Corso di Laboratorio Integrato di Chimica Generale BIOTEC-2011

Esercizi Svolti su Equilibri acido-base

1. - Quanto vale il pH di una soluzione 0.1 M di CO_2 se si ritiene che essa non esiste più come tale in H_2O e si sa che la $Ka_1H_2CO_3$ = 2.5 10^{-7} ?

Risposta:

$$CO_2$$
 + H_2O \leftrightarrow H_2CO_3 (ritenuto completamente spostato verso destra!)

E quindi $H_2CO_3 + H_2O \leftrightarrow HCO_3^- + H_3O^+$

In queste condizioni il secondo equilibrio $HCO_3^- + H_2O \leftrightarrow CO_3^{2-} + H_3O^+$ si può trascurare per cui:

 $[H_3O^+] = \sqrt{Ka_1 \ C^\circ}$ trascurando $[H_3O^+]$ come termine additivo, da cui pH = $1/2pKa_1 - \frac{1}{2} log C^\circ = 3.2 + 0.5 = 3.7$

2. Se aumenta la pressione della CO_2 sopra la soluzione acquosa il pH della soluzione varia \square o resta costante \oplus ?

Se varia, aumenta ⊕ o diminuisce □? Perché?

Risposta:

La solubilità della CO_2 aumenta all'aumentare della pressione secondo la legge di Henry C(g) = K_H p(g).

Se la CO₂ in soluzione aumenta anche la concentrazione di H₂CO₃ aumenta secondo l'equilibrio:

 $CO_2 + H_2O = H_2CO_3$ e quindi anche l'equilibrio $H_2CO_3 + H_2O = HCO_3^- + H_3O^+$ si sposterà verso destra aumentando la $[H_3O^+]$ e quindi il pH diminuirà.

3 A 20 mL di NH_3 0.1 M vengono aggiunti prima 5 mL di HCl 0.2 M e poi 10 mL di HNO_3 0.1 M. Calcolare il pH iniziale e dopo le due aggiunte. la Kb dell'ammoniaca è 1.8 10^{-5} moli/litro.

Soluzione:

pH iniziale =
$$14 - (1/2 \text{ pk}_b - 1/2 \text{ log C}^\circ)$$
 = $14 - (2.4 + 0.5) = 14 - 2.9 = 11.1$
nNH₃ = $0.1 \times 20 \times 10^{-3} = 2 \times 10^{-3}$ nHCl = $0.2 \times 5 \times 10^{-3} = 10^{-3}$

il pH sarà uguale alla pka, perchè in soluzione ci saranno, dopo reazione di HCl (acido fortissimo) con NH₃, 10^{-3} moli di NH₃ e 10^{-3} moli di NH₄⁺, cioè l'acido e la base nelle stesse concentrazioni. pH = 9.2

Se alla soluzione tampone saranno aggiunte $0.1 ext{ } 10^{-2} = 10^{-3} ext{ moli di } HNO_3 ext{ acido}$ fortissimo tutte le moli di NH3 in soluzione si trasformeranno in NH_4^+ ed in soluzione avrò 2 10-3 moli di NH_4^+ che determineranno il pH della soluzione (volume totale = 20 + 5 + 10 = 35 mL) $[NH_4^+] = 2 ext{ } 10^{-3} ext{ } /35 ext{ } 10^{-2}$

$$pH_{finale} = \frac{1}{2}pKa - \frac{1}{2}log 5.7 \cdot 10^{-2} = 4.6 - \frac{1}{2}(-2 + 0.43) = 4.6 + 1.57/2 = 4.6 + 0.78 = 5.38$$

4. Qual'è il pH a cui viene tamponata una soluzione 0.2 M in NH₄⁺ e 0.2 M in NH₃ se la pK_b dell'NH₃ è 4.8?

Risposta:

pH = 9.2 come calcolato nell'esercizio precedente!

Notare che il pH è lo stesso nei due casi anche se le concentrazioni dei tamponi sono diverse!!! E importante che il rapporto [acido]/[base coniugata] sia lo stesso: in questi casi uguale a 1.

5. Il pH della soluzione di ammoniaca è acido ⊕, basico □ o neutro O? (pKb = 4.78) Se si aggiunge alla soluzione NH₄Cl Il pH della soluzione aumenta ⊕ o diminuisce □ ? Perché?

Se si aggiunge NH_4^+ , acido coniugato alla base ammoniaca, il pH diminuisce perchè si forma una soluzione tampone, che raggiungerà il valore della pKa (pH = 9.2) quando $[NH_3] = [NH_4^+]$

- Calcolarlo se si aggiunge ad un litro di una soluzione di NH₃ 0.1 M 0.07 moli di NH₄⁺.
- Se la quantità in moli di NH₄⁺ aggiunta è pari a quella di NH₃ presente in soluzione, quanto vale il pH della soluzione risultante?

Soluzione:

```
pH = pka - log[NH_3]/[NH_4^+] = 9.2 - log 1.43 = 9.2 - 0.155 = 9.045 nel caso di [NH_3] = [NH_4^+] pH = 9.2
```

6. Qual'è il pH a cui viene tamponata una soluzione contenente 0.1 moli di NaHCO₃ e 0.1 moli di Na₂CO₃, sapendo che per H_2CO_3 pKa₁ = 6.36 e pKa₂ = 10.36

Soluzione:

Essendo la soluzione tampone costituita da un acido debole e la sua base coniugata entrambe in concentrazione 0.1 Molare, il pH sarà uguale alla pKa relativa all'equilibrio in cui sono contenute le specie HCO_3^2 ovvero la pKa₂ = 10.36. pH = 10.36

7. La soluzione tampone costituita da quantità uguali di HCO_3^- e CO_3^{2-} ha un pH = 10.33. Da questo valore di pH è possibile definire il valore della pKa₁ o della pka₂?

