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Outline

What	is	local	reconstruc7on?	

Methods	that	focus	on	the	angular	informa3on	
▶ Diffusion	Tensor	Imaging	

▶ Q-Ball	Imaging	

▶ Spherical	Deconvolu7on	

▶ Spherical	Harmonics	representa7on	

Methods	to	beDer	characterize	the	3ssue	microstructure	
▶ Mul7-compartment	models,	e.g.	Ball&S7ck,	CHARMED,	NODDI	etc	

▶ Axon	density	and	diameter	mapping,	e.g.	AxCaliber	and	Ac7veAx	

▶ Accelerated	Microstructure	Imaging	via	Convex	Op7miza7on	(AMICO)	framework
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What	is	“local	reconstruc3on”?																														(1/2)

Class	of	algorithms	whose	aim	is	to	es3mate	features	of  
the	neural	3ssue	inside	each	voxel
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What	is	“local	reconstruc3on”?																														(1/2)
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What	is	“local	reconstruc3on”?																														(2/2)

Can	be	divided	in	two	main	categories	

(1) Focus	on	angular	informa3on	contained	in	the	diffusion	signal	
- Reconstruct	the	geometry	of	the	fiber	bundles	inside	a	voxel  

e.g.	number	of	fibers,	their	volume	frac0on,	orienta0on…	

- Tractography,	connec7vity	es7ma7on…	

(2) Acquire	and	use	also	the	radial	component	of	the	signal	
- More	advanced	features	of	the	3ssue	microstructure  

e.g.	axonal	diameter	and	density
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Diffusion	is	a	3D	process:	thus	the	
signal	acquired	in	each	voxel	is	3D
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reconstruc3on	of	fiber	orienta3ons
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Outline	of	this	part

Diffusion	Tensor	Imaging	(DTI)	
▶ From	ADC	to	the	diffusion	tensor	

▶ What	informa0on	we	get	from	it	

▶ How	to	measure	it	

▶ Mul0-tensor	model	

Spherical	Harmonics	(SH)	representa7on	

Q-Ball	Imaging	
▶ Numerical	method	

▶ Analy0cal	method	

Spherical	Deconvolu7on	
▶ Performed	in	SH	space	

▶ Performed	in	signal	space
6
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Diffusion	Tensor	Imaging	(DTI)																																(1/4)

If	displacement	of	molecules	is	Gaussian	

▶ ADC	:	Apparent	Diffusion	Coefficient	

▶ 																									:	degree	of	diffusion	weigh3ng	
- !=Δ-δ/3	is	the	diffusion	0me	

- G,	Δ	and	δ	define	the	applied	diffusion	sensi0zing	gradient	

- "	is	the	gyromagne7c	ra7o	

▶ S(b)	and	S0	:	signal	with/without	diffusion	weigh7ng

ADC es7mated	with	two	measurements	(at	least)

ADC	strongly	depends	on	the	direc7on	we	measure	it 
i.e.	direc7on	of	the	sensi7zing	gradient	
▶ A	single	ADC	is	inadequate	in	complex	3ssue	

▶ More	complex	models	are	needed
7I-S L-R A-P

slow	diffusion,	
small	ADC

fast	diffusion,	
high	ADC
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Diffusion	Tensor	Imaging	(DTI)																																(2/4)

Anisotropic	diffusion	coefficients	can	be	summarized	by	

▶ D	is	a	3×3	posi0ve	definite	symmetric	matrix	

▶ 6	degrees	of	freedom	(Dxx,	Dxy,	Dxz,	Dyy,	Dyz,	Dzz)	

▶ Diagonal	elements	:	diffusivi7es	along	three	orthogonal	axes	

▶ Off-diagonal	elements	:	correla7on	between	displacements	along	those	axes

Signal	decay	as	func7on	of	gradient	direc7on	

▶ 						is	the	gradient	orienta3on	on	the	unit	sphere	

▶ 																						is	the	diffusion	wavevector	

▶ 																	with
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(Basser	et	al.,	1994)
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Diffusion	Tensor	Imaging	(DTI)																																(3/4)

Diffusion	tensor	usually	represented	as	an	ellipsoid	
▶ Computed	from	the	spectral	decomposi3on	of	D:	

