Diffusion MRI:
local reconstruction



B \What is local reconstruction?

B Methods that focus on the angular information

» Diffusion Tensor Imaging
» Q-Ball Imaging
» Spherical Deconvolution

» Spherical Harmonics representation

B Methods to better characterize the tissue microstructure

» Multi-compartment models, e.g. Ball&Stick, CHARMED, NODDI etc
» Axon density and diameter mapping, e.g. AxCaliber and ActiveAx

» Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework

2

Biomedical Image Processing Alessandro Daducci



What is “local reconstruction”?

B Class of algorithms whose aim is to estimate features of
the neural tissue inside each voxel
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What is “local reconstruction”? (1/2)

B Class of algorithms whose aim is to estimate features of
the neural tissue inside each voxel
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What is “local reconstruction”?

B Can be divided in two main categories

Diffusion is a 3D process: thus the
signal acquired in each voxel is 3D

(1) Focus on angular information contained in the diffusion signal

- Reconstruct the geometry of the fiber bundles inside a voxel
e.g. number of fibers, their volume fraction, orientation...

- Tractography, connectivity estimation...

(2) Acquire and use also the radial component of the signal

— More advanced features of the tissue microstructure
e.g. axonal diameter and density

0 2 4 6 8 10 12 14 16 18 20
Axon Diameter (um)
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Diffusion MRI:
reconstruction of fiber orientations



Outline of this part

@ Diffusion Tensor Imaging (DTI)
» From ADC to the diffusion tensor

» What information we get from it
» How to measure it

» Multi-tensor model

B Spherical Harmonics (SH) representation

B Q-Ball Imaging
» Numerical method

» Analytical method

B Spherical Deconvolution

» Performed in SH space

» Performed in signal space
6
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Diffusion Tensor Imaging (DTI) (1/4)

A |f displacement of molecules is Gaussian .
S(b) = Spexp (—b- ADC)

0.6

S(b)/So

» ADC : Apparent Diffusion Coefficient

fast diffusion, -
high ADC —

» b= (vGS)?T : degree of diffusion weighting

- 1=A-0/3 is the diffusion time
- G, A and 0 define the applied diffusion sensitizing gradient

0 250 500 750 1000 1250 1500 1750 2000
b-value

= Y is the gyromagnetic ratio

» S(b) and So : signal with/without diffusion weighting

B ADC estimated with two measurements (at least)

B ADC strongly depends on the direction we measure it
i.e. direction of the sensitizing gradient '

» Asingle ADC is inadequate in complex tissue

» More complex models are needed

i/l ik A
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Diffusion Tensor Imaging (DTI)

B Anisotropic diffusion coefficients can be summarized by

Dix ny Dy,
D = Dy Dy Dy
Dy, Dyz Dz,

» D is a 3x3 positive definite symmetric matrix

» 6 degrees of freedom (Dxy, Dxy, Dxz, Dyy, Dy, D::)

» Diagonal elements : diffusivities along three orthogonal axes

» Off-diagonal elements : correlation between displacements along those axes

@ Signal decay as function of gradient direction

S(gk,b) = Soexp (—bgj Dgy) S(ak,7) = Soexp (—7 qj, Dax)

» g is the gradient orientation on the unit sphere
» qr = v0Ggk is the diffusion wavevector
» b =g’ with ¢ =|q| =~G6

8

Biomedical Image Processing Alessandro Daducci



Diffusion Tensor Imaging (DTI)

@B Diffusion tensor usually represented as an ellipsoid

» Computed from the spectral decomposition of D:

- Orientation of the axes is given by the three eigenvectors, i.e. €1, €2, &

- The diffusivity along each axis is given by the eigenvalues, i.e. A1, 12, A3

- By convention, A1 212> A3

» Surface = distance of a molecule diffusing from the origin with equal probability
- NB: distance/diffusivity relation by Einstein’s equation: (r*) = 6Dt,

B Spectral decomposition = change of reference frame

chm D:L'y sz d it )\1 0 0
) Dy, gyz ; €T 0 Ag ;\) '3 52[51752753]T

~

spectral
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Diffusion Tensor Imaging (DTI)

