Deadlock and Scheduling

Adapted by Tiziano Villa from lecture notes by
Prof. John Kubiatowicz (UC Berkeley)



A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi



A.A.

Resources

Resources - passive entities needed by threads to do
their work

- CPU time, disk space, memory
Two types of resources:

- Preemptable - can take it away &
» CPU, Embedded security chip

- Non-preemptable - must leave it with the thread
» Disk space, plotter, chunk of virtual address space
» Mutual exclusion - the right to enter a critical section

Resources may require exclusive access or may be
sharable

- Read-only files are typically sharable
- Printers are not sharable during time of printing

One of the major tasks of an operating system is to
manage resources

2019-20 Elementi di Sistemi Operativi - Gestione dei processi 3




Starvation vs Deadlock

- Starvation vs. Deadlock

- Starvation: thread waits indefinitely

» Example, Iow-pr'ior'i'r{‘ thread waiting for resources
constantly in use by high-priority threads

- Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)
» Deadlock can't end without external intervention

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi

)



Conditions for Deadlock
* Deadlock not always deterministic - Example 2 mutexes:

Thread A Thread B
x.P(); y.-P();
y.-P(); x.P();
y.-V(); x.V();
x.V(); y-V();

- Deadlock won't always happen with this code
» Have to have exactly the right timing ("wrong” timing?)

» So you release a piece of software, and you tested it, and
there it is, controlling a nuclear power plant...

+ Deadlocks occur with multiple resources
- Means you can't decompose the problem
- Can't solve deadlock for each resource independently
+ Example: System with 2 disk drives and two threads
- Each thread needs 2 disk drives to function
- Each thread gets one disk and waits for another one

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 5



Bridge Crossing Example

+ Each segment of road can be viewed as a resource
- Car must own the segment under them
- Must acquire segment that they are moving into

* For bridge: must acquire both halves
- Traffic only in one direction at a time

- Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

- If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)

- Several cars may have to be backed up
- Starvation is possible
- East-going traffic really fast = no one goes west
A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 6



Train Example (Wormhole-Routed Network)

» Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions

- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called "dimension ordering” (X then Y)

B

|
n
A —
]
|
-
f
| ¢
|
3
EENEEN .....,

i|di Sistemi Oper'rl'rivi - Gestione def processi

(::-_-:- (TTTT]

A.A. 2019-20 Elem



Dining Lawyers Problem

O

* Five chopsticks/Five lawyers (really cheap restaurant)
- Free-for all: Lawyer will grab any one they can
- Need two chopsticks to eat
* What if all grab at same time?
- Deadlock!
*+ How to fix deadlock?
- Make one of them give up a chopstick (Hahl)
- Eventually everyone will get chance to eat
* How to prevent deadlock?

- Never let lawyer take last chopstick if no hungry
lawyer has two chopsticks afterwards

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 8



Four requirements for Deadlock

* Mutual exclusion
- Only one thread at a time can use a resource.
* Hold and wait

- Thread holding at least one resource is waiting to
acquire additional resources held by other threads

* No preemption
- Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

- Circular wait

- There exists a set {T;, .., T.} of waiting threads
» Ty is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T;
» .

» T, is waiting for a resource that is held by T;

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi



Resource-Allocation Graph

+ System Model Symbols
- Asetof Threads 7,, 7, . . ., T, @ @
- Resource types Ry, R, . . ., R,

CPU cycles, memory space, I/O devices EI
- Each resource type R has W, instances.
- Each thread utilizes a resource as follows: R,

» Request() / Use() / Release()

+ Resource-Allocation Graph:

- V is partitioned into two types:
» T={T;, T,, .., T,}, the set threads in the system.
»R={Ry, R,, ..., R}, the set of resource types in system

- request edge - directed edge 7; —» R,
- assignment edge - directed edge R; —» T,

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 10



Resource Allocation Graph Examples

- Recall:
- request edge - directed edge T; - R;
- assignment edge - directed edge R, — T;

R, R,

R,

R, R Q
Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but

No Deadlock

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 11



Methods for Handling Deadlocks @

* Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for forcibly preempting resources
and/or terminating tasks

* Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

+ Ignore the problem and pretend that deadlocks
never occur in the system

- Used by most operating systems, including UNIX

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 12



Deadlock Detection Algorithm

* Only one of each type of resource = look for loops

* More General Deadlock Detection Algorithm

- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each type
[Request,] : Current requests from thread X
[Alloc,] : Current resources held by thread X

- See if tasks can eventually terminate on their own

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {
if ([Request ;] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc__,.]
done = false
}

}
} until (done)

- Nodes left in UNFINISHED — deadlocked

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi



What to do when detect deadlock?