- Orienta3on	of	the	axes	is	given	by	the	three	eigenvectors,	i.e.	#1,	#2,	#3	

- The	diffusivity	along	each	axis	is	given	by	the	eigenvalues,	i.e.	$1,	$2,	$3	

- By	conven7on,	$1	≥	$2	≥	$3 

▶ Surface	=	distance	of	a	molecule	diffusing	from	the	origin	with	equal	probability	
- NB:	distance/diffusivity	rela0on	by	Einstein’s	equa7on:

Spectral	decomposi7on	=	change	of	reference	frame
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Diffusion	Tensor	Imaging	(DTI)																																(4/4)

Examples

The	principal	eigenvector	(#1)	is	assumed	to	be	co-linear 
with	the	dominant	fiber	orienta3on	within	the	voxel		
▶ Basic	principle	that	will	be	used	in	tractography

10
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From	diffusion	tensors	to	3ssue	proper3es									(1/2)
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From	diffusion	tensors	to	3ssue	proper3es									(2/2)

New	contrast:	possible	to	delineate	major	fiber	bundles
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From	diffusion	tensors	to	3ssue	proper3es									(2/2)

New	contrast:	possible	to	delineate	major	fiber	bundles
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How	to	measure	a	diffusion	tensor?

Signal-Tensor	rela7onship	in	matrix	form:	

▶ Observed	signal	:	

▶ Diffusion	Tensor	:	

▶ Log-transformed	signal	:	

▶ b-matrix	:

D	can	be	es7mated	using	least	squares
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Major	problem	of	the	Tensor	model

Inability	to	model	complex	fiber	configura3ons

14
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Simple	generaliza7on	of	DTI	
▶ Extends	the	model	to	a	mixture	of	M	tensors		

Notes	
▶ M=1	⇒	DTI	

▶ Assump7ons:	
- Voxel	contains	M	dis0nct	popula0ons	of	fibers	

- Each	popula7on	has	Gaussian	diffusion	(no	exchange)	

- The	number	M	must	be	known	a	priori

Mul3-tensor		model

15

(Tuch	et	al.,	2002)
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Numerical	Q-Ball	Imaging	(QBI)																														(1/2)

DSI	recovers	the	full	displacement	distribu0on	(EAP)	

▶ Grid	sampling	of	DSI	is	very	3me	consuming

QBI	approximates	the	ODF	sampling 
the	signal	only	on	spherical	shell	
▶ The	approxima0on	is	computed	using	the	Funk–Radon	transform	(FRT)	

▶ Defini7on	:	the	FRT	of	a	spherical	func0on	E	along	orienta7on		 	is	the	great	circle	
integral	of	E on	the	sphere	defined	by	the	plane	perpendicular	to				through	the	origin	

▶ NB:	signal	E	sampled	with	a	single	b-value
16

Samples	of	E 
(MR	signal)

Samples	of	P 
(propagator)

Radial	projec3on ODF

(Tuch	et	al.,	2002)
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Numerical	Q-Ball	Imaging	(QBI)																														(2/2)

Procedure

Notes	
▶ The	procedure	is	rather	slow	

▶ The	approxima7on	does	not	recover	the	ODF,	but	a	blurred	version	of	it	

▶ This	is	due	to	the	missing	r2	term	in	the	radial	integral	
- The	low-frequencies	of	q-space	are	weighted	more	than	higher	frequency
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Samples	of	E 
(MR	signal) Interpolated	E FRT[	E ] ODF

ODFtrue

ODFQBI

(Aganj	et	al.,	2010)
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Spherical	Harmonics	(SH)	representa3on													(1/2)

Orthonormal	basis	for	complex	func3ons	on	the	sphere	

▶ 							:		associated	Legendre	polynomials	

▶ 				:		order	of	the	SH	

▶ 																																					:		phase	factors

In	diffusion	MRI	most	objects	are	real	and	symmetric 
e.g.	signal	on	one	shell,	ODF,	fDOF	

▶ Modified	basis	for	real	and	symmetric	func7ons	

▶ Index	j = (k2 + k + 2)/2 + m		

▶ Symmetry	given	by	choosing	

▶ If	order	is				,	then																																									basis	func3ons
18

signal	on 
one	shell ODF
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Spherical	Harmonics	(SH)	representa3on													(2/2)

How	do	they	look	like?

19
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Spherical	Harmonics	(SH)	representa3on													(2/2)

How	do	they	look	like?	

