
Propositional Logic

Libro di Testo

Lettura aggiuntiva

language of propositional logic !
alphabet: !
(i) proposition symbols : p0, p1, p2, . . . , !
(ii) connectives : ∧, ∨, →, ¬, ↔, ⊥,!
(iii) auxiliary symbols : (,).

∧ and !
∨ or!
→ if ..., then ... !
¬ not!
↔ iff!
⊥ falsity

The set PROP of propositions is the smallest set X with
the properties!
(i) pi ∈X(i∈N), ⊥∈X,!
(ii) φ,ψ∈X⇒ (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ)∈X, !
(iii)φ∈X ⇒(¬φ)∈X.

PROP is well defined? (PROP ≠∅ ?)

AT={p0, p1, p2, . . . ,}∪{⊥}

¬➝� ∉ PROP

Suppose ¬➝� ∈ PROP. "
Y = PROP − {¬➝ ⊥} also satisfies (i), (ii) and
(iii). "
"

⊥,pi ∈Y. "
"
φ,ψ∈Y⇒φ,ψ∈PROP ⇒(φ∘ψ)∈PROP. "

(φ∘ψ)≠ ¬➝� ⇒ (φ∘ψ) ∈ Y . "
"
φ∈Y⇒φ∈PROP ⇒(¬φ)∈PROP. "
(¬φ)≠ ¬➝� ⇒ (¬φ) ∈ Y . "
"
PROP is not the smallest set satisfying (i), (ii)

and (iii)!!! impossible

The set PROP of propositions is the
smallest set X with the properties!
(i) pi ∈X(i∈N), ⊥∈X,!
(ii) φ,ψ∈X⇒ (φ∧ψ), (φ∨ψ), (φ→ψ),
(φ↔ψ)∈X, !
(iii)φ∈X ⇒(¬φ)∈X.

Theorem"
Let h: N x A → A and c∈A."
There exist one and only one function "
f : N → A t.c.:"
1. f(0)=c"
2. ∀n∈N, f(n+1)=h(n,f(n))

the proof is difficult

1.1 Propositions and Connectives 11

The general principle behind this practice is laid down in the following
theorem.

Theorem 1.1.6 (Definition by Recursion) Let mappings H! : A2 → A
and H¬ : A → A be given and let Hat be a mapping from the set of atoms
into A, then there exists exactly one mapping F : PROP → A such that

⎧
⎨

⎩

F (ϕ) = Hat(ϕ) for ϕ atomic,
F ((ϕ!ψ)) = H!(F (ϕ), F (ψ)),
F ((¬ϕ)) = H¬(F (ϕ)).

In concrete applications it is usually rather easily seen to be a correct princi-
ple. However, in general one has to prove the existence of a unique function
satisfying the above equations. The proof is left as an exercise, cf. Exercise 11.

Here are some examples of definition by recursion:

1. The (parsing) tree of a proposition ϕ is defined by

T (ϕ) = !ϕ for atomic ϕ

T ((ϕ!ψ)) = ! (ϕ!ψ)
❅❅""

T (ϕ) T (ψ)

T ((¬ϕ)) = ! (¬ϕ)

T (ϕ)

Examples. T
(
(p1 → (⊥ ∨(¬p3))

)
; T

(
¬(¬(p1 ∧ (¬p1)))

)

"(p1 → (⊥ ∨ (¬p3)))

"
p1

"(⊥∨ (¬p3))

"
⊥

"(¬p3)

"
p3

"
""
❅
❅
❅
❅
❅

"
""

"(¬(¬(p1 ∧ (¬p1))))

"(¬(p1 ∧ (¬p1)))

"(p1 ∧ (¬p1))

"
p1

"(¬p1)

"
p1

"
""
❅
❅❅

A simpler way to exhibit the trees consists of listing the atoms at the bot-
tom, and indicating the connectives at the nodes.