+ Terminate thread, force it to give up resources

- In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

- Shoot a dining lawyer

- But, not always possible - killing a thread holding a
mutex leaves world inconsistent

+ Preempt resources without killing off thread

- Take away resources from thread temporarily

- Doesn't always fit with semantics of computation
* Roll back actions of deadlocked threads

- Hit the rewind button on TiVo, pretend last few
minutes never happened

- For bridge example, make one car roll backwards (may
require others behind him)

- Common technique in databases (transactions)

- Of course, if you restart in exactly the same way, may
reenter deadlock once again

* Many operating systems use other options
A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 14




Techniques for Preventing Deadlock

- Infinite resources

- Include enough resources so that no one ever runs out of
resources. Doesn't have to be infinite, just large

- Give illusion of infinite resources (e.g. virtual memory)
- Examples:
» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)
* No Sharing of resources (totally independent threads)
- Not very realistic

* Don't allow waiting

- How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

- Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry
- Inefficient, since have to keep retrying

» Consider: driving to San Francisco; when hit traffic jam,
suddenly you're transported back home and told to retry!

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 15



Techniques for Preventing Deadlock (con't)

* Make all threads request everything they'll need at
the beginning.

- Problem: Predicting future is hard, tend to over-
estimate resources

- Example:
» If need 2 chopsticks, request both at same time

» Don't leave home until we know no one is using any
intfersection between here and where you want to go: only
one car on the Bay Bridge at a time

* Force all threads to request resources in a particular
order preventing any cyclic use of resources

- Thus, preventing deadlock
- Example (x.P, y.P, z.P,..)
» Make tasks request disk, then memory, then..

» Keep from deadlock on freeways around SF by requiring
everyone to go clockwise

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 16



Review: Train Example (Wormhole-Routed Network)

» Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions

- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called "dimension ordering” (X then Y)

I
vk
EEEEN ---’

i|di Sistemi Oper'rl'rivi - Gestione def processi 17

(::-_-:- (TTTT]

A.A. 2019-20 Elem



Banker’s Algorithm for Preventing Deadlock

+ Toward right idea:
- State maximum resource needs in advance

- Allow particular thread to proceed if:
(available resources - #requested) > max
remaining that might be needed by any thread

* Banker's algorithm (less conservative):

- Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
([Max, 4.]-[Alloc, 4] ¢ [Avail]) for ([Request, 4] ¢ [Avail])
Grant request if result is deadlock free (conservativel!)

» Keeps system in a "SAFE" state, i.e. there exists a
sequence {T,, T,, .. T} with T, requesting all remaining
resources, finishing, then T, requesting all remaining
resources, efc..

- Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 18




Banker's Algorithm Example

+ Banker's algorithm with dining lawyers

- "Safe” (won't cause deadlock) if when try to grab
chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

- What if k-handed lawyers? Don't allow if:
» It's the last one, no one would have k
» It's 2 to last, and no one would have k-1

» It's 3 to last, and no one would have k-2
» ...
A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 19




Summary (Deadlock)

+ Starvation vs. Deadlock
- Starvation: thread waits indefinitely
- Deadlock: circular waiting for resources

- Four conditions for deadlocks

- Mutual exclusion
» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait
» 3 set {T;, .., T} of threads with a cyclic waiting pattern

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 20



Summary (Deadlock)

» Techniques for addressing Deadlock
- Allow system to enter deadlock and then recover
- Ensure that system will never enter a deadlock

- Ignore the problem and pretend that deadlocks never
occur in the system

- Deadlock detection

- Attempts to assess whether waiting graph can ever
make progress

* Deadlock prevention

- Assess, for each allocation, whether it has the
potential to lead to deadlock

- Banker's algorithm gives one way to assess this

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 21



A.A. 2019-20

Elementi di Sistemi Operativi - Gestione dei processi

22



CPU Scheduling

ready queue » CPU

I/O queue * I/0 request

time slice
expired

ry

A

child fork a

@‘7 child

interrupt wait for an <

| \occurs | interrupt |
+ Earlier, we talked about the life-cycle of a thread

- Active threads work their way from Ready queue to
Running to various waiting queues.

