Medical image registration

Outline

Introduction

- ► What is image registration?
- Motivation and main applications

Problem formulation

- Mathematical definition
- General framework

Main components

- ► *Features* : which information to use in the registration
- Similarity metrics : measure how similar two images are
- ► *Transforms* : deformation model to transform one image into another
- *Optimizers* : algorithm to estimate the transformation
- Interpolators : how to compute common coordinates from different images

Image registration

Registration is the process of finding the transformation (T) that puts different images (f and g) into spatial correspondence

Example

image **f**

Why do we need to register medical images? (1/7)

Improve diagnosis

Combining information from multiple imaging modalities

Why do we need to register medical images? (2/7)

Image guided surgery or radiotherapy

Image guided surgery or radiotherapy

After registration

Before registration

VIM targeting for therapy of movement disorders

- T1w : thalamus segmentation/delineation
- DWI : clustering of thalamus nuclei

(PhD thesis of E. Najdenovska @ EPFL)

Why do we need to register medical images? (3/7)

Study disease progression

Monitoring changes in size, shape, position or image intensity over time

2001

2000

2002

Time 1

Time 2

Before registration

After registration

Why do we need to register medical images? (4/7)

Patient comparison (group studies) or atlas construction

Relating one individual's anatomy to a standardized atlas or group of subjects

Why do we need to register medical images? (5/7)

Estimating brain connectivity from diffusion MRI

- Estimate *fiber bundles* from diffusion MRI, i.e. DWI
- Define cortical segmentation from structural MRI, e.g. T1w

http://hardi.epfl.ch

Why do we need to register medical images? (6/7)

Multi-spectral segmentation

Use more than one modality to improve the segmentation of brain anatomy

Atlas priors

(PhD thesis of O. Esteban @ Madrid+EPFL)

Why do we need to register medical images? (7/7)

Atlas-based segmentation

Use an accurate atlas to define one subject's anatomy

Registration is very important

In medical imaging, registration is particularly important

Example: *PET-MRI* registration to study tumor location

Registration algorithm 1

- ► Is the tumor in the lung only?
- Algorithm #2 looks more plausible: are you ready to risk your software against getting sued?

Mathematical formulation

Registration is an alignment problem

"...find the spatial transformation that maps points from one image B to the corresponding points in another image A..."

Registration is an alignment problem

"...find the spatial transformation that maps points from one image B to the corresponding points in another image A..."

Usually solved as energy minimization problem (or maximization)

Notation

- $\blacktriangleright A: \mathbf{x}_A \in \Omega_A \mapsto A(\mathbf{x}_A)$
- $\bullet \ \mathbf{T}: \mathbf{x}_B \mapsto \mathbf{x}_A \iff \mathbf{T}(\mathbf{x}_B) = \mathbf{x}_A$
- $\blacktriangleright T$
- $\blacktriangleright B^{\mathcal{T}}$
- $\blacktriangleright \ \Omega_{A,B}^{T} = \{ \mathbf{x}_{A} \in \Omega_{A} | \mathbf{T}^{-1}(\mathbf{x}_{A}) \in \Omega_{B} \}$

Intensity of image A at location \mathbf{x}

Transforms a position \boldsymbol{x} from one image to another

Transforms an image (both coordinates x and intensities)

Image B transformed

Overlap domain after transformation T

(2/2)

General framework

The main actors

- ► Feature
 - Which information to use for driving the registration

Similarity metric

- Measures of how similar the features are in the two images

Interpolator

- How to compute similarity metrics from different grids

Transform

- The deformation model to transform one image into another

Optimizer

- The optimization algorithm to estimate the transformation

I - Features of interest

Two main approaches

- Feature based: use corresponding points or features in the images to align them
- Intensity based: operate directly on the image intensities

I - Features of interest

Feature based approach

- Extract corresponding features from both images
- Compute transformation T by minimizing some "measure of distance" between them

Rotate one point-set until the *distance between corresponding points* is minimized

