine look pretty much the same 
and in any attempt to produce a “crystallographic sequence” the positions where those amino acids 
are located will be ambiguous. In general though sequence information tends to be readily available 
because many proteins are cloned and recombinantly expressed ad if the clone is available so is the 
sequence. If the resolution of the maps is very high tracing the chain can be a very easy task that 
can be done automatically by the available model building software.  
In every case the model which is fit to the density is a virtual model produced by the existing 
software, that after three decades of evolution, has become very flexible and sophisticated. There 
are several valid options of freely available model building software and most laboratories have 
more that one choice so that the operator can select the program he/she likes best. The relevant 
references are given at the end of the chapter. The task of model building consists of fitting a model 
to the calculated density, the first can be manipulated while the second cannot. All the graphic 
programs have dictionaries with the low energy conformers of the side chains of all the amino acids 
that the operator can choose to build the model. The time taken by the entire process is very 
strongly dependent on the quality of the maps and the experience of the person carrying out the 
task. 
 
8. Structure refinement 
If a model of the macromolecule has been built then we have the coordinates of all the atoms of the 
protein present in the asymmetric unit of the crystal and therefore we can calculate any structure 
factor using a modified version of the equation we have seen before, 
 

    Fhkl   =  Σ fi e 2πi(hxi+kyi+lzi)  
              i   
 

  Fhkl   =  K  Σ fi  e- (Bi Sen2 θ)/λ2     e 2πi(hxi+kyi+lzi)   
 
Where K is a proportionality constant and the atomic scattering factor fi has been corrected for the 
thermal motions that are normally present in every crystal, Bi is called the thermal parameter of 
atom i,  θ is ½ the scattering angle of the reflection and λ is the wavelength of the X-rays. 
The thermal parameter is adjusted together with the coordinates and it is related to the amplitude of 
the atomic vibrations about the equilibrium position according to the equation  
 
     B = 8 π <U>

2
 

 
Where <U>

2
 is the mean square amplitude of the atomic vibrations. 

If even a single atom is moved in the unit cell, all calculated structure factors vary. The process of 
refinement consists in moving slightly the atoms in the model so as to minimize the difference 
between the calculated and the observed structure factor amplitude.  
The quantity that is calculated to follow the progress of refinement is called the R factor and it is 
defined as follows: 

     Σ   | Fobs (h,k,l)  - K Fcalc(h,k,l)| 
     R =     ------------------------------------------ 
                    Σ  | Fobs (h,k,l) | 
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where Fobs is the observed structure factor amplitude, Fcalc is the calculated structure factor 
amplitude, K is a scale factor and the summations are performed over all the indexes h, k, and l. 
The problem of finding the set of parameters of the model that give the best fit to the experimental 
data is normally approached in Crystallography using the least squares method and minimizing the 
quantity 
 

   S  =     Σ  w (h,k,l)   [ Fobs (h,k,l)  - Fcalc(h,k,l)]2 
 
where w (hkl) is used to weight the differences using as a criterion for example the precision of the 
measurement, the summation is extended over all the reflections that have been measured and each 
Fcalc depends on all the parameter of the model 
For an accurate definition of the parameters the method requires that the system be largely over-
determined, i.e. the ratio of observations to parameters (coordinates and B factors) has to  be of the 
order of 10 or higher. Whereas this ratio is, in general, easy to reach when dealing with small 
molecules it is very seldom attained when dealing with macromolecules. 
Thus a fundamental question to be solved in protein crystal refinement is that normally the number 
of observations available, the structure factor amplitudes measured, is not adequate for an efficient 
use of the least squares method of crystallographic refinement. In dealing with this problem, there 
are two ways to improve the ratio of observables to parameters i.e. either increase the observables 
or reduce the number of parameters to be determined. In the second case what is done is to move 
large portions of the molecule, even the entire molecule and not individual atoms. In this way the 
number of coordinates is substantially reduced. The method is called constrained or rigid body 
refinement and is widely used in protein Crystallography. For example when a structure is solved 
by molecular replacement the first step is normally to perform rigid body refinement of the entire 
molecule to make sure that the position of the molecule in the unit cell is optimized. Rigid body 
refinement of elements of secondary structure and side chains have also been found to be very 
useful. 
The alternative to reducing the parameters is to increase the observations that is to include 
observations from other sources different from the structure factor amplitudes, typically geometric 
restraints based on the known distances and valence angles of the amino acids, that are very well 
determined and are not expected to vary beyond certain values in the new model being refined. 
Thus to the equation with the summation of the differences between Fobs and Fcalc the following 
summation can be added: 
 
 