B Examples
> =/

Z 8 325 3.90 0
0 390 7.75 0
0 0 0 1

B The principal eigenvector (€1) is assumed to be co-linear
with the dominant fiber orientation within the voxel

[l

—
oo 3
o -0
- o o

» Basic principle that will be used in tractography
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From diffusion tensors to tissue properties (1/2)

Mean Diffusivity (MD) Fractional Anisotropy (FA)

jotdet s (A =22+ (M2 = A2+ (A3 — )2
A4 A3+ A3

FA map can be color coded based
on the principal direction, i.e. &1
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From diffusion tensors to tissue properties (2/2)

B New contrast: possible to delineate major fiber bundles

Corpus Callosum

Superior
Longitudinal
Fasciculus

\

uncinate

fasciculus \ ;
inferor —

longitudinal

fasciculus q
/ 3 . —

middle cerebellar Transverse

peduncle fibers
cortico-spinal tract
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(2/2)
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How to measure a diffusion tensor?

B Signal-Tensor relationship in matrix form:

Y = BD
» Observed signal : S(gk,b) = Soexp (—bgl Dgx)
. . i T
» Diffusion Tensor : D=[D,, Ds, D,. Dy, D,. D.]
» Log-transformed signal : Y = [—log (S(g1,b)/S%) --- —log(S(gn,b)/S)]"
» b-matrix : - . L : 1T
b, 201, 2bl, Bl 2bl, Bl e
2 2 2 2 2 2 @ zzx — U "9z "9y
bxx bey bez byy Zbyz bzz uég . N ) o1 T bk _bgkz gk
B — . . . 2o >\o\ gr = [gm gy gw] i v Y
iz s
BN 2bh 26N bl 2b) b

6 unknowns

B D can be estimated using least squares
D= (B”B) B’Y

E— e ————
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Major problem of the Tensor model

B Inability to model complex fiber configurations

Fiber Configuration

Parallel

Fanning

Bending

Crossing
(acute)

Crossing
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Multi-tensor model

B Simple generalization of DTI

» Extends the model to a mixture of M tensors

S(gk,b SOZfz exp bgk zgk)

-+ = + =

R

Combined p
- <B

'=

Fiber Configuration

. N Ot e S Compartments p DT
» M=1 = DTI

» Assumptions:

Voxel contains M distinct populations of fibers

Each population has Gaussian diffusion (no exchange)

- The number M must be known a priori
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Numerical Q-Ball Imaging (QBI)

B DSl recovers the full displacement distribution (EAP)

Qy

=

Samples of £ Samples of P Radial projection ODF
(MR signal) (propagator)

» Grid sampling of DSl is very time consuming

B QBIl approximates the ODF sampling
the signal only on spherical shell

grid sampling spherical sampling

» The approximation is computed using the Funk—Radon transform (FRT)

ODF () = /

P(r)rdr ~ / §(+Tq)E(q)dq = FRT[E| (%) r=|r| and # =r/r
R+

lal=1 E=5/5%

» Definition : the FRT of a spherical function E along orientation T is the great circle
integral of E on the sphere defined by the plane perpendicular to T through the origin

» NB: signal £ sampled with a single b-value (_
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Numerical Q-Ball Imaging (QBI)

B Procedure

Samples of £
(MR signal)

Interpolated £ FRT[ E ] ODF

B Notes

» The procedure is rather slow

» The approximation does not recover the ODF, but a blurred version of it

box ok kbt t o

Oy . ( X 9 @ ét- 4‘ * * * ‘* ODFag

» This is due to the missing 2 term in the radial integral

- The low-frequencies of g-space are weighted more than higher frequency
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Spherical Harmonics (SH) representation (1/2)

B Orthonormal basis for complex functions on the sphere

2¢+1 (£ — m)! ; R
m _ m img

» P : associated Legendre polynomials

» ¢ : order of the SH

IS A
nnon
o @ 8
W8
£ 2
5 5
T o

» Vk </{¢, —k <m <k : phase factors

B In diffusion MRI most objects are real and symmetric
e.g. signal on one shell, ODF, fDOF