Example: landmarks

- ► Identify *"fiducial markers"* on the images
 - Internal anatomical structures, e.g. anterior commissure
 - Pins/markers fixed to the patient, e.g. skin markers

Can be extended to other features

Iterative Closest Point (ICP) algorithm

Compute the centroid of each point cloud
Difference between centroids = translation that must be applied

Biomedical Image Processing

- e.g. surfaces ("Head and Hat") or contours ("Crest Lines")
- Critical : define a good *similarity metric* for that feature

I - Features of interest

Intensity based approach

- Use the intensities in the two images alone
 - No need to delineate corresponding structures
- Like having "features = pixels"
- Transformation T computed by comparing intensity patterns in both images via "pixel similarity metrics"
- These are based on the joint histogram
- NB: we will focus on this approach

(it's the most used in medical imaging)

Image sampling strategy

- ► Full sampling
 - Similarity metrics computed on *all voxels of the image*

Subset sampling

- In general, it is not necessary to evaluate all voxels
- Examples : subsampled regular grid, random locations ...

intensities image A

Quantify degree of similarity between two images

Example

Same subject/session, but images from different modalities look different

- ► How to construct a metric to realize they are all the "same object"?
- $\sum_{\mathbf{x}\in\Omega_A} |A(\mathbf{x}) B^{\mathcal{T}}(\mathbf{x})|$ would be very high in any case. Any other idea?

Joint histogram

$$H_{I,J}(i,j) = \text{Card}\{(x,y)|I(x,y) = i \text{ and } J(x,y) = j\}$$

Notes

- ▶ I and J must have the same dimensions, e.g $M \times N$ (NB: in this context $J = B^T$)
- ▶ If *I* and *J* have *intensities* in [0...255]
 - $size(H_{I,J}) = 256 \times 256$ and $sum(H_{I,J}) = M \cdot N$

Examples

image I

image J=I

 $H_{I,J}$

Examples

Examples

 $A \rightarrow 6$, $B \rightarrow 1$, $C \rightarrow 7$, $D \rightarrow 3$, $E \rightarrow 5$, $F \rightarrow 4$, $G \rightarrow 2$

(2/5)

Minimizing intensity differences

Sum of squared differences (SSD)

$$SSD = \sum_{\mathbf{x}_A \in \Omega_{A,B}^T} |A(\mathbf{x}_A) - B^T(\mathbf{x}_A)|^2$$

- ► SSD very sensitive to few voxels with very different intensities between images
 - e.g. contrast agent is injected between two acquisitions
- ► Sum of absolute differences (SAD) reduces the effect of these outliers

$$SAD = \sum_{\mathbf{x}_A \in \Omega_{A,B}^T} |A(\mathbf{x}_A) - B^{\mathcal{T}}(\mathbf{x}_A)|$$

Notes

- Computed from $H_{I,J}$: $SSD = \sum_{i,j} H(i,j) \cdot (i-j)^2$
- ▶ SSD/SAD can be used only when "images are the same"
 - Same modality, same contrast, same scaling, same visible details...
 - ...but, in practice, this is never the case
 - Implicit assumption: after registration the images differ only by Gaussian noise

SSD examples

Correlation approach

- Use a slightly less strict assumption
 - We don't try to have $B^{\mathcal{T}} = A$ at registration
 - We require only a relationship of the form $B^{\mathcal{T}} = \alpha A + \beta$ (linear)
- ► Cross-Correlation (CC)

 $CC = \sum_{\mathbf{x}_A \in \Omega_{A,B}^T} A(\mathbf{x}_A) \cdot B^{\mathcal{T}}(\mathbf{x}_A)$

Normalized Cross-Correlation (NCC)

$$\operatorname{NCC} = \frac{\sum_{\mathbf{x}_{A} \in \Omega_{A,B}^{T}} \left(A(\mathbf{x}_{A}) - \bar{A} \right) \cdot \left(B^{\mathcal{T}}(\mathbf{x}_{A}) - \bar{B} \right)}{\sqrt{\sum_{\mathbf{x}_{A} \in \Omega_{A,B}^{T}} \left(A(\mathbf{x}_{A}) - \bar{A} \right)^{2}} \cdot \sqrt{\sum_{\mathbf{x}_{A} \in \Omega_{A,B}^{T}} \left(B^{\mathcal{T}}(\mathbf{x}_{A}) - \bar{B} \right)^{2}}}$$

