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Outline

Introduc5on	
▶ What	is	image	registra5on?	

▶ Mo5va5on	and	main	applica5ons	

Problem	formula5on	
▶ Mathema5cal	defini5on	

▶ General	framework	

Main	components	
▶ Features	:	which	informa5on	to	use	in	the	registra5on	

▶ Similarity	metrics	:	measure	how	similar	two	images	are	

▶ Transforms	:	deforma5on	model	to	transform	one	image	into	another	

▶ Op5mizers	:	algorithm	to	es5mate	the	transforma5on	

▶ Interpolators	:	how	to	compute	common	coordinates	from	different	images
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Image	registra.on

Registra5on	is	the	process	of	finding	the	transforma.on	(T)	
that	puts	different	images	(f	and	g)	into	spa5al	correspondence	

Example
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Why	do	we	need	to	register	medical	images?					(1/7)

Improve	diagnosis	
▶ Combining	informa5on	from	mul5ple	imaging	modali5es
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Why	do	we	need	to	register	medical	images?					(2/7)

Image	guided	surgery	or	radiotherapy	
▶ Image	guided	surgery	or	radiotherapy
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Before	registra.on

AFer	registra.on

VIM targeting for therapy of movement disorders 
- T1w : thalamus segmentation/delineation 
- DWI : clustering of thalamus nuclei 

(PhD thesis of E. Najdenovska @ EPFL) 
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Why	do	we	need	to	register	medical	images?					(3/7)

Study	disease	progression	
▶ Monitoring	changes	in	size,	shape,	posi5on	or	image	intensity	over	5me
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Why	do	we	need	to	register	medical	images?					(4/7)

Pa.ent	comparison	(group	studies)	or	atlas	construc.on	
▶ Rela5ng	one	individual’s	anatomy	to	a	standardized	atlas	or	group	of	subjects
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Why	do	we	need	to	register	medical	images?					(5/7)

Es5ma5ng	brain	connec.vity	from	diffusion	MRI	
▶ Es5mate	fiber	bundles	from	diffusion	MRI,	i.e.	DWI	

▶ Define	cor5cal	segmenta5on	from	structural	MRI,	e.g.	T1w

8
http://hardi.epfl.ch

http://hardi.epfl.ch


Biomedical	Image	Processing Alessandro	Daducci

Why	do	we	need	to	register	medical	images?					(6/7)

Mul5-spectral	segmenta.on	
▶ Use	more	than	one	modality	to	improve	the	segmenta5on	of	brain	anatomy
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(PhD thesis of O. Esteban @ Madrid+EPFL)
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Why	do	we	need	to	register	medical	images?					(7/7)

Atlas-based	segmenta.on	
▶ Use	an	accurate	atlas	to	define	one	subject’s	anatomy
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Global and local 
Image registration 

Deformed atlas labels 

(PhD thesis of S. Gorthi @ EPFL)
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Registra.on	is	very	important

In	medical	imaging,	registra5on	is	par5cularly	important	
▶ Example:	PET-MRI	registra5on	to	study	tumor	loca5on	

▶ Is	the	tumor	in	the	lung	only?	

▶ Algorithm	#2	looks	more	plausible: 
are	you	ready	to	risk	your	so_ware	against	ge`ng	sued?

11

Registra.on	algorithm	1 Registra.on	algorithm	2



Biomedical	Image	Processing Alessandro	Daducci

Registra5on	is	an	alignment	problem	
▶ “…find	the	spa5al	transforma5on	that	maps	points	from	one	image	B 

to	the	corresponding	points	in	another	image	A…”

Mathema.cal	formula.on																																							(1/2)
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Registra5on	is	an	alignment	problem	
▶ “…find	the	spa5al	transforma5on	that	maps	points	from	one	image	B 

to	the	corresponding	points	in	another	image	A…”

Usually	solved	as	energy	minimiza.on	problem	(or	maximiza5on)

Nota5on	
▶ 																																																																							Intensity	of	image	A	at	loca5on	x	

▶ 																																																																							Transforms	a	posi5on	x	from	one	image	to	another	

▶ 																																																																							Transforms	an	image	(both	coordinates	x	and	intensi5es)	

▶ 																																																																							Image	B	transformed	

▶ 																																																																							Overlap	domain	a_er	transforma5on	T

Mathema.cal	formula.on																																							(1/2)
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Mathema.cal	formula.on																																							(2/2)

General	framework	

The	main	actors	
▶ Feature	

- Which	informa5on	to	use	for	driving	the	registra5on	

▶ Similarity	metric	
- Measures	of	how	similar	the	features	are	in	the	two	images	

