
PHAVer

University of Verona

Dep. Computer Science

Italy

Dott. Luigi Di Guglielmo

Prof. Tiziano Villa

Outline

• Introduction

• Hybrid Automata

• Modeling in PHAVer

• Verification in PHAVer

• Examples

• How to use PHAVer

26/01/2011 Systems 2

Introduction (I)

• PHAVer (Polyhedral Hybrid Automaton
Verifier) is a tool for verifying affine hybrid
automata

• It has been developed by Goran Frehse,
member of the Hybrid Systems Group at the
University of Grenoble (France)

26/01/2011 Systems 3

Introduction (II)

• Systems with discrete as well as continuous
dynamic, i.e., hybrid systems, are complex to
analyze

• The verification of hybrid systems is a
challenging problem from both the theoretical
and experimental sides

26/01/2011 Systems 4

Hybrid Automata (I)

• From the theoretical side, Hybrid Automata
have been proposed as a formal model for the
design and verification of hybrid systems

• The formal model allows to

– Model temporal and functional aspects of both
discrete and continuous components

– Compose the different automata generating a
whole system that can be formally verified

26/01/2011 Systems 5

Hybrid Automata (II)
• Different classes of Hybrid Automata

– Timed Automata
• Continuous variables

– Continuous dynamics are stated by the constant “1”
» dot(x) = 1

– vars can be updated (i.e., reset) only to zero

– Linear Hybrid Automata (LHA)
• Continuous variables

– Continuous dynamics must follow a rectangular predicate
» dot(x)∊ [l,u], l and u are rational constants

– vars can be updated non deterministically to any value satisfying a rectangular
predicate

– Affine Hybrid Automata (AHA)
• Continuous variable

– Continuous dynamics are stated by linear differential equations
» dot(x) = A x + b

– vars can be updated with a value given by a linear function

– Hybrid automata
• Continuous variable

– Continuous dynamics can be modeled by any type of differential equation
– Complex update relation

26/01/2011 Systems 6

Timed Automata Example

26/01/2011 Systems 7

y < 5
press?

off low bright

press?
y:=0

y >=5
press?

press?

idle press!

a) Lamp b) User

Affine Hybrid Automaton Example

26/01/2011 Systems 8

Closed
x = -0.02x

y = 0
x >= xmin

.

.

Opening
x = -0.02x + 0.3y

y = 0.25
y <= 1

.

.

Open
x = -0.02x + 0.3

y = 0
x <= xmax

.

.

Closing
x = -0.02x + 0.3y

y = -0.25
y >= 0

.

.

y >= 1

y <= 0

x <= xmin
x >= xmax

x = 0

y = 0

PHAVer

• PHAVer computes the set of reachable states
of a network of affine hybrid automata

• The identified set of reachable states allows to
verify whether the set of reachable states
intersects a target region (reachability) or
intersects a bad region (safety)

26/01/2011 Systems 9

MODELING IN PHAVER

26/01/2011 Systems 10

Modeling in PHAVer (I)

• PHAVer does not provide a graphical user
interface

• The network of hybrid automata must be
described into a text file given as input to
PHAVer

• The syntax is simple and intuitive

26/01/2011 Systems 11

Modeling in PHAVer (II)

• Comments
– Are preceded by either //, --, or enclosed in /* */

• Identifier
– Is a letter plus any combination of letters, digits and _

(underscore)

• Number
– Can be given in floating point format

• E.g., 3.14 or 6.28e-32

– Or as a fraction
• E.g., 9/5

• Constants
– Are defined in the form
identifier := expression;

26/01/2011 Systems 12

Modeling in PHAVer (III)

• Linear expression
– Is defined over a set of variables, numbers, constants that can be

combined using +,-,/,*,(,)
– It is not allowed to multiply two variables or divide by a variable

• Linear constraint
– Is the combination of two linear expressions with one of the signs

<, >, <=, >=, ==

• Convex linear formula
– Is given as a conjunction of linear constraints that are joined by &