Risposta:

Poiche il pH di una soluzione tampone in cui sia l'acido che la base coniugata sono nella stessa concentrazione è dato dal valore della pKa, in questo caso 10.33 è il valore della pKa delativa alle specie HCO_3^- e CO_3^{2-} ovvero pKa₂ quindi il pH definisce la pKa₂ = 10.33

8. Per ogni sostanza elencata dire se è un acido od una base secondo Broensted e scrivere, se possibile, la specie coniugata.

Scrivere inoltre il relativo quoziente di reazione quando si pone la specie in acqua.

(a)
$$NH_4^+$$
, (b) $H_2PO_4^-$, (c) CH_3COOH , (d) HSO_4^-

Risposta:

- A) NH_4^+ , è l'acido conjugato della base NH_3 $NH_4^+ + H_2O = NH_3 + H_3O^+$ $Q = [NH_3] [H_3O^+]/ [NH_4^+]$
- B) H₂PO₄, è un anfolita essendo una specie intermedia di un acido poliprotico: H₃PO₄. Sottostà quindi a due equilibri $H_2PO_4^- + H_2O = HPO_4^{2-} + H_3O^+$ $H_2PO_4^- + H_2O = H_3PO_4 + OH^ Q_1 = [HPO_4^{2-}][H_3O^+]/[H_2PO_4^-]$ e $Q_2 = [H_3PO_4][OH^-]/[H_2PO_4^-]$
 - C) CH₃COOH, è un acido la cui base coniugata è CH₃COO⁻. Reazione: $CH_3COOH + H_2O = CH_3COO^- + H_3O^+ = Q = [CH_3COO^-][H_3O^+]$ /[CH₃COOH]
 - D) HSO₄⁻, è un acido la cui base coniugata è SO₄²⁻. Non è un anfolita perchè H₂SO₄ è completamente dissociato e quindi HSO₄ non ha carattere basico. $HSO_4^- + H_2O = SO_4^{2-} + H_3O^+ Q = [SO_4^{2-}][H_3O^+]/[HSO_4^-]$
- 9. Qual'è il pH di una soluzione formata da HPO₄²⁻ e H₂PO₄⁻ nella stessa concentrazione 01 M, se le pka dell' H_3PO_4 sono rispettivamente pKa₁ = 2.15, pKa₂ = 7.2, pKa₃ = 12.38 ?

Risposta:

La soluzione proposta è una soluzione tampone perchè contiene la base HPO₄²ed il suo acido coniugato H₂PO₄ in concentrazioni uguali. Pertanto il pH sarà uguale alla pKa relativa alla reazione di equilibrio che contiene le due specie presenti in soluzione: $H_2PO_4^{-} + H_2O_{-} = HPO_4^{2-} + H_3O_{-}^{+}$ la cui costante è Ka₂. Pertanto il pH = pKa₂ = 7.2

10. Per ogni sostanza elencata dire se è un acido od una base secondo Broensted e scrivere, se possibile, la specie coniugata.

Scrivere inoltre il relativo guoziente di reazione guando si pone la specie in acqua.

(a)
$$NH_4^+$$
, (b) CO_3^{2-} , (c) CH_3COOH , (d) Br^-

Per NH₃ Kb = $1.8 \cdot 10^{-5}$

Per CH₃COOH Ka = 1.8×10^{-5}

Per H_3PO_4 Ka₁ = 7.1x10⁻³, Ka₂ = 6.3x10⁻⁸, Ka₃ = 4.2x10⁻¹³. Per H_2CO_3 Ka₁ = 4.4x10⁻⁷ e Ka₂ = 4.7x10⁻¹¹.

Soluzione:

NH₄⁺ = Acido coniugato della base NH₃ CO_3^{2-} = Base conjugata dell'acido HCO_3^{-} CH₃COOH = Acido coniugato della base CH₃COO⁻ Br = ione spettatore senza capacità di idrolizzare l'acqua.

$$NH_4^+ + H_2O = NH_3 + H_3O^+$$
 [NH₃] [H₃O⁺]/ [NH₄⁺]
 $CO_3^{2^-} + H_2O = HCO_3^- + OH^-$ [HCO₃⁻] [OH₃COO⁺]/ [CH₃COO⁺]/ [CH₃COOH]

11. Calcolare inoltre il pH di una soluzione 0.1 M di Na₂CO₃. Se ad un litro di questa soluzione vengono aggiunte 0.1 moli di HCO₃ qual'è il nuovo pH?