▶ Interpolator	
- How	to	compute	similarity	metrics	from	different	grids	

▶ Transform	
- The	deforma5on	model	to	transform	one	image	into	another	

▶ Op.mizer	
- The	op5miza5on	algorithm	to	es5mate	the	transforma5on
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I	-	Features	of	interest																																															(1/3)

Two	main	approaches	
▶ Feature	based:	use	corresponding	points	or	features	in	the	images	to	align	them	

▶ Intensity	based:	operate	directly	on	the	image	intensi5es	

14
(PhD thesis of V. Duay @ EPFL)
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I	-	Features	of	interest																																															(2/3)

Feature	based	approach	
▶ Extract	corresponding	features	from	both	images	

▶ Compute	transforma5on	T	by	minimizing	some	“measure	of	distance”	between	them

Example:	landmarks	
▶ Iden5fy	“fiducial	markers“	on	the	images	

- Internal	anatomical	structures,	e.g.	anterior	commissure	
- Pins/markers	fixed	to	the	pa5ent,	e.g.	skin	markers	

▶ Compute	the	centroid	of	each	point	cloud	
- Difference	between	centroids	=	transla5on	that	must	be	applied		

▶ Rotate	one	point-set	un5l	the	distance	between	corresponding	points	is	minimized	
- Itera5ve	Closest	Point	(ICP)	algorithm

Can	be	extended	to	other	features	
▶ e.g.	surfaces	(“Head	and	Hat”)	or	contours	(“Crest	Lines”)	

▶ Cri.cal	:	define	a	good	similarity	metric	for	that	feature
15
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I	-	Features	of	interest																																															(3/3)

Intensity	based	approach	
▶ Use	the	intensi5es	in	the	two	images	alone	

- No	need	to	delineate	corresponding	structures	

▶ Like	having	“features	=	pixels”	

▶ Transforma5on	T	computed	by	comparing	intensity 
paIerns	in	both	images	via	“pixel	similarity	metrics”	

▶ These	are	based	on	the	joint	histogram

NB:	we	will	focus	on	this	approach  
															(it’s	the	most	used	in	medical	imaging)

Image	sampling	strategy	
▶ Full	sampling	

- Similarity	metrics	computed	on	all	voxels	of	the	image	

▶ Subset	sampling	
- In	general,	it	is	not	necessary	to	evaluate	all	voxels	
- Examples	:	subsampled	regular	grid,	random	loca.ons	…
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II	-	Similarity	measures																																													(1/5)

Quan5fy	degree	of	similarity	between	two	images

Example	
▶ Same	subject/session,	but	images	from	different	modali5es	look	different	

▶ How	to	construct	a	metric	to	realize	they	are	all	the	“same	object”?	

▶ 																															would	be	very	high	in	any	case.	Any	other	idea?
17
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II	-	Similarity	measures																																													(1/5)

Joint	histogram

Notes	
▶ I	and	J	must	have	the	same	dimensions,	e.g	M×N						(NB:	in	this	context	J	=							)	

▶ If	I	and	J	have	intensi5es	in	[0…255]	
- size( HI , J  ) =	256×256			and	sum( HI , J  ) =	M·N
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II	-	Similarity	measures																																													(1/5)

Examples

19
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II	-	Similarity	measures																																													(1/5)

Examples

19
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II	-	Similarity	measures																																													(1/5)

Examples
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II	-	Similarity	measures																																													(2/5)

Minimizing	intensity	differences	
▶ Sum	of	squared	differences	(SSD)	

▶ SSD	very	sensi5ve	to	few	voxels	with	very	different	intensi5es	between	images	
- e.g.	contrast	agent	is	injected	between	two	acquisi5ons	

▶ Sum	of	absolute	differences	(SAD)	reduces	the	effect	of	these	outliers

Notes	
▶ Computed	from	HI , J  :	

▶ SSD/SAD can	be	used	only	when	“images	are	the	same”	
- Same	modality,	same	contrast,	same	scaling,	same	visible	details…	
- …but,	in	prac5ce,	this	is	never	the	case	
- Implicit	assump5on:	a_er	registra5on	the	images	differ	only	by	Gaussian	noise

20
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II	-	Similarity	measures																																													(2/5)

SSD	examples

21
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II	-	Similarity	measures																																													(3/5)

Correla.on	approach	
▶ Use	a	slightly	less	strict	assump5on	

- We	don’t	try	to	have																		at	registra5on	
- We	require	only	a	rela5onship	of	the	form																													(linear)	

