Wavelets and multiresolution representations

Time meets frequency ...




Time-Frequency resolution

* Depends on the time-frequency spread of the wavelet atoms

Assuming that  is centred in t=0
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Time/frequency resolution
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The energy spread of a wavelet time-frequency atom corresponds to an Heisemberg box centred
at (u,n/s) of size so, along the time and 6 /s along the frequency.

The area of the rectangle remains equal to 6, 6 at all scales, while the resolution in time and
frequency depends on s.

A wavelet defines a local time-frequency energy density Py, f which measures the energy in the
Heisemberg box of each wavelet centred at (u, 1 /s). This energy density is called scalogram
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Time/frequency localization
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Increasing the scale (s gets larger) pushes the box towards low frequencies —
frequency resolution increases, spatial resolution decreases

Time spread is proportional to scale
Frequency spread is proportional to 1/scale

increasing the scale
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Scalogram

The scalogram represents the local time/frequency energy density

— Energy density in the Heisenberg box of each wavelet v
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3D representation
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Real Wavelets

Detect sharp signal transitions

W (,5) = ff(r)ﬁw("‘;”)dr

Measures the variations of f'in the neighborhood of u whose size 1s proportional to s

A real WT is complete and maintains energy conservation as long as it satisfies a weak
admissibility condition (Theorem 4.3, next slide)

The decay of the coefficients as s goes to zero characterizes the regularity of f in the
neighborhood of u
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Real wavelets: Admissibility condition

Theorem 4.3 (Calderon, Grossman, Morlet)
Let ¢ in L%(R) be a real function such that

+00 | A 2
Cz/f = f ¥ ()] d < +00 Admissibility condition
w

Any f'in L*(R) satisfies

400 400
ds

(r)—— [ s ﬂ( )d”‘s_

and

+00 400

f‘f(t)‘ dt——ff‘Wf(u S)‘ du—ds
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Admissibility condition

Consequences

— The integral is finite if the wavelet has zero average P(0)=0
* This condition is nearly sufficient —
— If ¥(0)=0 andy) (@) is continuously differentiable, than the admissibility condition is satisfied

= This happens if it has a sufficient time decay

[Q+ 1D (0)] dr < +o0

It

»
»

t
— The wavelet function must decay sufficiently fast in both time and frequency
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Scaling function (1)

*  When Wf(u,s) is known only for s<s, to recover f we need a complement of information
corresponding to Wf(u,s) for s>s,.

» This is obtained by introducing a scaling function ¢ that is an aggregation of wavelets at
scales larger than 1.

* The modulus of the Fourier transform of ¢ 1s defined as follows and the complex phase can
be arbitrarily chosen

b(w)

2 ' 2ds g 2 d
- [loGo) <= [l €

« Remembering that

+00| A 2
Cy =f|w<0))| dw < +©
W
0
It appears that ,
¢, =1lim ¢(w)
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Scaling function (2)

« The scaling funcion can thus be seen as a low-pass filter with unit gain (Hq)Hz =1)

 Letus denote

¢s(r)=%¢(§) and  §,(t)=¢.(~t)

» The low frequency approximation of f at scale s 1s

Lf(u,s)=<f(t),\/1;¢(t_u)>=f*$s(”)

\)
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Mexican hat scaling function
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Wavelet families

J (%) <> Wf(u,s:%) = c, (X)

In general, there 1s a redundancy in the representation

The amount of redundancy depends on the grids over which the u and s parameters are
sampled

u,s are real : Continuous WT (CWT, overcomplete representation)

uinZ, s=a’, j in Z : Wavelet Frames (DWF, DDWF, overcomplete)

— a=2 Dyadic wavelet frames

u=k2, s=2, k in I : Discrete Wavelet Transform (DWT) (critically sampled)

Note: removing completely the redundancy leads to complete basis (critically sampled)
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Wavelet bases

Mallat - Chapter VII
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Wavelet bases

One can construct wavelets such that

() = 1 t-2"n

J ,nEZ2
is an orthonormal basis for L?(R).

f
/T PWJf=f- ijf

Pyf ]

e  Multiresolution approximations

— The partial sum of wavelet coefficients giving d(z) can be interpreted as the difference between
two approximations of fat the scales 2 and 20-7

— Multiresolution approximations compute the approximations of signals at various resolutions with
orthogonal projections to different spaces {V}}; ;, ;

— The approximation of f at scale 2 is specified by a discrete grid of samples that provides local
averages of f on neighborhoods of size proportional to 2.

— A multiresolution consists of embedded grids of approximations
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Orthogonal wavelet bases

The search for orthogonal wavelets begins with multiresolution approximations

ferM)— i < fw,, >1//j’n difference bewteen two approximations

n=—00

at resolutions 2~/*' and 27/

Resolution = 1/scale
— The larger the scale, the smaller the resolution

Multiresolution approximations compute the approximation of signals}at various

resolutions with orthogonal projections on different spaces VJ -
J

— These are characterized by a one particular discrete filter that governs the loss of information
across resolutions
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Multiresolution approximations

The approximation of a function fat a resolution 2/ is specified by a discrete grid of
samples that provides local averages of f over neighborhoods of size proportional to 2.

Thus, a multiresolution approximation is composed of embedded grids of approximation.

More formally:

— the approximation of a function at a resolution 2 is defined as an orthogonal projection on a
space V; CL*(R).

— The space V, regroups all possible approximations at the resolution 2.