Soluzione.

$$CO_3^{2-} + H_2O = HCO_3^{--} + OH^{--}$$
 [HCO₃⁻] [OH⁻]/ [CO₃²]

Il pH sarà sicuramente basico. Trascurando la [OH] come termine addittivo

poichè c° = 0.1 e Kb₂ =
$$10^{-14}/4.7 \times 10^{-11}$$
 = 2.13 x 10^{-4} [OH⁻] = $\sqrt{2.13 \times 10^{-4} \times 10^{-1}}$ = 4.61 10^{-3}

$$pOH = 2.34$$
 e quindi $pH = 14 - 2.34 = 11.66$

All'aggiunta di 0.1 moli di HCO₃⁻ la base CO₃²⁻ è in presenza della stessa quantità dell'acido coniugato siamo quindi in presenza di una soluzione tampone il cui pH è determinato dal valore della pKa dell'acido coniugato ovvero uguale alla pKa₂

Essendo
$$Ka_2 = 4.7 \cdot 10^{-11} \text{ pKa}_2 = 10.33 = \text{pH}$$

12. Sulla base delle proprietà degli indicatori colorimetrici acido base, quale colore assumono i seguenti indicatori se aggiunti alla soluzione iniziale dell'esercizio precedente? (ogni indicatore viene aggiunto in una nuova aliquota di soluzione iniziale!).

Tabella Indicatori colorimetrici per le titolazioni acido-base

	Total and the state of the stat				
Indicatore acido base	K_{HInd}	Variazione di colore acido-base coniugata			
		Colore Hind		Colore Ind	
2,4-dinitrofenolo	1.3 10 ⁻⁴	Incolore	-	giallo	
Verde di bromo cresolo	2.1 10 ⁻⁵	Giallo	-	verdemare	
Rosso di clorofenolo	1.0 10 ⁻⁶	Giallo	-	rosso	
Blu di bromotimolo	7.9 10 ⁻⁸	Giallo	-	blu	
Timoftaleina	1.0 10 ⁻¹⁰	Incolore	-	blu	

Risposta:

Il pH della soluzione essendo determinato da una quantità di specie acida o basica molto maggiore di quella dell'indicatore fissa la concentrazione degli ioni H_3O^+ nella soluzione in cui viene posto l'indicatore e quindi è questa concentrazione di H_3O^+ che determina la quantità della forma acida e basica dell'indicatore colorimetrico presenti nella soluzione.

Per definire il rapporto tra le quantità in moli della specie acida e basica dell'indicatore ad un determinato pH della soluzione in cui esso viene posto si applica la formula:

pH = pKa(ind) - log
$$\frac{n_{HInd}}{n_{Ind}}$$

Quando il rapporto delle moli $\dot{e} \ge 10$ si osserverà il colore della specie Hind quando il valore del rapporto delle moli $\dot{e} \le 0.1$ si vedrà il colore della specie Ind⁻. Ad un certo valore di pH, il rapporto delle due forme in cui si può trovare l'indicatore dipende dal valore della sua pKa.

Essendo infatti:
$$pKa(ind) - pH = log \frac{n_{HInd}}{n_{Ind}}$$

nel caso specifico a pH =11.66 si avrà:

per il 2,4-dinitrofenolo 3.88 – 11.66 = -7.78 ciò significa che l'indicatore è praticamente tutto sotto forma di Ind⁻ e la colorazione sarà gialla. Anche gli altri indicatori si trovano tutti nella forma basica perché hanno tutti pKa inferiori al valore del pH della soluzione e quindi il valore del logaritmo del rapporto delle moli sarà sempre negativo, indicando un rapporto delle moli frazionario, ovvero un rapporto in cui prevale il numero di moli della specie al denominatore cioè Ind⁻.

```
Verde di bromo cresolo = 4.68 - 11.66 = -6.98
Rosso di clorofenolo = 6 - 11.66 = -5.66
Blu di bromotimolo = 7.1 - 11.66 = -4.56
Timoftaleina = 10 - 11.66 = -1.66
```

Quale colore assumono invece nell'aliquota di soluzione a cui è stato aggiunto l'HCO₃⁻ ? Risposta:

```
A pH = 10.33 \text{ si avrà}:
```

per il 2,4-dinitrofenolo 3.88 - 10.33 = -6.45Verde di bromo cresolo = 4.68 - 10.33 = -5.65Rosso di clorofenolo = 6 - 10.33 = -4.33Blu di bromotimolo = 7.1 - 10.33 = -3.23Timoftaleina = 10 - 10.33 = -0.33

Per cui tutti gli indicatori si troveranno nella loro forma basica eccetto la Timoftaleina per la quale, pur prevalendo la specie basica, il colore blu non è acora sufficiente per essere percepito. Si ritiene infatti che il colore di una specie sia evidente quando il suo numero di moli sia dieci volte maggiore rispetto all'altro e quindi che il logaritmo del rapporto sia ≥1

12. Per ogni sostanza elencata dire se è un acido od una base secondo Broensted e scrivere, se possibile, la specie coniugata.

Scrivere inoltre il relativo quoziente di reazione quando si pone la specie in acqua.

```
(a) NH_4^+, (b) H_2PO_4^-, (c) CH_3COONa, (d) CI^-

Per NH_3 Kb = 1.8 10^{-5}

Per CH_3COOH Ka = 1.8 10^{-5}

Per H_3PO_4 Ka<sub>1</sub> = 7.1\times10^{-3}, Ka<sub>2</sub> = 6.3\times10^{-8}, Ka<sub>3</sub> = 4.2\times10^{-13}.

Per H_2CO_3 Ka<sub>1</sub> = 4.4\times10^{-7} e Ka<sub>2</sub> = 4.7\times10^{-11}.
```

Soluzione:

 NH_4^+ = Acido coniugato della base NH_3 $H_2PO_4^-$ = specie anfolita che quando si comporta da acido produce la base coniugata HPO_4^{2-} e quando si comporta da base produce l'acido coniugato H_3PO_4 CH_3COONa = Base coniugata dell'acido CH_3COOH Cl^- = ione spettatore senza capacità di idrolizzare l'acqua.