   S’  =     Σ  wj [dj ideal – dj calc ]2  
 
where dj ideal is an ideal value for a specific distance dj and dj calc  is the value calculated from the 
model and the  weighting wj factor is included to take care of the standard deviation of the 
distribution of the distances dj. 
Similar equations can be written for other geometric restraints, torsion angles, deviations of the 
peptide bond from planarity, the volume of chiral groups, etc. 
When equations such as the example given before are used in the least squares refinement the 
refinement of the structure is said to be restrained.  
Macromolecular refinement can also be done using molecular dynamics and in this case what is 
restrained is the energy of the system and the simulation usually spans a very short period of time. 
The simulation starts with a set of coordinates and produces a family of conformations with the 
constraints imposed by the X-ray data which reduce this number to those that correspond to lower 
values for the R factor. 
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9. Model validation. 
In addition to the conventional R factor defined above, a much more reliable indicator of the quality 
of the model is the Rfree, defined as the R factor but applied to a subset of reflections that are not 
used in the refinement of the model. The subset is a limited portion of the data, usually between 5 
and 10% of the total reflections, chosen at random before the refinement begins and used only to 
calculate the Rfree. Its value is higher than the conventional R factor calculated with the data used 
for refinement and it is a much better indicator of the absence (or presence) of any major errors in 
the model. In addition the deviations from ideality of the bond lengths, torsion angles, planarity, etc 
are important indicators of the model quality and there is an overall consensus of the values that can 
be accepted for all these parameters. 
Another very useful indicator of model quality is the Ramachandran plot, which is a plot of the ψ vs 
Φ angles, the polypeptide chain backbone angles for every residue in the protein model. The two 
angles are defined in the following figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
and every amino acid in the sequence gives one point in the plot. Steric hindrance does not allow 
every possible combination of the ψ Φ  values and some of them are more favourable than others. 
Thus the space in the Ramachandran plot can be divided into different areas: most favoured 
combinations, additionally allowed, generously allowed and forbidden regions in the plot. Prolines 
and glycines can occupy special areas in the plot, the first because the possible angles are more 
strictly restricted and the second because, they are less bulkier than the average amino acid and 
therefore can have ψ Φ combinations that are not allowed fro other amino acids. Outliers and 
residues with a very unusual combination should be very carefully checked and eventually 
corrected.  
Another control that should be made after refinement is to check the values of the B factors of the 
different atoms of the model. The atoms with high B values are those that on the average move 
more about their equilibrium position, and we expect them to be those of the amino acids at the N 
and C terminus of the chain and those of the side chains exposed to the solvent. We also expect 
those portions of the chain that we know are more flexible to have higher B values. If this is not the 
case we should have an explanation, maybe the presence of intermolecular contacts in the crystal 
that reduce the mobility. Also unusually high B values may be an indication of disorder in the 
crystals or incorrectly built portions of the model. 
At the end of the refinement it is a standard practice to include solvent molecules in the model; the 
result is that the R factor is invariably lowered although sometimes the same is not true for the 
Rfree.  The number of solvent molecules in the model should not be exaggerated and their position 
should be reasonable in the sense that their distance from the protein should be such that a particular 
contact with the protein atoms should explain the presence of the solvent molecule there.  
The validation process uses software that is freely accessible and there are servers that will do it 
automatically, a step that is also done at the time that coordinates and structure factors are deposited 
in the Protein Data Bank. 
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10. The difference Fourier synthesis and the study of protein function 
Once the structure of a protein has been solved and refined, it becomes possible to undertake 
functional studies based on the existence of the new model. In particular studies of the association 
of proteins with small molecules, substrates, products or transition state analogues in the case of 
enzymes or ligands if dealing with transport proteins become feasible and relatively easy to carry 
out.  Such studies are very informative and give much useful information on the function of the 
protein. In particular if the crystals of the unliganded and liganded protein are isomorphous the 
difference Fourier technique can be applied. The co-crystals, i.e. those containing the ligand can be 
prepared by soaking the apoprotein in mother liquor containing the small molecule of interest or 
alternatively by co-crystallizing the protein in the presence of the small molecule. 
The addition of the small molecule to the crystals of the macromolecule changes the electron 
density so that  
 
 
     ρ

PL = ρP  +  ρL  
 
where ρPL is the electron density of the macromolecule-small molecule complex, ρP  is the electron 
density of the protein and  the electron density of the ligand. 
Similarly to what we saw for isomorphous heavy atom derivatives if we we Fourier transform this 
equation the result is that  
 
     FPL  =  FP + FL 
 
what we would like to have is the electron density of the ligand in the unit cell of the 
macromolecule so that a model of the small molecule can be built and the interactions with the 
macromolecule defined.  
The fundamental assumption in these studies is that FL is relatively small so that, the phase of the 
native protein does not change very much in the complex and the phase of FPL can be approximated 
by that of FP and in the difference Fourier equation 
 

    ∆ρ =   1/V   Σ Σ Σ  [ | FPL|  - | FP| ] eiφp  e2πi(hx+ky+lz) 
                        h  k  l 
 
 
φp, the phase of the apoprotein can be used to calculate the difference electron density 
corresponding to the presence of the ligand in the co-crystals. 
The extra electron density present in the crystals of the complex is then interpreted in terms of the 
ligand associated with the macromolecule and, since a model of the apoprotein in the same crystals 
is available. The side chains of the amino acids interacting with the ligand can be identified. 
In some cases the presence of the ligand produces very drastic conformational changes in the 
macromolecule or affect the intermolecular contacts  which can lead to the crystals cracking or 
eventually dissolving. If that is the case the only way out is to attempt to prepare the complex in 
solution and then crystallize it. Then chances are that, if crystals can be grown, they will not be 
isomorphous and if so the new structure will have to be solved from scratch but most likely the 
phase problem will be solvable using molecular replacement. 
This rather simple technique has produced an enormous amount of biochemical information, 
sometimes very difficult if not impossible to obtain with other methods. An example is the presence 
of additional hydrophobic-binding sites present on the surface of a small transport protein molecule 
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which were suspected to exist (in addition to the canonical sites that were better characterized) but 
were only proven to be there when the techniques described here were applied to co-crystals of the 
protein. 
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