

 Deadlock and Scheduling

Adapted by Tiziano Villa from lecture notes by
Prof. John Kubiatowicz (UC Berkeley)

2 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

3 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

• Resources – passive entities needed by threads to do
their work
– CPU time, disk space, memory

• Two types of resources:
– Preemptable – can take it away

» CPU, Embedded security chip

– Non-preemptable – must leave it with the thread
» Disk space, plotter, chunk of virtual address space

» Mutual exclusion – the right to enter a critical section

• Resources may require exclusive access or may be
sharable
– Read-only files are typically sharable

– Printers are not sharable during time of printing

• One of the major tasks of an operating system is to
manage resources

Resources

4 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Starvation vs Deadlock

• Starvation vs. Deadlock
– Starvation: thread waits indefinitely

» Example, low-priority thread waiting for resources
constantly in use by high-priority threads

– Deadlock: circular waiting for resources
» Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

– Deadlock  Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2 Res 1

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

5 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Conditions for Deadlock

• Deadlock not always deterministic – Example 2 mutexes:
 Thread A Thread B

 x.P(); y.P();

 y.P(); x.P();

 y.V(); x.V();

 x.V(); y.V();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)
» So you release a piece of software, and you tested it, and

there it is, controlling a nuclear power plant…

• Deadlocks occur with multiple resources
– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread gets one disk and waits for another one

6 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

• If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)
– Several cars may have to be backed up

• Starvation is possible
– East-going traffic really fast  no one goes west

7 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Train Example (Wormhole-Routed Network)

• Circular dependency (Deadlock!)
– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

8 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry
lawyer has two chopsticks afterwards

9 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Four requirements for Deadlock

• Mutual exclusion
– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to
acquire additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

10 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Symbols

Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm

 CPU cycles, memory space, I/O devices

– Each resource type Ri has Wi instances.

– Each thread utilizes a resource as follows:
» Request() / Use() / Release()

• Resource-Allocation Graph:
– V is partitioned into two types:

» T = {T1, T2, …, Tn}, the set threads in the system.

» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1  Rj

– assignment edge – directed edge Rj  Ti

R1

R2

T1 T2

11 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge T1  Rj
– assignment edge – directed edge Rj  Ti

12 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm

– Some technique for forcibly preempting resources
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions

– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks
never occur in the system
– Used by most operating systems, including UNIX

13 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm

• Only one of each type of resource  look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

 [FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
 [AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
 [Avail] = [FreeResources]
 Add all nodes to UNFINISHED
 do {

 done = true
 Foreach node in UNFINISHED {
 if ([Requestnode] <= [Avail]) {
 remove node from UNFINISHED
 [Avail] = [Avail] + [Allocnode]
 done = false
 }
 }
 } until(done)

– Nodes left in UNFINISHED  deadlocked

14 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

What to do when detect deadlock?

• Terminate thread, force it to give up resources
– In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

– Shoot a dining lawyer
– But, not always possible – killing a thread holding a
mutex leaves world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few
minutes never happened

– For bridge example, make one car roll backwards (may
require others behind him)

– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may
reenter deadlock once again

• Many operating systems use other options

15 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Techniques for Preventing Deadlock

• Infinite resources
– Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

– Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

– Inefficient, since have to keep retrying
» Consider: driving to San Francisco; when hit traffic jam,

suddenly you’re transported back home and told to retry!

16 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Techniques for Preventing Deadlock (con’t)

• Make all threads request everything they’ll need at
the beginning.
– Problem: Predicting future is hard, tend to over-
estimate resources

– Example:
» If need 2 chopsticks, request both at same time

» Don’t leave home until we know no one is using any
intersection between here and where you want to go; only
one car on the Bay Bridge at a time

• Force all threads to request resources in a particular
order preventing any cyclic use of resources
– Thus, preventing deadlock

– Example (x.P, y.P, z.P,…)
» Make tasks request disk, then memory, then…

» Keep from deadlock on freeways around SF by requiring
everyone to go clockwise

17 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Review: Train Example (Wormhole-Routed Network)

• Circular dependency (Deadlock!)
– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

18 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

 (available resources - #requested)  max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
 ([Maxnode]-[Allocnode] ≤ [Avail]) for ([Requestnode] ≤ [Avail])
Grant request if result is deadlock free (conservative!)

