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Motivation 

•  Goal 
–  Get minimal representation of data relative to particular cost function 

•  Usage 
–  Data compression 
–  Noise reduction 



Wavelet Transform 

•  Wavelet transform is applied to low pass 
results (approximations) only: 
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Not optimal 

•  From the point of view of compression, where we want as many small 
values as possible, the standard wavelet transform may not produce the best 
result, since it is limited to wavelet bases that are delated by a power of two 
with each step.  

•  It could be that another combination of functions produce a more desirable 
representation. 



Wavelet Packet Transform 
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Wavelet packet transform is applied to both low pass results 
(approximations) and high pass results (details) 



DWT 
•  Iterate only on the lowpass channel 
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wavelet packet 

•  First stage: full decomposition 



wavelet packet 

Cost(parent)   < Cost(children) 
n  Second stage: pruning 



Wavelet packets 

•  Wavelet bases divide the frequency axis into intervals of 1 octave 
bandwidth. Coifman, Meyer, and Wickerhauser have generalized this 
construction with bases that split the frequency axis in intervals of 
bandwidth that may be adjusted. 

•  Each frequency interval is covered by the Heisenberg time-frequency boxes 
of wavelet packet functions translated in time, in order to cover the whole 
plane, as shown by Figure 1.7 

A wavelet packet basis divides the frequency 
axis in separate intervals of varying sizes. A 
tiling is obtained by translating in time the 
wavelet packets covering each frequency 
interval. 



Wavelet packets (Chapt. 9, M2009) 

•  Wavelet packets were introduced by Coifman, Meyer, and Wickerhauser 
[ 182] by generalizing the link between multiresolution approximations and 
wavelets. 

•  A space Vj  of a multiresolution approximation is decomposed in a lower-
resolution space Vj+1  plus a detail space Wj+1 . This is done by dividing 
the orthogonal basis 

•  {φj(t-2jn)}n∈Z  of Vj  into two new orthogonal bases 

•  {φj+1(t-2j+1n)}n∈Z of Vj+1 and {ψj+1(t-2j+1n)}n∈Z of Wj+1. 

•  The decomposition is specified by a pair of CMF h[n] and g[n] 

g[n]=(-1)1-n h[1-n] 

•  Theorem 8.1 generalizes this result to any space Uj  that admits an 
orthogonal basis of functions translated by n2j  for n∈Z . 



Wavelet packets 



Wavelet packets 



Binary wavelet packet tree 

•  Instead of dividing only the approximation spaces Vj to construct detail 
spaces Wj and wavelet bases, Theorem  8.1 proves that we can set Uj=Wj  
and divide these detail spaces to derive new bases.  

•  The recursive splitting of vector spaces is represented in a binary tree. 

•   Any node of the binary tree is labeled by ( j, p) , where j-L≤0 is the depth 
of the node in the tree, and p  is the number of nodes that are on its left at 
the same depth j-L 



Binary wavelet packet tree 

•  Wavelet packet orthogonal bases at the children node 



Example 



Admissible tree 
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Best basis 

•  Among the admissible trees, one can select the “best one” with 
respect to a predefined criterion (cost function) 

•  The best basis pursuit algorithm finds a set of wavelet bases 
basically prunes the complete tree under the guidance of the 
cost function 

•  A cost function may be chosen to fit a particular application.  
–  For example, in a compression algorithm the cost function might 

be the number of bits needed to represent the result. 



Cost function 

•  The value of the cost function is a real number.  
•  Given two vectors of finite length, a and b, we denote 

their concatenation by [a b]. This vector simply 
consists of the elements in a followed by the elements 
in b.  

•  We require the following two properties:  
–  The cost function is additive in the sense that  

K([a b]) = K(a) + K(b) for all finite length vectors a and b.  
–  K(0) = 0, where 0 denotes the zero vector  



Cost functions: threshold 

•  The threshold cost function counts the number of 
values in a wavelet packet tree node whose absolute 
value is greater than a threshold value t.  

 

è Promoting sparsity! 



Best basis algorithm 

•  Compute cost value for each node 
•  When the wavelet packet tree is constructed, all the leaves are 

marked with a flag. The best basis calculation is performed 
bottom up (that is, from the leaves of the tree toward the root):  
–  A leaf (a node at the bottom of the tree with no children) returns its cost 

value.  
–  As the calculation recurses up the tree toward the root, if there is a non-

leaf node, v1 is the cost value for that node. The value v2 is the sum of 
the cost values of the children of the node.  

•  If (v1 <= v2) then we mark the node as part of the best basis set and 
remove any marks in the nodes in the sub-tree of the current node.  

•  If (v1 > v2) then the cost value of the node is replaced with v2.  



Best basis contd. 

•  The best basis set selected by the best basis algorithm 
is relative to a particular cost function.  

•  In some cases the best basis set may be the same set 
yielded by the wavelet transform (in which case we 
could have used the simpler algorithm).  

•  In other cases the best basis function may not yield a 
result that differs from the original data set (e.g., the 
original data set is already a minimal representation 
in terms of the cost function).  



Other cost functions 

•  Nonnormalized Shannon (0 log(0)=0) 

–  The Shannon entropy function provides a measure 
of the economy of representation of a signal 

•  Concentration in lp norm (1 ≤ p) 

•  Logarithm of “energy” (log(0)=0) 
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