13. Calcolare inoltre il pH di una soluzione 0.1 M di NH₄Cl. Se ad un litro di questa soluzione vengono aggiunte 0.05 moli di NaOH qual'è il nuovo pH?

Soluzione.

$$NH_4^+ + H_2O^- = NH_3 + H_3O^+$$
 [NH₃] [H₃O⁺]/ [NH₄⁺]

Il pH sarà sicuramente acido. Trascurando la [H₃O⁺] come termine addittivo

poichè c° = 0.1 e Ka =
$$10^{-14}/1.8 \times 10^{-5} = 5.55 \times 10^{-10} \quad [H_3O^+] = \sqrt{5.55 \times 10^{-10} \times 10^{-1}} = 7.45 \times 10^{-6}$$

pH = 5.13

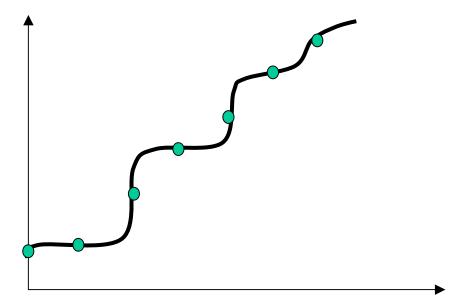
All'aggiunta di 0.05 moli di OH^- l'acido NH_4^+ reagisce formando 0.05 moli di NH_3 . Rimarranno ancora 0.1 - 0.05 = 0.05 moli di NH_4^+ formando quindi una soluzione tampone il cui pH è determinato dal valore della pKa dell'acido della coppia tampone.

pH = pKa – log
$$\frac{n_{HA}}{{}^{n}A^{-}}$$
 ma essendo $n_{HA} = n_{A}^{-}$ il rapporto è 1 e log 1 = 0

per cui essendo
$$Ka_2 = 4.7 \cdot 10^{-11}$$
 p $Ka_2 = 10.33 = pH$

- 14. Nella titolazione di 100 mL di una soluzione 0.1 M di acido fosforico (H₃PO₄)
 - E) quale sostanza si usa come titolante?
 - F) Se la soluzione del titolante è 0.1 N, quanti mL di soluzione si dovranno aggiungere per arrivare al secondo punto equivalente?
 - G) Qual'è la specie presente al secondo punto equivalente ed il pH della soluzione in quel punto della titolazione?
 - H) Quale, tra gli indicatori colorimetrici riportati in tabella, puo essere utilizzato per determinare quanti mL di titolante si sono aggiunti al secondo punto equivalente?

Per
$$H_3PO_4$$
 Ka₁ = 7.1x10⁻³, Ka₂ = 6.3x10⁻⁸, Ka₃ = 4.2x10⁻¹³.


Tabella Indicatori colorimetrici per le titolazioni acido-base

Indicatore acido base	K_{HInd}	Variazione di colore acido-base coniugata		
		Colore Hind		Colore Ind
2,4-dinitrofenolo	1.3 10 ⁻⁴	Incolore	-	giallo
Verde di bromo cresolo	2.1 10 ⁻⁵	Giallo	-	verdemare
Rosso di clorofenolo	1.0 10 ⁻⁶	Giallo	-	rosso
Blu di bromotimolo	7.9 10 ⁻⁸	Giallo	-	blu
Timoftaleina	1.0 10 ⁻¹⁰	Incolore	-	blu

Soluzione:

Reazioni:

$$H_3PO_4 + H_2O \implies H_2PO_4^- + H_3O^+ Ka_1 = 7.5 \cdot 10^{-3} pK_1 = 2.23$$

 $H_2PO_4^- + H_2O \implies HPO_4^{2-} + H_3O^+ Ka_2 = 6.2 \cdot 10^{-8} pK_2 = 7.21$
 $HPO_4^{2-} + H_2O \implies PO_4^{3-} + H_3O^+ Ka_3 = 4.2 \cdot 10^{-13} pK_3 = 12.32$

Per raggiungere il secondo P.E. servono $2 \times nH_3PO_4 = 2 \times 0.1 \times 100 \times 10^{-3} = 0.02$ che si trovano in 200 mL di titolante NaOH 0.1 N. La specie presente al II P.E. è HPO4²⁻ un anfolita.

II pH al II P.E. è quindi dato da pH = pKa₂ + pKa₃ / 2 = 7.21 + 12.32 / 2 = 9.765

L'indicatore più idoneo a cambiare colore a questo pH è la timolftaleina la cui pKa è circa 10. Infatti l'indicatore cambia colore quando il salto di pH al punto equivalente avviene nel'lintervallo di pH = pk_{Ind} ± 1

15. Per ogni sostanza elencata dire se è un acido od una base secondo Broensted e scrivere, se possibile, la specie conjugata.

Scrivere inoltre il relativo quoziente di reazione quando si pone la specie in acqua.

Per H_2SO_4 $Ka_2 = 1.2 \cdot 10^{-2}$

Per H_3PO_4 $Ka_1 = 7.1x10^{-3}$, $Ka_2 = 6.3x10^{-8}$, $Ka_3 = 4.2x10^{-13}$.