» Keeps system in a “SAFE” state, i.e. there exists a
sequence {T1, T2, … Tn} with T1 requesting all remaining
resources, finishing, then T2 requesting all remaining
resources, etc..

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Banker’s Algorithm for Preventing Deadlock

19 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Banker’s Algorithm Example

• Banker’s algorithm with dining lawyers
– “Safe” (won’t cause deadlock) if when try to grab
chopstick either:

» Not last chopstick
» Is last chopstick but someone will have

two afterwards

– What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

20 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Summary (Deadlock)

• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
»  set {T1, …, Tn} of threads with a cyclic waiting pattern

21 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Summary (Deadlock)

• Techniques for addressing Deadlock
– Allow system to enter deadlock and then recover
– Ensure that system will never enter a deadlock
– Ignore the problem and pretend that deadlocks never
occur in the system

• Deadlock detection
– Attempts to assess whether waiting graph can ever
make progress

• Deadlock prevention
– Assess, for each allocation, whether it has the
potential to lead to deadlock

– Banker’s algorithm gives one way to assess this

22 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

23 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

CPU Scheduling

• Earlier, we talked about the life-cycle of a thread
– Active threads work their way from Ready queue to
Running to various waiting queues.

• Question: How is the OS to decide which of several
tasks to take off a queue?
– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

• Scheduling: deciding which threads are given access
to resources from moment to moment

24 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Scheduling Assumptions

• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the
problem so it can be solved
– For instance: is “fair” about fairness among users or
programs?

» If I run one compilation job and you run five, you get five
times as much CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize
some desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time

25 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Assumption: CPU Bursts

• Execution model: programs alternate between bursts of
CPU and I/O
– Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

Weighted toward small bursts

26 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Scheduling Policy Goals/Criteria

• Minimize Response Time
– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair

27 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
 P1 24
 P2 3
 P3 3

– Suppose processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 30 0

28 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Round Robin (RR)

• FCFS Scheme: Potentially bad for short jobs!
– Depends on submit order
– If you are first in line at supermarket with milk, you
don’t care who is behind you, on the other hand…

• Round Robin Scheme
– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

• Performance
– q large  FCFS
– q small  Interleaved (really small  hyperthreading?)
– q must be large with respect to context switch,
otherwise overhead is too high (all overhead)

29 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Example of RR with Time Quantum = 20

• Example: Process Burst Time
 P1 53
 P2 8
 P3 68
 P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
 P2=(20-0)=20
 P3=(28-0)+(88-48)+(125-108)=85
 P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼

– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

30 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Round-Robin Discussion

• How do you choose time slice?
– What if too big?

» Response time suffers
– What if infinite ()?

» Get back FIFO
– What if time slice too small?

» Throughput suffers!

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo

each keystroke!
– In practice, need to balance short-job performance
and long-job throughput:

» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching

31 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Comparisons between FCFS and Round Robin

• Assuming zero-cost context-switching time, is RR
always better than FCFS?

