Diffusion MRI: local reconstruction

Outline

What is local reconstruction?

Methods that focus on the angular information

- Diffusion Tensor Imaging
- ► Q-Ball Imaging
- Spherical Deconvolution
- Spherical Harmonics representation

Methods to better characterize the tissue microstructure

- ► Multi-compartment models, e.g. Ball&Stick, CHARMED, NODDI etc
- ► Axon density and diameter mapping, e.g. AxCaliber and ActiveAx
- Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework

Class of algorithms whose aim is to estimate features of the neural tissue inside each voxel

Class of algorithms whose aim is to estimate features of the neural tissue inside each voxel

What is "local reconstruction"?

Can be divided in two main categories

Diffusion is a 3D process: thus the signal acquired in each voxel is 3D

(1) Focus on **angular information** contained in the diffusion signal

- Reconstruct the **geometry of the fiber bundles** inside a voxel e.g. *number of fibers*, their *volume fraction*, *orientation*...

- Tractography, connectivity estimation...
- (2) Acquire and use also the **radial component** of the signal
 - More advanced features of the tissue microstructure
 e.g. axonal diameter and density

Diffusion MRI: reconstruction of fiber orientations

Outline of this part

Diffusion Tensor Imaging (DTI)

- ► From *ADC* to the *diffusion tensor*
- ► What *information* we get from it
- How to measure it
- Multi-tensor model

Spherical Harmonics (SH) representation

Q-Ball Imaging

- ► *Numerical* method
- ► Analytical method

Spherical Deconvolution

- ▶ Performed in *SH space*
- Performed in *signal space*

(1/4)

If displacement of molecules is Gaussian

 $S(b) = S_0 \exp(-b \cdot ADC)$

- ► ADC : Apparent Diffusion Coefficient
- ► $b = (\gamma G \delta)^2 \tau$: degree of diffusion weighting
 - $\tau = \Delta \delta/3$ is the *diffusion time*
 - ⁻ G, Δ and δ define the applied *diffusion sensitizing gradient*
 - $\bar{\gamma}$ is the gyromagnetic ratio
- S(b) and S_0 : signal with/without diffusion weighting

ADC estimated with two measurements (at least)

ADC **strongly depends** on the direction we measure it

i.e. direction of the sensitizing gradient

- ► A single ADC is **inadequate in complex tissue**
- More complex models are needed

Anisotropic diffusion coefficients can be summarized by

(Basser et al., 1994)

$$\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$$

- ▶ **D** is a 3×3 *positive definite symmetric* matrix
- ▶ 6 degrees of freedom (*D_{xx}*, *D_{xy}*, *D_{xz}*, *D_{yy}*, *D_{yz}*, *D_{zz}*)
- Diagonal elements : diffusivities along three orthogonal axes
- Off-diagonal elements : correlation between displacements along those axes

Signal decay as function of gradient direction

 $S(\mathbf{g}_k, b) = S_0 \exp\left(-b \, \mathbf{g}_k^T \mathbf{D} \mathbf{g}_k\right)$

$$S(\mathbf{q}_k, \tau) = S_0 \exp\left(-\tau \, \mathbf{q}_k^T \mathbf{D} \mathbf{q}_k\right)$$

- \mathbf{g}_k is the **gradient orientation** on the unit sphere
- $\mathbf{q}_k = \gamma \delta G \mathbf{g}_k$ is the **diffusion wavevector**

$$\blacktriangleright b = q^2 \tau$$
 with $q = |\mathbf{q}| = \gamma G \delta$

Diffusion tensor usually represented as an ellipsoid

- Computed from the **spectral decomposition** of **D**:
 - Orientation of the axes is given by the three *eigenvectors*, i.e. $\boldsymbol{\varepsilon}_1$, $\boldsymbol{\varepsilon}_2$, $\boldsymbol{\varepsilon}_3$
 - ⁻ The **diffusivity along each axis** is given by the *eigenvalues*, i.e. λ_1 , λ_2 , λ_3
 - By convention, $\lambda_1 \ge \lambda_2 \ge \lambda_3$

- Surface = distance of a molecule diffusing from the origin with equal probability
 - NB: distance/diffusivity relation by Einstein's equation: $\langle r^2 \rangle = 6Dt$.