Notes

- ▶ NCC(I,J)∈[-1,1] $\forall I,J$. NCC(I,J)=0 → no correlation
- Can be computed from $H_{I,J}$
- Have to be maximized
- Model contrast differences, only if linearly dependent

SSD vs NCC

SSD vs NCC

Statistical approach

- \blacktriangleright $H_{I,J}(i,j)$ = "probability that a randomly chosen pixel has intensity i in the image I and intensity j in the image J''
- Suggests the use of statistical/information theory techniques

Uncertainty and information

- ► When we say <u>something obvious</u> (e.g. tomorrow the sun will rise) it's not interesting, there's no information/uncertainty in it
- ► When <u>something unlikely</u> happens (e.g. tomorrow a meteor will hit the Earth) it's very interesting, it's a important information

Entropy is measure of uncertainty of a system

• Set of *n* symbols with probability of occurrence $p_1, p_2, ..., p_n$

All symbols have equal probability \rightarrow max uncertainty/information \rightarrow H is max

One has probability 1, the rest $0 \rightarrow$ no uncertainty/information \rightarrow H is min

 $\mathbf{H} = -\sum_{i} p_i \log p_i$

image J intensities

Entropy for image registration

- Two images to align, so two symbols at each pixel
- $H_{I,J}(i,j)$ = joint probability distribution of images A and B (let's call it p_{AB})
- ▶ Joint entropy measures the information in the two images combined:

 $H(A,B) = -\sum_{a} \sum_{b} p_{AB}(a,b) \log p_{AB}(a,b)$

- Registration seen as seeking to reduce the amount of information in the combined image
 - ► Sharper $H_{I,J}$ → lower H(A,B) → reduced uncertainty

Mutual Information (MI) usually preferred

 $H_{A,B}$ with B=A

2 mm shift

5 mm shift

 $MI(A, B) = \sum_{a} \sum_{b} p_{AB}(a, b) \log \frac{p_{AB}(a, b)}{p_{A}(a) \cdot p_{B}(b)} = H(A) + H(B) - H(A, B)$

- Measures how well one image explains the other
- MI is maximimum at optimal alignment

Summary

Minimizing intensity differences

- Sum of squared differences (SSD) or sum of absolute differences (SAD)
- To be minimized
- Suited for mono-modal, intra-subject registration
- Strong assumption on intensities

Correlation approach

- Relaxes the previous assumption, allowing linear dependence
- Normalized Cross-Correlation (NCC)
- To be maximized
- Suited for mono-modal, intra- or inter-subject registration

Statistical interpretation

- Weakest assumption on the relationship between intensities
- Mutual Information (MI)
- To be *maximized*
- Suited for multi-modal registration (intra- and inter-subject)

III - Interpolators

- To compute distance/similarity d(A, B^T) we need to compare features/intensities at same locations on both images
 - ► If T maps the pixels of B exactly at the same locations of the pixels of A, there are no problems
 - But usually the locations/grids do not match

Two cases

Interpolation

- For the points T(x_B) falling *inside* the grid of A (but not on the grid points themselves)
- Value for these points needs to be estimated from the *neighboring pixels*

Extrapolation

- For the points $T(x_B)$ falling *outside* the grid of A
- Points not considered? Mirror or extend pixels?