— The orthogonal projection of f is the function f; €V that minimizes ||f—f]|.

f
/T PWJf=f- ijf

Pyf .
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Multiresolution approximations

Definition 7.1 A sequence {V}};, , of closed subspaces of L*(R) is a multiresolution
approximation if the following six conditions are satisfied

V(j,k) = Zz,f(t) = V] - f(l‘ _ 2j k) = VJ V, is invariant for translations proportional to the scale

' The finer approximation subspace encloses all the
VieZz, Vj+1 C V] information concerning the coarser one

. t Stretching the function by a factor 2 spans a coarser
VieEZ f(HEV, < f(z) eV, subspace

) +%0 When the resolution goes to zero all the details are lost
Im ¥, = Nv,={o} Jim 1Py, /1) =0.

j=_w

When the resolution goes to infinity the approximation

IimV = Closure( G V ) — J? (R) converges to the signal
| —>—00 ] j ) ) ]
: Jlim_ I =Py, =0,

j=_w

There exists 7 such that {ﬁ(t-n)}nez is a Riesz basis of Vo% j oscale

27 «> resolution

discretization theorem
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Banach and Hilbert spaces

A Hilbert space is an abstract vector space possessing the structure of an inner product that

allows length and angle to be measured.

Hilbert spaces are in addition required to be complete, a property that stipulates the
existence of enough limits in the space to allow the techniques of calculus to be used.
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Banach and Hilbert spaces

Banach space

Signals are often considered as vectors. To define a distance, we work within a vector
space H that admits a norm. A norm satisfies the following properties:

VieH, |f|=0 and |f||=0 & f=0, (A.3)
VAT [AfI = AL, (A.4)
Vi.geH, | f+gl=IsIl+ gl (A.5)

With such a norm, the convergence of { f,},,ey to f in H means that

lim f,=f & lim |f,—f]=0.
1n— +oo 11=—> 00

To guarantee that we remain in H when taking such limits, we impose a completeness
property, using the notion of Cauchy sequences. A sequence { [}, is a Cauchy
sequence if forany £ > 0,if i and p are large enough,then ||/, — fp|| <&.The space H
is said to be complete if every Cauchy sequence in H converges to an element of H.

23




For any integer p>0 we define over discrete sequences f[n]

The space

1" =17 2, <)

Example 1

71, -{ Shrooe)

is a Banach space with the norm ”f”p

24




Example 2

Example A.2 The space LP(R) is composed of the measurable functions f on R

for which
+oc 1/p
ity = ([ s@rar) " < v

This integral defines a norm and LP(R) is a Banach space, provided one identifies
functions that are equal almost everywhere.

25



Banach and Hilbert spaces

Hilbert space

Whenever possible, we work in a space that has an inner product to define angles
and orthogonality. A Hilbert space H is a Banach space with an inner product. The
inner product of two vectors (f, g) is linear with respect to its first argument:

VAL A2€C,  (Mifi+A2/2.8) =M1 (f1.8) T A2 (/2. 8)- (A.6)

It has an Hermitian symmetry:
f.8)=(g)"
Moreover,
(f.f/)=0 and (f.f)=0 <% f=0.

One can verify that || £|| = (f.f)"/? is anorm.The positivity (A.3) implies the Cauchy-
Schwarz inequality:

F@a1=0r1lgll (A.7)

which is an equality if and only if f and g are linearly dependent.
We write V+ the orthogonal complement of a subspace V of H. All vectors of V
are orthogonal to all vectors of Vi and v EBVJ- =H.
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Example 3

Example A.3 An inner product between discrete signals f[r| and g[n| can be

defined by
+00
(f.8)=)_ flnlg'lnl.
It corresponds to an F*(Z) norm:
+00
IF1? = (f,0) =Y Iflnl.

The space 1*(Z) of finite energy sequences is therefore a Hilbert space. The
Cauchy-Schwarz inequality (A.7) proves that

+00 +oc 1/2 7/ 400 1/2
S finle'hl| < (Z If[n]IZ) (Z Ig[n]lz) |

=00 n=-00 =—0C

27




Example 4
Example A.4 Over analog signals f() and g(#), an inner product can be defined
by
+o0
(f.8) = f()g*(r)dt.

-0

= ([ isopa)”

The space L?(R) of finite energy functions is thus also a Hilbert space. In L%(R),
the Cauchy-Schwarz inequality (A.7) is

[ roswals ([T iora)” ([Tisora)”

Two functions f; and f; are equal in L2(R) if

15—l = |

The resulting norm is

+-00
[£1(£) = f2(2)*dt =0,

which means that f(#) = f2(¢) for almost all ¢ € R.
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Bases of Hilbert spaces

Orthonormal Basis
A family {e,}, <y Of a Hilbert space H is orthogonal if for n # p,
(en, C’[)> =0.

If for f € H there exists a sequence «a[n] such that

N
lim '—Za nle,| =0,
im |1/ 2] el

n=0

then {e, },cn is said to be an orthogonal basis of H. The orthogonality implies that
. ~ i .
necessarily a[n] = (f, e,)/llex|”, and we write

S= Z . €n) €n- (A.8)

Z e,

A Hilbert space that admits an orthogonal basis is said to be separable.
The basis is orthonormal if ||e,|| = 1 for all n € N. Computing the inner product
of g e H with each side of (A.8) yields a Parseval equation for orthonormal bases:

+o0
<fag>=<gaf>* (f‘~g)=2(f" en) (g, en>*- (A.9)

n=0

29




Bases of Hilbert space

When g =f, we get an energy conservation called the Plancherel formula:

+w
1F12=D 1 en)l. (A.10)

n=0

The Hilbert spaces £%(Z) and L?(R) are separable. For example,the family of trans-
lated Diracs {e,,[#] = 8[k — 11]},,c7 is an orthonormal basis of £%(Z). Chapters 7 and 8
construct orthonormal bases of L?(R) with wavelets, wavelet packets, and local
cosine functions.
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Riesz basis

Link to the discrete domain: the existance of a Riesz bases provides a discretization theorem
Definition: A family of vectors is a Riesz basis of a space H if
1. it is linearly independent

