
Differential Geometry and Topology
Exercises, continued

1 Compactly supported cohomology and Poincaré duality

Exercise 1. Compute the de Rham cohomology of the punctured torus Σ = T 2 \ {x} by the following steps.

1. Find H0
dR(Σ).

2. Find H0
c (Σ).

3. By Poincaré duality this gives H2
dR(Σ).

4. Let D be an open disk containing the point x, so T 2 = Σ ∪ D. Given that H0
dR(T 2) ∼= R ∼= H2

dR(T 2),
H1
dR(T 2) ∼= R2, use the Mayer-Vietoris sequence to compute H1

dR(Σ).

Exercise 2.

Let us prove, under certain assumptions, the Künneth formula for compactly supported cohomology :

H∗
c (M ×N) ∼= H∗

c (M)⊗H∗
c (N).

1. Let M and N be smooth manifolds, and let π1 : M × N → M and π2 : M × N → N be the projection
maps. Show that the cross product map ψ defined by

ψ(ω ⊗ η) = π∗
1ω ∧ π∗

2η

is well-defined as a map Ωkc (M)⊗ Ωlc(N)→ Ωk+lc (N), and that this induces a well-defined map

ψ : H∗
c (M)⊗H∗

c (N)→ H∗
c (M ×N).

2. If M and N are orientable and both have finite good covers, show that the Künneth formula for compactly
supported cohomology is a direct consequence of Poincaré duality and the usual Künneth formula.

3. Under the weaker assumption that M has a finite good cover (and no assumption on orientability of M and
N), use Mayer–Vietoris and induction to prove that ψ : H∗

c (M)⊗H∗
c (N)→ H∗

c (M×N) is an isomorphism.

2 Hodge theory

Exercise 3. Let 〈, 〉 be an inner product on a k-dimensional vector space V , Denote again by 〈, 〉 the extension of
the inner product to the vector spaces Λp(V ). Let Ω ∈ Λk(V ) be a volume form normalized so that 〈Ω,Ω〉 = 1,
and let ∗ be the Hodge star w.r.t. 〈, 〉 and Ω. Show that 〈ω, η〉 = 〈∗ω, ∗η〉 for all ω, η ∈ Λp(V ).

Exercise 4. Let S2 be the unit sphere in R3, with standard spherical coordinates (θ, φ) where θ is the angle
measured from the z axis, and φ is the angle in the xy-plane measured from the x-axis. Consider the local chart
on U = S2 \ {(0, 0, 1), (0, 0,−1)} given by θ ∈ (0, π), φ ∈ [0, 2π].

1. Show that on this local chart for U , the metric induced from the ambient Euclidean metric in R3 is
g(θ, φ) = dθ ⊗ dθ + sin2 θdφ⊗ dφ.

(In other words use the map f : (0, π] × [0, 2π] → S2 ⊂ R3 given by these spherical coordinates to
pull back the Euclidean metric on R3, i.e. f∗(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz).)

2. Find an expression for the normalized volume form Ω on S2 \ {(0, 0, 1)} which has the same orientation as
dθ ∧ dφ.

(In other words, Ω = f(θ, φ)dθ ∧ dφ for some positive function f(θ, φ), which you work out by
solving 〈Ω,Ω〉 = 1. You should get Ω = 1

sin θdθ ∧ dφ.)

3. Find the explicit expressions on this local chart for the Hodge star operators ∗, codifferential operators δ,
and Laplace-Beltrami operators 4 with respect to g and Ω.



3 Poincaré duals, intersection numbers, Euler characteristic

Exercise 5. Let T 2 be the torus depicted below, E its equator (blue) and M its meridian (red). Compute I(E,E),
I(M,M), and I(M,E). Conclude that E and M are not isotopic to each other.

Exercise 6. Let S be the curve in T 2 depicted in red below. Choose an orientation for S and compute I(S, S).
Let E and M be the equator and meridian of the previous exercise. Compute I(S,E) and I(S,M) with respect
to any orientation of E and M . Conclude that S is not isotopic to either E or M .

Exercise 7. Let S1 and S2 be two compact oriented submanifolds of Rn of complementary dimension, with
Poincaré duals ηS1 and ηS2 . Explain why

∫
M
ηS1 ∧ ηS2 = 0.

Exercise 8. Prove that the Euler characteristic of the product of two compact, oriented manifolds is the product
of their Euler characteristics.

Exercise 9. Let 4 ⊂ S2 × S2 be the diagonal, which itself is isomorphic to a sphere. Show that there is no
isotopy Φ : S2 × S2 → S2 × S2 such that Φ(4) ∩4 = ∅.
Exercise 10. More generally, for k > 0 even, let Sk be the k-dimensional sphere. Show that there is no isotopy
Φ : Sk × Sk such that Φ(4) ∩4 = ∅.