Represen3ng	a	func3on	F	in	the	SH	space	

▶ F ∈ S2	(i.e.	func7on	on	the	sphere)	is	a	real	and	symmetric	

▶ 																																																								contains	the	N	measurements	of	F	

▶ Y	contains	the	R	basis	func0ons	evaluated	at	the	N	sampling	points:	

▶ The	coefficients																																			can	be	es7mated	using	least	squares

20

matrix	form
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Analy3cal	Q-Ball	Imaging	(QBI)																															(1/2)

Based	on	the	following	theorem	

▶ 																																																					are	the	Legendre	polynomials	of	order	ℓ	(evaluated	at	0)	

▶ The	great	circle	integral	of	SH	basis	func7ons	can	be	computed	analy3cally

If	we	express	E	in	SH	space	⇒	FRT	has	analy3cal	form	

▶ No	need	to	interpolate,	numerically	integrate	etc…	(slow)		

▶ We	then	have	a	closed	form	to	compute	the	ODF	(fast)
21

(Descoteaux	et	al.,	2007)

(Descoteaux	et	al.,	2007)
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Analy3cal	Q-Ball	Imaging	(QBI)																															(2/2)

Procedure	to	reconstruct	the	ODF	in	a	voxel	
1) Construct	the	two	R×R	matrices	P	and	L	

2) Express	the	signal	E	with	SH	

3) Compute	the	ODF	(in	SH	space)	

4) Evaluate	the	ODF	on	the	sphere

Notes	
▶ All	opera7ons	are	linear	

▶ We	can	precompute																																																		and	then	apply	it	in	each	voxel
22

SH	basis	func3ons	
evaluated	at	the	same	N	
sampling	direc7ons	of	E

Legendre	polynomials	
of	order	ℓj

Laplace-Beltrami	
smoothing

Used	to	make	the	fit	more	robust	
($	controls	regulariza7on	strength) Signal	in	SH	space

NB:	Y’	is	constructed	similarly	to	Y but	
we	can	change	the	set	of	direc7ons	
where	we	want	to	evaluate	the	ODF

ODF	in	SH	space

NB:			for	j =	1,2,…,R 
            ℓj	=	{0,2,2,2,2,2,4,4,…}
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Spherical	deconvolu3on																																											(1/4)

Basic	idea:	signal	as	a	convolu7on	on	the	sphere	

▶ K ∈ S2		:		signal	response	(kernel)	corresponding	to	a	single	fiber	popula3on	

▶ f ∈ S2		:		fODF,	i.e.	con7nuous	representa7on	of	the	volume	frac0ons	

▶ Mathema7cally: 
 
where									is	the	response	func7on	reoriented	in	direc0on

Goal:	recover	the	fODF	f	by	deconvolving	the	signal	E	with	K

Main	assump7ons	
▶ No	exchange	between	compartments	(contribu7ons	are	independent)	

▶ The	procedure	requires	a	model	for	diffusion	in	a	fiber	popula7on	to	obtain	K
23
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Spherical	deconvolu3on																																											(2/4)

Es7ma7on	of	the	response	func3on	K	
▶ Fixed	to	a	known	value,	e.g.	

- tensor	with	λ1	=	1.7·10−3	mm2/s	and	λ2	=	λ3	=	0.3·10−3	mm2/s	(humans,	in	vivo)	

▶ Es3mated	from	the	data,	e.g.	
- Fit	DTI	to	the	data	and	iden7fy	areas	with	single	fiber	popula7on,	e.g.	FA	>	0.7	
- Average	the	signal	in	all	those	voxels

Reconstruc7on	of	the	fODF	by	deconvolu3on	
▶ f		is	usually	expressed	as	a	linear	combina3on	of	basis	func7ons	

▶ The	measurement	process	can	thus	be	expressed	as	

- y	is	the	vector	containing	the	samples	of	the	signal E		and		η	is	the	acquisi7on	noise	
- %	models	the	convolu0on	operator	with	the	response	func7on	K	
- x	is	the	vector	containing	the	coefficients	of	the	fODF	f	

▶ fODF	reconstructed	using	(regularized)	least	squares	of	the	form

24

e.g.	spherical	harmonics	(SH)

Op7onal.	
(depends	on	the	specific	problem/model)
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Spherical	deconvolu3on																																											(3/4)