2. there exist A,B>0 such that +00

VyeH dAn]l: y-= E Alnle,

Ly 2 < S TS
ST < S <o

The existance of a Riesz basis for V, provides a discretization theorem. There exists A and B
such that any f €V, can be Vi er,— f(1)= Ea[n]ﬁ(t -n) (7.9)

uniquely decomposed into

AYF =S <ssf 10

: t Y,
(7.4) Vjezaf(t)EVj@f(E)EVHl_' { ! ﬁ(f 2]11)} is a Riesz basis for V,

Jo ¥
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Riesz basis

* Proposition 7.1 A family {ﬁ(f - n)} , 1s a Riesz basis of the space V,, it generates if
and only if there are A>0 and B>0 such that

(7.11) 1 & T
Vo&|-n,7|, S E‘ﬂa} 2kr) =~

e Proof

VfEV %f( ) i a[”l]ﬁ(t—n) taking the FT of both sides (7.12)

7 ()= () B(0)
Since a[n] is a Fourier series
( ) S [ ] and is 27 periodic, hence

&(a))=n=2 a(w-n2r) = (w)}j 5(w-n2)

32




to ;
|f(w)|° do.

Intuition (1) [ vora=-5-

40

d(w)=n:2;d(w—n2n)=Ez(a))*;wé(w—nZﬂ)

* Applying the definition of norm (Plancherel)

Fo)f - L [l do---

a(w)

»
»

4

The idea is to exploit the Plancherel’s
formula and the fact that a(w) 1s periodic
to split the integral into sums of integrals
over the interval 0-21.

»
>

w
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Proof (1)

» Using Plancherel formula and the fact that a(w) is periodic (see Mallat version 2009 page

67)
) =5 f17 (o o= Jialo) (o) do= o fla(w)d (o) do-

2 J Salo-2nm)o o)

—00

2
dw = . R .
since a(w) is periodic, taking the integral over

subsequent intervals amounts only to “shifting”

1 %% 2 N | A 2 the second function. The first, a(w), remains the
= z—f‘a(a))‘ E ‘ﬂ(UJ—zkﬂ')‘ dw same so it can be taken out of the sum.
JU
0 k=—c0
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Proof (2)

Norm
. 2 1 °% 2 &4 2
f(a))H = d(a))‘ ﬁ(w — 2k.7'L’)‘ dw
27, =,
2
| 1
Yo &€ [—.717,.7'[] — =< 19(0) — 2k.71) <— then (g
B A
k=—00
2 11 2 1 @ 2
(o) =5, Jalo) do== 3 la[n]
A2, A~
2 N 2
AH f (t )H < E ‘a [n:” To note: (1) 1s a function of omega thus the condition (2)
N=—00 means that the pointwise sum of the values of the translates
2 of the function in omega is finite.
E ‘19“(0) -2k ﬂ:)‘ (1) For A=B=1 the basis is orthonormal and (2) takes the

definition of “partition of unity”. This is the case for the
scaling function.
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Proof (3)

* Similarly

+00

Bl (t)f = Zla[n]

n=-—0oo

@15 Alr(h) = E a[] = Blr(0)

In summary, if 6(t-n) satisfies (7.11 Mallat 99) then (7.15) is satisfied. Then, 6(t-n) is a Riesz
basis for V, and every function in V,, can be expressed as in (7.12)

400

f(t)="Y a[n]d(t-n) @1

k=—oo
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Scaling function

« The scaling function is obtained by the orthogonalization of the Riesz basis

Theorem 7.1

Let V; be a multiresolution approximation and ¢ be the scaling function whose FT is

A w
i) =2
(Y Ao+ 2km) )"
Let us denote . 1 t=2'n
% n - \/27]¢ 2]

The family {¢;,}, ;, , 1s an orthonormal basis of V; for all j in Z

37




Proof!. To construct an orthonormal basis, we look for a function ¢ € Vy. It can thus
be expanded in the basis {#(f —n) }nez:

+00
¢()= D _ aln]6(t—n),
n=—30c
which implies that ) )
¢(w) = a(w) b (w),

where & is a 2 periodic Fourier series of finite energy. To compute a we express the
orthogonality of {@(f — n) }nez in the Fourier domain. Let ¢(r) = ¢*(—t). For any
[n* pP)E 2,

e
@e-mee-p) = [ ee-mee-pa
= o¢xgd(p—n). (7.18)

Hence {¢(t — n) }nez is orthonormal if and only if ¢ x @(n) = 6(n]. Computing the
Fourier transform of this equality yields

=00
> plw+2km)F=1. (7.19)

k=—c0

Indeed, the Fourier transform of ¢*@(z) is |¢(w)|?, and we proved in (3.3) that sampling
a function periodizes its Fourier transform. The property (7.19) is verified if we choose

toc =12
a(w) = ( > |§[u+zkw)|1) :

k=

Proposition 7.1 proves that the denominator has a strictly positive lower bound, so a@
is a 27 periodic function of finite energy. L

Proof

Thus here we apply the
same idea as in the previous
proof: relying on Plancherel
formula and explicitating
the fact that the function is
periodic in the Fourier
domain. Thus, replacing the
result in (1) we get the
orthogonalization formula.
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Pw) =

Approximation

The orthogonal projection of f onto V; is obtained as an expansion in the scaling orthogonal
basis

B f= §<f ) )P

n::-—OO

The inner products a;[n] are the projection coefficients at scale 21

a,ln1=\f.9,,)= [ () \/127<.‘0(t_22].]n)=f*¢j(2jn)
7 (1) J;—cp(—zi)

— As proved in what above, the normalization factor at the denominator ensures that

1 partition of unity

Hw)

+00

(2
k=—

e+ 2kzr)\2)” 2
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aj[n] = f*éj(zjn)
1

Impulse response of
a digital filter

Approximation

f _ a[nf only one sample out
— @i - out of 2 is retained —
downsampling

— The energy of ¢, is mostly concentrated in [-7/2),7t/27] which corresponds to low pass filtering

The signal approximation is obtained by convolving f with a low-pass filter and
downsampling by 2 -> any scaling function corresponds to a conjugate mirror filter