☐∈{∧,∨,➝}

Theorem 1.1.3 (Induction Principle) "
Let A be a property, then A(φ) holds for all φ ∈ PROP if"
(i) A(pi), for all i,and A(⊥), "
(ii) A(φ), A(ψ) ⇒ A((φ→ψ)), "
(iii) A(φ), A(ψ) ⇒ A((φ∧ψ)), "
(iv) A(φ), A(ψ) ⇒ A((φ∨ψ)), "
(v) A(φ) ⇒ A((¬φ)).

exercise

1.1 Propositions and Connectives 11

The general principle behind this practice is laid down in the following
theorem.

Theorem 1.1.6 (Definition by Recursion) Let mappings H! : A2 → A
and H¬ : A → A be given and let Hat be a mapping from the set of atoms
into A, then there exists exactly one mapping F : PROP → A such that

⎧
⎨

⎩

F (ϕ) = Hat(ϕ) for ϕ atomic,
F ((ϕ!ψ)) = H!(F (ϕ), F (ψ)),
F ((¬ϕ)) = H¬(F (ϕ)).

In concrete applications it is usually rather easily seen to be a correct princi-
ple. However, in general one has to prove the existence of a unique function
satisfying the above equations. The proof is left as an exercise, cf. Exercise 11.

Here are some examples of definition by recursion:

1. The (parsing) tree of a proposition ϕ is defined by

T (ϕ) = !ϕ for atomic ϕ

T ((ϕ!ψ)) = ! (ϕ!ψ)
❅❅""

T (ϕ) T (ψ)

T ((¬ϕ)) = ! (¬ϕ)

T (ϕ)

Examples. T
(
(p1 → (⊥ ∨(¬p3))

)
; T

(
¬(¬(p1 ∧ (¬p1)))

)

"(p1 → (⊥ ∨ (¬p3)))

"
p1

"(⊥∨ (¬p3))

"
⊥

"(¬p3)

"
p3

"
""
❅
❅
❅
❅
❅

"
""

"(¬(¬(p1 ∧ (¬p1))))

"(¬(p1 ∧ (¬p1)))

"(p1 ∧ (¬p1))

"
p1

"(¬p1)

"
p1

"
""
❅
❅❅

A simpler way to exhibit the trees consists of listing the atoms at the bot-
tom, and indicating the connectives at the nodes.

1.1 Propositions and Connectives 11

The general principle behind this practice is laid down in the following
theorem.

Theorem 1.1.6 (Definition by Recursion) Let mappings H! : A2 → A
and H¬ : A → A be given and let Hat be a mapping from the set of atoms
into A, then there exists exactly one mapping F : PROP → A such that

⎧
⎨

⎩

F (ϕ) = Hat(ϕ) for ϕ atomic,
F ((ϕ!ψ)) = H!(F (ϕ), F (ψ)),
F ((¬ϕ)) = H¬(F (ϕ)).

In concrete applications it is usually rather easily seen to be a correct princi-
ple. However, in general one has to prove the existence of a unique function
satisfying the above equations. The proof is left as an exercise, cf. Exercise 11.

Here are some examples of definition by recursion:

1. The (parsing) tree of a proposition ϕ is defined by

T (ϕ) = !ϕ for atomic ϕ

T ((ϕ!ψ)) = ! (ϕ!ψ)
❅❅""

T (ϕ) T (ψ)

T ((¬ϕ)) = ! (¬ϕ)

T (ϕ)

Examples. T
(
(p1 → (⊥ ∨(¬p3))

)
; T

(
¬(¬(p1 ∧ (¬p1)))

)

"(p1 → (⊥ ∨ (¬p3)))

"
p1

"(⊥∨ (¬p3))

"
⊥

"(¬p3)

"
p3

"
""
❅
❅
❅
❅
❅

"
""

"(¬(¬(p1 ∧ (¬p1))))

"(¬(p1 ∧ (¬p1)))

"(p1 ∧ (¬p1))

"
p1

"(¬p1)

"
p1

"
""
❅
❅❅

A simpler way to exhibit the trees consists of listing the atoms at the bot-
tom, and indicating the connectives at the nodes.

