FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING

Francesca Pizzorni Ferrarese

Pipeline overview

WM and GM Segmentation

Registration

Data reconstruction Tractography

Network construction

Morphological data - T1

Freesurfer overview

WMSeg includes mri_segment, edit_wm_with_aseg, and mri_pretess CP = Control Points

Fill can have (aseg.mgz&tal.lta) or (tal.xfm,cutting planes) as input, but not both

Freesurfer overview

Freesurfer - MGZ File Format

- mgz = compressed MGH file
- Can store 4D (like NIFTI)
- cols, rows, slices, frames
- Generic: volumes and Surfaces
- Eg, Typical Anatomical volume: 256 x 256 x 128 x 1

"Volume-encoded" Surface Files

lh.thickness.sm10.mgz

- nvertices, 1, 1, frames (eg, 163214 x 1 x 1 x 40)
- No geometry information

Freesurfer – Talairach coordinate system

- The Talairach coordinate system is defined by making two points, the anterior commissure and posterior commissure, lie on a straight horizontal line.
- Since these two points lie on the midsagittal plane, the coordinate system is completely defined by requiring this plane to be vertical.
- Distances in Talairach coordinates are measured from the anterior commissure as origin.
- Talairach atlas is based upon postmortem sections of a 60-year-old French female who had a smaller than average brain size.
 - This means that most individual brains must be considerably warped to fit the small size of the atlas, inducing some error.
 - Another disadvantage is the approximate method of labeling a tissue-specific Brodmann area based on gross visual inspection rather than histological examination.

Freesurfer – MNI coordinate system

- The MNI defined a new standard brain by using a large series of MRI scans on normal controls.
- The MNI wanted to define a brain that is more representative of the population.
- They created a new template that was approximately matched to the Talairach brain in a two-stage procedure.
 - First, they took 250 normal MRI scans, and manually defined various landmarks, in order to identify a line very similar to the AC-PC line, and the edges of the brain. Each brain was scaled to match the landmarks to equivalent positions on the Talairach atlas. This resulted in the 250 atlas brain that is very rarely used.
 - They then took an extra 55 images, and registered them to the 250 atlas using an automatic linear registration method. They averaged the registered 55 brains with the 250 manually registered brains to create the MNI 305 atlas.
- The MNI 305 brain is made up of all right handed subjects, 239 M, 66 F, age 23.4 +/- 4.1.

Freesurfer - GUI

Tksurfer

Freesurfer - GUI

Tkmedit

Diffusion Weighted MRI (DWI)

Diffusion MRI

- Molecular diffusion, or brownian motion, was first formally described by Einstein in 1905.
- The term molecular diffusion refers to the notion that any type of molecule in a fluid (eg. water) is randomly displaced as the molecule is agitated by thermal energy

$$\left\langle r^2 \right\rangle = 6Dt$$

Diffusion Weighted Imaging

• When the PDF of the displacement of water molecules is Gaussian and behaves according to the Einstein equation, the attenuation of the MR signal due to diffusion is

$$\frac{I_2}{I_1} = \exp(-b \cdot ADC)$$

where

$$b = \gamma^2 G^2 \delta^2 \left(\Delta - \frac{\delta}{3} \right)$$

ADC

Diffusion Tensor MRI (DTI)

DTI

- Assumption: the diffusion pdf is an anisotropic Gaussian (influenced by the tissue architecture).
- It is fully characterized by its covariance matrix, a 3x3 symmetric matrix called the Diffusion Tensor (6 degrees of freedom)

$$\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$$

 The diffusion tensor can be estimated by the acquisition of diffusion images in 6 different directions of the diffusion gradient

DTI segmentation

- The necessity of developing new methods for the segmentation of tensor images arises from the fact that traditional segmentation techniques operate with scalars or vectors, and therefore cannot be directly applied to tensors.
- Initially, most of the methods intended for the analysis of tensor fields were based on scalar or vector values extracted from the tensors.

DTI segmentation

Technique	Application	Tensor Distance	Segmentation Type	Pros	Cons
Peled et al., 1998 [57]	DTI	Linear, planar	Quantitative analysis	Easy implementation	Computational cost
	(corpus callosum,	and spherical components	(not really segmentation)		(computing eigenvalues/eigenvectors);
	internal capsule)				Noise affecting eigenvalues
Zhukov et al., 2003 [89]	DTI	Diffusivity measure I_1	GAC (level sets)	Faster and less sensitive	GAC needs close inizialization
	(regions with high diffusivity/	Anisotrpy measure Ca		to noise than [57]	Only scalar values employed
	anisotropy)				Needs to adjust parameters and
					to combine results heuristically
Rousson et al., 2003 [16, 66, 65]	LST	Euclidean distance	GAR(level sets)	Introduces statistical	Does not take
	(unsupervised segmentation)	tensor components as vector		modeling of data	into account
				Uses all tensor	the tensor nature
				components	of the data
Feddern et al., 2003 [26]	DTI	LST of the tensor data	GAC		Only segmented brain
					contour in 2D
Wiegell et al., 2003 [87]	DTI	Combination of Frobenius	k-means	Simple method	Frobenius distance is
	(talamic nuclei)	tensor distance and			not best option
		Mahalanobis voxel distance			
Jonasson et al., 2003 [38, 37]	DTI	Normalized tensor scalar	Level set, curve	Tensor distance specifically	Tensor distance appropriate
	(corpus callosum,	product (NTSP)	propagation based	designed	for other structures?
	corticospinal tract		on tensor distance		
Wang & Vemuri, 2004 [78]	LST	Frobenius	Mumford-Shah functional	First method to combine curve	Frobenius distance
			(level sets)	evolution and tensor distances	

