
Image processing in MATLAB

Linguaggio Programmazione Matlab-Simulink (2018/2019)

Images in MATLAB
 MATLAB can import/export

several image formats
 BMP (Microsoft Windows Bitmap)

 GIF (Graphics Interchange Files)

 HDF (Hierarchical Data Format)

 JPEG (Joint Photographic Experts
Group)

 PCX (Paintbrush)

 PNG (Portable Network Graphics)

 TIFF (Tagged Image File Format)

 XWD (X Window Dump)

 MATLAB can also load raw-data or
other types of image data

 DICOM data (dicomread…)

• Data types in MATLAB
• Double (64-bit double-precision

floating point)

• Single (32-bit single-precision
floating point)

• Int32 (32-bit signed integer)

• Int16 (16-bit signed integer)

• Int8 (8-bit signed integer)

• Uint32 (32-bit unsigned integer)

• Uint16 (16-bit unsigned integer)

• Uint8 (8-bit unsigned integer)

Images and Colors
 Images are represented as grids, or matrices, of picture

elements (called “pixels”)

 In MATLAB an image is represented as an m x n
matrix in which each element corresponds to a pixel

 All the operators in MATLAB defined on

matrices can be used on images: +, -, *, /, ^, sqrt,
sin, cos etc

 Each element that represents a particular pixel stores
the color for that pixel

Images in MATLAB
 Binary images : {0,1}

 Intensity images : [0,1] or uint8, double etc.

 RGB images : m-by-n-by-3 (one for each color channel)

 Indexed images : m-by-n matrix, p-by-3 color map

 Multidimensional images m-by-n-by-p (p is the number of layers)

 There are two basic ways that the color can be
represented for a pixel:

 true color, or RGB, in which the three color
components are stored (red, green, and blue, in that
order)

  the matrix is

m x n x 3

Representing Color

Representing Color
 index into a colormap: the value stored in each element

of the m x n matrix is an integer which refers to a row in
another matrix which is called a colormap

 The colormap stores the red, green and blue components in
three separate columns so its size is p x 3 where p is the
number of colors

Matlab

pre-defined

colormaps

Colormaps
 every element in the m x n image matrix mat is an integer in the

range from 1 to p which refers to a row in another matrix which is
called a colormap

 The colormap stores the red, green and blue components of
different colors in three separate columns so its size is p x 3 where p
is the number of colors

 If the type of the elements is double, the numbers range from 0
(which represents the absence of that color) to 1 (which is the
brightest possible hue)

 the image function displays the image matrix using the current
colormap:

image(mat)

 the colormap function can be used two ways: if no argument is
passed, it returns the current colormap; if a p x 3 matrix is passed, it
sets that matrix to be the current colormap

Reading an image

>>A = imread(filename) %reads the image from the file specified by filename,

inferring the format of the file from its contents.

>>A = imread(filename,fmt) %additionally specifies the format of the file with

the standard file extension indicated by fmt. If imread cannot find a file with the

name specified by filename, it looks for a file named filename.fmt.

>>[A,map] = imread(___) %reads the indexed image in filename into A and

reads its associated colormap into map. Colormap values in the image file are

automatically rescaled into the range [0,1].

>>[X,map,alpha] = imread('peppers.png’);

>>whos alpha

Name Size Bytes Class Attributes

alpha 0x0 0 double

%No alpha channel is present, so alpha is empty.

Using imread
 The function reads color images into a 3D matrix

>> myimage1 = imread(‘xyz.JPG’);

 Functions now in MATLAB (were in Image Processing
Toolbox):

 imshow displays an image

 rgb2gray converts from RGB to gray scale

 im2double converts an image matrix to double

Showing an image (1)

>>image(C)

%displays the data in array C as an image. Each element of C specifies the

color for 1 pixel of the image. The resulting image is an m-by-n grid of pixels

where m is the number of rows and n is the number of columns in C.

>>image(x,y,C) %x,y specifies the image location. Use x and y to specify the

locations of the corners corresponding to C(1,1) and C(m,n). To specify both

corners, set x and y as two-element vectors.

>>imagesc(C) %similar with image

Observation: these functions uses the current colormap

>> x = [5 8];

>> y = [3 6];

>> C = [0 2 4 6; 8 10 12 14; 16 18 20 22];

>> image(x,y,C);

>> image(C);

>> imagesc (x,y,C)

Showing an image (2)

>>imshow(I)

%displays the grayscale image I in a figure. imshow optimizes figure, axes, and

image object properties for image display.