III - Interpolators

(2/2)

Most common choices

Nearest neighbor

1D

► Linear

1D

► Higher order, e.g. cubic or B-spline

(1/2)

Two main categories

- ► Linear (a.k.a. rigid)
 - Only a limited number of *degrees of freedom* is allowed

($\cos\beta\cos\gamma$	$\cos\alpha\sin\gamma + \sin\alpha\sin\beta\cos\gamma$	$\sin\alpha\sin\gamma - \cos\alpha\sin\beta\cos\gamma$	t_x	$\begin{pmatrix} x \end{pmatrix}$
	$-\cos\beta\sin\gamma$	$\cos\alpha\cos\gamma - \sin\alpha\sin\beta\sin\gamma$	$\sin\alpha\cos\gamma + \cos\alpha\sin\beta\sin\gamma$	t_y	y
	$\sin eta$	$-\sin\alpha\cos\beta$	$\cos \alpha \cos \beta$	t_z	z
	0	0	0	1)	(1)

- Non-linear (a.k.a. non-rigid)
 - Virtually any transformation/deformation is possible

- NB: the choice of the deformation model to use depends on the application, i.e. which tissue/structure to register
 - Bones of the skull restrict the movement of the brain
 - Soft tissue tends to deform in more complicated ways

Linear transformations

▶ Rigid :
$$\mathbf{T}(\mathbf{x}) = \mathbf{R}\mathbf{x} + \mathbf{t}$$

- 6 parameters : rotation (R) and translation (t)
- Invariants: distances (isometric), curvature, angles, lines
- Use: same structure in a different position

Similitude :

$$\Gamma(\mathbf{x}) = \mathbf{sRx} + \mathbf{t}$$

- 7 parameters: adds a scaling factor (s)
- Invariants: distance ratios, angles, line

► Affine :

$$: \quad \mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{t}$$

- 12 parameters: A includes stretching and shearing
- Invariants: lines, parallelism
- Use: correct for scanner deformations/artifacts
 find approximate alignment before nonlinear registration

Nonlinear transformations required when registering:

- An image of one individual and **atlas**
- Image from **different individuals**
- Tissue that deforms over time

General approach

- **Each pixel** can virtually be moved independently
 - One displacement per pixel
 - Actual *tissue deformations* are usually more smooth/regular
- Usually grids of control points are defined
 - One displacement $u(\mathbf{x})$ (\nearrow) per control point ()
 - Smoothness constraints are usually added to obtain "anatomically reasonable" deformations
 - Control points are not independent

Several solutions inspired by physics

- Elastic, viscous fluid, optical flow, diffusion model (demons) ...

31

pixels spacing control points spacing deformation field u(x)

subject

template

Increased complexity: overfitting and regularization

V - Optimizers

Registration is an optimization problem

- The search space is high dimensional (i.e. space of all possible transformations)
- The problem is nonlinear (possibly with many local minima)

Usually iterative approaches are used

- ► Start with *initial estimate* of transformation, **T**⁰
- ► At each iteration *t*, current estimate **T**^t is used to compute a *similarity measure* d(A, B^T)
- Using d, refine the transformation $\mathbf{T}^t \rightarrow \mathbf{T}^{t+1}$
- Continues until the convergence

Classical algorithms

Gauss-Newton, (stochastic) gradient descent etc...

Multi-scale pyramid

Strategy to improve **registration accuracy**

- smoothing Start the registration using images with low complexity downsampling
- At convergence, increase the complexity/details of the images and repeat
- This reduces the chance of falling in **local minima** (bad registration)

REGISTRATION

ENDS

Use of masks

Sometimes it is desirable to align only part of an image

- We are interested only on a portion or some details of the image
- We need to ignore parts of the images that can confound the registration (e.g. artificial edges)

Some anatomical details are not visible in both images

With a mask registration is constrained to a region

- A mask is a **binary image**
 - " $\mathbf{1}$ " \rightarrow the pixel in *considered*
 - " $\mathbf{0}$ " \rightarrow the pixel in *ignored*
- A fixed image mask is usually sufficient to focus the registration on a region, since samples are drawn from the domain of the fixed image

Available tools

- ITK.org : MITK, MedINRIA, Slicer3D, etc
- Elastix
 - Choice for our lab: power of ITK (all algorithms) with simple interface
- FSL FLIRT (linear) and FNIRT (nonlinear)
- ANTs (Advanced Normalization Tools)
- SPM
- Freesurfer
- Hammer / Glirt
- BrainVisa / Anatomist
- and many others more....