Spectral decomposition = change of reference frame

$$\begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ \cdot & D_{yy} & D_{yz} \\ \cdot & \cdot & D_{zz} \end{pmatrix} \xrightarrow{\text{decomposition}} \boldsymbol{\xi}^T \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \boldsymbol{\xi} \qquad \boldsymbol{\xi} = [\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3]^T$$

The principal eigenvector (ε₁) is assumed to be co-linear with the dominant fiber orientation within the voxel

► Basic principle that will be used in *tractography*

From diffusion tensors to tissue properties

Mean Diffusivity (MD)

$$\bar{\lambda} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$$

Fractional Anisotropy (FA)

$$FA = \sqrt{\frac{3}{2}} \sqrt{\frac{(\lambda_1 - \bar{\lambda})^2 + (\lambda_2 - \bar{\lambda})^2 + (\lambda_3 - \bar{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

FA map can be **color coded** based on the principal direction, i.e. ε_1

Biomedical Image Processing

11

(1/2)

From diffusion tensors to tissue properties

New contrast: possible to delineate major fiber bundles

(2/2)

From diffusion tensors to tissue properties

New contrast: possible to delineate major fiber bundles

12

(2/2)

How to measure a diffusion tensor?

Signal-Tensor relationship in **matrix form**:

\mathbf{Y}	=	BD

- <u>Observed signal</u>: $S(\mathbf{g}_k, b) = S_0 \exp\left(-b \, \mathbf{g}_k^T \mathbf{D} \mathbf{g}_k\right)$
- **Diffusion Tensor :** $\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} & D_{yy} & D_{yz} & D_{zz} \end{bmatrix}^T$
- Log-transformed signal : $\mathbf{Y} = \begin{bmatrix} -\log \left(S(\mathbf{g}_1, b) / S_0 \right) & \cdots & -\log \left(S(\mathbf{g}_N, b) / S_0 \right) \end{bmatrix}^T$

$$\mathbf{b} - \underline{\mathbf{b}} - \underline{\mathbf{b}$$

D can be estimated using least squares

$$\mathbf{D} = \left(\mathbf{B}^T \mathbf{B}\right)^{-1} \mathbf{B}^T \mathbf{Y}$$

Major problem of the Tensor model

Inability to model complex fiber configurations

Multi-tensor model

Simple generalization of DTI

Extends the model to a **mixture of** *M* **tensors**

Notes

► $M=1 \Rightarrow \text{DTI}$

Assumptions:

- Voxel contains *M* distinct populations of fibers
- Each population has Gaussian diffusion (no exchange)
- The number *M* must be known a priori

Numerical Q-Ball Imaging (QBI)

DSI recovers the full displacement distribution (EAP)

Radial projection

ODF

- ► Grid sampling of DSI is very time consuming
- QBI approximates the ODF sampling the signal only on *spherical shell*

The approximation is computed using the Funk–Radon transform (FRT)

(Tuch et al., 2002)

$$\mathbf{F}(\mathbf{\hat{r}}) = \int_{\mathbb{R}^+} P(r\mathbf{\hat{r}}) r^2 dr \approx \int_{|\mathbf{q}|=1} \delta(\mathbf{\hat{r}}^T \mathbf{q}) E(\mathbf{q}) d\mathbf{q} = \mathrm{FRT}[E](\mathbf{\hat{r}})$$

 $r = |\mathbf{r}|$ and $\hat{\mathbf{r}} = \mathbf{r}/r$ $E = S/S_0$

- <u>Definition</u> : the FRT of a spherical function E along orientation $\hat{\mathbf{r}}$ is the great circle integral of E on the sphere defined by the plane perpendicular to $\hat{\mathbf{r}}$ through the origin
- ► NB: signal *E* sampled with a **single b-value**

OD

Numerical Q-Ball Imaging (QBI)

Notes

- The procedure is rather slow
- ► The approximation <u>does not</u> recover the ODF, but a **blurred version** of it

• This is due to the missing r^2 term in the radial integral

- The low-frequencies of q-space are weighted more than higher frequency

Spherical Harmonics (SH) representation

Orthonormal basis for complex functions on the sphere

$$Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta) e^{im\phi}$$

- ► P_{ℓ}^{m} : associated Legendre polynomials
- ℓ : *order* of the SH
- ▶ $\forall k \leq \ell, \ -k \leq m \leq k \ : \ phase \ factors$