» Modified basis for real and symmetric functions
Vv2-Re(Y™), if —k<m<0
Y, =1 ¥ ifm=0
V2 -Img(Y™), if0<m<k

> Indexj= (kK2 +k+2)2+m Signal on ODF

» Symmetry given by choosing £k =0,2,4,...,/
» If orderis ¢,then R = (£ + 1)(¢ + 2)/2 basis functions

18
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Spherical Harmonics (SH) representation (2/2)

@ How do they look like?
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Spherical Harmonics (SH) representation

B How do they look like? Bl

=1 % 8 e

SR S S

m=-2 m=-1 m=0 m=1 m=2

B Representing a function F'in the SH space

R matrix form
F(0s, ) = ¢;Y;(0:, ) F —YC
Jj=1 — ——

> F & 82 (i.e. function on the sphere) is a real and Symmetric

» F=[F(01,61),...,F(On, ¢N)]Tcontains the N measurements of F

» Y contains the R basis functions evaluated at the N sampling points:
( Y1(61,1)  Ya(01,¢1) -+ Yr(61,01) ) ‘ -
Y = : : : N
YilOn,on) Yo(On,oNn) -+ YR(On,éN) % (05, é)
» The coefficients C = [y, c1, . . .,cR]Tcan be estimated using least squares

C=(Y'Y)'Y'F
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Analytical Q-Ball Imaging (QBI)

B Based on the following theorem

Corollary of the Funk-Hecke Theorem: Let §(t) be the Dirac
delta function and Hy any SH of order ¢. Then, given a unit

vector u
f SuTW)H, (w)dw = 27P,(0)H, (),  [14]
wl|=1
0 ¢ odd .
> PO)=y L pl85t-1) o are the Legendre polynomials of order € (evaluated at 0)
2.4.6..-4

» The great circle integral of SH basis functions can be computed analytically

B If we express £ in SH space = FRT has analytical form

Z c;Y;(6s, $:) —re

EZO “ “ f

’ (=1 \ °°’.r 8. i o
o % x| 4 8 =
FRT[E](F) = / 5(f-Tq)E(q)dq:ZR:27rng (0)¢;Y; () m] mj mj mj mj

la|=1 j=1

—

» No need to interpolate, numerically integrate etc... (slow)

» We then have a closed form to compute the ODF (fast)

21

Biomedical Image Processing Alessandro Daducci



Analytical Q-Ball Imaging (QBI)

B Procedure to reconstruct the ODF in a voxel
1) Construct the two RxR matrices P and L

P— Legendre polynomials NB: forj=1,2,..,R I = > 5 Laplace-Beltrami
- 27!Pe,-(0) ’ of order ¢; £,={0,2,2,2,2,2,4,4,...} - Ej (€j+1) ) smoothing
2) Express the signal £ with SH Vi, ¢1)  Yal0r,61) oo YaBrg)\
Y = : : H : evaluated at the same N
_ ' ' ' ling di i fE
Ezm — (YTY 4 )\L) 1YT E Y1(9N,¢N) Y2(9Ny¢N) YR(9N,¢N) sampling directions o
—

Used to make the fit more robust

(A controls regularization strength) Efm — [Cl7 ey Ciyens CR]T Signal in SH space

3) Compute the ODF (in SH space)

Ofm = PEgm Oﬁm = [Cl, ceey Gy ,C/R]T ODF in SH space

4) Evaluate the ODF on the sphere
NB: Y’ is constructed similarly to Y but

0= YIOgm we can change the set of directions
where we want to evaluate the ODF

B Notes

» All operations are linear

» We can precompute T = P(YTY + )\L)_lYT and then apply it in each voxel

22
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Spherical deconvolution (1/4)

B Basic idea: signal as a convolution on the sphere
L ® ¢ ¢ V' & '
f K J1Kg, [2K

» K& S? : signal response (kernel) corresponding to a smgle fiber population

» /& 5% : fODF, i.e. continuous representation of the volume fractions

» Mathematically: E(g) = Kg,.(q)f(a)dg

lal=1

where Kg, is the response function reoriented in direction gy,

B Goal: recover the fODF f by deconvolving the signal £ with K

B Main assumptions
» No exchange between compartments (contributions are independent)

» The procedure requires a model for diffusion in a fiber population to obtain K
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Spherical deconvolution

B Estimation of the response function K

» Fixed to a known value, e.g.
- tensor with A, =1.7-102 mm?/s and A, = A, = 0.3:107> mm?/s (humanes, in vivo)

» Estimated from the data, e.g.