• Simple example: 10 jobs, each take 100s of CPU time
 RR scheduler quantum of 1s
 All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length

• Also: Cache state must be shared between all jobs with
RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000

32 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Quantum

Completion
Time

Wait
Time

Average P4 P3 P2 P1

Earlier Example with Different Time Quantum

P2

[8]

P4

[24]

P1

[53]

P3

[68]

0 8 32 85 153

Best FCFS:

62 57 85 22 84 Q = 1

104½ 112 153 28 125 Q = 20

100½ 81 153 30 137 Q = 1

66¼ 88 85 20 72 Q = 20

31¼ 8 85 0 32 Best FCFS

121¾ 145 68 153 121 Worst FCFS

69½ 32 153 8 85 Best FCFS

83½ 121 0 145 68 Worst FCFS

95½ 80 153 16 133 Q = 8

57¼ 56 85 8 80 Q = 8

99½ 92 153 18 135 Q = 10

99½ 82 153 28 135 Q = 5

61¼ 68 85 10 82 Q = 10

61¼ 58 85 20 82 Q = 5

33 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

What if we Knew the Future?

• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of
computation to do

– Sometimes called “Shortest Time to
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to
Completion First” (SRTCF)

• These can be applied either to a whole program or
the current CPU burst of each program
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

34 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Discussion

• SJF/SRTF are the best you can do at minimizing
average response time
– Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

– Since SRTF is always at least as good as SJF, focus
on SRTF

• Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

35 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Example to illustrate benefits of SRTF

• Three jobs:
– A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

• With FIFO:
– Once A or B get in, keep CPU for two weeks

• What about RR or SRTF?
– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

36 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

C A B C

RR 100ms time slice

C’s
I/O

A C

C’s
I/O

A A

SRTF

Disk Utilization:
~90% but lots of

wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

37 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: Even non-malicious users have trouble predicting
runtime of their jobs

• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

38 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Predicting the Length of the Next CPU Burst

• Adaptive: Changing policy based on past behavior
– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst n = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

– For instance,
exponential averaging
n = tn-1+(1-)n-1
with (0<1)

39 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)

• Adjust each job’s priority as follows (details vary)
– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

40 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Scheduling Details

• Result approximates SRTF:
– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

• Countermeasure: user action that can foil intent of
the OS designer
– For multilevel feedback, put in a bunch of meaningless
I/O to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing
at higher priority the competitors.

» Put in printf’s, ran much faster!

41 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Scheduling Fairness

• What about fairness?
– Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):

» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job

– Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!
• How to implement fairness?

– Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express

lanes get so long, get better service by going into one of
the other lines

– Could increase priority of jobs that don’t get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priorityInteractive jobs suffer

42 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of
tickets given to each job

• How to assign tickets?
– To approximate SRTF, short running jobs get more,
long running jobs get fewer

– To avoid starvation, every job gets at least one
ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves
gracefully as load changes
– Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
job possesses

43 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Lottery Scheduling Example

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable
response time?

» In UNIX, if load average is 100, hard to make progress

» One approach: log some user out

short jobs/

long jobs
% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A

10/1 9.9% 0.99%

1/10 50% 5%

44 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

How to Evaluate a Scheduling algorithm?

• Deterministic modeling
– takes a predetermined workload and compute the
performance of each algorithm for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

45 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

A Final Word On Scheduling

• When do the details of the scheduling policy and
fairness really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay
for itself in improved response time

» Assuming you’re paying for worse
response time in reduced productivity,
customer angst, etc…

» Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear”
portion of the load curve, fail otherwise

– Argues for buying a faster X when hit “knee” of curve

Utilization

R
e
sponse

tim

e
 1
0
0
%

46 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Summary (Scheduling)

• Scheduling: selecting a waiting process from the ready
queue and allocating the CPU to it

• FCFS Scheduling:
– Run threads to completion in order of submission
– Pros: Simple
– Cons: Short jobs get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

– Pros: Better for short jobs
– Cons: Poor when jobs are same length

• Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
– Run whatever job has the least amount of computation to
do/least remaining amount of computation to do

– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

47 A.A. 2019-20 Elementi di Sistemi Operativi – Gestione dei processi

Summary (Scheduling)

• Multi-Level Feedback Scheduling:

– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of
tokens (short tasksmore tokens)

– Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

• Evaluation of mechanisms:
– Analytical, Queuing Theory, Simulation

