BINARY DECISION
DIAGRAMS

© Giovanni De Micheli

Stanford University

Outline

Binary Decision Diagrams

Operations with BDDs.

Optimization of the BDD size:

— Variable reordering.

© GDM =——

Other types of Decision Diagrams.

Binary Decision Diagrams
© GDM

e Efficient representation of logic functions.
— Proposed by Lee and Akers.

— Popularized by Bryant (canonical form).

e Used for Boolean manipulation.

e Applicable to other domains:
— Set and relation representation.

— Simulation, finite-system analysis, ...

Definitions
© GDM ==

e Binary decision diagram (BDD).

— Tree or rooted dag
with a decision at each vertex.

e Ordered binary decision diagram (OBDD).

— Each decision is the evaluation of a Boolean
variable.

— The tree (or dag) can be levelized,
so that each level corresponds to a
variable.

Example
f p— (a, —+ b)C

© GDM =

index=1 @ @ @
0 1 0 1

\ |

2N RN
OO} (O O) %
- AR RIS

) (c)

Definition of OBDD

© GDM

Rooted directed acyclic graph.

Each non-leaf vertex (v) has:
— A pointer index(v) to a variable.

— Two children low(v) and high(v).

Each leaf vertex (v) has a value (1 or 0).

Ordering:
— index(v) < index(low(v)).

— index(v) < index(high(v)).

Properties

© GDM
e Each OBDD with root v defines
a function fY:

— If v is a leaf with value(v) = 1,
then fY =1.

— If v is a leaf with value(v) = O,
then fY =0.

— If v is not a leaf and index(v) = 1,
then fV = x; . flow(v) + z; - fhigh(v)_

e A function may have different OBDDs.

e [hesize of the OBDD depends on the variable
order.

ROBDDs

© GDM =

Reduced ordered binary decision diagrams.

No redundancies:
— No vertex with low(v) = high(v).

— No pair {u,v} with isomorphic subgraphs
rooted in v and w.

Reduction can be achieved in polynomial time.

ROBDDs can be such by construction.

ROBDDs are canonical forms.

Features

© GDM =

e Canonical form allows us to:
— Verify logic equivalence in constant time.

— Check for tautology and perform logic operations
in time proportional to the graph size.
(Vertex cardinality).

e Drawback:

— Size depends on variable order.

ROBDD size bounds

© GDM

e Multiplier:

— Exponential size.

e Adders:

— Exponential to linear size.

e Sparse logic:

— Good heuristics to keep size small.

Tabular representations of ROBDDs
© GDM mm

e Represent multi-rooted graphs.
— Multiple-output functions.

— Multiple-level logic forms.

e Unique table:

— One row per vertex.

x Identifier.

x Key: (variable, left child, right child).

Example
unique table

0 1 0 1

id=1 id=2 id=1 id=2
(a) (b)

Identifier Key

Variable | Left child | Right child

§) d 1 4
5 a 4 3
4 b 1 3
3 C 1 2

The ite operator

© GDM =

Apply operators to ROBDDs.

Three Boolean functions: f,g,h
with top variable .

ite(f,g,h)

— if (f) then (g) else (h)

— fg+ f'h.

Property:

— ite(f7g7 h) — ite(a:, ite(fxag$7 h$)7ite(f$'7g$’7 hx’))

Example

© GDM

e Apply and to two ROBDDs: f,g.

o fg=z'te(f,g,0)

e Apply or to two ROBDDs: f,g.

— f+g=ite(f,1,9)

e Similar for other Boolean operators.

Boolean operators

Operator

Equivalent ite form

0
f-g
f.

g/
f
f'g
g
f@g
f+g
(f+9)
fF ®g
g/
f+4d
f/
ff+g
(f-9)
1

0

ite(f, g,0)
ite(f,g’,0)
/
ite(f,0,9)
g
ite(f, 9, 9)
ite(f,1,9)
ite(f,0,9")
ite(f,9,9")
ite(g,0,1)
ite(f,1,9")
ite(f,0,1)
ite(f,g9,1)
ite(f,g',1)
1

© GDM =

The ITFE algorithm

© GDM

Evaluate the ite(f, g, h) operator recursively.

Keeps OBDDs in reduced form.

Use two tables (per function):

— Unique table: represents ROBDD.

— Computed table: stores previous info.
Smart implementations of ITE have

linear time complexity in the product of the
ROBDD sizes.

The ITFE algorithm

© GDM =

ITE(f,g,h){
iIf (terminal case)

return (r = trivial result);
else {
iIf (computed table has entry {(f,g,h),r})
return (r from computed table);
else {
x = top variable of f,g,h;
t = ITE(fz, 9o, ha);
e = ITE(fv, 9o, ha');
if(t==¢)
return (¢);
r = find_or_add_unique_table(x,t,e);

Update computed table with {(f,g,h),r};
return (r);

Quantification with BDDs
Consensus and smoothing
© GDM =

e Quantification can be computed by ITEFE.

e Specialized algorithm is more efficient.
— Structure similar to ITE.