- Fit DTl to the data and identify areas with single fiber population, e.g. FA > 0.7
- Average the signal in all those voxels

B Reconstruction of the fODF by deconvolution

» 1 is usually expressed as a linear combination of basis functions

f(®) = Zj wjfj (P) e.g. spherical harmonics (SH)

» The measurement process can thus be expressed as
y=®x+n

Y is the vector containing the samples of the signal £ and 7 is the acquisition noise
= @ models the convolution operator with the response function K
= X s the vector containing the coefficients of the fODF f

» fODF reconstructed using (regularized) least squares of the form

. e
argmin JIbx—yl2 +N  ¥(x) Optional. )
2 N’ (depends on the specific problem/model)

data fitness regularization
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Spherical deconvolution

@ Diffusion Basis Functions (DBF) decomposition

» Reconstruction expressed as a mixture of Gaussians

- The response function K is a Tensor
- Estimate it’s diffusivities (A1, A2, A3) as discussed before

- Rotate K along a given set of orientations

» Can be seen as an extension of Multi-Tensor

» Key point
- These represent the possible fiber populations of the voxel...
P P pop Only 1 fiber population 2 fiber populations
- ...but only few of them will actually correspond is present in the voxel is present in the voxel

to the actual fiber populations present the voxel

» The fODF is estimated using non-negative €1-regularized least squares

arg min||x||,; subject to || x—y|, <€

x>0

= -, promotes a sparse solution, i.e. few nonzero coefficients

volume fraction

- The positivity of the fODF is embedded in the optimization problem

» Principal diffusion directions given directly by x coefficients e

possible orientations
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Spherical deconvolution

B Constrained Spherical Deconvolution (CSD)

» Reconstruction expressed in the Spherical Harmonics basis . u
v_ ( Y1(91’¢1) Y2(6:1;¢1) YR(9'1,¢1]) — r “..»» .80, '—.
Yi6n.6x) YolOndw) - V(6w on) = Sy
> PrObIem o o . m=-] m=-j'm=j m=1T m=2

- The fODF is a positive function (represents volume fractions)
- With least squares and SH basis there’s nothing to enforce this requirement

- The weights of some SH basis functions can be negative

» This issue is mitigated by iteratively refining the estimation of the fODF

> 2 n 2 Specifi larization f
fiy1 = arg min ll?fi - bH\+ 2IILf I ths particular problem

- fi is the fODF estimated at iteration i build fromY  signal samples

. P U < T . . .
- The matrix L,,, = { 6”” :,,,21 penalizes those orientations §
in the fODF that fall below a given threshold (1) /7\

- The matrix P maps f; (SH coefficients of the current FOD estimate) onto negative values
the amplitudes u along a given set of directions

» Principal diffusion directions need to be extracted from f (maxima estimation)
26
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High Angular Diffusion Imaging (HARDI)

B Vast literature of methods

» They differ in a great deal of aspects

- Target feature of interest to estimate, e.g. ODF or fODF
- Assumptions and requirements, e.g. cartesian or multiple shells

- Reconstruction algorithm and optimization

B Survey and comparison: see (Daducci et al, 2014)
» Simulated data with known ground truth

» Metrics: accuracy in number and orientation of fibers

& € © s
sri | :
3+ :
P i -
30! i ;
st ] :
20 |
| 1 ¥ X O
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i i .
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Diffusion MRI:
microstructure imaging



Outline of this part

B Multi-compartment models

» Ball&Stick
» Composite hindered and restricted model of diffusion (CHARMED)
» Neurite orientation dispersion and density imaging (NODDI)