Diffusion	Basis	Func3ons	(DBF)	decomposi7on	
▶ Reconstruc7on	expressed	as	a	mixture	of	Gaussians	

- The	response	func0on	K	is	a	Tensor	

- Es0mate	it’s	diffusivi0es	($1,	$2,	$3)	as	discussed	before	
- Rotate	K	along	a	given	set	of	orienta7ons	

▶ Can	be	seen	as	an	extension	of	Mul3-Tensor	

▶ Key	point	
- These	represent	the	possible	fiber	popula3ons	of	the	voxel…	
- …but	only	few	of	them	will	actually		correspond  
to	the	actual	fiber	popula3ons	present	the	voxel	

▶ The	fODF	is	es7mated	using	non-nega3ve	ℓ1-regularized	least	squares	

- ǁ·ǁ1		promotes	a	sparse	solu3on,	i.e.	few	nonzero	coefficients	

- The	posi3vity	of	the	fODF	is	embedded	in	the	op7miza7on	problem	

▶ Principal	diffusion	direc3ons	given	directly	by	x	coefficients
25

(Ramirez-Manzanares	et	al.,	2007)

Only	1	fiber	popula3on	
is	present	in	the	voxel

2	fiber	popula3ons	
is	present	in	the	voxel

possible	orienta0ons
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Spherical	deconvolu3on																																											(4/4)

Constrained	Spherical	Deconvolu3on	(CSD)	
▶ Reconstruc7on	expressed	in	the	Spherical	Harmonics	basis	

▶ Problem	
- The	fODF	is	a	posi3ve	func3on	(represents	volume	frac7ons)	

- With	least	squares	and	SH	basis	there’s	nothing	to	enforce	this	requirement	

- The	weights	of	some	SH	basis	func7ons	can	be	nega3ve	

▶ This	issue	is	mi0gated	by	itera3vely	refining	the	es3ma3on	of	the	fODF	

- fi		is	the	fODF	es7mated	at	itera7on	i	

- The	matrix																																								sd		penalizes	those	orienta3ons 
 
in	the	fODF	that	fall	below	a	given	threshold	(!)	

- The	matrix	P	maps	fi	(SH	coefficients	of	the	current	FOD	es7mate)	onto  
the	amplitudes	u	along	a	given	set	of	direc7ons	

▶ Principal	diffusion	direc3ons	need	to	be	extracted	from	f		(maxima	es0ma0on)
26

(Tournier	et	al.,	2007)

ℓ=0

ℓ=1

ℓ=2

m=0 m=1 m=2m=-1m=-2

nega3ve	values

Specific	regulariza3on	for 
this	par7cular	problem

signal	samplesbuild	from	Y
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High	Angular	Diffusion	Imaging	(HARDI)

Vast	literature	of	methods	
▶ They	differ	in	a	great	deal	of	aspects	

- Target	feature	of	interest	to	es7mate,	e.g.	ODF	or	fODF	

- Assump0ons	and	requirements,	e.g.	cartesian	or	mul7ple	shells	

- Reconstruc7on	algorithm	and	op7miza7on	

Survey	and	comparison:	see	(Daducci	et	al,	2014)	
▶ Simulated	data	with	known	ground	truth	

▶ Metrics:	accuracy	in	number	and	orienta0on	of	fibers

27
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Outline	of	this	part

Mul7-compartment	models	
▶ Ball&S7ck	

▶ Composite	hindered	and	restricted	model	of	diffusion	(CHARMED)	

▶ Neurite	orienta7on	dispersion	and	density	imaging	(NODDI)	

Axon	density	and	diameter	mapping	
▶ AxCaliber	

▶ Ac7veAx	

Accelerated	Microstructure	Imaging	via	Convex	Op7miza7on	
▶ Framework	to	accelerate	the	fit	with	previous	methods

29
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Ball&S3ck

Assumes	that	water	molecules	belong	to	two	popula3ons	
▶ A	restricted	popula3on	of	water	molecules	in	and	around	axons	

▶ A	free	popula3on	that	does	not	interact	with	fibers	

Generaliza7on	of	the	Mul7-Tensor	(MT)	model	
▶ MT	uses	tensors	to	model	mul7ple	fiber	popula7ons	