▶ Cross-Correla.on	(CC)	

▶ Normalized	Cross-Correla.on	(NCC)

Notes	
▶ NCC( I ,J)∈[-1,1]	∀I ,J .				NCC( I ,J)=0	➜	no	correlation	
▶ Can	be	computed	from	HI,J

▶ Have	to	be	maximized	
▶ Model	contrast	differences,	only	if	linearly	dependent

22
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II	-	Similarity	measures																																													(3/5)

SSD	vs	NCC

23
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II	-	Similarity	measures																																													(3/5)

SSD	vs	NCC

23
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Sta.s.cal	approach	
▶ HI,J(i , j ) =	“probability	that	a	randomly	chosen	pixel	has  

intensity	i	in	the	image	I	and	intensity	j	in	the	image	J ”	
▶ Suggests	the	use	of	sta.s.cal/informa.on	theory	techniques

Uncertainty	and	informa.on	
▶ When	we	say	something	obvious		(e.g.	tomorrow	the	sun	will	rise) 

it’s	not	interes.ng,	there’s	no	informa.on/uncertainty	in	it	
▶ When	something	unlikely	happens		(e.g.	tomorrow	a	meteor	will	hit	the	Earth) 

it’s	very	interes.ng,	it’s	a	important	informa.on

Entropy	is	measure	of	uncertainty	of	a	system	

▶ Set	of	n	symbols	with	probability	of	occurrence	p1,	p2,...,	pn 

▶ All	symbols	have	equal	probability		➜		max	uncertainty/informa5on		➜		H	is	max	

▶ One	has	probability	1,	the	rest	0		➜		no	uncertainty/informa5on		➜		H	is	min

II	-	Similarity	measures																																													(4/5)
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II	-	Similarity	measures																																													(4/5)

Entropy	for	image	registra.on	
▶ Two	images	to	align,	so	two	symbols	at	each	pixel	

▶ HI,J(i , j ) =	joint	probability	distribu.on	of	images	A	and	B	(let’s	call	it	pAB)	

▶ Joint	entropy	measures	the	informa5on	in	the	two	images	combined:

Registra.on	seen	as	seeking	to	reduce	the 
amount	of	informa5on	in	the	combined	image	
▶ Sharper	HI,J		➜		lower	H(A,B)		➜		reduced	uncertainty

Mutual	Informa.on	(MI)	usually	preferred	

▶ Measures	how	well	one	image	explains	the	other	

▶ MI	is	maximimum	at	op5mal	alignment
25
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II	-	Similarity	measures																																													(5/5)

Summary	

▶ Minimizing	intensity	differences	
- Sum	of	squared	differences	(SSD)	or	sum	of	absolute	differences	(SAD)	

- To	be	minimized	
- Suited	for	mono-modal,	intra-subject	registra5on	
- Strong	assump5on	on	intensi5es	

▶ Correla5on	approach	
- Relaxes	the	previous	assump5on,	allowing	linear	dependence	

- Normalized	Cross-Correla8on	(NCC)	
- To	be	maximized	
- Suited	for	mono-modal,	intra-	or	inter-subject	registra5on	

▶ Sta5s5cal	interpreta5on	
- Weakest	assump5on	on	the	rela5onship	between	intensi5es	
- Mutual	Informa8on	(MI)	

- To	be	maximized	
- Suited	for	mul5-modal	registra5on	(intra-	and	inter-subject)

26
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III	-	Interpolators																																																								(1/2)

To	compute	distance/similarity	 
we	need	to	compare	features/intensi5es 
at	same	loca.ons	on	both	images	
▶ If					maps	the	pixels	of	B	exactly	at	the	same	loca5ons 

of	the	pixels	of	A,	there	are	no	problems	

▶ But	usually	the	loca5ons/grids	do	not	match

Two	cases	
▶ Interpola.on	

- For	the	points	T(xB)	falling	inside	the	grid	of	A 
(but	not	on	the	grid	points	themselves)	

- Value	for	these	points	needs	to	be	es5mated  
from	the	neighboring	pixels	

▶ Extrapola.on	
- For	the	points	T(xB)	falling	outside	the	grid	of	A
- Points	not	considered?	Mirror	or	extend	pixels?

