
The TIMES Tool Suite

University of Verona

Dep. Computer Science

Italy

Dott. Luigi Di Guglielmo

Prof. Tiziano Villa



Outline

• Introduction

• Scheduling Theory

• Scheduling in TIMES

• Modeling in TIMES

• TIMES tool suite overview

• Examples

• Exercise

24/01/2011 Systems 2



Introduction (I)

• TIMES is a tool suite designed for modeling and 
schedulability analysis for embedded real-time 
systems

• The tool is developed by the Uppsala University 
(Sweden)

• It is appropriate for systems that can be 
described as a set of preemptive or non-
preemptive tasks triggered periodically or 
sporadically by time or controlled by external 
events on clocks (guards)

24/01/2011 Systems 3



Introduction (II)

• Given a system model consisting of:
– A set of application tasks whose executions may be 

required to meet particular timing and resource 
constraints

– A network of timed automata describing the task arrival 
patterns

– A preemptive or non-preemptive scheduling policy

• TIMES will generate a scheduler and calculate the 
worst-case response times for the tasks

• The system model may also be validated using a model 
checker (i.e. Uppaal)

24/01/2011 Systems 4



Scheduling Theory

• In classic scheduling theory, real time tasks 
are assumed to be periodic or sporadic

– Periodic tasks arrive with fixed rates periodically

– Sporadic tasks arrive with a minimal inter-arrival 
time

• Analysis based on this kind of arrival models 
often yields pessimistic results

24/01/2011 Systems 5



Scheduling in TIMES (I)

• TIMES relaxes the stringent constraints on tasks 
arrival time by modeling tasks arrival patterns 
also using Timed Automata

• The proposed model is expressive enough to 
describe
– Concurrency and synchronization
– Periodic tasks
– Sporadic tasks
– Preemptive or non-preemptive tasks
– Tasks precedence and their resource constraints

24/01/2011 Systems 6



Scheduling in TIMES (II)

• An extension of the standard notion of 
schedulability to automata is required:

– An automaton is schedulable if there exists a 
scheduling strategy such that all possible 
sequences of events accepted by the automaton 
are schedulable, i.e., all associated tasks can be 
computed within their deadlines

24/01/2011 Systems 7



Modeling Real-time Systems in TIMES

• The two central concepts in TIMES are:

– Task

– Scheduling policy

24/01/2011 Systems 8



Task

• A task is an executable program (e.g., a piece of C-
code) characterized by

– A name

– A priority

– A worst case execution time (WCET)

– A deadline

• Time point before which the task should complete its execution

– A behavior

• i.e., the task model

24/01/2011 Systems 9



Task Model

• The task model defines how a task is released

– Periodically with a fixed period

– Sporadically with a given minimal inter-arrival time

– Controlled by a particular automaton location

• Tasks execution depends on the scheduling 
policy adopted

24/01/2011 Systems 10



Periodic Task

• A periodic task is inserted with a fixed period 
into the queue of ready tasks

24/01/2011 Systems 11



Sporadic Tasks

• A sporadic task is a particular kind of aperiodic task in real-time 
systems

• It is inserted into the queue of ready tasks considering a minimal 
inter-arrival time

• “I don't know how often this task will run, but assume it will be at 
least this minimum inter-arrival time between releases. If it tries to 
run more often that that, don't let it.”

24/01/2011 Systems 12



Controlled Task

• A controlled task T can be used to label a 
location L of a timed automaton defined to 
model a particular release pattern

• When the automaton enters the location L, 
the task T is inserted into the queue of ready 
tasks 

24/01/2011 Systems 13



Scheduling policy

• Scheduling policies establishes how a task in the ready queue is chosen to 
be executed

– Deadline monotonic
• Task priorities are assigned according to deadlines, with the higher priority for the 

shorter deadline

– Rate monotonic
• Task priorities are assigned according to periods, with the higher priority for the shorter 

period

– User-defined priorities
• Task priorities are manually set

– Earliest deadline first
• Task priorities are computed at run-time
• Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue 

will be searched for the process closest to its deadline. This process is the next to be 
scheduled for execution.

– First Come First Served
• Tasks are executed in the same order they are inserted into the queue of ready tasks

24/01/2011 Systems 14



TIMES Engine

• Timed automata extended with tasks are translated 
into timed automata

• Periodic and sporadic tasks are modeled with timed 
automata

• Scheduling policies are modeled with timed 
automata

• The composed automaton is analyzed with Uppaal
– Schedulability analysis

– Property verification

24/01/2011 Systems 15



Overview of the TIMES tool suite

• A graphical editor
– Modeling a system and the abstract behavior of its environment

• A simulator
– Validating the dynamic behavior of the system by simulating the tasks 

according to parameters and scheduling policy
– Showing a graphical representation of the execution trace

• A verifier
– Checking schedulability analysis

• Checking that reachable states are schedulable is equivalent to checking that 
tasks meet their deadlines

• Code generator
– Generating automatically C-code for brickOS platform from the model

24/01/2011 Systems 16



The Graphical Editor (I)

24/01/2011 Systems 17



The Graphical Editor (II)
• Scheduling Policy:

– Deadline monotonic
– Rate monotonic
– User-defined

• Task:
– Name

• The task name

– Behavior (B)
• Task model

– C: controlled
– P: periodic
– S: sporadic

– Priority (P)
• The bigger the number, the higher the priority

– Execution Time (C)
• Time required for a task to complete its execution in the worst case

– Deadline (D)
• Task execution deadline

– Period (T)
• Time interval between releases of two sequential task instances for periodic tasks
• Minimal inter-arrival time for sporadic tasks

24/01/2011 Systems 18



The Graphical Editor (III)

24/01/2011 Systems 19



The Graphical Editor (IV)