Soluzione:

NH₃ = Base debole conjugata all'acido NH₄⁺

HPO₄² = specie anfolita che quando si comporta da acido produce la base coniugata PO₄³- e quando si comporta da base produce l'acido conjugato H₂PO₄⁻ NaHSO₄ = specie contenente l'anione HSO₄ acido conjugato della base SO₄² NO₃ = ione spettatore senza capacità di idrolizzare l'acqua.

$$NH_3 + H_2O = NH_4^+ + OH^ [NH_4^+] [OH^-]/ [NH_3]$$

 $HPO_4^{2-} + H_2O = PO_4^{3-} + H_3O^+$ $[PO_4^{3-}] [H_3O^+]/ [H_2PO_4^-] Ka_3$ $[H_2PO_4^-] [OH^-]/ [HPO_4^{2-}] Kb_2$
 $HSO_4^- + H_2O = SO_4^{2-} + H_3O^+$ $[SO_4^{2-}] [H_3O^+]/ [HSO_4^-]$

NO₃⁻ è uno ione che in acqua non provoca idrolisi basica perché non è in grado di legarsi al protone H⁺, tanto che quando si pone in acqua HNO₃ esso si dissoca completamente.

16. Calcolare inoltre il pH di una soluzione 0.1 M di Na₂HPO₄. Se ad un litro di questa soluzione vengono aggiunte 0.05 moli di HCl qual'è il valore del nuovo pH?

Soluzione.

$$HPO_4^{2^-} + H_2O = PO_4^{3^-} + H_3O^+$$
 [PO₄³⁻] [H₃O⁺]/ [H₂PO₄⁻] Ka₃
 $HPO_4^{2^-} + H_2O = H_2PO_4^- + OH^-$ [H₂PO₄⁻] [OH⁻]/ [HPO₄²-] Kb₂

Il pH di una specie anfolita si ricava come semisomma delle pKa. In questa formula non appare la c° della specie presente in soluzione. Tale formula vale quando la c° ha un valore non inferiore a 10⁻³ M.

Le pKa da considerare sono quelle relative agli equilibri a cui sottostà la specie in soluzione. In questo caso pH = pKa₃ + pKa₂ /2 = 12.38 + 7.2 /2 = 9.79

All'aggiunta di 0.05 moli di HCl la base HPO $_4^{2^-}$ reagisce quantitativamente con H $_3$ O $^+$ derivante dalla dissociazione dell'HCl producendo 0.05 moli di H $_2$ PO $_4^-$. Le moli di HPO $_4^{2^-}$ rimaste saranno quindi 0.1 – 0.05 = 0.05. Siamo quindi in presenza di una soluzione tampone il cui pH è determinato dal valore della pKa dell'acido coniugato ovvero uguale alla pKa $_2$

Essendo
$$Ka_2 = 6.3 \cdot 10^{-8} \text{ pKa}_2 = 7.2 = \text{pH}$$

17. Sulla base delle proprietà degli indicatori colorimetrici acido base, quale colore assumono i seguenti indicatori se aggiunti alla soluzione iniziale dell'esercizio precedente? (ogni indicatore viene aggiunto in una nuova aliquota di soluzione iniziale!).

Tabella Indicatori colorimetrici per le titolazioni acido-base

Indicatore acido base	K_{HInd}	Variazione di colore acido-base coniugata		
		Colore Hind		Colore Ind
2,4-dinitrofenolo	1.3 10 ⁻⁴	Incolore	-	giallo
Verde di bromo cresolo	2.1 10 ⁻⁵	Giallo	-	verdemare
Rosso di clorofenolo	1.0 10 ⁻⁶	Giallo	-	rosso
Blu di bromotimolo	7.9 10 ⁻⁸	Giallo	-	blu
Timoftaleina	1.0 10 ⁻¹⁰	Incolore	-	blu

Risposta:

Il pH della soluzione essendo determinato da una quantità di specie acida o basica molto maggiore di quella dell'indicatore fissa la concentrazione degli ioni H₃O⁺ nella soluzione in cui viene posto l'indicatore e quindi è questa concentrazione che determina la quantità della forma acida e basica dell'indicatore colorimetrico presenti nella soluzione.

Per definire il rapporto tra le quantità in moli della specie acida e basica dell'indicatore per un determinato pH della soluzione in cui esso viene posto si applica la formula:

pH = pKa(ind) – log
$$\frac{n_{HInd}}{n_{Ind}}$$

Quando il rapporto delle moli è \geq 10 si osserverà il colore della specie Hind quando il valore del rapporto delle moli è \leq 0.1 si vede il colore della specie Ind⁻.

Per un certo valore del pH il rapporto delle due specie in cui si può trovare l'indicatore dipende dal valore della sua pKa.

Essendo infatti:
$$pKa(ind) - pH = log \frac{n_{HInd}}{n_{Ind}}$$

nel caso specifico a pH =9.79 si avrà:

per il 2,4-dinitrofenolo 3.88 - 9.79 = -5.91 ciò significa che l'indicatore è più di 10 volte sotto la forma Ind⁻ e la colorazione sarà gialla.