DTI segmentation

Technique	Application	Tensor Distance	Segmentation Type	Pros	Cons
Wang & Vemuri, 2004 [77]	DTI	K-L distance	Chan and Vese model	Better tensor distance	Piecewise constant model
	LST		(level sets)	than Frobenius	
Lenglet et al., 2004 [43, 47]	DTI	K-L distance	GAR on the distance	Incorporates statistical	Does not directly model
		geodesic distance	to the mean tensor	model	the data, but the distances
Lenglet et al., 2006 [48, 44, 45]	DTI	Euclidean distance	GAR with Gaussian	Incorporates statistical	Complicated formulation
		K-L distance	distribution over tensor	model directly on the	Needs manual initialization
		Geodesic distance	fields	tensor domain	
Ziyan et al., 2006 [90]	DTI	Frobenius distance	Spectral clustering with	Accurate segmentation	Needs careful delineation
	(thalamus nuclei)	K-L distance	Markovian relaxation		of thalamus for
		Eigenvectors angular diff.			initialization
de Luis-Garcia & Alberola,	DTI	K-L distance	GAR with mixtures of	More flexible than [48, 44, 45]	Complicated model
2007 [25]	(corpus callosum)	Geodesic distance	Gaussians on tensors	Accurate results	Needs initialization
Weldeselasie &	DTI	Log-Euclidean	Graph-cuts	Allows for interactive	Results only in 2D slices
Hamarneh, 2007 [83]	(corpus callosum and cardiac)	K-L distance		segmentation	
Awate et al., 2007 [9, 8]	DTI	Log-Euclidean	Fuzzy C-means with	Overcomes Gaussian	Need some manual
	(cingulum,		nonparametric statistical	limitations on bending	initialization
	corticospinal tract)		models	fiber bundles	

Initial goal: LGN identification

- 1. We wanted to find an automated way to identify LGN
- 2. Clustering had initially being used in the thalamus.

Behrens et al. 2003

 Use thamalic-cerebral connections to segment the thalamic nuclei Wiegell et al. 2003

 Use similarity between tensor and coordinates information to identify clusters

Х

• Wiegell et al. 2003

У

$$E(j,k) = \|\mathbf{x}_{j} - \overline{\mathbf{x}}_{k}\| + \gamma \|\mathbf{D}_{j} - \overline{\mathbf{D}}_{k}\|$$

Where

- x is the coordinate vector
- D is the diffusion tensor
- *j* is the pixel under investigation
- *k* is the centroid of the cluster
- γ is a weighting factor

• Wiegell *et al.* 2003

$$E(j,k) = \left\| \mathbf{x}_{j} - \overline{\mathbf{x}}_{k} \right\| + \gamma \left\| \mathbf{D}_{j} - \overline{\mathbf{D}}_{k} \right\|$$

Given a set of pixels in a ROI

Prior knowledge of clusters #

• Wiegell *et al.* 2003

$$E(j,k) = \left\| \mathbf{X}_{j} - \overline{\mathbf{X}}_{k} \right\| + \gamma \left\| \mathbf{D}_{j} - \overline{\mathbf{D}}_{k} \right\|$$

Given a set of pixels in a ROI

Prior knowledge of clusters #

Manual cluster initialization

• Wiegell *et al.* 2003

Х

Given a set of pixels in a ROI

Prior knowledge of clusters #

Manual cluster initialization

Distance voxel-centroids

New centroids calculation

• Wiegell *et al.* 2003

y

$$E(j,k) = \left\| \mathbf{x}_{j} - \overline{\mathbf{x}}_{k} \right\| + \gamma \left\| \mathbf{D}_{j} - \overline{\mathbf{D}}_{k} \right\|$$

Given a set of pixels in a ROI

24

Prior knowledge of clusters #

Manual cluster initialization

Distance voxel-centroids

k-means clustering

Pixels labeling

New centroids calculation

Х

Improvements from previous work

- Previous work relied heavily on manual initialization by an expert, had a fixed # of clusters and used only space and diffusivity information
- We wanted to create an automatic and scalable segmentation method and run it on a set of subjects
- We modified the Wiegell algorithm:
 - Automatic: no manual initialization needed
 - Scalable: to scale up different measurements, not constrained to space and diffusion information

A scalable distance measure

Data driven approach: voxels' dissimilarity is used to describe the distances of one voxel *j* to all the other voxels in the ROI.