27
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III	-	Interpolators																																																								(2/2)

Most	common	choices	
▶ Nearest	neighbor	

▶ Linear	

▶ Higher	order,	e.g.	cubic	or	B-spline

28
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IV	-	Deforma.on	models																																										(1/2)

Two	main	categories	
▶ Linear	(a.k.a.	rigid)	

- Only	a	limited	number	of	degrees	of	freedom	is	allowed	

▶ Non-linear	(a.k.a.	non-rigid)	
- Virtually	any	transforma5on/deforma5on	is	possible

NB:	the	choice	of	the	deforma.on	model	to	use	depends	on	
the	applica5on,	i.e.	which	5ssue/structure	to	register	
▶ Bones	of	the	skull	restrict	the	movement	of	the	brain	

▶ SoS	5ssue	tends	to	deform	in	more	complicated	ways
29
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IV	-	Deforma.on	models																																										(1/2)

Linear	transforma.ons	

▶ Rigid	:	

- 6	parameters	:	rota5on	(R)	and	transla5on	(t)	

- Invariants:	distances	(isometric),	curvature,	angles,	lines	
- Use:	same	structure	in	a	different	posi5on		

▶ Similitude	:	

- 7	parameters:	adds	a	scaling	factor	(s)	

- Invariants:	distance	ra5os,	angles,	line	

▶ Affine	:	

- 12	parameters:	A	includes	stretching	and	shearing	

- Invariants:	lines,	parallelism	
- Use:		-	correct	for	scanner	deforma5ons/ar5facts 
										-	find	approximate	alignment	before	nonlinear	registra5on

30
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IV	-	Deforma.on	models																																										(2/2)

Nonlinear	transforma.ons	required	when	registering:	
▶ An	image	of	one	individual	and	atlas	

▶ Image	from	different	individuals	

▶ Tissue	that	deforms	over	5me

General	approach	
▶ Each	pixel	can	virtually	be	moved	independently	

- One	displacement	per	pixel	
- Actual	5ssue	deforma5ons	are	usually	more	smooth/regular	

▶ Usually	grids	of	control	points	are	defined	
- One	displacement	u(x)	(					)	per	control	point	(						)	

- Smoothness	constraints	are	usually	added	to	obtain  
“anatomically	reasonable”	deforma5ons	

- Control	points	are	not	independent	

▶ Several	solu5ons	inspired	by	physics	
- Elas5c,	viscous	fluid,	op5cal	flow,	diffusion	model	(demons)	…

31
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IV	-	Deforma.on	models																																										(2/2)

Increased	complexity:	overfiVng	and	regulariza5on

Example
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V	-	Op.mizers

Registra5on	is	an	op.miza.on	problem	
▶ The	search	space	is	high	dimensional 

(i.e.	space	of	all	possible	transforma5ons)	

▶ The	problem	is	nonlinear  
(possibly	with	many	local	minima)	

Usually	itera.ve	approaches	are	used	
▶ Start	with	ini5al	es5mate	of	transforma5on,	T0	

▶ At	each	itera5on	t,	current	es5mate	Tt	is	used 
to	compute	a	similarity	measure		

▶ Using	d, refine	the	transforma5on	Tt	➝	Tt+1	

▶ Con5nues	un5l	the	convergence	

Classical	algorithms	
▶ Gauss-Newton,	(stochas5c)	gradient	descent	etc…

33
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Mul.-scale	pyramid

Strategy	to	improve	registra.on	accuracy	
▶ Start	the	registra5on	using	images	with	low	complexity	

▶ At	convergence,	increase	the	complexity/details	of	the	images	and	repeat	

▶ This	reduces	the	chance	of	falling	in	local	minima	(bad	registra5on)
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Use	of	masks

Some5mes	it	is	desirable	to	align	only	part	of	an	image	
▶ We	are	interested	only	on	a	por.on  

or	some	details	of	the	image	

▶ We	need	to	ignore	parts	of	the	images 
that	can	confound	the	registra5on  
(e.g.	ar5ficial	edges)

With	a	mask	registra5on	is	constrained	to	a	region	

▶ A	mask	is	a	binary	image	
- “1”			➡			the	pixel	in	considered	
- “0”			➡			the	pixel	in	ignored	

▶ A	fixed	image	mask	is	usually	sufficient	to	focus	the	registra5on	on	a	region, 
since	samples	are	drawn	from	the	domain	of	the	fixed	image
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in	both	images
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Available	tools

ITK.org	:	MITK,	MedINRIA,	Slicer3D,	etc	

Elas5x	
▶ Choice	for	our	lab:	power	of	ITK	(all	algorithms)	with	simple	interface	

FSL	FLIRT	(linear)	and	FNIRT	(nonlinear)	

ANTs	(Advanced	Normaliza5on	Tools)	

SPM	

Freesurfer	

Hammer	/	Glirt	

BrainVisa	/	Anatomist	

and	many	others	more….
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