Il verde di bromo cresolo essendo 4.68-9.79=-5.11 sarà sotto la forma basica e quindi verdemare. Il rosso di clorofenolo, essendo =6-9.79=-3.79 sarà anche lui sotto forma di Ind $^-$ e quindi la soluzione assumerà la colorazione rossa. Il blu di bromotimolo essendo =7.1-9.79=2.69 produrra una colorazione blu. La timoftaleina essendo 10-9.79=0.21 assumerà una leggera colorazione blu perché sarà preponderante la specie Hind che è incolore.

Quale colore assumono invece gli indicatori soprascritti nell'aliquota della soluzione dell'esercizio precedente a cui è stato aggiunto l'HCl?

Essendo il pH = 7.2 si avrà:

per il 2,4-dinitrofenolo 3.88-7.2=-3.32 ciò significa che l'indicatore è più di 10 volte sotto la forma Ind $^-$ e la colorazione sarà gialla. Il verde di bromo cresolo essendo 4.68-7.2=-2.52 sarà sotto la forma basica e quindi verdemare. Il rosso di clorofenolo, essendo =6-7.2=-1.2 sarà più di 10 volte sotto forma di Ind $^-$ e quindi la soluzione assumerà la colorazione rossa. Il blu di bromotimolo essendo =7.1-7.2=-0.1 sarà presente nelle due forme quasi nella stessa quantità e la colorazione sarà ibrida. La timoftaleina essendo 10-7.2=2.8 produrrà una soluzione incolore perché sarà preponderante la specie Hind.

17. Per ogni sostanza elencata dire se è un acido od una base secondo Broensted e scrivere, se possibile, la specie coniugata.

Scrivere inoltre il relativo quoziente di reazione quando si pone la specie in acqua. (a) H_3PO_4 , (b) CO_3^{2-} , (c) CH_3COOH , (d) CIO_4^{-} Per NH_3 $K_b = 1.8 \ 10^{-5}$

Per CH₃COOH Ka = 1.8×10^{-5}

Per H_3PO_4 Ka₁ = 7.1x10⁻³, Ka₂ = 6.3x10⁻⁸, Ka₃ = 4.2x10⁻¹³.

Per H_2CO_3 Ka₁ = $4.4x10^{-7}$ e Ka₂ = $4.7x10^{-11}$.

Soluzione.

 H_3PO_4 = Acido coniugato della base H_2PO_4

CO₃²⁻ = Base coniugata dell'acido HCO₃⁻

CH₃COOH = Acido coniugato della base CH₃COO⁻

Br = ione spettatore senza capacità di idrolizzare l'acqua, tanto che se si introduce HBr in acqua si dissocia completamente.

$$H_{3}PO_{4} + H_{2}O = H_{2}PO_{4}^{-} + H_{3}O^{+}$$
 $H_{2}PO_{4}^{-} + H_{2}O = HPO_{4}^{-2} + H_{3}O^{+}$
 $HPO_{4}^{-2} + H_{2}O = PO_{4}^{-3} + OH^{-}$
 $[H_{2}PO_{4}^{-}][H_{3}O^{+}]/[H_{2}PO_{4}^{-}]$

Per ClO₄⁻ non è possibile scrivere il relativo quoziente di reazione perché HClO₄ è fortissimo (non è riportata la sua Ka perché non si può determinare.

18. Calcolare inoltre il pH di una soluzione 0.1 M di CH₃COONa. Se ad un litro di questa soluzione vengono aggiunte 0.05 moli di HCl qual'è il valore del nuovo pH?

Soluzione.

$$CH_3COO^- + H_2O = CH_3COOH + OH^-$$
 [CH₃COOH] [OH-]/ [CH₃COO-] Kb

Il pH sarà sicuramente basico. Trascurando la [OH] come termine addittivo

essendo c° = 0.1 e Kb =
$$10^{-14}/1.8 \times 10^{-5} = 0.55 \times 10^{-9}$$
 [OH⁻] = 0.55 x $10^{-9} \times 10^{-1}$ =7.4

$$pOH = 5.13$$
 e quindi $pH = 14 - 5.13 = 8.87$

All'aggiunta di 0.05 moli di HCl 0.05 moli della base CH₃COO⁻ reagiscono per dare 0.05 moli di CH₃COOH e 0.1 – 0.005 = 0.05 moli di CH₃COO⁻ rimangono in eccesso. Si è

pH di una soluzione tampone

$$HA + H_2O$$
 $A^- + H_3O^+$ $K_a =$

$$K_{\alpha}$$
 = e trascurando x come termine addittivo

$$x = [H_3O^+] = K_a c^o_{HA}/c^o_{A^-} \quad pH = pK_a - log c^o_{HA}/c^o_{A^-}$$
Quando $c^o_{HA} = c^o_{A^-}$ si ha $pH = pK_a \quad pH \text{ del tampone}$

Ogni coppia acido-base coniugata produce una soluzione tampone il cui pH è intorno al valore della pK_n della coppia

quindi in presenza della stessa quantità dell'acido e della base coniugata e quindi si ha una soluzione tampone il cui pH è determinato dal valore della pKa dell'acido.

Essendo Ka = $1.8 \cdot 10^{-5}$ pKa = 4.8 = pH

- 19. Nella titolazione di 100 mL di una soluzione 0.1 M di Na₂CO₃
 - A) quale sostanza si può usare come titolante? Un acido fortissimo: es. HCl
 - B) Se la soluzione del titolante è 0.1 N, quanti mL di soluzione si aggiungeranno per arrivare al primo punto equivalente? 100 mL
 - C) Qual'è il pH al primo punto equivalente? Al I P.E. è presente la specie HCO₃⁻ anfolita

Per cui pH =
$$(pKa_1 + pKa_2)/2 = (6.37 + 10.26)/2 = 8.31$$

D) Quale, tra gli indicatori colorimetrici riportati in tabella, puo essere utilizzato per determinare quanti mL di titolante si sono aggiunti per arrivare al primo punto equivalente?

