# LEZIONI DI STATISTICA MEDICA

**Dott. SIMONE ACCORDINI** 

#### Lezione n.8

- Misure di dispersione

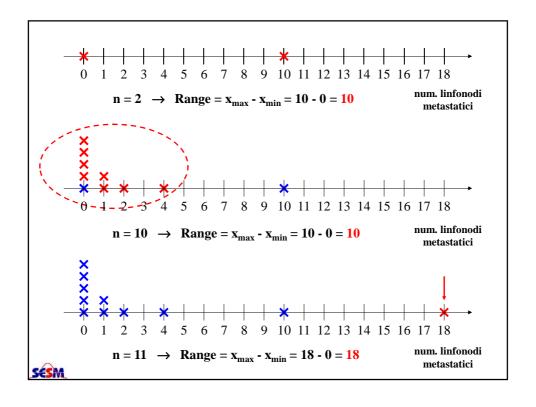


Sezione di Epidemiologia & Statistica Medica Università degli Studi di Verona

# MISURE DI DISPERSIONE

(measures of dispersion)

- CAMPO DI VARIAZIONE (range)
- DISTANZA INTERQUARTILE
- DEVIANZA
- COEFFICIENTE DI VARIAZIONE
- VARIANZA
- DEVIAZIONE


STANDARD

## **RANGE (CAMPO DI VARIAZIONE)**

Range = 
$$x_{max} - x_{min}$$

differenza tra il valore massimo e il valore minimo osservato

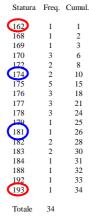
- Si basa soltanto sui valori estremi della distribuzione e non tiene conto dei valori intermedi.
- E' molto influenzato da osservazioni anomale (outliers).
- Tende ad aumentare al crescere del numero delle osservazioni.



## **DISTANZA INTERQUARTILE**

 $IQR = Q_3 - Q_1$ 

differenza tra il III° quartile (Q3) e il I° quartile (Q1)


- In questo intervallo ricade la metà dei valori osservati, posti esattamente al centro della distribuzione.
- Non è influenzata da osservazioni anomale o estreme.



#### Statura matricole della Facoltà di Medicina (A.A. 95/96)

#### MASCHI

Range =  $x_{max} - x_{min} = 193 - 162 = 31 \text{ cm}$ 



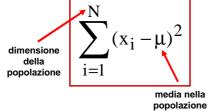
Calcolo del I° quartile: (rango percentile = 25)

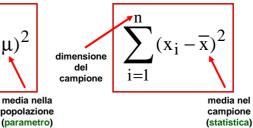
1. rango = (34+1) \* 25 / 100=  $35 / 4 \approx 9$ 

2. I° quartile:  $Q_1 = 174$  cm

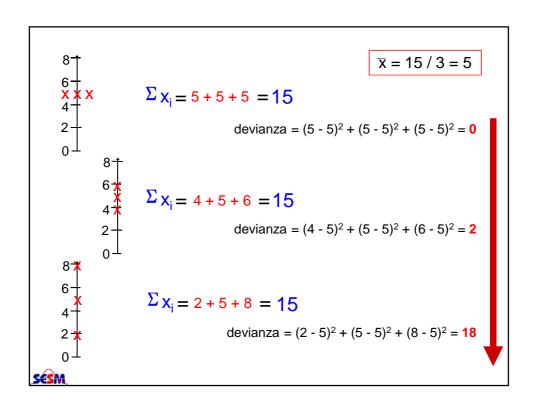
#### Calcolo del IIIº quartile:

(rango percentile = 75)


1. rango = (34+1) \* 75 / 100=  $35 * 3 / 4 \approx 26$ 


2. III° quartile:  $Q_3 = 181 \text{ cm}$ 

 $IQR = Q_3 - Q_1 = 181 - 174 = 7 cm$ 



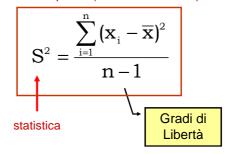

# Nella popolazione $\sum_{i=1}^{N} (x_i - \mu)^2$ Nel campione $\sum_{i=1}^{n} (x_i - \overline{x})^2$





- E' un indice di dispersione definito sulla base del concetto di SCARTO rispetto ad un punto centrale della distribuzione (media aritmetica).
- E' la base delle misure di dispersione per variabili quantitative (da essa discendono la VARIANZA e la DEVIAZIONE STANDARD).