A multiresolution is completely characterized by the scaling function
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Summarizing

Wavelet representation

+00
d . . o
A ij = PV]f = E <f,¢j,n >gpj’n discrete approximation at resolution j

N=—00

aj[n] = <f?(p]n>

discrete approximation coefficients at resolution j

+00
dz_;f = PVV]f = E <fa¢j,n >'//j,n details at resolution j
n=—0

d[n=(f,,)

{AdzJ fﬂ{dzf f}1<j<J}

wavelet coefficients at resolution j

wavelet representation




Analytic versus real wavelets

Real wavelets are used to detect sharp signal transitions

Analytic wavelets can measure the time evolution of a frequency gradient, as they allow to

separate the phase and amplitude information

Fourier analogy
— DCT: real basis functions
— DFT: complex basis functions

DCT describes all (symmetrized) signals as a linear combination of cosinusoids such that the phase
information is lost.

On the contrary, complex exponentials preserve the information about the phase

42




Analytic signals

A function f, (x ) er (R ) 1s said to be analytic if its Fourier transform 1s zero for
negative frequencies

f(0)=0 if ©<0

An analytic function 1s necessarily complex but it 1s completely characterized by its real
part Re[f,(c)]

A(a))+f*(_w)eA 2]?(60) if w=0
2 0 if w<0

43




Discrete analytic part

Discrete Analytic Part The analytic part f,[n] of a discrete signal f[r| of size
N is also computed by setting to zero the negative frequency components of its
discrete Fourier transform. The Fourier transform values at k =0 and k =N /2
must be carefully adjusted so that Real[f,] = f:

) flk] ifk=0,N/2
falkl|=1¢ 2flk] ifO<k<N/2 . (4.48)
0 if N/2<k<N

We obtain f,[n] by computing the inverse discrete Fourier transform.
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Example

Example 4.8 The Fourier transform of
Real function

) f(t) = acos(wot + ¢) = g (eXP[i(wot +¢)] + exp[—i(wot + ¢)])

1S
F(w) = ma(exp(ig) 8(w— wo) + exp(ig) (w+wo) )

The Fourier transform of the analytic part computed with (4.47) is f.(w) =
2ma exp(i¢) §(w —wp) and hence

> fa(t) = aexpli(wot + )] (4.49)

Complex function
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Example:

Analyzed Signal (length = 1024)

Analyzed Signal (length = 1024)

200 400 600 800
Modulus of Ca,b Coefficients

1000 200 400 600 800 1000
Angle of Ca,b Coefficients

——NONNICIW-BADOITIO
= UKOWN—UIKOWN—-UKOW~—

Modulus (Ca,b) fora=32 (frq= 0.013)

Scale of colors from MIN to MAX
Angle (Ca,b) fora=32 (frq= 0.013)

200 400 600 800
Local Maxima Lines

5

0 “’/ /\/ ﬁ
] 5 . . . . .
1000 200 400 600 800 1000

Local Maxima Lines

1000 200 400 600 800 1000

):, :+ );*:« [ x [ ¥ | y— L > View Axes

analytic wavelet
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Wavelets and multiresolution representations
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Scaling equation

* A multiresolution approximation is completely characterized by the function ¢ that
generates the orthonormal bases for each V;

— We study the properties of ¢ which guarantee that all the spaces V; satisfy all conditions of
a multiresolution approximation.

— It is proved that any scaling function corresponds to a discrete filter called conjugate
mirror filter

e  Procedure

1. Link ¢ to the corresponding discrete filter 42/n]

2. Determine the properties of 4#/n/ such that ¢ is a scaling function

48




Scaling equation
From multiresolution conditions follows

V,CVL

* The scaling equation relates a dilation of ¢ by 2 to its
integer translations.

+00
@ ( i) = 2 h[n]¢(t — n) (1)  The sequence 2/n] will be interpreted as a discrete filter




Scaling equation

Taking the F-trasform of (1) convolution product

—  where

Next step is thus the expression of “¢(®) as a product of dilations of “h(w).

) = o) M

— For any p>0, (2) implies

j(270)= Li(2"0)

‘%~>
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[terating (2):

Scaling equation

b(20) = = h(0)d(w) -

If ¢(w)
lim (%

P—+x

b(w) =

Il ~fw N | N AN 7)) - ~ -
—h|= O = |=—=h[= 0[] —=..d(270)=h(270)d (27w
(s z)-a0)(S)
g in the expression above for all values of p up to P:
2
1 N AN AR
— | ©|— |h|— |h| =
&) HEPLE)E)
P /2(2‘? a)) .
— P2 " w)
bt N2
1s continuous at w=0 then
(2"’ a))) = (i)(O) —
o [ (2—17 a)) X — Next step: find the necessary and sufficient
——P(0) conditions on “h(w) to guarantee that this infinite
NG g
p=l 2 product is the F-transform of a scaling function
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Conjugate Mirror Filters

Teorem 7.2 (Mallat&Meyer)
Let ¢ in L?(R) be an integrable scaling function. The F-series of //n/ satisfies
Apoy2

h(a)j +

(2) \ 40, i;(a)Htf =2 and  h(0)=~/2 CME

Conversely, if /"(w) 1s 21 periodic and continuously differentiable in a neighborhood of w=0, if it
satisfies (2) and if

inf f;(a))‘ >0 It does not vanish at ®=0
<3
2 2
. 2P wl. : : : 4
Then, @(w)= he "o (0) is the F-transform of a scaling function. m
p=1 V2 / \p
This theorem provides the conditions under which the discrete pt+ \J Re
filter h[n] generates a scaling function or, equivalently, a

multiresolution representation frame.
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CMF property

lamplitude|?

frequency

R

The solid line gives |"A(w)P* on [-m,] for a cubic spline multiresolution. The dotted line
corresponds to ["g(w)|?, namely the corresponding band-pass filter.
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Conjugate mirror filters