Per H₂CO₃ Ka₁ =
$$4.4 \times 10^{-7}$$
 e Ka₂ = 4.7×10^{-11} .

Tabella Indicatori colorimetrici per le titolazioni acido-base

Indicatore acido base	K_{HInd}	Variazione di colore acido-base coniugata		
		Colore Hind		Colore Ind
2,4-dinitrofenolo	1.3 10 ⁻⁴	Incolore	_	giallo
Verde di bromo cresolo	2.1 10 ⁻⁵	Giallo	-	verdemare
Rosso di clorofenolo	1.0 10 ⁻⁶	Giallo	-	rosso
Blu di bromotimolo	7.9 10 ⁻⁸	Giallo	-	blu
Timoftaleina	1.0 10 ⁻¹⁰	Incolore	-	blu

Risposta:

Il titolante sarà un acido fortissimo, es. HCI.

Si aggiungeranno 100 mL di titolante perchè contengono 0.01 equivalenti di H_3O^+ pari a quelli di Na_2CO_3 nella soluzione da titolare. $nH_3O^+ = 0.1 \times 100 \times 10^{-3} = 0.01 = nNa_2CO_3$ Il pH al primo P.E. sarà dato da 0.01 moli di HCO₃, specie anfolita, perchè intermedia dell'acido carbonico, acido diprotico.

$$pH = pKa_1 + pKa_2 / 2 = (6.37 + 10.26) / 2 = 8.31$$

L'indicatore più idoneo a cambiare colore a questo pH è blu di bromotimolo, la cui pKa è circa 7.10. Infatti l'indicatore cambia colore quando il salto di pH al punto equivalente avviene nel'lintervallo di pH = $pk_{lnd} \pm 1$

20. Per ogni sostanza elencata dire se è un acido od una base secondo Broensted e scrivere, se possibile, la specie coniugata.

Scrivere inoltre il relativo quoziente di reazione quando si pone la specie in acqua.

(a)
$$HCO_3^-$$
, (b) HPO_4^{2-} , (c) CH_3COOH , (d) I^-

Per CH₃COOH Ka =
$$1.8 \cdot 10^{-5}$$

Per H₃PO₄ Ka₁ = $7.1x10^{-3}$, Ka₂ = $6.3x10^{-8}$, Ka₃ = $4.2x10^{-13}$.
Per H₂CO₃ Ka₁ = $4.4x10^{-7}$ e Ka₂ = $4.7x10^{-11}$.

 HCO_3^- è una specie anfolita in quanto specie intermedia di un acido biprotico avente come acido coniugato la specie H_2CO_3 e come base coniugata la specie $CO_3^{2^-}$ $HPO_4^{2^-}$ è anch'essa un anfolita in quanto una delle specie intermedie dell'acido triprotico. Il suo acido coniugato è $H_2PO_4^-$ la sua base coniugata è $PO_4^{3^-}$. $CH_3COOH =$ acido coniugato della base CH_3COO^-

l⁻ è uno ione che non provoca idrolisi in acqua, tanto che se viene posto in acqua HI esso si dissocia completamente.

$$\begin{aligned} & \text{HCO}_3^- + \text{H}_2\text{O} = \text{CO}_3^{2^-} + \text{H}_3\text{O}^+ \\ & \text{HCO}_3^- + \text{H}_2\text{O} = \text{H}_2\text{CO}_3 + \text{OH}^- \end{aligned} \qquad \begin{aligned} & [\text{CO}_3^{2^-}] [\text{H}_3\text{O}^+] / [\text{HCO}_3^-] \\ & [\text{H}_2\text{CO}_3] [\text{OH}^-] / [\text{HCO}_3^-] \end{aligned} \\ & \text{HPO}_4^{2^-} + \text{H}_2\text{O} = \text{PO}_4^{3^-} + \text{H}_3\text{O}^+ \\ & \text{HPO}_4^{2^-} + \text{H}_2\text{O} = \text{H}_2\text{PO}_4^- + \text{OH}^- \end{aligned} \qquad \begin{aligned} & [\text{PO}_4^{3^-}] [\text{H}_3\text{O}^+] / [\text{H}_2\text{PO}_4^-] & \text{Ka}_3 \\ & [\text{H}_2\text{PO}_4^-] [\text{OH}^-] / [\text{HPO}_4^{2^-}] & \text{Kb}_2 \end{aligned} \\ & \text{CH}_3\text{COOH} + \text{H}_2\text{O} = \text{CH}_3\text{COO}^- + \text{H}_3\text{O}^+ \end{aligned} \qquad \begin{aligned} & [\text{CH}_3\text{COO}^-] [\text{H}_3\text{O}^+] / [\text{CH}_3\text{COOH}] \end{aligned} \\ & \text{NH}_4^+ + \text{H}_2\text{O} = \text{NH}_3 + \text{H}_3\text{O}^+ \end{aligned} \qquad \end{aligned} \qquad \begin{aligned} & [\text{NH}_3] [\text{H}_3\text{O}^+] / [\text{NH}_4^+] \end{aligned}$$

Per l⁻ non è possibile scrivere il relativo quoziente di reazione.