>>imshow(RGB) %displays the truecolor image RGB in a figure.

>>imshow(I,[low high]) %displays the grayscale image I, specifying the display

range as a two-element vector, [low high]

>>imshow(I,[]) %displays the grayscale image I, scaling the display based on

the range of pixel values in I. imshow uses [min(I(:)) max(I(:))] as the display

range.

>>imshow(X,map) %displays the indexed image X with the colormap map.

Observation: this function uses the colormap specified by ‘map’. Otherwise a

m-by-n image will be shown as a grayscale image, while a m-by-n-by-3 will be

shown in RGB.

Built-in colormaps
 There are several built-in colormaps, e.g. parula (which is the default),

jet, autumn, pink, etc.

 All of these all have 64 colors so the size of the colormap is 64 x 3

 For example, the first four colors from jet are shades of blue:
>> colormap(jet)

>> colormap

ans =

0 0 0.5625

0 0 0.6250

0 0 0.6875

0 0 0.7500

etc.

>> colormap default

>> size(colormap)

ans =

64 3

>> mat = randi([1 64],15,15);

>> imagesc(mat)

>> colormap(jet);

>> size(jet);

>> imagesc(mat);

>> mycolors = [1 0 0; 0 1 0; 0 0 1;...

1 1 0; 0 0 0; 1 1 1];

>> colormap(mycolors)

>> mat = randint(15,15,[1 6]);

>> image(mat)

>>

Example user-defined colormap

 [1 0 0] is red

 [0 1 0] is green

 [0 0 1] is blue

 [1 1 0] is yellow

 [0 0 0] is black

 [1 1 1] is white

>> mycolors = [1 0 0; 0 1 0; 0 0 1;...

1 1 0; 0 0 0; 1 1 1];

>> colormap(mycolors)

>> mat = randi([1 6],15,15);

>> imagesc(mat)

>> colorbar

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Create a colormap with 6 colors, and use a random matrix to display them

>> mycolors = [1 0 0; 0 1 0; 0 0 1;...

1 1 0; 0 0 0; 1 1 1];

>> colormap(mycolors)

>> mat = randint(15,15,[1 6]);

>> image(mat)

>>

Example indexed image

 >> [X,map] = imread('trees.tif ’);

>> size(X)

ans =

258 350

>> size(map)

ans =

256 3

>> image(X)

>> colormap summer

>> image(X)

>> imshow(X,map)

colormap shades
 The numbers in the colormap do not have to be integers; real numbers

represent different shades
 The following shows four shades of red, from no red (black) to the

brightest possible red:
>> colors = [0 0 0; 0.3 0 0; 0.7 0 0; 1 0 0];

>> colormap(colors)

>> vec = 1:4;

>> image(vec)

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

True Color Matrices
 True color matrices are three-dimensional matrices with size m x n x 3

 The first two indices are the coordinates of the pixel
 The third index is the color component; (:,:,1) is the red, (:,:,2) is the green,

and (:,:,3) is the blue component

 If every element in the matrix is of the type uint8, which is an
unsigned integer type using 8 bits; the range of values is 0 to 255

 Therefore the minimum value, 0, represents the darkest hue available
so all 0’s results in a black pixel

 The maximum value, 255, represents the brightest hue
 For example, in the following the pixel in location 1,1 will be red:

>> mat(1,1,1) = 255;
>> mat(1,1,2) = 0;
>> mat(1,1,3) = 0;

 The image function shows the image:
>> mat = uint8(mat);
>> image(mat)

 Display Image of 3-D Array of True Colors

 Display an image of the data in C: >>image(C)

True Color Matrices

>>C = zeros(3,3,3);

C(:,:,1) = [.1 .2 .3; .4 .5 .6; .7 .8 .9]

C =

C(:,:,1) =

0.1000 0.2000 0.3000

0.4000 0.5000 0.6000

0.7000 0.8000 0.9000

C(:,:,2) =

0 0 0

0 0 0

0 0 0

C(:,:,3) =

0 0 0

0 0 0

0 0 0

Image import and export example
 Read and write images in Matlab

>> I=imread('ngc6543a.jpg');

>> imshow(I)

>> size(I)

ans = 479 600 3 (RGB image)

>> Igrey=rgb2gray(I);