In diffusion MRI most objects are real and symmetric

e.g. signal on one shell, ODF, fDOF

Modified basis for real and symmetric functions

$$Y_j = \begin{cases} \sqrt{2} \cdot \operatorname{Re}(Y_k^m), & \text{if } -k \le m < 0\\ Y_k^0, & \text{if } m = 0\\ \sqrt{2} \cdot \operatorname{Img}(Y_k^m), & \text{if } 0 < m \le k \end{cases}$$

- Index $j = (k^2 + k + 2)/2 + m$
- Symmetry given by choosing $k = 0, 2, 4, \dots, \ell$
- If order is ℓ , then $R = (\ell + 1)(\ell + 2)/2$ basis functions

 $= r \cos \phi \sin \theta$

(1/2)

Spherical Harmonics (SH) representation

(2/2)

Spherical Harmonics (SH) representation

Representing a function *F* in the SH space

$$F(\theta_i, \phi_i) = \sum_{j=1}^R c_j Y_j(\theta_i, \phi_i)$$

matrix form $\mathbf{F}=\mathbf{Y}\mathbf{C}$

- ▶ $F \in S^2$ (i.e. function on the sphere) is a *real* and *symmetric*
- ► $\mathbf{F} = [F(\theta_1, \phi_1), \dots, F(\theta_N, \phi_N)]^T$ contains the *N* measurements of *F*
- ▶ Y contains the *R* basis functions evaluated at the *N* sampling points:

$$\mathbf{Y} = \begin{pmatrix} Y_1(\theta_1, \phi_1) & Y_2(\theta_1, \phi_1) & \cdots & Y_R(\theta_1, \phi_1) \\ \vdots & \vdots & \ddots & \vdots \\ Y_1(\theta_N, \phi_N) & Y_2(\theta_N, \phi_N) & \cdots & Y_R(\theta_N, \phi_N) \end{pmatrix}$$

• The *coefficients* $\mathbf{C} = [c_0, c_1, \dots, c_R]^T$ can be estimated using **least squares**

$$\mathbf{C} = (\mathbf{Y}^T \mathbf{Y})^{-1} \mathbf{Y}^T \mathbf{F}$$

Analytical Q-Ball Imaging (QBI)

(1/2)

Based on the following theorem

(Descoteaux et al., 2007)

Corollary of the Funk-Hecke Theorem: Let $\delta(t)$ be the Dirac delta function and H_{ℓ} any SH of order ℓ . Then, given a unit vector \mathbf{u} $\int_{|\mathbf{w}|=1} \delta(\mathbf{u}^{\mathrm{T}}\mathbf{w}) H_{\ell}(\mathbf{w}) d\mathbf{w} = 2\pi P_{\ell}(0) H_{\ell}(\mathbf{u}), \qquad [14]$

 $\blacktriangleright P_{\ell}(0) = \begin{cases} 0 & \ell \text{ odd} \\ (-1)^{\ell/2} \frac{1 \cdot 3 \cdot 5 \cdots (\ell-1)}{2 \cdot 4 \cdot 6 \cdots \ell} & \ell \text{ even} \end{cases} \text{ are the Legendre polynomials of order } \ell \text{ (evaluated at 0)} \end{cases}$

► The great circle integral of SH basis functions can be computed analytically

If we express E in **SH space** \Rightarrow FRT has **analytical form**

(Descoteaux et al., 2007)

$$FRT[E](\hat{\mathbf{r}}) \equiv \int_{|\mathbf{q}|=1} \delta(\hat{\mathbf{r}}^T \mathbf{q}) E(\mathbf{q}) d\mathbf{q} = \sum_{j=1}^R 2\pi P_{\ell_j}(0) c_j Y_j(\hat{\mathbf{r}})$$

- ▶ No need to interpolate, numerically integrate etc... (slow)
- We then have a closed form to compute the ODF (fast)

Analytical Q-Ball Imaging (QBI)

Procedure to reconstruct the ODF in a voxel

1) Construct the two *R*×*R* matrices **P** and **L**

2) Express the signal E with SH

$$\mathbf{E}_{\ell m} = (\mathbf{Y}^T \mathbf{Y} + \lambda \mathbf{L})^{-1} \mathbf{Y}^T \mathbf{E}$$