?

1.1 Propositions and Connectives 11

The general principle behind this practice is laid down in the following
theorem.

Theorem 1.1.6 (Definition by Recursion) Let mappings H! : A2 → A
and H¬ : A → A be given and let Hat be a mapping from the set of atoms
into A, then there exists exactly one mapping F : PROP → A such that

⎧
⎨

⎩

F (ϕ) = Hat(ϕ) for ϕ atomic,
F ((ϕ!ψ)) = H!(F (ϕ), F (ψ)),
F ((¬ϕ)) = H¬(F (ϕ)).

In concrete applications it is usually rather easily seen to be a correct princi-
ple. However, in general one has to prove the existence of a unique function
satisfying the above equations. The proof is left as an exercise, cf. Exercise 11.

Here are some examples of definition by recursion:

1. The (parsing) tree of a proposition ϕ is defined by

T (ϕ) = !ϕ for atomic ϕ

T ((ϕ!ψ)) = ! (ϕ!ψ)
❅❅""

T (ϕ) T (ψ)

T ((¬ϕ)) = ! (¬ϕ)

T (ϕ)

Examples. T
(
(p1 → (⊥ ∨(¬p3))

)
; T

(
¬(¬(p1 ∧ (¬p1)))

)

"(p1 → (⊥ ∨ (¬p3)))

"
p1

"(⊥∨ (¬p3))

"
⊥

"(¬p3)

"
p3

"
""
❅
❅
❅
❅
❅

"
""

"(¬(¬(p1 ∧ (¬p1))))

"(¬(p1 ∧ (¬p1)))

"(p1 ∧ (¬p1))

"
p1

"(¬p1)

"
p1

"
""
❅
❅❅

A simpler way to exhibit the trees consists of listing the atoms at the bot-
tom, and indicating the connectives at the nodes.

SEMANTICS

16 1 Propositional Logic

in out
Smith ×
Jones ×

“Smith is in”∧“Jones is in” is true iff
“Smith is in” is true and “Jones is in” is true.

We write v(ϕ) = 1 (resp. 0) for “ϕ is true” (resp. false). Then the above
consideration can be stated as v(ϕ∧ψ) = 1 iff v(ϕ) = v(ψ) = 1, or v(ϕ∧ψ) =
min(v(ϕ), v(ψ)).

One can also write it in the form of a truth table:
∧ 0 1
0 0 0
1 0 1

One reads the truth table as follows: the first argument is taken from the
leftmost column and the second argument is taken from the top row.

Disjunction. If a visitor wants to see one of the partners, no matter which
one, he wants the table to be in one of the positions

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

In the last case he can make a choice, but that is no problem, he wants to
see at least one of the gentlemen, no matter which one.

In our notation, the interpretation of ∨ is given by

v(ϕ ∨ ψ) = 1 iff v(ϕ) = 1 or v(ψ) = 1.

Shorter: v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)).

In truth table form:
∨ 0 1
0 0 1
1 1 1

Negation. The visitor who is solely interested in our Smith will state that
“Smith is not in” if the table is in the position:

in out
Smith ×

So “Smith is not in” is true if “Smith is in” is false. We write this as
v(¬ϕ) = 1 iff v(ϕ) = 0, or v(¬ϕ) = 1 − v(ϕ).

In truth table form:
¬
0 1
1 0

truth table

Definition 1!
A mapping v : PROP → {0, 1} is a valuation if !
v(φ ∧ ψ) = min(v(φ), v(ψ)),!
v(φ ∨ ψ) = max(v(φ), v(ψ)),!
v(φ→ψ)=0 ⇔ v(φ)=1 and v(ψ)=0,!
v(φ↔ψ)=1 ⇔ v(φ)=v(ψ), !
v(¬φ) = 1 − v(φ)!
v(⊥) = 0.