Dissimilarity matrix representation (DMR)

$$E'(j,j) = \frac{1}{n} \sum_{i=1}^{n} d_i(j,j)$$

Data driven approach: voxels' dissimilarity is used to describe the distances of one voxel *j* to all the other voxels in the ROI.

Dissimilarity matrix representation (DMR)

$$E'(j,j) = \frac{1}{n} \sum_{i=1}^{n} d_i(j,j)$$

Data driven approach: voxels' dissimilarity is used to describe the distances of one voxel *j* to all the other voxels in the ROI.

Dissimilarity matrix representation (DMR)

$$E'(j,j) = \frac{1}{n} \sum_{i=1}^{n} d_i(j,j)$$

29

Data driven approach: voxels' dissimilarity is used to describe the distances of one voxel *j* to all the other voxels in the ROI.

Dissimilarity matrix representation (DMR)

$$E'(j,j) = \frac{1}{n} \sum_{i=1}^{n} d_i(j,j)$$

Data driven approach: voxels' dissimilarity is used to describe the distances of one voxel *j* to all the other voxels in the ROI.

Dissimilarity matrix representation (DMR)

$$E'(j,j) = \frac{1}{n} \sum_{i=1}^{n} d_i(j,j)$$

31

Data driven approach: voxels' dissimilarity is used to describe the distances of one voxel *j* to all the other voxels in the ROI.

Dissimilarity matrix representation (DMR)

$$E'(j,j) = \frac{1}{n} \sum_{i=1}^{n} d_i(j,j)$$

Data driven approach: voxels' dissimilarity is used to describe the distances of one voxel *j* to all the other voxels in the ROI.

Dissimilarity matrix representation (DMR)

$$E'(j,j) = \frac{1}{n} \sum_{i=1}^{n} d_i(j,j)$$

y

Data driven approach: voxels' dissimilarity is used to describe the distances of one voxel *j* to all the other voxels in the ROI.

Х

Dissimilarity matrix representation (DMR)

$$E'(j,j) = \frac{1}{n} \sum_{i=1}^{n} d_i(j,j)$$

34

Load Freesurfer Thalamus ROI

Extraction of different measures (tensors, T1)

Measures of the distance from each voxel to every voxel *E*'

Multidimensional scaling: E"

k-means clustering

Wiegell et al. 2003

Behrens et al. 2003

Tractography

- Use local diffusion orientation at each voxel to determine pathway between distant brain regions
- Local orientation comes from diffusion model fit (tensor, ball-andstick, etc.)

- Deterministic vs. probabilistic tractography:
 - Deterministic assumes a single orientation at each voxel
 - Probabilistic assumes a distribution of orientations
- Local vs. global tractography:
 - Local fits the pathway to the data one step at a time
 - Global fits the entire pathway at once

Deterministic vs. probabilistic

 Deterministic methods give you an estimate of model parameters

• Probabilistic methods give you the uncertainty (probability distribution) of the estimate

Deterministic vs. probabilistic

Deterministic tractography: One streamline per seed voxel Probabilistic tractography: Multiple streamline samples per seed voxel (drawn from probability distribution)

Deterministic vs. probabilistic

Deterministic tractography: One streamline per seed voxel

Probabilistic tractography: A probability distribution (sum of all streamline samples from all seed voxels)

Local vs. global

Local tractography: Fits pathway step-by-step, using local diffusion orientation at each step Global tractography: Fits the entire pathway, using diffusion orientation at all voxels along pathway length

Local vs. global

Local tractography:

- Deterministic: One direction at each step [DTIStudio, trackvis]
- Probabilistic: A distribution of directions at each step [FSL/ probtrack]

Global tractography:

- Deterministic: Fit path to diffusion orientations along its length
- Probabilistic: Fit path to diffusion orientation distributions along its length

Local tractography

- Best suited for exploratory study of connections
- All connections from a seed region, not constrained to a specific target region
- How do we isolate a specific white-matter pathway?
 - Thresholding?
 - Intermediate masks?
- Non-dominant connections
 are hard to reconstruct
- Results are not symmetric between "seed" and "target" regions
- Sensitive to areas of high local uncertainty in orientation (*e.g.,* pathaway crossings), errors propagate from those areas

Global tractography

- Best suited for reconstruction of known white-matter pathways
- Constrained to connection of two specific end regions
- Not sensitive to areas of high local uncertainty in orientation, integrates over entire pathway
- Symmetric between "seed" and "target" regions
- Need to search through a large solution space of all possible connections between two regions:
 - Computationally expensive
 - Sensitive to initialization

Tractography

Tractography: ipsilateral fibers

Connectivity

Connectivity

THANK YOU!