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language of propositional logic !
alphabet: !
(i) proposition symbols : p0, p1, p2, . . . , !
(ii) connectives : ∧, ∨, →, ¬, ↔, ⊥,!
(iii) auxiliary symbols : ( , ).

∧      and !
∨      or!
→     if ..., then ... !
¬      not!
↔     iff!
⊥     falsity

The set PROP of propositions is the smallest set X with 
the properties!
(i) pi ∈X(i∈N), ⊥∈X,!
(ii) φ,ψ∈X⇒ (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ)∈X, !
(iii)φ∈X ⇒(¬φ)∈X.

PROP is well defined? (PROP ≠∅ ?)

AT={p0, p1, p2, . . . ,}∪{⊥}



¬➝� ∉ PROP

Suppose ¬➝� ∈ PROP. "
Y = PROP − {¬➝ ⊥} also satisfies (i), (ii) and 
(iii). "
"

⊥,pi ∈Y. "
"
φ,ψ∈Y⇒φ,ψ∈PROP ⇒(φ∘ψ)∈PROP. "

(φ∘ψ)≠ ¬➝�  ⇒ (φ∘ψ) ∈ Y . "
"
φ∈Y⇒φ∈PROP ⇒(¬φ)∈PROP. "
(¬φ)≠ ¬➝�  ⇒ (¬φ) ∈ Y . "
"
PROP is not the smallest set satisfying (i), (ii) 

and (iii)!!! impossible

The set PROP of propositions is the 
smallest set X with the properties!
(i) pi ∈X(i∈N), ⊥∈X,!
(ii) φ,ψ∈X⇒ (φ∧ψ), (φ∨ψ), (φ→ψ), 
(φ↔ψ)∈X, !
(iii)φ∈X ⇒(¬φ)∈X.



Theorem"
Let h: N x A → A and c∈A."
There exist one and only one function "
f : N → A t.c.:"
1. f(0)=c"
2. ∀n∈N, f(n+1)=h(n,f(n))

the proof is difficult

1.1 Propositions and Connectives 11

The general principle behind this practice is laid down in the following
theorem.

Theorem 1.1.6 (Definition by Recursion) Let mappings H! : A2 → A
and H¬ : A → A be given and let Hat be a mapping from the set of atoms
into A, then there exists exactly one mapping F : PROP → A such that

⎧
⎨

⎩

F (ϕ) = Hat(ϕ) for ϕ atomic,
F ((ϕ!ψ)) = H!(F (ϕ), F (ψ)),
F ((¬ϕ)) = H¬(F (ϕ)).

In concrete applications it is usually rather easily seen to be a correct princi-
ple. However, in general one has to prove the existence of a unique function
satisfying the above equations. The proof is left as an exercise, cf. Exercise 11.

Here are some examples of definition by recursion:

1. The (parsing) tree of a proposition ϕ is defined by

T (ϕ) = !ϕ for atomic ϕ

T ((ϕ!ψ)) = ! (ϕ!ψ)
❅❅""

T (ϕ) T (ψ)

T ((¬ϕ)) = ! (¬ϕ)

T (ϕ)

Examples. T
(
(p1 → (⊥ ∨(¬p3))

)
; T

(
¬(¬(p1 ∧ (¬p1)))

)

"(p1 → (⊥ ∨ (¬p3)))

"
p1

"(⊥∨ (¬p3))

"
⊥

"(¬p3)

"
p3

"
""
❅
❅
❅
❅
❅

"
""

"(¬(¬(p1 ∧ (¬p1))))

"(¬(p1 ∧ (¬p1)))

"(p1 ∧ (¬p1))

"
p1

"(¬p1)

"
p1

"
""
❅
❅❅

A simpler way to exhibit the trees consists of listing the atoms at the bot-
tom, and indicating the connectives at the nodes.

☐∈{∧,∨,➝}



Theorem 1.1.3 (Induction Principle) "
Let A be a property, then A(φ) holds for all φ ∈ PROP if"
(i)   A(pi), for all i,and A(⊥), "
(ii)  A(φ), A(ψ) ⇒ A( (φ→ψ)), "
(iii) A(φ), A(ψ) ⇒ A( (φ∧ψ)), "
(iv) A(φ), A(ψ) ⇒ A( (φ∨ψ)), "
(v) A(φ) ⇒ A( (¬φ)).

exercise
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SEMANTICS

16 1 Propositional Logic

in out
Smith ×
Jones ×

“Smith is in”∧“Jones is in” is true iff
“Smith is in” is true and “Jones is in” is true.

We write v(ϕ) = 1 (resp. 0) for “ϕ is true” (resp. false). Then the above
consideration can be stated as v(ϕ∧ψ) = 1 iff v(ϕ) = v(ψ) = 1, or v(ϕ∧ψ) =
min(v(ϕ), v(ψ)).

One can also write it in the form of a truth table:
∧ 0 1
0 0 0
1 0 1

One reads the truth table as follows: the first argument is taken from the
leftmost column and the second argument is taken from the top row.

Disjunction. If a visitor wants to see one of the partners, no matter which
one, he wants the table to be in one of the positions

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

In the last case he can make a choice, but that is no problem, he wants to
see at least one of the gentlemen, no matter which one.