>> imshow(Igrey)

>> imwrite(lgrey, 'cell_gray.tif', 'tiff ’)

 Alternatives to imshow
>>imagesc(I)

>>imtool(I)

>>image(I)

 Esercizio: trasformare un

Imagine colormap in RGB

Images and Matrices
 Building matrices (or images)

>> A = [1 2 3; 4 5 6; 7 8 9];

A = 1 2 3

4 5 6

7 8 9

>> B = zeros(3,3)

B = 0 0 0

0 0 0

0 0 0

>> C = ones(3,3)

C = 1 1 1

1 1 1

1 1 1

>>imshow(A) (imshow(A,[]) to get automatic pixel range)

Images and Matrices
 Accesing image elements (row, column)

>> A(2,1)

ans = 4

 : can be used to extract a whole column or row

>> A(:,2)

ans =

2

5

8

 or a part of a column or row

>> A(1:2,2)

ans =

2

5

X

Y

A =
1 2 3
4 5 6
7 8 9

Image Arithmetic
 Arithmetic operations such as addition, subtraction, multiplication and division can be applied to

images in MATLAB

 +, -, *, / performs matrix operations

>> A+A

ans = 2 4 6

8 10 12

14 16 18

>> A*A

ans = 30 36 42

66 81 96

102 126 150

 To perform an elementwise operation use . (.*, ./, .*, .^ etc)

>> A.*A

ans = 1 4 9

16 25 36

49 64 81

Logical Conditions
 equal (==) , less than and greater than (< and >), not equal (~=) and not (~)

 find(‘condition’) - Returns indexes of A’s elements that satisfies the condition.

>> [row col]=find(A==7)

row = 3

col = 1

>> [row col]=find(A>7)

row = 3

3

col = 2

3

>> Indx=find(A<5)

Indx = 1

2

4

7

A =
1 2 3
4 5 6
7 8 9

Flow control
 Flow control in MATLAB

- if, else and elseif statements

(row=1,2,3 col=1,2,3)

if row==col

A(row, col)=1;

elseif abs(row-col)==1

A(row, col)=2;

else

A(row, col)=0;

end A =
1 2 3
4 5 6
7 8 9

Flow control
 for loops

for row=1:3

for col=1:3

if row==col

A(row, col)=1;

elseif abs(row-col)==1

A(row, col)=2;

else

A(row, col)=0;

end

end

end

A =

1 2 0
2 1 2
0 2 1

Image histogram
 The histogram plots the number of pixels in the image (vertical axis)

with a particular brightness value (horizontal axis).

 Algorithms in the digital editor allow the user to visually adjust the
brightness value of each pixel and to dynamically display the results as
adjustments are made. Improvements in picture brightness and contrast
can thus be obtained.

 In the field of computer vision, image histograms can be useful tools
for thresholding. Because the information contained in the graph is a
representation of pixel distribution as a function of tonal variation,
image histograms can be analyzed for peaks and/or valleys. This
threshold value can then be used for edge detection, image
segmentation, and co-occurrence matrices. (Wikipedia)

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Thresholding_(image_processing)
https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Co-occurrence_matrix

Image histogram
 imhist(I) calculates the histogram for the intensity image I and displays a plot

of the histogram. The number of bins in the histogram is determined by the
image type.

 imhist(I,n) calculates the histogram, where n specifies the number of bins used
in the histogram.

 imhist(X,map) calculates the histogram for the indexed image X with colormap
map. The histogram has one bin for each entry in the colormap.

 Syntax:
 [counts,binLocations] = imhist(I)
 [counts,binLocations] = imhist(I,n)

 [counts,binLocations] = imhist(X,map)

Image histogram example
>>I = imread('pout.tif ’);
>>imhist(I)
>> imhist(I,40)

>>[X,map] = imread(‘trees.tif ’);
>>imshow(X,map)
>>imhist(X,map)

imhist(I)

Exercises
 Given I = imread('pout.tif ’);

Use the ‘histeq’ function to increase contrast. Represent
the image before and after histogram equalization.

 Use histogram to divide an image in ‘Backround’ and
‘Foreground’. To do this, choose an image from
internet and read the image directly from Matlab
command line. Try the Otsu method

 E.g
>>I=imread(‘https://upload.wikimedia.org/wikipedia/commons/4/4b/Im
age_processing_pre_otsus_algorithm.jpg’);

>>imshow(I)