Table 7.1 Conjugate Mirror Filters &[n] for Linear Splines m = 1 and Cubic
Splines m=3

n h[n] n hin]
m=1 0 0.817645956 m=3 5. =5 0.042068328
1. -1 0.397296430 6, —6 —0.017176351
2, -2 =0.069101020 7. =7 =0.017982291
3, —3 —0.051945337 8, -8 0.008685204
4. —4 0.016974805 9,-9 0.008201477
5. —5 0.009990599 10, =10 —0.004353840
6, —=b =0.003885261 11, =11 —0.003882426
7, =7 =0.002201945 12, —12 0.002186714
8, —8 0.000023371 13, —13 0.001882120
9,—9 0.00051 1636 14, —14 —0.001103748
10, — 10 —0.000224296 15, -15  —0.000927187
11. =11 = 0000 22686 16, =16 0.000559952
=3 P 0.766130398 17, =17 0.000462093
1 —1 0.433923 147 18, —18  —0.000285414
R 19, =19 —=0.000232304
2, -2 —0.050201753 20. —20 0.00014
3 -3 — 0. 110036987 | )
1. —14 (.03 2080869

Note: The coefficients below 10~ are not given.




What about wavelets? QUI

Orthonormal wavelets carry the details needed to increase the resolution of a signal
approximation.

The approximations of f at scales 2/ and 20*D are respectively equal to its orthogonal
projections in V; and V.,

We know that V;,, is included in V,
Let W, be the orthogonal complement of V,, in V,
V=V, @,
The orthogonal projection of f on V; can be decomposed as follows
PV,f = PV,.f +PW,f

The complement PW,,,f provides the details that appear at scale j but disappear at the next
coarser scale.

Next theorem will show that basis for W; can be constructed by scaling and translating a
wavelet y
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Corresponding orthogonal wavelet family

Theorem 7.3 [Mallat&Meyer]
Let ¢ be a scaling function and h the corresponding CMF. Let ¥ be such that

A 1 W\ (@
Y(w)=—=g|— |D| —

@ 543 13)
The frequency modulation

A changes the low-pass filter h|n
s(w) = e 1 (w+m) ° P [0}

with to the band-pass filter g[n]
The phase modulation
. introduces a unitary step dela
Let us denote » 1 t=2'n P Y
Yinll)= Y -
SN VA X

For any scale, {V';

For all j,

Signal domain

}iinz 15 an orthonormal basis for W;.

{ jn } jnez? 1s an orthonormal basis for L2,

g() =/l (w+7) <> g(z) = 27 h(-z"1) < g[n] = (1) 7" [l - n]
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Proof

h(w)— h[n] 1.
(

—1)" h[n]

h(w+m)= h(—(a) + n)) —(=1)" h[-n]

hw+m)—

3.
1-n

e (@+) = (1) h[1-n]

Frequency modulation changes each-
other sample sign

Phase reverse changes n in —n

Phase modulation introduces a unit
delay

h(w)=...+h[0]+A[1]e” +h[2]e™™ +h[3]e™" +.....
h(w+7m)=...+h[0]+h[1]e” ™ +h[2]e™ " + h[3]e™ ™ +.....=

1-n

e n (w+ 1)~ (=1)" h[1-n]

et 0] B[] h[2]e™ - h[3]e™ +.m 3 (-1) H[nJ

W (w+ )= 2(-1)” h[nfe"" = 2(—1)_" [l =3 (-1) " -]
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Corresponding orthogonal wavelet family

— Lemma 7.1. The family {; .} , i, 7 is an orthonormal basis for W; iif

— Furthermore

g(a)+n‘)‘2 =2

g(o) +
and
Q(w)ﬁ* (w)+§(a)+ﬁ)l;* (w+7)=2

1 t

since {(p(t - n)}nez is an ortonormal basisof  V, —
L1// ). Jiog[n](p(t —n)  with
V27 \2) 2,

gln]= <%w(§),¢<r - n>>

» The orthogonal wavelets carry the details lost going from scale j to scale j+1

=  Wavelets are the basis functions for Wj

* The details at scale j are obtained by projecting the signal onto the wavelet family ; ,

58




Summary

Approximation function at scale 2J:
Details (“residual” functions) at scale 2!

Wavelet representation:

B f= §<f Pjon )P

n=—w

Pij= §<f9wj,n>z/}j,n

n=—oo

f=3 Dl

]=—OO n=-—0oo

If the basis 1s orthogonal, the scaling function characterizes the multi-resolution completely

Scaling function ¢ -> h[n] -> g[n] -> wavelet
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Example

Battle-Lemari¢ cubic spline wavelet and its spectrum

ir (1)
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05k | | . 08
| | il 0.6
o II| I |II 7 T
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Example

* Property: for any y that can generate an orthonormal family, one can verify that

FIGURE 7.6

Graph of |y(2/w)|? for the cubic spline Battle-Lemarié wavelet, with 1 sj=5and we[—m, 7.