| FEV <sub>1</sub> | $n_{i}$        | $p_i$          | $(x_i - \overline{x})$    | $(x_i - \overline{x})^2$    | $\bar{x}$ = (250+300+350) / 3 = 300 cl/sec                              |
|------------------|----------------|----------------|---------------------------|-----------------------------|-------------------------------------------------------------------------|
| 250              | 1              | 0.33           | -50                       | 2500                        |                                                                         |
| 300              | 1              | 0.33           | 0                         | 0                           | $n = 3 \rightarrow devianza = 5000 cl^2/sec^2$                          |
| 350              | 1              | 0.33           | 50                        | 2500                        |                                                                         |
| TOT              | 3              | 1              | 0                         | 5000                        | 0 50 200 250 300 350 400 1000                                           |
|                  |                |                |                           |                             | cl/sec                                                                  |
|                  |                |                |                           |                             |                                                                         |
| ${\rm FEV}_1$    | n <sub>i</sub> | p <sub>i</sub> | $(x_i - \overline{x})n_i$ | $(x_i \overline{-x})^2 n_i$ | $\overline{x} = (250^{2} + 300^{2} + 350^{2}) / 6 = 300 \text{ cl/sec}$ |
| 250              | 2              | 0.33           | -50*2                     | 2500*2                      |                                                                         |
| 300              | 2              | 0.33           | 0                         | 0                           | $n = 6 \rightarrow devianza = 10000 cl^2/sec^2$                         |
| 350              | 2              | 0.33           | 50*2                      | 2500*2                      | <b>* * *</b>                                                            |
| TOT              | 6              | 1              | 0                         | 10000                       | 0 50 200 250 300 350 400 1000                                           |
|                  |                |                | _                         |                             | cl/sec                                                                  |
|                  |                |                |                           |                             |                                                                         |
|                  |                |                |                           |                             |                                                                         |

# **VARIANZA**

#### Nella popolazione

 $\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N}$ parametro

#### Nel campione (varianza corretta)



- E' una devianza media ossia la devianza rapportata al numero delle osservazioni campionarie (n) o della popolazione (N).
- E' la media aritmetica del quadrato degli scarti delle singole osservazioni dalla loro media aritmetica.

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\underbrace{n-1}}$$

I GRADI DI LIBERTÀ rappresentano il numero di osservazioni indipendenti del campione, dal momento che sui dati disponibili è già stata calcolata una statistica (la media campionaria).

- Tiene conto di tutte le osservazioni ed è dunque influenzata da eventuali osservazioni anomale (outliers).
- Non è direttamente confrontabile con la media o altri indici di posizione in quanto l'unità di misura è elevata al quadrato.



# Distribuzione di frequenza della statura delle matricole di Medicina dell'Università di Verona nell'A.A. 95/96

| CLASSE    | PUNTO<br>CENTRALE<br>(x <sub>i</sub> ) | FREQUENZA<br>ASSOLUTA<br>(n <sub>i</sub> ) | $(x_i - x)^{2*}n_i$            |
|-----------|----------------------------------------|--------------------------------------------|--------------------------------|
| [150-155) | 152.5                                  | 1                                          | $(152.5-170.0)^2 * 1 = 307.0$  |
| [155-160) | 157.5                                  | 8                                          | $(157.5-170.0)^2 * 8 = 1254.0$ |
| [160-165) | 162.5                                  | 24                                         | $(162.5-170.0)^2 *24 = 1357.2$ |
| [165-170) | 167.5                                  | 34                                         | 215.9                          |
| [170-175) | 172.5                                  | 27                                         | 166.1                          |
| [175-180) | 177.5                                  | 19                                         | 1063.1                         |
| [180-185) | 182.5                                  | 9                                          | 1401.8                         |
| [185-190) | 187.5                                  | 1                                          | 305.6                          |
| [190-195] | 192.5                                  | 2                                          | 1010.7                         |
|           |                                        |                                            | ======                         |
| TOTALE    |                                        | 125                                        | 7081.2                         |

$$S^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \bar{x})^{2} n_{i}}{n - 1} = \frac{7081.2}{124} = 57.1 \text{ cm}^{2}$$

### **DEVIAZIONE STANDARD**

Nella popolazione

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Nel campione (dev. st. corretta)

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

- Ha sempre un valore positivo.
- E' una misura della dispersione della variabile intorno alla media.
- E' direttamente confrontabile con le misure di posizione, essendo calcolata con la stessa unità di misura.