Definition 2 !
A mapping v : PROP → {0, 1} is a valuation if !
v(φ ∧ ψ) = 1 ⇔ v(φ)=1 and v(ψ)=1!
v(φ ∨ ψ) =1 ⇔ v(φ)=1 or v(ψ)=1!
v(φ→ψ)=1 ⇔ v(φ)=0 or v(ψ)=1,!
v(φ↔ψ)=1 ⇔ v(φ)=v(ψ), !
v(¬φ) = 1 ⇔ v(φ)=0!
v(⊥) = 0.

the two
definitions are

equivalent

Theorem "
v: AT→ {0, 1} s.t. v(⊥) = 0 (assignment for atoms)"

⇒"
there exists a unique valuation [·]v:PROP→{0,1}"

such that [φ]v = v(φ) for each φ∈AT

Lemma If v, w are two assignments for atoms s.t. for all pi
occurring in φ, v(pi) = w(pi), then [φ]v = [φ]w .

Definition "
➡ φ is a tautology if [φ]v = 1 for all valuations v,"
➡ ⊨ φ stands for ‘φ is a tautology’,"
➡ let Γ be a set of propositions, "
Γ ⊨ φ iff for all v: ([ψ]v = 1 for all ψ∈Γ)⇒[φ]v =1.

SUBSTITUTION!
 "
 ⎧
φ[ψ/p] = ⎨ψ if φ = p
"""""""""" ⎩ φ if φ =/= p if φ atomic
""
(φ1☐φ2)[ψ/p] = (φ1[ψ/p]☐φ2[ψ/p])"
(¬φ)[ψ/p] = (¬φ[ψ/p])

Substitution Theorem !
➡If ⊨ φ1 ↔ φ2, then ⊨ ψ[φ1/p] ↔ ψ[φ2/p], where p is an atom."
➡[φ1 ↔ φ2]v ≤ [ψ[φ1/p] ↔ ψ[φ2/p]]v"
➡⊨(φ1 ↔φ2)→(ψ[φ1/p]↔ψ[φ2/p])

tautologies!
"
➡ (φ ∨ ψ) ∨ σ ↔ φ ∨ (ψ ∨ σ) (φ ∧ ψ) ∧ σ ↔ φ ∧ (ψ ∧ σ)"

associativity"
"

➡ φ∨ψ↔ψ∨φ φ∧ψ↔ψ∧φ"
commutativity"

"
➡φ ∨ (ψ ∧ σ) ↔ (φ ∨ ψ) ∧ (φ ∨ σ) φ ∧ (ψ ∨ σ) ↔ (φ ∧ ψ) ∨ (φ ∧ σ) "

distributivity"
"

➡ ¬(φ ∨ ψ) ↔ ¬φ ∧ ¬ψ ¬(φ ∧ ψ) ↔ ¬φ ∨ ¬ψ "
De Morgan’s laws"

"
➡ φ∨φ↔φ φ∧φ↔φ"

idempotency"
"

➡ ¬¬φ ↔ φ "
double negation law

De Morgan’s law: [¬(φ∨ψ)]=1⇔[φ∨ψ]=0⇔[φ]=[ψ]=0⇔[¬φ]=[¬ψ]=1⇔ [¬φ ∧ ¬ψ] = 1."
So [¬(φ ∨ ψ)] = [¬φ ∧ ¬ψ] for all valuations, i.e ⊨ ¬(φ ∨ ψ) ↔ ¬φ ∧ ¬ψ.

⊨(φ↔ψ)↔(φ→ψ)∧(ψ→φ)

⊨(φ → ψ) ↔ (¬φ ∨ ψ)

⊨φ∨ ψ ↔ (¬φ → ψ)

⊨φ ∨ ψ ↔ ¬(¬φ ∧ ¬ψ)

⊨φ ∧ ψ ↔ ¬(¬φ ∨ ¬ψ)

⊨¬φ ↔ (φ →⊥),

⊨⊥ ↔ φ ∧ ¬φ.

≈ ⊆ PROPxPROP : φ ≈ ψ iff ⊨ φ ↔ ψ."
exercise ≈ is an equivalence relation on PROP