Approximation

Example B T T T ]

2 | | L

£
so | T | | ]

20 .
0k -

-20E | ! | | ¢

0 0.2 0.4 0.6 0.8 |

FIGURE 7.7

Wavelet coefficients d;[n] = {f, 4.,.) calculated at scales 2/ with the cubic spline wavelet. Each
up or down Dirac gives the amplitude of a positive or negative wavelet coefficient. At the top is

the remaining coarse-signal approximation a;[n] = {f, ¢; ) for J=—5.
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Warning

Each CMF generates a wavelet orthonormal bases

Does any wavelet orthonormal bases correspond to a multiresolution approximation and

CMEF? It depends on the support:

— If y has compact support than it corresponds to a multiresolution approximation [Lemari¢]

— However, there exists “pathological” wavelets that decay as [t|-! that cannot be derived from any

multiresolution approximation
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Classes of wavelet bases

Wavelets are interesting for applications for their ability to represent signals with few non
zero coefficients

The best basis for an application is the one that maximizes the number of zero or close to
zero coefficients. This depends on

— The regularity of £
— The number of vanishing moments of the wavelet
— The size of its support
The constraints on the wavelet translate to design rules for the filter g[n], thus h[n]

— Thus, we need conditions on “*h(®)
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Wavelet properties

* Vanishing moments

— The wavelet has p vanishing moments if

ftkw(t)dt =0 for Osk<p (3)

— The number of vanishing moments is equal to the multiplicity of zeros of h"(®) in 7 or,
equivalently, the number of vanishing derivatives of vy in zero

* Theorem 7.4: Vanishing moments

Let @ and y be a scaling function and a wavelet that generate an orthonormal basis. Suppose
that \w(t)|=0((1+£)??1) and |@t)|=O((1+1?) 7). The four following statements are
equivalent

1. The wavelet y has p vanishing moments
2. 7 (CU) and its first p-1 derivatives are zero at w=0
3. "h(w) and its first p-1 derivatives are zero at w=rx

4. for any 0<k<p

+00

q; (1) = E nkcp(t - n) 1s a polynomial of degree &

n=—00
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hints of the proof

Point 1. The decay of |@(?)| and |w(t)| imply that |"¢p(w)| and |y (w)| are p-times
differentiable

Point 2. The k-th order derivative of ' (w)  is the F-transform of (-it) y (¢)
thus

+00
7 (k N PN -
l!l )(O)—/ (—1ir) l,b(f)df 4)

20

(4) is equivalent to (3), which proves 2.
Point 3.

() = fg( )cb( ) 8@ =N @+n)  thus

VQ2w) == g(0)d(w)=e™h" (0+7)d(w)

=&
\/E
since @ (O) = () by differentiating this expression we prove that 2. is equivalent to 3.

Finally, it is proved that 4. is equivalent to 1. and viceversa.
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hints of the proof

Let us now prove that (4) implies (1). Since ¢ is orthogonal to {¢d(f — 1) },cz, it is also
orthogonal to the polynomials g for O£ <p. This family of polynomials is a basis of
the space of polynomials of degree at most p — 1. Thus, ¢ is orthogonal to any polynomial
of degree p— 1 and in particular to t* for 0=k < p. This means that i has p vanishing
moments.

A wavelet with p vanishing moments Kills polynomials up to degree p
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Wavelet properties

Support

— The larger the support, the more the singularities will spread along scales: it should be as short as
possible

BUT a wavelet with p vanishing moments will have a support at least 2p-1 -> trade-off

Proposition 7.2: Compact Support. The scaling function has a compact support if and
only if 4 has a compact support and their supports are equal. If the support of z and ¢ is
[N,,V,], then the support of v is [(N,-N,+1)/2, (N,-N,+1)/2].

W(w) = 1 é L\p( ¥ Product in Fourier =»convolution in time
J2°1 2 2 : g[n] has the same support of h[n]

The relation between the supports of the wavelet and the
basis function comes from the properties of the
convolution applied to the shrinked function (the support
of y(t/2) is the same as that of ¢(t) thus the support of
y(t), that is a shrinked version, is the half.

Sg(w) = e_jwﬁ*(w +7)
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Proof

Proof!. If ¢ has a compact support, since

bl = — (6 (5) 0l -m).

we derive that & also has a compact support. Conversely, the scaling function satisfies

+00
% é (%) — n;mh[n] (1 —n). (179)

If h has a compact support then one can prove [144] that ¢ has a compact support. The
proof is not reproduced here.

To relate the support of ¢ and k, we suppose that k[r] is non-zero for ¥y <n <N,
and that ¢ has a compact support [K;,K;]. The support of ¢(¢/2) is [2K,,2K;]. The
sum at the right of (7.79) is a function whose support is [N, + K,,N> + K;|. The
equality proves that the support of ¢ is (K|, K;] = [Ny, N2].
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Support of the wavelet

Let us recall from (7.73) and (7.72) that

1 { +o0 +00
ks (5) =,.=Z_;g["]¢(’"") =n;;<—-n'-"h[1 —~nlg(z—n).

If the supports of ¢ and k are equal to [N;,N,], the sum in the right-hand side has a
support equal to [N, — N>+ 1,N, —N; +1]. Hence 9 has a support equal to [(N; —
Ny +1)/2,(N2—N, +1)/2]. I

If k has a finite impulse response in [N}, N,|, Proposition 7.2 proves that % has
a support of size N, — N, centered at 1/2. To minimize the size of the support,
we must synthesize conjugate mirror filters with as few non-zero coefficients as

possible.
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Properties

Support

— To minimize the size of the support of the wavelet, we must synthesize conjugate mirror filters
with as few nonzero coefficients as possible

— However, the constraints imposed on orthogonal wavelets imply that if the wavelet has p
vanishing moments, then its support is at least of size 2p-1 — trade off

— Daubechies wavelets are optimal in the sense that they have a minimum size support for a
given number of vanishing moments

= [f fhas few isolated singularities and is very regular between singularities, we must choose a wavelet
with many vanishing moments to produce a large number of small wavelet coefficients <f, v, ,>. If the
density of singularities increases, it might be better to decrease the size of its support at the cost of
reducing the number of vanishing moments. Indeed, wavelets that overlap the singularities create high-
amplitude coefficients.

