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Motivation

e (@Goal

— Get minimal representation of data relative to particular cost function
 Usage
— Data compression

— Noise reduction




Wavelet Transform

 Wavelet transform 1s applied to low pass
results (approximations) only:
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Not optimal

From the point of view of compression, where we want as many small
values as possible, the standard wavelet transform may not produce the best
result, since it 1s limited to wavelet bases that are delated by a power of two
with each step.

It could be that another combination of functions produce a more desirable
representation.




Wavelet Packet Transform

Wavelet packet transform 1s applied to both low pass results

(approximations) and high pass results (details)




DWT

» [terate only on the lowpass channel
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wavelet packet




wavelet packet

» First stage: full decomposition




wavelet packet

= Second stage: pruning
Cost(parent) < Cost(children)




Wavelet packets

« Wavelet bases divide the frequency axis into intervals of 1 octave
bandwidth. Coifman, Meyer, and Wickerhauser have generalized this
construction with bases that split the frequency axis in intervals of
bandwidth that may be adjusted.

« Each frequency interval is covered by the Heisenberg time-frequency boxes
of wavelet packet functions translated in time, in order to cover the whole
plane, as shown by Figure 1.7
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A wavelet packet basis divides the frequency
axis in separate intervals of varying sizes. A
tiling 1s obtained by translating in time the
wavelet packets covering each frequency
interval.




Wavelet packets (Chapt. 9, M2009)

Wavelet packets were introduced by Coifman, Meyer, and Wickerhauser
[ 182] by generalizing the link between multiresolution approximations and
wavelets.

A space Vj of a multiresolution approximation is decomposed in a lower-
resolution space Vj+1 plus a detail space Wj+1 . This is done by dividing
the orthogonal basis

{pj(t-2In)}nEZ of Vj into two new orthogonal bases

{pj+1(t-2"n)}nE€Z of Vj+1 and {yj+1(t-2""In)}nEZ of Wj+1.

The decomposition is specified by a pair of CMF h[n] and g[n]
g[n]=(-1)"" h[1-n]

Theorem 8.1 generalizes this result to any space Uj that admits an
orthogonal basis of functions translated by n2! forn€Z .




Wavelet packets

Theorem 8.1: Coifman, Meyer, Wickerhauser. Let {0,-(t—2f n)}nez be an orthonormal
basis of a space Uj. Let h and g be a pair of conjugate mirror filters. Define

+00 +00

001(0)= Y hinl0j(t—2/n) and 6/ ,(1)= ) _ glnl;(t—2'n). (8.1

n=-—w n=-—w
The family
{0]9+1(t — 27ty O}H(t — 2j+l")]nez

is an orthonormal basis of U;.




Wavelet packets

Theorem 8.1 proves that conjugate mirror ﬁlters transform an orthogonal basis
{6;(t —2/m)}pez in two orthogonal families {67, ,(r —2/"'n)}ycz and {6}, (1 —

27% ln)}neZ Let Uj+l and U/, be the spaces generated by each of these families.
Clearly U, , and U, , are orthogonal and

U; +1®U]l+l =U;.

Computing the Fourier transform of (8.1) relates the Fourier transforms of 0}’+1 and
0}+1 to the Fourier transform of 6;:

00, 1(@) =h(27w) 0j(w), 6},1(0)=§(2/w) b(w). (8.9)

Since the transfer functions 13(21 w) and g(zf w) have their energy concentrated in
different frequency intervals, this transformation can be interpreted as a division of
the frequency support of 6;.




Binary wavelet packet tree

» Instead of dividing only the approximation spaces V] to construct detail
spaces Wj and wavelet bases, Theorem 8.1 proves that we can set Uj=Wj
and divide these detail spaces to derive new bases.

» The recursive splitting of vector spaces is represented in a binary tree.

* Any node of the binary tree 1s labeled by ( j, p) , where j-L<0 1s the depth
of the node in the tree, and p 1s the number of nodes that are on its left at

the same depth j-L 0
/ WL\

WL+1 W1+1

/N /N
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Binary wavelet packet tree

Wavelet packet orthogonal bases at the children node

+o
W= himlyl @ —27n)
and
1 i .
W =3 etm1ela—20n).

Since {t/ljp (t —27n)} ez is orthonormal,

hin]= (gl/]?‘fl (u), ([/jp(u — Zjn)), gln]= (tlljszl (u), 4[/}’(11 — 2jn)).

2p 2p+1 _ s P
Wi ®Wii =W

(8.10)

(8.11)

(8.12)




Example
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FIGURE 8.2

Wavelet packets computed with a Daubechies 5 filter at the depth j — L =3 of the wavelet packet tree,
with Z=0. They are ordered from low to high frequencies.




Admissible tree

Admissible Tree

We call any binary tree where each node has either zero or two children an
admissible tree,as shown in Figure 8.3. Let { j;, ps}1</<r be the leaves of an admis-
sible binary tree. By applying the recursive splitting (8.13) along the branches of an
admissible tree, we verify that the spaces {Wfi’ ‘M1=1=r are mutually orthogonal and

add up to W}

w=al_ W (8.14)




FT

STFT




Best basis

« Among the admissible trees, one can select the “best one” with
respect to a predefined criterion (cost function)

* The best basis pursuit algorithm finds a set of wavelet bases
basically prunes the complete tree under the guidance of the
cost function

* A cost function may be chosen to fit a particular application.

— For example, in a compression algorithm the cost function might
be the number of bits needed to represent the result.




Cost function

The value of the cost function 1s a real number.

Given two vectors of finite length, a and b, we denote
their concatenation by [a b]. This vector simply
consists of the elements in a followed by the elements
in b.

We require the following two properties:

— The cost function is additive in the sense that
K([a b]) = K(a) + K(b) for all finite length vectors a and b.

— K(0) = 0, where 0 denotes the zero vector




Cost functions: threshold

* The threshold cost function counts the number of
values 1n a wavelet packet tree node whose absolute
value 1s greater than a threshold value .

N-1
COBty vaota = 2 UsIi]| > H21:0;
oy

=» Promoting sparsity!




Best basis algorithm

Compute cost value for each node

When the wavelet packet tree 1s constructed, all the leaves are
marked with a flag. The best basis calculation 1s performed
bottom up (that 1s, from the leaves of the tree toward the root):
- A 1leaf (a node at the bottom of the tree with no children) returns its cost
value.

— As the calculation recurses up the tree toward the root, if there is a non-
leaf node, v1 is the cost value for that node. The value v2 is the sum of
the cost values of the children of the node.

« If (vl <=v2) then we mark the node as part of the best basis set and
remove any marks in the nodes in the sub-tree of the current node.

e If (vl >v2) then the cost value of the node is replaced with v2.




Best basis contd.

* The best basis set selected by the best basis algorithm
1s relative to a particular cost function.

* In some cases the best basis set may be the same set
yielded by the wavelet transform (in which case we
could have used the simpler algorithm).

 In other cases the best basis function may not yield a
result that differs from the original data set (e.g., the
original data set 1s already a minimal representation
in terms of the cost function).




Other cost functions

* Nonnormalized Shannon (0 log(0)=0)
COSty1000 = = Y, ST log(s[nT")

n

— The Shannon entropy function provides a measure
of the economy of representation of a signal

» Concentration in /, norm (1 < p)
COSt = E‘S[n]‘p

* Logarithm of “energy” (log(0)=0)
cost, = Elog(s[n]2 )




Wavelet Tree
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Decomposition Tree
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( Wavelet Packets 2-D
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(Wavelet Packet 2-D -- De-noising
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