▶ B&S	uses	tensors	to	model	two	dis7nct	compartments	
- Free	water	is	modeled	as	isotropic	tensor,	i.e.	Dball	=	diag(	[$ball,	$ball,	$ball]	)	
- Axons	modeled	as	ideal	cylinders	with	zero	radius,	i.e.	Dstick	=	diag(	[$s7ck,	0,	0]	)

Oversimplified…but	pioneer	of	mul3-compartment	models
30

(Behrens		et	al.,	2003)
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Composite	hindered	and	restricted	model	of	diffusion	(CHARMED)

Further	dis3nc3on	between…	
▶ Molecules	that	are	restricted	within	the	axons 

i.e.	intra-axonal	space	

▶ Those	that	are	hindered	in	the	space	around	them 
i.e.	extra-axonal	space

Model	of	the	signal	
▶ Axons	are	approximated	by	parallel	cylinders	with	a	fixed	radius 

(signal	given	by	analy7cal	expressions	for	par0cles	diffusing	within	cylindrical	boundaries)	

▶ Gaussian	process	(anisotropic)	assumed	in	the	extra-axonal	space 
(anisotropic	tensor)	

▶ Signal	modeled	as

Radial	sampling	required	to	es7mate	this	model’s	parameters	
▶ Hindered	model	explains	the	Gaussian	signal	aDenua7on	observed	at	low	b-values	

▶ Restricted	non-Gaussian	model	does	so	at	high	b-values
31

(Assaf		et	al.,	2005)

rela3ve	volume	frac3ons
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Composite	hindered	and	restricted	model	of	diffusion	(CHARMED)

Further	dis3nc3on	between…	
▶ Molecules	that	are	restricted	within	the	axons 

i.e.	intra-axonal	space	

▶ Those	that	are	hindered	in	the	space	around	them 
i.e.	extra-axonal	space

Model	of	the	signal	
▶ Axons	are	approximated	by	parallel	cylinders	with	a	fixed	radius 

(signal	given	by	analy7cal	expressions	for	par0cles	diffusing	within	cylindrical	boundaries)	

▶ Gaussian	process	(anisotropic)	assumed	in	the	extra-axonal	space 
(anisotropic	tensor)	

▶ Signal	modeled	as

Radial	sampling	required	to	es7mate	this	model’s	parameters	
▶ Hindered	model	explains	the	Gaussian	signal	aDenua7on	observed	at	low	b-values	

▶ Restricted	non-Gaussian	model	does	so	at	high	b-values
31

(Assaf		et	al.,	2005)
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Neurite	orienta3on	dispersion	and	density	imaging	(NODDI)

Developed	to	enable	es7ma7on	of	useful	microstructural	
informa3on	also	in	clinical	sefngs,	e.g.	10–15	min	and	low	Gmax	
▶ Axons	are	assumed	as	“ideal	cylinders”	with	null	radius	

▶ Model	op3mized	to	describe	the	signal	in	terms	of	
- Volume	frac0ons	

- Orienta0on	dispersion	of	the	axons		

- Par7al	volume	with	CSF

This	model	tries	to	solve	some	of  
the	ambigui3es	of	DTI	scalar	maps

32

FA↓

e.g.	axonal 
sprou3ng

e.g.	axonal 
degenera3on

(Zhang		et	al.,	2012)
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AxCaliber

Extension	of	CHARMED	
▶ Axon	radii	are	not	fixed	to	a	given	value	as	before…	
▶ …but	they	are	es3mated	as	well	
▶ Explicitly	modeled	using	Gamma	distribu0ons 

(as	observed	from	histology)

Allows	es3ma3on	of	the	axon	diameter	with	diffusion	MRI

Notes	
▶ Very	long	acquisi3ons,	i.e.	need	to	probe	many	diffusion	7mes	

▶ Requirements	met	only	in	preclinical	scanners,	e.g.	Gmax=1200	mT/m		vs		40	mT/m	in	clinics	

▶ Need	to	know	a	priori	the	orienta3on	of	the	fascicle	to	probe
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(Assaf		et	al.,	2008)
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Ac3veAx

Specifically	designed	to	overcome	previous	limita3ons

Four	compartment	model	
▶ Restricted	and	hindered	water	pools	as	CHARMED/AxCaliber 

but	axons	have	a	diameter	to	be	es3mated	

▶ Free	water	characterized	by	isotropic	diffusion	

▶ Sta0onary	water	trapped	within	small	structures, 
e.g.	glial	cells,	or	in	ex-vivo	7ssue