Regularity

— The regularity or smoothness has mostly a cosmetic influence on the error introduced by
quantizing or thresholding the coefficients. Such operation introduces a noise which is less visible
if it 1s smooth. Better quality 1s reached with smoother wavelets

» The Haar wavelet is not a good choice
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Popular wavelet families

« Shannon, Meyer, Haar, and Battle-Lemari¢ Wavelets

— Starting point
W(w) = % g(%)@(%) 2(@) =R (w+ )
W(20) = = g (0)d(0) = i (0+7)d(w)




Shannon wavelets: real and complex

Shannon Wavelet
The Shannon wavelet is constructed from the Shannon multiresolution approxima-

tion,which approximates functions by their restriction to low-frequency intervals. It
corresponds to d) 1{— 7 7] and hw)= V2 1 -7/2.7/2)(w) forw e [—m, w]. We derive
from (7.82) that

exp(—iw/2) fwe|[ 27, —m|U[m, 27]
hw) = { otherwise, (7.83)
and thus,
in 27t —1/2 ¥ —1/2
Real SW (t) = sin 2m(t—1/2) _sinar(l 1/-}.

27 (t—1/2) m(t—1/2)

This wavelet is C* but has a slow asymptotic time decay. Since @(w} is zero in
the neighborhood of @ = 0, all its derivatives are zero at @ = 0. Thus, Theorem 7.4
implies tl"nt r has an infinite number of vanishing moments.

Since c,b{m} has a :.umpaat support we know that §(7) is C”. However, (1)
decays only like 1t~ at infinity because v,it{w] is discontinuous at = 7 and * 27.
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Real Shannon wavelets

Spatial domain

Shannon scaling function (continuous) and wavelet (dashed) lines.
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Complex Shannon wavelet

Complex Shannon wavelet shan1.5-1

Imaginary part

20
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Meyer wavelets

Meyer Wavelets

A Meyer wavelet [375] is a frequency band-limited function that has a Fourier trans-
form that is smooth, unlike the Fourier transform of the Shannon wavelet. This
smoothness provides a much faster asymptotic decay in time. These wavelets are
constructed with conjugate mirror filters /1(w) that are C" and satisfy

V2 ifwe[-m/3, /3]
0 ifwel—m —2m/3]U[27/3. 7] (7.84)

fi{m) =

The only degree of freedom is the behavior of h(w) in the transition bands
[—27/3, —m/3]1U[m/3, 27 /3]. It must satisfv the quadrature condition

h(w)]? + |h(w+m)|* =2, (7.85)

and to obtain C” junctions at |w| =7 /3 and |w| = 27 /3, the i first derivatives must
vanish at these abscissa. One can construct such functions that are C*.

The scaling function d(w) = [, 2712 h(2~Pw) has a compact support and one
can verify that

272 hw/2) if lw|<47/3

0 if |w| >4 /3.

b(w) = (7.86)
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Meyer wavelets

The resulting wavelet (7.82) is

0 if |w|=2m/3
»—1/2 5 > if 2 < |w| =«
. 2 g(w/2) if 2m/3 < |w|=47/3 |
U(w) = | _1/2 A » (7.87)
2712 exp(—iw/2) h(w/4) if 4m/3<|w|<87/3
[ 0 if || >87/3.

The functions ¢ and iy are C* because their Fourier transforms have a compact
*-;uppurt Since Jt(w} = 0 in the neighborhood of @ = 0, all its derivatives are zero at
= (0, which proves that df has an infinit¢ number of vanishing moments.
If his C" then q’: and d) are also C". The discontinuities of the (2 + 1)™ derivative
of h are generally at the junction of the transition band |w|=7/3, 27/3, in which
case one can show that there exists A such that

BOI=AA+[D™"" and  |Y@)| =A@+ )T
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Meyer wavelet: example
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Haar wavelets

Haar Wavelets
The Haar basis is obtained with a multiresolution of piecewise constant functions.

The scaling function is ¢ = 1jo, 17. The filter h[n] given in (7.46) has two nonzero
coefficients equal to 272 at n=0 and 7= 1. Thus,

I (1) w— ., 1
ﬁaf; (E)= Z (—1) h[l—n]qb{f—:r}=ﬁ(qfa{!—l}—cf)(r}).

H=—w

—1 ifo=7<1/2
()= 1 ifl/2=¢<1 (7.90)
0 otherwise.
The Haar wavelet has the shortest support among all orthogonal wavelets. It is not

well adapted to approximating smooth functions because it has only one vanishing
moment.

+oo
t

+ oo
reminder: éw(3)= Z glnld(t —n)= Z (=D h[1—n] bt — n).

n=—ow n=-—ow
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V()

Haar wavelets

scale & shift
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Haar wavelets

o(1) |
scale W(t)
=0 | |
— WV (2t)
! [
=1 y(2t-1)
[
|
— V(4t)
o
I
V(4t-1)
—
I
W (4t-2)
=2 ] :
Y (4t-3)
—_—
- I
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Battle-Lemari¢ wavelets

Battle-Lemarie Wavelets
Polynomial spline wavelets introduced by Battle [99] and Lemari¢ [345] are com-

puted from spline multiresolution approximations. The expressions of (b(m) and
h{w are given, respectively, by (7.18) and (7.48). For splines of degree m, h(w]
and its first m derivatives are zero at w = 7. Theorem 7.4 derives that ¢ has m + 1

vanishing moments. It follows from (7.82) that

fXIT{_f'{U/Z} 53”;4-2(&)/24-??')
Wm-'— ! Som+2(@) S.’m+.’(£’-’/3} ‘

J:{m) =

This wavelet 4 has an exponential decay. Since it is a polyvnomial spline of degree

m.itis m — 1 times continuously differentiable. Polynomial spline wavelets are 1ess

regular than Mever wavelets but have faster time asvmptotic decav. For m odd, ¢ is
symmetric about 1/2. For m even, it is antisymmetric about 1/2. Figure 7.5 gives the
graph of the cubic spline wavelet ¢ corresponding to m2 = 3. For m = 1, Figure 7.9
displays linear splines ¢ and . The properties of these wavelets are further studied
in [15, 106, 164].
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Battle-Lemari¢ wavelets

70 [t (w)
‘ ) 1
i 4
0.
0.5 D.EI
o—/ 0.4
-0.5 1 0.2
_.1 i " H‘J
-5 0 5 -20 -0 0 10 20

FIGURE 7.5 Battle-Lemarié cubic spline wavelet ¢ and its Fourier transform
modulus.
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Battle-Lemari¢: example

10 (1)

0

FIGURE 7.9

I —

Linear spline Battle-Lemarié scaling function ¢ (a) and wavelet  (b).