24/01/2011 Systems 20



The Graphical Editor (V)

24/01/2011 Systems 21



The Graphical Editor (VI)

• Processes are instances of
automaton templates

• Processes are characterized by:
– The name of the instance

• E.g., Process 1

– The identifier of the template modeling the 
automaton

• E.g., p()

– The (Actual) parameters of the template
• E.g., (7)

24/01/2011 Systems 22



The Graphical Simulator (I)

• The simulator window is divided into 4 sections:
– Enabled transitions show the transitions that the system can take 

from the given state
• Step-by-step simulation

– The user has to choose which transition execute

• Random simulation
– The transitions are randomly chosen

– Watches report the values of clocks, variables as well as tasks and 
processor utilization factors

– Message Sequence Chart shows the processes interaction
• Current locations of processes
• Inter-process synchronizations (performed via named channels)

– Gantt Chart shows the timeline
• Execution of tasks
• Processor idle time

24/01/2011 Systems 23



The Graphical Simulator (II)

24/01/2011 Systems 24



The Schedulability Analysis (I)

• The schedulability analysis establishes if the 
scheduling policy adopted satisfies the 
deadlines

– If yes, the tool reports the worst-case response 
time (WCRT)

– Otherwise, the tool returns a counterexample of 
the schedulability of the tasks

24/01/2011 Systems 25



The Schedulability Analysis (II)

24/01/2011 Systems 26



Verification in Times

• With the verification engine it is possible to check 
properties of the system specified by temporal formulas

• Times adopts the same Query Language of Uppaal
– State formulae

• E.g., 
x == 7

– Path formulae
• E.g.,

A[] not deadlock
E<> (x > 10)

24/01/2011 Systems 27



Automatic Code Generation in Times

• Times provides automatic generation of code 
from the system description

• Currently the only supported target is Hitachi 
H8 processor of the LEGO Mindstorm RCX 
brick running brickOS

24/01/2011 Systems 28



EXAMPLE
An industrial plant

24/01/2011 Systems 29



Example (I)

• A piece of material is loaded on the conveyer belt and 
moved towards the arm

• The arm takes the piece and move it into the press
• The press works the piece
• The controller is unique, with a single processor

24/01/2011 Systems 30

Arm

Conveyer belt

Press



Example (II)

• LoadBelt:
– Execution time: 1
– Deadline: 5
– Interface: MaterialOnBelt :=1

• ArmBelt
– Execution time: 3
– Deadline: 10
– Interface: PosArm := 1

• ArmPress:
– Execution time: 3
– Deadline: 10
– Interface: PosArm := 2

• LoadPress:
– Execution time: 1
– Deadline: 5
– Interface: PressReady := 1

24/01/2011 Systems 31



The Belt Automaton

• Template:
– Belt

• Parameters
– const L

• Local variables:
– clock x

• Global variables
– int MaterialOnBelt
urgent chan material
urgent chan go

24/01/2011 Systems 32

Empty
LoadBelt

Move
x <= L

Busy

MaterialOnBelt == 1
go!
x:=0

material!
MaterialOnBelt := 0,
x:=0

x == L



The Arm Automaton

24/01/2011 Systems 33

• Template:
– Arm

• Global variables
– int PosArm

urgent chan material

urgent chan load

GoToBelt
ArmBelt

GoToPress
ArmPress

PosArm == 1
material?

PosArm == 2
load?



• Template:
– Press

• Parameters
– const T

• Local variables:
– clock x

• Global variables
– int PressReady

urgent chan load

urgent chan go

The Press Automaton

24/01/2011 Systems 34

Empty
Loading
LoadPress

Working
x <= T

load!
x:=0

PressReady == 1
go!
x:=0

x == T
PressReady := 0



The Urgent Automaton

• This automaton enables urgent transitions

• The go label represents a global urgent chan
• Every urgent transition must be labebed with go!
• In this way the transition is performed as soon as 

possible

24/01/2011 Systems 35

Location_1

go?



System Overview

• Into the Project window insert the following processes:

• Processes are instances of templates previously defined
• The conveyer belt takes L = 12 time units to bring pieces
• The press takes T= 10 time units for working

24/01/2011 Systems 36

Ar
Arm()

Pre
Press(10)

Be
Belt(12)

Urg
Urgent()



Exercise

• Implement the system with Times
• Perform the schedulability analysis with different 

policy
– Which policies allows the schedulability of the 

system?

• Check the following properties:
– Deadlocks do not occur

• A[] not deadlock

– Every piece stays on the belt at most 15 time units
• A[] not (Be.x > 15)

24/01/2011 Systems 37



EXERCISE
The filling bottle system

24/01/2011 Systems 38



Bottle Filling System: Overview

• Bottles are loaded on the conveyer belt 4 a time
• The belt has length 6 and it brings bottle to the filler
• Bottles are filled one by one
• At the beginning there are 2 bottles on the belt

24/01/2011 Systems 39

loader

filler

conveyer belt



Bottle Filling System: Tasks

• LoadBottles
– Execution time: 8
– Deadline: 20
– Interface: Bottles := Bottles + 4

• MoveBelt
– Execution time: 1
– Deadline: 5
– Interface: ReadyBottle := 1, Bottles := Bottles – 1

• FillBottle
– Execution time: 2
– Deadline: 5
– Interface: FullBottle := 1

24/01/2011 Systems 40



Exercise

• Implement the system with Times
• Perform the schedulability analysis with different policy

– Which policies allows the schedulability of the system?

• Design the system in order to satisfy the following 
specifications
– Deadlocks do not occur

• A[] not deadlock

– The conveyer belt will never be empty
• A[] Bottles > 0

– The bottles on the belt are at most 6
• A[] Bottles <= 6

24/01/2011 Systems 41