# Distribuzione di frequenza della statura delle matricole di Medicina dell'Università di Verona nell'A.A. 95/96

| CLASSE    | PUNTO<br>CENTRALE<br>(x <sub>i</sub> ) | FREQUENZA<br>ASSOLUTA<br>(n <sub>i</sub> ) | $(\mathbf{x}_i - \overline{\mathbf{x}})^2 * \mathbf{n}_i$ |
|-----------|----------------------------------------|--------------------------------------------|-----------------------------------------------------------|
| [150-155) | 152.5                                  | 1                                          | $(152.5-170.0)^2 * 1 = 307.0$                             |
| [155-160) | 157.5                                  | 8                                          | $(157.5-170.0)^2 * 8 = 1254.0$                            |
| [160-165) | 162.5                                  | 24                                         | $(162.5-170.0)^2 *24 = 1357.2$                            |
| [165-170) | 167.5                                  | 34                                         | 215.9                                                     |
| [170-175) | 172.5                                  | 27                                         | 166.1                                                     |
| [175-180) | 177.5                                  | 19                                         | 1063.1                                                    |
| [180-185) | 182.5                                  | 9                                          | 1401.8                                                    |
| [185-190) | 187.5                                  | 1                                          | 305.6                                                     |
| [190-195] | 192.5                                  | 2                                          | 1010.7                                                    |
|           |                                        |                                            |                                                           |
| TOTALE    |                                        | 125                                        | 7081.2                                                    |

$$S = \sqrt{\frac{\sum_{i=1}^{k} (x_i - \overline{x})^2 n_i}{n - 1}} = \sqrt{\frac{7081.2}{124}} = \sqrt{57.1} = 7.6 \text{ cm}$$



In alcune situazioni il confronto della variabilità all'interno di due gruppi di osservazioni è fuorviante se si utilizza la deviazione standard.

#### Due gruppi con valori medi molto distanti:

Tre neonati pesano rispettivamente 3, 4 e 5 Kg (media = 4 Kg; dev.st. = 1 Kg). Tre bambini di 1 anno pesano 10, 11 e 12 Kg (media = 11 Kg; dev.st. = 1 Kg).

La deviazione standard è uguale nei due gruppi, ma il buon senso suggerisce che la variabilità del peso sia maggiore nei neonati.

 La variabile misurata è la stessa ma i valori medi delle osservazioni nei due gruppi sono molto distanti (le osservazioni nei due gruppi sono su diversi ordini di grandezza)





#### Due variabili diverse:

In 91 ragazze matricole di Medicina a Verona nell'A.A. 95/96, la media del **peso** era pari a **55.1 Kg** e la deviazione standard era pari a **5.7 Kg**, la media della **statura** era pari a **166.1 cm** e la deviazione standard era pari a **6.1 cm**.

E' maggiore la variabilità del peso o la variabilità della statura?

 Le variabili misurate nei due gruppi sono diverse (le osservazioni nei due gruppi sono espresse con diverse unità di misura)





# **COEFFICIENTE DI VARIAZIONE (CV)**

La deviazione standard viene espressa in percentuale della media.

## CV = (deviazione standard / media) \* 100

|                | Media | Dev. standard | CV     |
|----------------|-------|---------------|--------|
| Neonati        | 4 Kg  | 1 Kg          | 25.0 % |
| Bambini 1 anno | 11 Kg | 1 Kg          | 9.1 %  |

La variabilità del peso è maggiore nei neonati.

|         | Media    | Dev. standard | CV           |
|---------|----------|---------------|--------------|
| Peso    | 55.1 Kg  | 5.7 Kg        | 10.3 %       |
| Statura | 166.1 cm | 6.1 cm        | <b>3.7</b> % |

La variabilità del peso è maggiore della variabilità della statura.