Allow	mean	axon	diameter	mapping	in	the	whole	brain	
▶ One	mean	diameter	per	voxel,	α’,	no	distribu0ons	of	diameters	as	AxCaliber	

▶ Index	α’	is	orienta3onally	invariant: 
less	diffusion	0mes	are	acquired,	but	for	each	value	many	direc0ons	are	acquired	

▶ No	need	to	know	a	priori	the	direc7on	of	the	fascicle	

▶ α’	is	not	the	actual	axon	diameter,	but	correlates	with	histologic	es3mates
34
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The	AMICO	framework																																													(1/2)

Acronym:		Accelerated	Microstructure	Imaging 
																				via	Convex	Op7miza7on	(AMICO)

Common	limita3on	of	previous	techniques: 
reconstruc7on	uses	nonlinear	op0miza0on	
▶ Algorithms	can	be	trapped	in	the	many	local	minima		

▶ Computa3onally	very	expensive  
e.g.	fit	NODDI	to	one	brain	≈65	hours

Idea:	accelerate	the	fit	of	previous	mul7-compartment	models	
by	spliyng	the	reconstruc7on	into	two	simpler	sub-problems:	
▶ Es7ma7on	of	the	intra-voxel	fiber	geometry  

i.e.	number	and	orienta7on	of	fiber	popula7ons	

▶ Es7ma7on	of	their	microstructure	proper3es 
e.g.	axon	diameter	and	density
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NB:	each	sub-problem	can	be 
solved	independently	and	using 
very	efficiently	linear	algorithms
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The	AMICO	framework																																													(2/2)

Two-step	procedure	
(1) Iden7fy	the	main	diffusion	direc3on	in	every	voxel	with	classical	algorithms	

(2) Construct	a	dic7onary	along	this	fixed	direc3on	by	varying	the	signal	responses 
to	model	different	possible	micro-environments	in	the	voxel

GOAL:	find	the	contribu0ons	of	each	compartment,	x, 
(inverse	problem)	using	convex	op3miza3on
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DTI

… … contribu7ons	of	
every	compartment

intra-axonal 
signal	responses

extra-axonal		
signal	responses

signal	response	for	
isotropic	diffusion

(Daducci	et	al.,	2015)
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Example:	lineariza3on	of	Ac3veAx																								(1/4)

Construc7on	of	the	dic3onary	
▶ AIC	explicitly	models	axons	with	different	radii	

▶ AEC	explicitly	models	dis0nct	environments	between	the	axons	(e.g.	packing)	

▶ AISO	accounts	for	isotropic	contribu0ons	

Regulariza3on	
▶ We	tested	several	forms	of	regulariza7on	(sparsity,	group	sparsity	etc)	

▶ The	most	common	(Tikhonov)	was	enough	to	improve	condi0on	number	of	A

Formula3on
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… …
signal	responses	for	

axons	with	different	diameter
signal	responses	for	

different	hindered	environments

signal	response	for	
isotropic	diffusion

data	fit regulariza3on
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Example:	lineariza3on	of	Ac3veAx																								(2/4)

Computa7on	of	microstructure	indices	
▶ Let’s	par77on	x = [ xr | xh | xi ] into	the	corresponding	compartments  

(r=restricted,	h=hindered,	i=isotropic)	

▶ Let	Nr , Nh , Ni  be	the	number	of	atoms	in	AIC , AEC , AISO 

▶ Let	Rj	be	the	radius	of	the	axons	corresponding	to	the	jth	atom	in	AIC
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Example:	lineariza3on	of	Ac3veAx																								(3/4)

Comparison	to	original	implementa7on	
▶ 44	different	substrates	used	in	(Alexander	et	al,	2010)
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11	days  
14	hours	
40	min

18	sec

18	sec
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Example:	lineariza3on	of	Ac3veAx																								(4/4)

Comparison	to	original	implementa7on	
▶ Fixed	monkey	brain,	Gmax	=	140	mT/m
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4	hour  
30	min 0.3	sec
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Example:	lineariza3on	of	NODDI	(similar	formula3on)

Comparison	to	original	implementa7on	
▶ Human	brain,	2	shells	(b=700	and	b=2000	s/mm2),	Gmax	=	40	mT/m
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65	hour  
10	min

6	min 
20	sec

6	min 
20	sec
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