21. Calcolare inoltre il pH di una soluzione 0.1 M di Na₂HPO₄. Se ad un litro di questa soluzione vengono aggiunte 0.1 moli di PO₄³⁻ qual'è il nuovo valore di pH?

Soluzione.

$$HPO_4^{2-} + H_2O = PO_4^{3-} + H_3O^+$$
 $[PO_4^{3-}][H_3O^+]/[H_2PO_4^{-}] Ka_3$ $HPO_4^{2-} + H_2O = H_2PO_4^{-} + OH^ [H_2PO_4^{-}][OH^-]/[HPO_4^{2-}] Kb_2$

Il pH di una specie anfolita si ricava come semisomma delle pKa. In questa formula non appare la c° della specie presente in soluzione. Tale formula vale quando la c° ha un valore non inferiore a 10^{-3} M.

Le pKa da considerare sono quelle relative agli equilibri a cui sottostà la specie in soluzione. In questo caso pH = pKa₃ + pKa₂ /2 = 12.38 + 7.2 /2 = 9.79

All'aggiunta di 0.1 moli di $PO_4^{3^-}$, 0.1 moli di $HPO_4^{2^-}$ si troveranno insieme alle stesse moli della sua base coniugata. Siamo quindi in presenza di una soluzione tampone il cui pH è determinato dal valore della pKa dell'acido coniugato ovvero uguale alla pKa₃

Essendo
$$Ka_3 = 4.2 \cdot 10^{-13} \text{ pKa}_3 = 12.38 = \text{pH}$$

22. Sulla base delle proprietà degli indicatori colorimetrici acido base, quale colore assumono i seguenti indicatori se aggiunti alla soluzione iniziale dell'esercizio precedente? (ogni indicatore viene aggiunto in una nuova aliquota di soluzione iniziale!).

Tabella Indicatori colorimetrici per le titolazioni acido-base

Indicatore acido base	K _{HInd}	Variazione di	Variazione di colore acido-base coniugata		
		Colore Hind		Colore Ind	
2,4-dinitrofenolo	1.3 10 ⁻⁴	Incolore	-	giallo	
verde di bromo cresolo	2.1 10 ⁻⁵	Giallo	-	verdemare	
Rosso di clorofenolo	1.0 10 ⁻⁶	Giallo	-	rosso	
Blu di bromotimolo	7.9 10 ⁻⁸	Giallo	-	blu	
Timoftaleina	1.0 10 ⁻¹⁰	Incolore	-	blu	

Risposta:

Il pH della soluzione essendo determinato da una quantità di specie acida o basica molto maggiore di quella dell'indicatore fissa la concentrazione degli ioni H₃O⁺ nella soluzione in cui viene posto l'indicatore e quindi è questa concentrazione che determina la quantità della forma acida e basica dell'indicatore colorimetrico presenti nella soluzione.

Per definire il rapporto tra le quantità in moli della specie acida e basica dell'indicatore per un determinato pH della soluzione in cui esso viene posto si applica la formula:

pH = pKa(ind) – log
$$\frac{n_{HInd}}{n_{Ind}}$$

Quando il rapporto delle moli è \geq 10 si osserverà il colore della specie Hind quando il valore del rapporto delle moli è \leq 0.1 si vede il colore della specie Ind⁻. Per un certo valore del pH il rapporto delle due specie in cui si può trovare l'indicatore dipende dal valore della sua pKa.

Essendo infatti:
$$pKa(ind) - pH = log \frac{n_{Hlnd}}{\frac{n}{lnd}}$$

nel caso specifico si avrà:

a pH = 9.79

per il 2,4-dinitrofenolo 3.88-9.79=-5.91 ciò significa che l'indicatore è più di 10 volte sotto la forma Ind $^-$ e la colorazione sarà gialla. Il verde di bromo cresolo essendo 4.68-9.79=-5.11 sarà sotto la forma basica e quindi verdemare. Il rosso di clorofenolo, essendo =6-9.79=-3.79 sarà anche lui sotto forma di Ind $^-$ e quindi la soluzione assumerà la colorazione rossa. Il blu di bromotimolo essendo =7.1-9.79=-2.69 produrra una colorazione blu. La timoftaleina essendo

10 - 9.79 = 0.21 assumerà una leggera colorazione blu perché sarà preponderante la specie Hind che è incolore.

Quale colore assumono invece nell'aliquota di soluzione a cui è stato aggiunto il PO₄³⁻?

per il 2,4-dinitrofenolo 3.88 – 12.38 = -8.5 ciò significa che l'indicatore è praticamente tutto sotto forma di Ind¯ e la colorazione sarà gialla. Anche gli altri indicatori si trovano tutti nella forma basica perché hanno tutti pKa inferiori al valore del pH della soluzione e quindi il valore del logaritmo del rapporto delle moli sarà sempre negativo, indicando un rapporto delle moli frazionario, ovvero in cui prevale il numero di moli della specie al denominatore cioè Ind¯.

Verde di bromo cresolo = 4.68 - 12.38 = -7.7Rosso di clorofenolo = 6 - 12.38 = -6.38Blu di bromotimolo = 7.1 - 12.38 = -5.28Timoftaleina = 10 - 12.38 = -2.38