Used to make the fit more robust $(\lambda \text{ controls regularization strength})$

$$\underline{\mathbf{NB}}: \text{ for } j = 1, 2, ..., R \\ \ell_j = \{0, 2, 2, 2, 2, 2, 4, 4, ...\} \qquad \mathbf{L} = \begin{pmatrix} \ddots \\ \ell_j^2 (\ell_j + 1)^2 \\ \ddots \end{pmatrix} \text{ Laplace-Beltrami smoothing}$$

$$\mathbf{Y} = \begin{pmatrix} Y_1(\theta_1, \phi_1) & Y_2(\theta_1, \phi_1) & \cdots & Y_R(\theta_1, \phi_1) \\ \vdots & \vdots & \ddots & \vdots \\ Y_1(\theta_N, \phi_N) & Y_2(\theta_N, \phi_N) & \cdots & Y_R(\theta_N, \phi_N) \end{pmatrix}$$

SH basis functions evaluated at the same N sampling directions of E

$$\mathbf{E}_{\ell m} = [c_1, \dots, c_j, \dots, c_R]^T$$
 Signal in SH space

3) Compute the **ODF** (in SH space)

$$\mathbf{O}_{\ell m} = \mathbf{P} \mathbf{E}_{\ell m}$$

$$\mathbf{O}_{\ell m} = [c_1', \dots, c_j', \dots, c_R']^T$$
 $\,\,$ ODF in SH space

4) Evaluate the **ODF on the sphere**

 $\mathbf{O} = \mathbf{Y}' \mathbf{O}_{\ell m}$

<u>NB</u>: Y' is **constructed similarly** to Y but we can <u>change the set of directions</u> where we want to evaluate the ODF

Notes

- ► All operations are *linear*
- We can *precompute* $\mathbf{T} = \mathbf{P}(\mathbf{Y}^T\mathbf{Y} + \lambda \mathbf{L})^{-1}\mathbf{Y}^T$ and then apply it in each voxel

• $K \in S^2$: signal response (kernel) corresponding to a single fiber population

▶ $f \in S^2$: **fODF**, i.e. continuous representation of the *volume fractions*

• Mathematically:
$$E(\mathbf{g}_k) = \int_{|\mathbf{q}|=1} K_{\mathbf{g}_k}(\mathbf{q}) f(\mathbf{q}) d\mathbf{q}$$

where $K_{\mathbf{g}_k}$ is the response function *reoriented in direction* \mathbf{g}_k

Goal: recover the fODF *f* by **deconvolving** the signal *E* with *K*

Main assumptions

- No exchange between compartments (contributions are independent)
- ▶ The procedure **requires a model** for diffusion in a fiber population to obtain *K*

Estimation of the response function K

- Fixed to a known value, e.g.
 - tensor with λ_1 = 1.7·10⁻³ mm²/s and λ_2 = λ_3 = 0.3·10⁻³ mm²/s (humans, in vivo)
- **Estimated** from the data, e.g.
 - Fit DTI to the data and identify areas with single fiber population, e.g. FA > 0.7
 - Average the signal in all those voxels

Reconstruction of the **fODF** by **deconvolution**

► *f* is usually expressed as a **linear combination** of basis functions

 $f(\mathbf{\hat{p}}) = \sum_{j} w_{j} f_{j}(\mathbf{\hat{p}})$

 $\mathbf{y} = \Phi \mathbf{x} + \eta$

regularization

- The measurement process can thus be expressed as
 - **y** is the vector containing the *samples* of the signal *E* and η is the acquisition *noise*
 - $\mathbf{\Phi}$ models the *convolution operator* with the response function *K*
 - **x** is the vector containing the *coefficients of the fODF f*
- fODF reconstructed using (regularized) least squares of the form

 $\operatorname{argmin} \frac{1}{2} \| \Phi \mathbf{x} - \mathbf{y} \|_2^2 + \lambda$

data fitness

Optional.
 (depends on the specific problem/model)

e.g. spherical harmonics (SH)

Diffusion Basis Functions (DBF) decomposition

(Ramirez-Manzanares et al., 2007)

- Reconstruction expressed as a mixture of Gaussians
 - The *response function* K is a Tensor
 - Estimate it's diffusivities (λ_1 , λ_2 , λ_3) as discussed before
 - *Rotate K* along a given set of orientations
- Can be seen as an extension of Multi-Tensor

Key point

- These represent the **possible fiber populations** of the voxel...
- ...but only few of them will actually correspond to the actual fiber populations present the voxel