- Question: How is the OS to decide which of several
tasks to take off a queue?

- Obvious queue to worry about is ready queue
- Others can be scheduled as well, however
* Scheduling: deciding which threads are given access
to resources from moment fo moment

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 23




Scheduling Assumptions

* CPU scheduling big area of research in early 70's

* Many implicit assumptions for CPU scheduling:

- One program per user

- One thread per program

- Programs are independent

+ Clearly, these are unrealistic but they simplify the
problem so it can be solved

- For instance: is "fair” about fairness among users or
programs?
» If T run one compilation job and you run five, you get five
times as much CPU on many operating systems
* The high-level goal: Dole out CPU time to optimize
some desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time ——

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 24



Assumption: CPU Bursts

7y
load store
add store CPU burst] 160 k
read from file
| Weighted toward small bursts
wait for IO 1/O burst
120
store increment .
index CPU burst] o 100
write to file S
35
. o 80
wait for /O IO burst =
60
load store 40
add store CPU burst}
read from file
20
4 | | | | | »
wait for I/O 1/O burst 0 3 16 o4 - 20
burst duration (milliseconds)

. Execufion model: programs alternate between bursts of
CPU and I/0

- Program typically uses the CPU for some period of time,
then does 1/0, then uses CPU again

- Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

- With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 25



Scheduling Policy Goals/Criteria

* Minimize Response Time
- Minimize elapsed time to do an operation (or job)
- Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
* Maximize Throughput
- Maximize operations (or jobs) per second
- Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

- Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

* Fairness

- Share CPU among users in some equitable way

- Fairness is not minimizing average response time:
» Better average response time by making system /ess fair

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 26




First-Come, First-Served (FCFS) Scheduling

First-Come, First-Served (FCFS)
- Also “"First In, First Out” (FIFO) or "Run until done”

» In early systems, FCFS meant one program
scheduled until done (including I/0)

» Now, means keep CPU until thread blocks

Example: Process  Burst Time
p 24
P, 3
[ 3

- Suppose processes arrive in the order: P, , P, , P;
The Gantt Chart for the schedule is:

P P, P;

0 24 27 30
- Waiting time for P, = 0; P, = 24; P;= 27
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average Completion time: (24 + 27 + 30)/3 = 27
Convoy effect: short process behind long process

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 27



- Round Robin Scheme

Round Robin (RR)

* FCFS Scheme: Potentially bad for short jobs!
- Depends on submit order

- If you are first in line at supermarket with milk, you
don't care who is behind you, on the other hand..

- Each process gets a small unit of CPU time
(time guantum), usually 10-100 milliseconds

- After quantum expires, the process is preempted
and added to the end of the ready queue.
- n processes in ready queue and time quantum is ¢ =
» Each process gets 1/n of the CPU time
» In chunks of at most ¢ time units
» No process waits more than (#-1)g time units

- Performance

- ¢ large = FCFS
- ¢ small = Interleaved (really small = hyperthreading?)

- g must be large with respect to context switch,
otherwise overhead is too high (all overhead)

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 28



Example of RR with Time Quantum = 20

Example . Process Burst Time
P, 53
P, 8
P, 68
P, 24

- The Gantt chart is:

P, | Py | Py | Py | Py | P | P | Py | Py | Py

0 20 28 48 68 88 108 112 125 145 153

- Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88

- Average waiting time = (72+20+85+88)/4=66%

- Average completion time = (125+28+153+112)/4 = 1043

- Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switching time adds up for long jobs (-)

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi



Round-Robin Discussion

* How do you choose time slice?
- What if too big?
» Response time suffers
- What if infinite («)?
» Get back FIFO
- What if time slice too small?
» Throughput suffers!

- Actual choices of timeslice:

- Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.

» What if three compilations going on? 3 seconds to echo
each keystroke!