In our notation, the interpretation of ∨ is given by

v(ϕ ∨ ψ) = 1 iff v(ϕ) = 1 or v(ψ) = 1.

Shorter: v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)).

In truth table form:
∨ 0 1
0 0 1
1 1 1

Negation. The visitor who is solely interested in our Smith will state that
“Smith is not in” if the table is in the position:

in out
Smith ×

So “Smith is not in” is true if “Smith is in” is false. We write this as
v(¬ϕ) = 1 iff v(ϕ) = 0, or v(¬ϕ) = 1 − v(ϕ).

In truth table form:
¬
0 1
1 0

truth table

Definition 1!
A mapping v : PROP → {0, 1} is a valuation if !
v(φ ∧ ψ) = min(v(φ), v(ψ)),!
v(φ ∨ ψ) = max(v(φ), v(ψ)),!
v(φ→ψ)=0 ⇔ v(φ)=1 and v(ψ)=0,!
v(φ↔ψ)=1 ⇔ v(φ)=v(ψ), !
v(¬φ) = 1 − v(φ)!
v(⊥) = 0.

Definition 2 !
A mapping v : PROP → {0, 1} is a valuation if !
v(φ ∧ ψ) = 1 ⇔ v(φ)=1 and v(ψ)=1!
v(φ ∨ ψ) =1  ⇔ v(φ)=1 or v(ψ)=1!
v(φ→ψ)=1 ⇔ v(φ)=0 or v(ψ)=1,!
v(φ↔ψ)=1 ⇔ v(φ)=v(ψ), !
v(¬φ) = 1 ⇔ v(φ)=0!
v(⊥) = 0.

the two 
definitions are 

equivalent



Theorem "
v: AT→ {0, 1} s.t. v(⊥) = 0 (assignment for atoms)"

⇒"
there exists a unique valuation [·]v:PROP→{0,1}"

such that [φ]v = v(φ) for each φ∈AT

Lemma If v, w are two assignments for atoms s.t. for all pi 
occurring in φ, v(pi) = w(pi),  then [φ]v = [φ]w . 



Definition "
➡  φ is a tautology if [φ]v = 1 for all valuations v,"
➡  ⊨ φ stands for ‘φ is a tautology’,"
➡  let Γ be a set of propositions, "
Γ ⊨ φ iff for all v: ([ψ]v = 1 for all ψ∈Γ)⇒[φ]v =1.

SUBSTITUTION!
 "
                  ⎧  
φ[ψ/p] =     ⎨ψ if φ = p 
""""""""""                  ⎩ φ if φ =/= p if φ atomic 
""
(φ1☐φ2)[ψ/p] = (φ1[ψ/p]☐φ2[ψ/p])"
(¬φ)[ψ/p] = (¬φ[ψ/p])

Substitution Theorem !
➡If ⊨ φ1 ↔ φ2, then ⊨ ψ[φ1/p] ↔ ψ[φ2/p], where p is an atom."
➡[φ1 ↔ φ2]v ≤ [ψ[φ1/p] ↔ ψ[φ2/p]]v"
➡⊨(φ1 ↔φ2)→(ψ[φ1/p]↔ψ[φ2/p])



tautologies!
"
➡ (φ ∨ ψ) ∨ σ ↔ φ ∨ (ψ ∨ σ)                 (φ ∧ ψ) ∧ σ ↔ φ ∧ (ψ ∧ σ)"

associativity"
"

➡ φ∨ψ↔ψ∨φ                                        φ∧ψ↔ψ∧φ"
commutativity"

"
➡φ ∨ (ψ ∧ σ) ↔ (φ ∨ ψ) ∧ (φ ∨ σ)        φ ∧ (ψ ∨ σ) ↔ (φ ∧ ψ) ∨ (φ ∧ σ) "

distributivity"
"

➡ ¬(φ ∨ ψ) ↔ ¬φ ∧ ¬ψ                           ¬(φ ∧ ψ) ↔ ¬φ ∨ ¬ψ "
De Morgan’s laws"

"
➡ φ∨φ↔φ                                             φ∧φ↔φ"

idempotency"
"

➡ ¬¬φ ↔ φ "
double negation law

De Morgan’s law: [¬(φ∨ψ)]=1⇔[φ∨ψ]=0⇔[φ]=[ψ]=0⇔[¬φ]=[¬ψ]=1⇔ [¬φ ∧ ¬ψ] = 1."
So [¬(φ ∨ ψ)] = [¬φ ∧ ¬ψ] for all valuations, i.e ⊨ ¬(φ ∨ ψ) ↔ ¬φ ∧ ¬ψ.



⊨(φ↔ψ)↔(φ→ψ)∧(ψ→φ)

⊨(φ → ψ) ↔ (¬φ ∨ ψ)

⊨φ∨ ψ ↔ (¬φ → ψ)

⊨φ ∨ ψ ↔ ¬(¬φ ∧ ¬ψ)

⊨φ ∧ ψ ↔ ¬(¬φ ∨ ¬ψ)

⊨¬φ ↔ (φ →⊥),

⊨⊥ ↔ φ ∧ ¬φ.

≈ ⊆ PROPxPROP : φ ≈ ψ iff ⊨ φ ↔ ψ."
exercise ≈ is an equivalence relation on PROP