Only **1 fiber population** is present in the voxel

2 fiber populations is present in the voxel

► The fODF is estimated using **non-negative** *ℓ*1-**regularized least squares**

 $\underset{\pmb{x} \geq 0}{\operatorname{arg\,min}} \| \pmb{x} \|_1 \text{ subject to } \| \Phi \ \pmb{x} - \pmb{y} \|_2 \leqslant \epsilon$

- $\|\cdot\|_1$ promotes a **sparse solution**, i.e. few nonzero coefficients
- The positivity of the fODF is embedded in the optimization problem
- Principal diffusion directions given directly by x coefficients

Constrained Spherical Deconvolution (CSD)

Reconstruction expressed in the Spherical Harmonics basis

- Problem
 - The fODF is a **positive function** (represents volume fractions)
 - With least squares and SH basis there's nothing to enforce this requirement
 - The weights of some SH basis functions can be negative

the amplitudes **u** along a given set of directions

This issue is mitigated by iteratively refining the estimation of the fODF

$$f_{i+1} = \arg \min\{\|Af_i - b\|^2 + \lambda^2 \|Lf_i\|^2\}$$
Specific regularization for
this particular problem
$$f_i \text{ is the fODF estimated at iteration } i \text{ build from Y signal samples}$$

$$The matrix \mathbf{L}_{m,n} = \begin{cases} \mathbf{P}_{m,n} & \mathbf{u}_m < \tau \\ 0 & \mathbf{u}_m \ge \tau \end{cases}$$
penalizes those orientations
in the fODF that fall below a given threshold (τ)
$$The matrix \mathbf{P} \text{ maps } f_i \text{ (SH coefficients of the current FOD estimate) onto}$$

Principal diffusion directions need to be extracted from f (maxima estimation)

(Tournier et al., 2007)

High Angular Diffusion Imaging (HARDI)

Vast literature of methods

- They <u>differ in a great deal of aspects</u>
 - Target *feature* of interest to estimate, e.g. ODF or fODF
 - Assumptions and requirements, e.g. cartesian or multiple shells
 - Reconstruction algorithm and optimization

Survey and comparison: see (Daducci et al, 2014)

- Simulated data with known ground truth
- ▶ Metrics: accuracy in *number* and *orientation* of fibers

Diffusion MRI: microstructure imaging

Outline of this part

Multi-compartment models

- ► Ball&Stick
- Composite hindered and restricted model of diffusion (CHARMED)
- Neurite orientation dispersion and density imaging (NODDI)

Axon density and diameter mapping

- AxCaliber
- ActiveAx

Accelerated Microstructure Imaging via Convex Optimization

Framework to *accelerate the fit* with previous methods

Ball&Stick

Assumes that water molecules belong to two populations

- A restricted population of water molecules in and around axons
- A free population that does not interact with fibers

Generalization of the Multi-Tensor (MT) model

- MT uses tensors to model multiple fiber populations
- ► B&S uses tensors to model two distinct compartments
 - Free water is modeled as **isotropic tensor**, i.e. $D_{\text{ball}} = diag([\lambda_{\text{ball}}, \lambda_{\text{ball}}, \lambda_{\text{ball}}])$
 - Axons modeled as ideal cylinders with zero radius, i.e. $D_{\text{stick}} = diag([\lambda_{\text{stick}}, 0, 0])$

(Behrens et al., 2003)

Oversimplified...but pioneer of multi-compartment models

Biomedical Image Processing

Composite hindered and restricted model of diffusion (CHARMED)

Further distinction between...

- Molecules that are restricted within the axons i.e. intra-axonal space
- Those that are hindered in the space around them i.e. extra-axonal space

Model of the signal

- Axons are approximated by parallel cylinders with a fixed radius (signal given by analytical expressions for particles diffusing within cylindrical boundaries)
- Gaussian process (anisotropic) assumed in the extra-axonal space (anisotropic tensor)
- ► Signal modeled as $E(\mathbf{g}_k, b) = f_h E_h(\mathbf{g}_k, b) + f_r E_r(\mathbf{g}_k, b)$

relative volume fractions

(Assaf et al., 2005)

Radial sampling required to estimate this model's parameters

- Hindered model explains the <u>Gaussian</u> signal attenuation observed at low b-values
- Restricted <u>non-Gaussian</u> model does so at high b-values