- In practice, need to balance short-job performance
and long- job throughput:
» Typical time slice today is between 10ms - 100ms
» Typical context-switching overhead is O.1ms - 1ms
» Roughly 1% overhead due to context-switching

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 30



Comparisons between FCFS and Round Robin

+ Assuming zero-cost context-switching time, is RR
always better than FCFS?
- Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

+ Completion Times: | Job# | FIFO RR
1 100 991
2 200 992
9 900 999
10 1000 1000

- Both RR and FCFS finish at the same time

- Average response time is much worse under RR!
» Bad when all jobs same length

+ Also: Cache state must be shared between all jobs with
RR but can be devoted to each job with FIFO

- Total time for RR longer even for zero-cost switchl!

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 31



Earlier Example with Different Time Quantum

P P P P
Best FCFS: [82] 2 2] [5§] [6§]
0O 8 32 85 153
Quantum P, P> Ps P, Average
Best FCFS 32 0 85 8 31%
Q = 84 22 85 57 62
: Q=5 82 20 85 58 61%
L Q-8 80 8 85 56 | 573
Q=10 82 10 85 68 61%
Q =20 72 20 85 88 665
Worst FCFS 68 145 0 121 833
Best FCFS 85 8 153 32 693
Q=1 137 30 153 81 1003
Completion Q=5 135 28 153 82 993
Time Q=28 133 16 153 80 953
Q=10 135 18 153 92 993
Q =20 125 28 153 112 1043
Worst FCFS | 121 153 68 145 1212
A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 32



What if we Knew the Future?

* Could we always mirror best FCFS?

- Shortest Job First (SJF):

- Run whatever job has the least amount of
computation to do

- Sometimes called "Shortest Time to
Completion First” (STCF)

+ Shortest Remaining Time First (SRTF):

- Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

- Sometimes called "Shortest Remaining Time to
Completion First” (SRTCF)

* These can be applied either to a whole program or
the current CPU burst of each program

- Idea is to get short jobs out of the system
- Big effect on short jobs, only small effect on long ones
- Result is better average response time

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 33




Discussion

+ SJF/SRTF are the best you can do at minimizing
average response time

- Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

- Since SRTF is always at least as good as SJF, focus
on SRTF

+ Comparison of SRTF with FCFS and RR

- What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

- What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 34



Example to illustrate benefits of SRTF

A or B C

|
— — —
C's Cs C's
I/0 I/0 I/0

* Three jobs:

- A,B: both CPU bound, run for week
C: I/0 bound, loop 1ms CPU, 9ms disk I/0

- If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

- With FIFO:
- Once A or B get in, keep CPU for two weeks

- What about RR or SRTF?
- Easier to see with a timeline

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 35



SRTF Example continued:

rDlsk Utilization: J

C A B 9/201 ~ 4.5%

| I

| | .
C's RR 100ms time slice Dlsk Utilization:
I/0 ~90% but lots of
CABAB.. C wakeups! )
i

> > RR 1ms time slice
C's C's
I/0 I/O
Disk Utilization:
C A A A 90%
e
SRTF
Cs Cs
I/0 I/0

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 36



SRTF Further discussion

- Starvaftion
- SRTF can lead to starvation if many small jobs!
- Large jobs never get to run

+ Somehow need to predict future
- How can we do this?

- Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

- But: Even non-malicious users have trouble predicting
runtime of their jobs

* Bottom line, can't really know how long job will take

- However, can use SRTF as a yardstick
for measuring other policies

- Optimal, so can't do any better
+ SRTF Pros & Cons
- Optimal (average response time) (+)
- Hard to predict future (-)
- Unfair (-)

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 37




Predicting the Length of the Next CPU Burst

* Adaptive: Changing policy based on past behavior
- CPU scheduling, in virtual memory, in file systems, etc

- Works because programs have predictable behavior
» If program was I/0 bound in past, likely in future
» If computer behavior were random, wouldn't help

+ Example: SRTF with estimated burst length

- Use an es'rlmafor' function on previous bursts:
Let t,_4, t,.,, t,.3. etc. be frevnous CPU burst lengths.
Estimate next burst t, = f(t,.;, 1,2, 1.5, --)

- Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

- For instance,

exponenﬂal averaging | |
T, = ot _+(1-o)7, -
with (O<o<1) ff

A.A. 2019-20 Elementi di Sitovess'@_10 8 6 6 5 9 11 12 ... 38

N FN (o)} o0}




Multi-Level Feedback Scheduling

> quantum = 8

Long-Running Compute
Tasks Demoted to
L»{ quantum = 16 | = ~~  Low Priority

-
L.—=

* Another method for exploiting past behavior
- First used in CTSS
- Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
- Each queue has its own scheduling algorithm
» e.g. foreground - RR, background - FCFS