B Axon density and diameter mapping

» AxCaliber
» ActiveAx

B Accelerated Microstructure Imaging via Convex Optimization

» Framework to accelerate the fit with previous methods

29
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Ball&Stick

B Assumes that water molecules belong to two populations

» A restricted population of water molecules in and around axons

» A free population that does not interact with fibers

+d = ‘+‘

B Generalization of the Multi-Tensor (MT) model

» MT uses tensors to model multiple fiber populations

voxel

» B&S uses tensors to model two distinct compartments

- Free water is modeled as isotropic tensor, i.e. Dvan = diag( [Avall, Aball, Abai] )

- Axons modeled as ideal cylinders with zero radius, i.e. Dsick = diag( [Astick, 0, 0] )

B Oversimplified...but pioneer of multi-compartment models

30
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Composite hindered and restricted model of diffusion (CHARMED)

B Further distinction between...

Hindered

» Molecules that are restricted within the axons
i.e. intra-axonal space

» Those that are hindered in the space around them
i.e. extra-axonal space

B Model of the signal

» Axons are approximated by parallel cylinders with a fixed radius

(signal given by analytical expressions for particles diffusing within cylindrical boundaries)

Restricted

» Gaussian process (anisotropic) assumed in the extra-axonal space

(anisotropic tensor)

» Signal modeledas FE(gk,b) = fnEn(8k,0) + frEr(8k, D)
XL z

relative volume fractions

B Radial sampling required to estimate this model’s parameters

» Hindered model explains the Gaussian signal attenuation observed at low b-values

» Restricted non-Gaussian model does so at high b-values

31
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Composite hindered and restricted model of diffusion (CHARMED)

B Further di

» Molecules
i.e. intra-axone

» Those that

i.e. extra-axon:

B Model of

» Axons are

(signal given by ai

» Gaussian |

(anisotropic tensc

» Signal moc

B Radial sar

» Hindered |
» Restricted

Biomedical Image Processing

displacements

diffusion time

Hindered

Restricted

)\arameters

t low b-values
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Neurite orientation dispersion and density imaging (NODDI)

B Developed to enable estimation of useful microstructural
information also in clinical settings, e.s. 10-15 min and low G

» Axons are assumed as “ideal cylinders” with null radius

» Model optimized to describe the signal in terms of
- Volume fractions
- Orientation dispersion of the axons

- Partial volume with CSF

B This model tries to solve some of
the ambiguities of DTI scalar maps

e.g. axonal

sprouting

e.g. axonal /
degeneration

ADC

Biomedical Image Processing

Alessandro Daducci



AxCaliber

k I —_— k:l.()jﬂ:é.()
@ Extension of CHARMED e
» Axon radii are not fixed to a given value as before... xr___ TR
25 ES\ AN E
» ..but they are estimated as well 20f 9% \ ]
15 ' -
» Explicitly modeled using Gamma distributions 12‘ -
(as observed from histology) J . '
1 2 3 4 5 6 7 8 9

B Allows estimation of the axon diameter with diffusion MRI

histology i AxCaliber

15
15
Optic
-r Sciatic
0.12 124

-,
Optic Nerve =

"0 2 4 6 8 10 12 14 16 18 20

0 4 8 12 16 20
Axon Diameter (um) Axon Diameter (um)

B Notes

» Very Iong acquisitions, i.e. need to probe many diffusion times
» Requirements met only in preclinical scanners, e.g. G.,=1200 mT/m vs 40 mT/m in clinics

» Need to know a priori the orientation of the fascicle to probe
33
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B Specifically designed to overcome previous limitations

B Four compartment model

» Restricted and hindered water pools as CHARMED/AxCaliber \ ( ;

ZeppeI;\

but axons have a diameter to be estimated S
» Free water characterized by isotropic diffusion °
» Stationary water trapped within small structures, v a

e.g. glial cells, or in ex-vivo tissue Ball

B Allow mean axon diameter mapping in the whole brain

» One mean diameter per voxel, o, no distributions of diameters as AxCaliber

» Index o’ is orientationally invariant:
less diffusion times are acquired, but for each value many directions are acquired