Composite hindered and restricted model of diffusion (CHARMED)

Neurite orientation dispersion and density imaging (NODDI)

Developed to enable estimation of useful microstructural information also in clinical settings, e.g. 10–15 min and low G_{max}

(Zhang et al., 2012)

- Axons are <u>assumed</u> as "ideal cylinders" with **null radius**
- ► Model optimized to describe the signal in terms of
 - Volume fractions
 - Orientation dispersion of the axons
 - Partial volume with CSF

This model tries to solve some of the ambiguities of DTI scalar maps

AxCaliber

Extension of CHARMED

(Assaf et al., 2008)

- Axon radii are **not fixed** to a given value as before...
- ...but they are estimated as well
- Explicitly modeled using Gamma distributions (as observed from histology)

Allows estimation of the axon diameter with diffusion MRI

Notes

- Very long acquisitions, i.e. need to probe many diffusion times
- Requirements met only in preclinical scanners, e.g. G_{max}=1200 mT/m vs 40 mT/m in clinics
- Need to know a priori the orientation of the fascicle to probe

ActiveAx

Specifically designed to overcome previous limitations

Four compartment model

(Alexander et al., 2010)

- Restricted and hindered water pools as CHARMED/AxCaliber but axons have a diameter to be estimated
- ► *Free water* characterized by isotropic diffusion
- Stationary water trapped within small structures, e.g. glial cells, or in ex-vivo tissue

Allow mean axon diameter mapping in the whole brain

- One mean diameter per voxel, α' , no distributions of diameters as AxCaliber
- Index α' is orientationally invariant: less diffusion times are acquired, but for each value many directions are acquired
- ► No need to know a priori the direction of the fascicle
- α' is not the actual axon diameter, but correlates with histologic estimates

ActiveAx

- No need to know a priori the direction of the fascicle
- α' is not the actual axon diameter, but correlates with histologic estimates

ActiveAx

- No need to know a priori the direction of the fascicle
- α' is not the actual axon diameter, but correlates with histologic estimates

Biomedical Image Processing

Acronym: Accelerated Microstructure Imaging via <u>Convex</u> Optimization (AMICO)

- Common limitation of previous techniques: reconstruction uses *nonlinear optimization*
 - Algorithms can be trapped in the many local minima
 - **Computationally very expensive** e.g. fit NODDI to one brain ≈65 hours

Idea: accelerate the fit of previous multi-compartment models by splitting the reconstruction into two simpler sub-problems:

- Estimation of the intra-voxel **fiber geometry** i.e. number and orientation of fiber populations
- Estimation of their **microstructure properties** e.g. axon diameter and density

NB: each sub-problem can be

solved independently and using very efficiently linear algorithms

Alessandro Daducci

The AMICO framework

Two-step procedure

(Daducci et al., 2015)

(1) Identify the **main diffusion direction** in every voxel with *classical algorithms*

(2) Construct a dictionary **along this fixed direction** by varying the signal responses to model **different possible micro-environments** in the voxel

GOAL: find the contributions of each compartment, x, (inverse problem) using convex optimization

Construction of the dictionary

- ► A_{IC} explicitly models *axons with different radii*
- ► A_{EC} explicitly models distinct environments between the axons (e.g. packing)
- ► A_{ISO} accounts for *isotropic contributions*

Regularization

- We tested several forms of regularization (sparsity, group sparsity etc)
- ▶ The most common (*Tikhonov*) was enough to *improve condition number* of A

Computation of microstructure indices

- Let's partition x = [x^r | x^h | xⁱ] into the corresponding compartments (r=restricted, h=hindered, i=isotropic)
- Let $N_{\rm r}$, $N_{\rm h}$, $N_{\rm i}$ be the number of atoms in $A_{\rm IC}$, $A_{\rm EC}$, $A_{\rm ISO}$
- Let R_j be the radius of the axons corresponding to the j^{th} atom in A_{IC}

Comparison to original implementation

► 44 different substrates used in (Alexander et al, 2010)

Comparison to original implementation

► Fixed monkey brain, G_{max} = 140 mT/m

Example: linearization of NODDI (similar formulation)

Comparison to original implementation

▶ Human brain, 2 shells (*b*=700 and *b*=2000 s/mm²), G_{max} = 40 mT/m

Questions?

Comments?

Suggestions?