— Arguments:

x Function f.
* Variables in varlist.

— Function OP(t,e) returns:

x Consensus: AND(t,e) = ITE(t,e,0).

x Smoothing: OR(t,e) = ITE(t,1,e).

QUANTIFY

© GDM =

QUANTIFY (f,varlist){
iIf (f is constant)
return (f);
else {
iIf (comp. table has entry {(f,varlist),r})
return (r from computed table);

else {
x = top variable of f;
g = fz;
h = 2!

t = QUANTIFY (g,varlist);
e = QUANTIFY (h,varlist);
iIf (x is in varlist)
r = OP(t,e);
else
r=ITE(x,t,e) ;
Update comp. table {(f,varlist),r};
return (r);

Example

© GDM =

e Function f = ab+ bc+ ac

e Consensus: Cq(f).

e varlist = a

e QUANTIFY (f,a) with top variable a.
— Cofactors: g = fa=b+c and h = f, = bc.

— Recursion: t=g=b-+c and e = h = bc.

* (g and h do not depend on a.)

— r=0OP(t,e) = ITE(t,e,0) = bc.

e Co(f) = be.

Extensions to BDDs

© GDM =

e Complemented edges
— Reduce the size of ROBDDs.
— Complement functions in constant time.

— Restrictions on where the complemented
edges can be placed to preserve
canonicity.

x Edge {v, high(v)} not complemented.

e Don’t care leafto represent incompletely specified
functions.

Advantages of ROBDDs

© GDM

e Several algorithms for ROBDD
manipulation.

— Polynomial time.

e Most often the ROBDDS have small size.

e Software packages available.
— Caches.

— Garbage collection.

Variable ordering for ROBDDs

© GDM =—

The variable order afffets the ROBDD size.

Problem:

— Given a function f, find the variable order
that minimizes the size.

The optimum ordering problem is intractable.

Exact algorithm with complexity O(n? - 3%).

Heuristic static variable ordering

© GDM

Given a multilevel circuit.

Order the variables according to circuit structure.

Rationale:

— Variables that affect logic gates close to
outputs should be at the bottom, because
they affect only part of the function.

Method:

— Levelize variables by counting distance to
output.

Example

© GDM

al bl

/1N

a0 b0 cO

Dynamic variable reordering
© GDM e

e BDD sizes vary with variable ordering.
— While manipulating logic functions, a chosen
order may no longer be good.
e Software packages do variable reordering.

— Principle: perform iterative swapping of
adjacent variables.

— Constraint: modify tables as little as possible.

Adjacent variable swapping
© GDM ==

Xi+1
I:00 F01 F

10 I:11 I:OO I:10 I:01 I:11

o (x4, F1,Fy) = (w41, (x5, F11, Fo1), (%, F10, Foo))

Adjacent variable swapping
© GDM ==

e [helayers above and below the variables being
swapped do not change.
e [T wO nodes are introduced

— (May be present in unique table).

e Sifting algorithm.
— Process one variable at a time.

— Move variable to other positions in the
order.

— Repeat for all variables.

Other types of Decision Diagrams
© GDM =

e Decision diagrams based on other expansions:
— OFDD - Ordered Functional Decision Diagrams

— Based on Reed-Muller expansion:

e Decision diagrams for discrete functions.
— Binary inputs, outputs in finite set.

— Examples:

x* ADD - Algebraic Decision Diagrams.

x* BMD - Binary Moment Diagrams.

e Different types of reduction rules.

Algebraic Decision Diagrams (ADDs)
© GDM

e Multi-terminal ROBDDs.
e Finite number of leaves with different values.

e Good to represent discrete functions.

;
et
§ d B

o

=y

AU W DN

2 3 4 5 6 7

|

e Example:

Zero-suppressed BDDs (ZBDDs)
© GDM

e BDDs with different reduction rules:

— Eliminate all nodes whose 1-edge points to
the O-leaf and redirect incoming edges to
the O-subgraph.

— Share all equivalent subgraphs.

— Good for representatiing ensembles of subsets.

e Rationale:

— Most ensembles of subsets are sparse, i.e.,
subsets have few elements.

Example
f=ab' c 4+ a bc 100 4+ 010

© GDM

0 1 0 1
DG b
1 1
0 1 1 0
o o
1 0
1 0 1 0 1

BDD MODIFIED BDD ZDD

Summary

© GDM =

e Binary Decision Diagrams:

— Used mainly in multi-level logic
optimization.

— Very efficient data-structure.

e Several flavors of decision diagrams
address various needs.

e Efficient Boolean manipulation exploits
cofactor expansion and recursion.