» Sometimes multiple RR priorities with quantum increasing
exponentially (highest:1ms, next:2ms, next: 4ms, etc)

+ Adjust each job's priority as follows (details vary)
- Job starts in highest priority queue
- If timeout expires, drop one level
- If timeout doesn't expire, push up one level (or to top)

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 39




Scheduling Details

- Result approximates SRTF:
- CPU bound jobs drop like a rock
- Short-running I/0 bound jobs stay near top
» Scheduling must be done between the queues
- Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
- Time slice:
» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest
- Countermeasure: user action that can foil intent of
the OS designer
- For multilevel feedback, put in a bunch of meaningless
I/0 to keep job's priority high
- Of course, if everyone did this, wouldn't work!
+ Example of Othello program:

- Playing against competitor, so key was to do computing
at higher priority the competitors.

» Put in printf's, ran much faster!

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 40



Scheduling Fairness

* What about fairness?
- Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job

- Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

- Tradeoff: fairness gained by hurting avg response time!

+ How to implement fairness?

- Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?

» Like express lanes in a supermarket—sometimes express
lanes get so long, get better service by going into one of
the other lines

- Could increase priority of jobs that don't get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?

» And, as system gets overloaded, no job gets CPU time, so
everyone increases in priority=Interactive jobs suffer

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 41




Lottery Scheduling

* Yet another alternative: Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticket

- On average, CPU time is proportional to number of
tickets given to each job

* How to assign tickets?

- To approximate SRTF, short running jobs get more,
long running jobs get fewer

- To avoid starvation, every job gets at least one
ticket (everyone makes progress)

. Advam‘a?e over strict priority scheduling: behaves
gracefully as load changes

- Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
Job possesses

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 42



Lottery Scheduling Example

* Lottery Scheduling Example
- Assume short jobs get 10 tickets, long jobs get 1 ticket

- What if too many short jobs to give reasonable
response time?

» In UNIX, if load average is 100, hard to make progress
» One approach: log some user out

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 43



How to Evaluate a Scheduling algorithm?

* Deterministic modeling

- takes a predetermined workload and compute the
performance of each algorithm for that workload

* Queueing models
- Mathematical approach for handling stochastic workloads
+ Implementation/Simulation:

- Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

performance

simulation —»  statistics
= for FCFS
EEES
cPU ®
=

e 2953

actual gPu 2
process —=»l/O 112
execution oy 2
o 947
CPU 173

_ : performance
simulation —»  statistics
for SJF

SJF

trace tape

: _ performance
simulation —>  statistics
for RR (g = 14)

RR (g = 14)

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 44



A Final Word On Scheduling

* When do the details of the scheduling policy and
fairness really matter?

- When there aren’t enough resources to go around

* When should you simply buy a faster computer?
- (Or network link, or expanded highway, or ..)

- One approach: Buy it when it will pay
for itself in improved response time

» Assuming you're paying for worse
response time in reduced productivity,
customer angst, efc...

» Might think that you should buz a
faster X when X is utilized 100%,
but usually, response time 8oes
to infinity as utilization=100% Utilization

WL
asuodsay

%00T

* An interesting implication of this curve:

- Most schedulin? alc?or'i’rhms work fine in the “linear”
portion of the load curve, fail otherwise

- Argues for buying a faster X when hit “knee” of curve
A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 45



Summary (Scheduling)

» Scheduling: selecting a waiting process from the ready
queue and allocating the CPU to it

* FCFS Scheduling:

- Run threads to completion in order of submission
- Pros: Simple

- Cons: Short jobs get stuck behind long ones

* Round-Robin Scheduling:

- Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

- Pros: Better for short jobs
- Cons: Poor when jobs are same length
+ Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
- Run whatever job has the least amount of computation to
do/least remaining amount of computation to do
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 46



Summary (Scheduling)

* Multi-Level Feedback Scheduling:
- Multiple queues of different priorities

- Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

* Lottery Scheduling:

- Give each thread a priority-dependent number of
tokens (short tasks—=more tokens)

- Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

+ Evaluation of mechanisms:
- Analytical, Queuing Theory, Simulation

A.A. 2019-20 Elementi di Sistemi Operativi - Gestione dei processi 47



