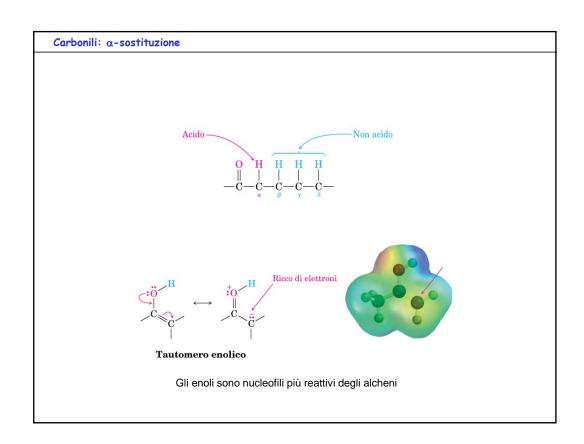


Carbonili: a-sostituzione 99.999 9% 0.000 1% 99.999 999 9% 0.000 000 1% Cicloesanone Acetone


Formazione di un enolo acido-catalizzata. La perdita di H+ dall'intermedio protonato può avvenire

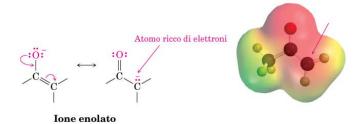
Carbonili: α -sostituzione

dall'atomo di ossigeno così da rigenerare il tautomero chetonico, oppure dall'atomo di carbonio in a per dare l'enolo.

Carbonili: α -sostituzione

Formazione di un enolo base-catalizzata. Lo ione enolato intermedio, ibrido di risonanza di due forme, può essere protonato sia al carbonio, così da rigenerare il tautomero chetonico, sia all'ossigeno, dando il tautomero enolico.

MECCANISMO: Reazione di α-sostituzione al carbonile. Il catione formatosi in un primo tempo perde H * e rigenera un composto carbonilico. Una coppia di elettroni dell'atomo di ossigeno dell'enolo attacca un elettrofilo (E*), forma un nuovo legame e genera un intermedio cationico stabilizzato dalla risonanza tra due forme. Il distacco di un protone dall'ossigeno crea un nuovo gruppo C=O e genera il prodotto neutro di α-sostituzione.


Acidità dei composti carbonilici

Meccanismo di formazione di uno ione enolato per strappo di un protone da un composto carbonilico. Lo ione enolato è stabilizzato per risonanza, e la carica negativa (rosso) è condivisa dall'ossigeno e dal carbonio in α , come indicato dalla mappa di potenziale elettrostatico.

Forme di risonanza equivalenti

Acidità dei composti carbonilici

Reattività degli ioni enolato

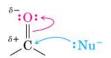
Spesso gli enoli non si riescono a isolare ma vengono prodotti come intermedi.

Gli enolati al contrario possono essere ottenuti puri

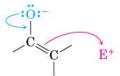
Gli enolati sono anche più reattivi e migliori nucleofili

Reattività degli ioni enolato

I due modi di reagire di un enolato con un elettrofilo, E $^+$. La reazione al carbonio, che forma un composto carbonilico α -sostituito, è più comune.


Reattività degli ioni enolato

$$\begin{array}{c} \overset{\mathbf{O}}{\parallel} \\ \overset{\mathbf{C}}{\leftarrow} \overset{\mathbf{NaOH}}{\longleftarrow} \\ \overset{\mathbf{C}}{\leftarrow} \overset{\mathbf{O}}{\leftarrow} \\ \overset{\mathbf{C}}{\leftarrow} & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\parallel} \\ \overset{\mathbf{Br}_2}{\longleftarrow} \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\parallel} \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\parallel} \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & \\ & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ & \overset{\mathbf{O}}{\leftarrow} & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ & & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ & & \\ \end{array} \begin{array}{c} \overset{\mathbf{O}}{\leftarrow} & & \\ \end{array}$$


alogenazione

alchilazione

Reazioni di condensazione

Il gruppo carbonilico elettrofilo viene attaccato da nucleofili

Lo ione enolato nucleofilo attacca elettrofili

Reazioni di condensazione

Reazione di condensazione carbonilica. Un reagente carbonilico (il donatore) agisce da nucleofilo, mentre l'altro (l'accettore) agisce da elettrofilo.

Reazioni di condensazione

La reazione aldolica, una tipica condensazione carbonilica.

retro- addizione nucleofila

tautomerizzazione

tautomerizzazione

Ammine

derivati organici dell'ammoniaca NH_3 così come gli eteri sono i derivati organici dell'acqua

Presenti nel regno vegetale e animale

(alcol terziario) (ammina terziaria) (ammina primaria)

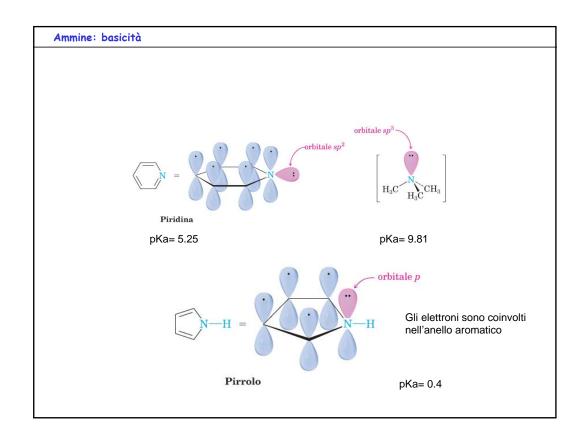
Primario, secondario, terziario hanno un significato diverso

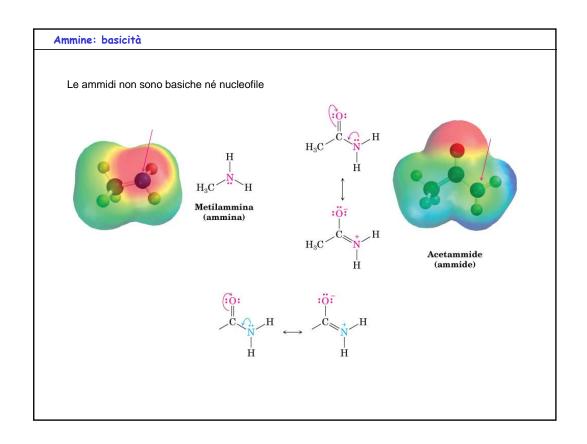
 ${\bf Cicloesilammina}$

1,4-Butandiammina

tert-Butilammina Ciclo
Sostituente alchilico + suffisso ammina

Ammine: nomenclatura


oppure: alcan(o)ammina


4,4-Dimetilcicloesanammina

$$\begin{array}{c} NH_2 \\ CO_2H \\ CH_3CH_2CHCO_2H \\ NH_2 \\ NH_2 \end{array} \qquad \begin{array}{c} CO_2H \\ NH_2 \\ H_2NCH_2CH_2CCH_3 \\ NH_2 \end{array}$$

Acido 2-amminobutanoico Acido 2,4-diamminobenzoico 4-Ammino-2-butanone

Composti polifunzionali: sostituente amminico della molecola di base