» No need to know a priori the direction of the fascicle

» o’ is not the actual axon diameter, but correlates with histologic estimates
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ActiveAx

B Specifically designed to overcome previous limitations

Axon diameter Fibre density

[axons/um®]
» No need to know a priori the direction of the fascicle

» o’ is not the actual axon diameter, but correlates with histologic estimates
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B Specifically designed to overcome nraviniic limitatinne
10f L

. ’ { )
Axon diameter ¢ 3
A X
6 I
g
=
8 4}
. O
=
3
A
Al
D
<
0 L
—=— Monkey 1
—&— Monkey 2
x Histology
% Predictions

Gl G2 G3 Bl B2 B3 I SI 82 S3
» No need to know a priori the direction omunemascICIEm

» o’ is not the actual axon diameter, but correlates with histologic estimates
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The AMICO framework (1/2)

B Acronym: Accelerated Microstructure Imaging o
via Convex Optimization (AMICO) )

B Common limitation of previous techniques:
reconstruction uses nonlinear optimization

» Algorithms can be trapped in the many local minima

» Computationally very expensive
e.g. fit NODDI to one brain =65 hours

B I|dea: accelerate the fit of previous multi-compartment models
by splitting the reconstruction into two simpler sub-problems:

» Estimation of the intra-voxel fiber geometry

. _ , _ ) NB: each sub-problem can be
i.e. number and orientation of fiber populations

solved independently and using

» Estimation of their microstructure properties very efficiently linear algorithms
e.g. axon diameter and density

35
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The AMICO framework

B Two-step procedure

(1) Identify the main diffusion direction in every voxel with classical algorithms

¥ E) [/

(2) Construct a dictionary along this fixed direction by varying the signal responses
to model different possible micro-environments in the voxel

\ [ ] signal response for

i ~_ y — AIC | AEC | AIS’O ]w\_l_ 77 isotropic diffusion

[
V4 N\
[’/"/ .".'.!‘ "'] [ ;f!. oo ]\ contributions of

every compartment

3

intra-axonal extra-axonal
signal responses signal responses

B GOAL: find the contributions of each compartment, x,
(inverse problem) using convex optimization

argmin lII(I)x—yu% 4N P(X)
x>0 \2 , N~
data fitness regularization

36
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Example: linearization of ActiveAx

B Construction of the dictionary
» Ajc explicitly models axons with different radii
» Agxc explicitly models distinct environments between the axons (e.. packing)

» Aiso accounts for isotropic contributions

/\ [ ] signal response for
[AIC | AEC | AISO ] isotropic diffusion

T -1 “TaEE -

signal responses for signal responses for
axons with different diameter different hindered environments

B Regularization

» We teStEd Several formS Of regU|arizaﬁ0n (sparsity, group sparsity etc)

» The most common (Tikhonov) was enough to improve condition number of A

. Fo rmulation data fit regularization

N )\
argmin|=||Ax — y||3| +| 5| Ixl|3
S B 2
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Example: linearization of ActiveAx

B Computation of microstructure indices

» Let’s partition x = [ x" | x" | x' ] into the corresponding compartments

(r=restricted, h=hindered, i=isotropic)
» Let Vi, Nn,Ni be the number of atoms in Aic, Arc, Aiso
> Let R; be the radius of the axons corresponding to the /' atom in Aic

N orp

- 3
intra-axonal o j=1
volume fraction I Nn oh
Z_j:lxj T Zj:le
IR
mean qd = &=l I
axonal diameter a N, o1
Zj:lxj
_ ;4
axonal density p =

38
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Example: linearization of ActiveAx

B Comparison to original implementation

» 44 different substrates used in (Alexander et al, 2010)

SNR =20 SNR =0OO
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Example: linearization of ActiveAx

B Comparison to original implementation
» Fixed monkey brain, Gmax = 140 mT/m
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Example: linearization of NODDI (similar formulation)

B Comparison to original implementation
» Human brain, 2 shells (b=700 and b=2000 s/mm?), Gmax = 40 mT/m

NODDI,,, NODDI,_,, NODDI

{na regularization)

orig amico

Biomedical Image Processing Alessandro Daducci