86




Daubechies compactly supported wavelets
7.2.3 Daubechies Compactly Supported Wavelets

Daubechies wavelets have a support of minimum size for any given number p of
vanishing moments. Theorem 7.5 proves that wavelets of compact support are com-
puted with finite impulse-response conjugate mirror filters 2. We consider real causal
filters i[n], which implies that hisa trigonometric polynomial:

N-—1

h(w) = Z hin]e™ "<,

n=0

To ensure that ¢ has p vanishing moments, Theorem 7.4 shows that 2 must have a
zero of order p at w = . To construct a trigonometric polynomial of minimal size,
we factor (1+ e~ ’?)? whichis a minimum-size polynomial having p zeros at w = :

n l+ —l'w p .
Iz(w)=\/§(+) R(e™ '), (7.91)

The difficulty is to design a polynomial R(e ™ "?) of minimum degree m such that /
satisfies

1h(w)|* + |h(w+m))> =2. (7.92)

As a result, 7 has N =m + p + 1 nonzero coefficients. Theorem 7.7 by Daubechies
[194] proves that the minimum degree of Ris m=p — 1.
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Daubechies compactly supported wavelets

Theorem 7.7: Daubechies. A real conjugate mirror filter /4, such that "4 (w) has p zeroes at
7, has at least 2p nonzero coefficients. Daubechies filters have 2p nonzero coefficients.

Theorem 7.9: Daubechies. If y is a wavelet with p vanishing moments that generates an
orthonormal basis of L2(R), then it has a support of size larger than or equal to 2p+1.

A Daubechies wavelet has a minimum-size support equal to [-p+1, p]. The support of the
corresponding scaling function 1s [0, 2p-1].
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Daubechies wavelets: example

10 1)

FIGURE 7.10

Daubechies scaling function ¢ and wavelet » with p vanishing moments.
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Symlets

Symmlets
Daubechies wavelets are very asymmetric because they are constructed by selecting

the minimum-phase square root of Q(e ™ '?) in (7.97). One can show [51] that filters
corresponding to a minimum-phase square root have their energy optimally concen-
trated near the starting point of their support. Thus, they are highly nonsymmetric,
which yvields very asymmetric wavelets.

To obtain a symmetric or antisymmetric wavelet, the filter 2 must be symmetric
or antisymmetric with respect to the center of its support, which means that /1 (w)
has a linear complex phase. Daubechies proved [194] that the Haar filter is the
only real compactly supported conjugate mirror filter that has a linear phase. The
Daubechies symmiler filters are obtained by optimizing the choice of the square
root R(e” ') uf{;{c‘"”] to obtain an almost linear phase. The resulting wavelets still
have a minimum support [—p + 1. #] with p vanishing moments, but they are more
svmmetric, as illustrated by Figure 7.11 for p =8. The coefficients of the symmlet

filters are in Wavelas. Complex conjugate mirror filters with a compact support
and a linear phase can be constructed [352], but they produce complex wavelet
coefficients that have real and imaginary parts that are redundant when the signal

is real.
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Dubechies versus Symlets
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FIGURE 7.11
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(a)

Daubechies (a) and symmlet (b) scaling functions and wavelets with p =8 vanishing

moments.
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Coiflets

Coiflets

For an application in numerical analysis, Coifman asked Daubechies [194] to con-
struct a family of wavelets v that have £ vanishing moments and a minimum-size
support, with scaling functions that also satisfy

4o
d(t)dt=1 :Imlf Rd)dt=0 for1=k<p. (7.99)

a0

+00

— 0D

0.8

. -0.5

04 -1

02
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Cotflets, order=1
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Cotflets, order=3
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Coiflets:order=>5
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An approximation tour

Linear approximation

Projects the signal f over M vectors of the
ortho-normal basis B which are chosen a-priori
among the basis B, say the first M

M -1

Sur = 2S00

n=0

Approximation error

eM1=[f - ful = SI(7.0,)1
n=M

choosing the first M vectors amounts to
reconstruct f at a given resolution. The
convergence properties similar as in the Fourier
domain

Non-linear approximations

— The M vectors are chosen a posteriori

fu= S b,

nel M
Approximation error

(M1=f = P = SIS )P

I’IEIM

The error can be minimized by choosing the vectors
corresponding to the highest < f, ¢n>

In wavelet basis this amounts to an adaptive
approximation grid whose resolution is locally
increased where the signal is irregular!
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Adaptive basis choice

Instead of choosing the basis a-priori, one could choose the best basis, depending on the
signal

The basis 1s chosen to minimize the non linear approximation error of £

Same problem as the choice of the optimal basis for stimulus representation in visual
perception

The optimal basis could be chosen for classes of signals, considered as random processes

— Gaussian processes — Karunen Loeve transform (KLT)

= Diagonalization of the covariance matrix which removes the inter-dependencies among the samples and
results in a set of independent coefficients (i.e. redundancy has been removed)

— Other kind of processes — no golden rule
* Images are not Gaussian and not stationary

= |n some cases wavelets do better
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Adaptive basis

Wavelet packets

— The subband tree is progressively split according to the optimization of a cost function (i.e. rate/
distortion)

Matching pursuit

— Vectors are progressively selected from a dictionary, while optimizing the signal approximation
at each step

Key issue: a good basis should be able to provide a good description (approximation
properties) of the signal while being concise (sparseness properties)

— Classical approaches: approximation theory, information theory, estimation in noise...

— Perception based approaches: bring humans into the loop
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Wavelet Packets
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