(ampersand)

• Linear formula
– Is a disjunction of convex linear formulas joined by | (pipe)

26/01/2011 Systems 13

Modeling in PHAVer (IV)

• Symbolic state

– Is a combination of a location name and a linear
formula joined by & (ampersand)

• E.g., (opening) & (x >= 0 & y <= 1)

• Set of symbolic states

– Is a list of symbolic states joined by , (comma)

• Wildcards

– identifier = aut.{$ & true};

26/01/2011 Systems 14

Modeling in PHAVer (V)

26/01/2011 Systems 15

Modeling in PHAVer (VI)

• contr_var

– State variables whose dynamics are specified by
the automaton

• input_var

– Variables whose dynamics are not specified by the
automaton

• synclabs

– Synchronization labels

26/01/2011 Systems 16

Modeling in PHAVer (VII)

• invariant and guard
– Linear formulas over the state variables (i.e.,
contr_var), input variables and parameters

• derivative
– For piece-wise constant dynamics, it is a convex linear

formula over the state variables derivatives
• E.g., 0 <= x’ & x’ < 1 stands for x ϵ [0,1)

– For affine dynamics, it is a convex linear formula over
the variables and their derivatives

• E.g., x’ == -2 * x stands for x = -2x

26/01/2011 Systems 17

.

.

Modeling in PHAVer (VIII)

• Transitions are specified by when .. goto statements
– Synchronization label must be specified
– Resets may be specified by do trans_rel

• trans_rel is a linear formula
– Post-transition value of a state variable is indicated by ‘ (single

quote)
• E.g, z’ == 0

– State variables not changed by the transition must be specified
explicitely

• E.g., x’ == x & y’ == y

• initial_states is a set of symbolic states

26/01/2011 Systems 18

Example: the Water-tank System (I)

• y specifies the valve aperture
– It ranges within 0 and 1

• x describes the liquid level

• The water flows from the tank
as vout = -0.02x

• The water arrives into the tank
as vin = 0.3y

• At the beginning the tank is
empty and the valve is
opening

26/01/2011 Systems 19

Example: the Water-tank System (II)

26/01/2011 Systems 20

Closed
x = -0.02x

y = 0
x >= xmin

.

.

Opening
x = -0.02x + 0.3y

y = 0.25
y <= 1

.

.

Open
x = -0.02x + 0.3

y = 0
x <= xmax

.

.

Closing
x = -0.02x + 0.3y

y = -0.25
y >= 0

.

.

y >= 1

y <= 0

x <= xmin
x >= xmax

x = 0

y = 0

Consider xmin = 5.5 and xmax = 8.5

Example: the Water-tank System (III)

26/01/2011 Systems 21

COMMANDS

26/01/2011 Systems 22

Reachability Analysis (I)

• state_ident = aut_ident.reachable;
– Returns the set of states reachable in the automaton

aut_ident from its initial states

– This set of reachable states is stored in state_ident

• state_ident1 =
aut_ident.reachable(state_ident2);
– Returns the set of states reachable in the automaton

aut_ident from the states in state_ident2

– This set of reachable states is stored in state_ident1

26/01/2011 Systems 23

General

• Identifier.print(*“file_name”+*, method+);

– If file_name is specified, writes a representation
of identifier to the file file_name, otherwise to the
standard output

– Method is a number that specifies the output
format

• 0 (default): textual description of location names and
linear formulas readable by PHAVer

• 2: format compatible with plotting tools like gnuplot

26/01/2011 Systems 24

Example: the Water-tank System (III)

26/01/2011 Systems 25

How to use PHAVer

• PHAVer can be executed by typing in
#> ./phaver tank.pha

• The generated .txt file can be viewed with
gnuplot
#> gnuplot

gnuplot> plot “tank.txt”

26/01/2011 Systems 26

VERIFICATION IN PHAVER

26/01/2011 Systems 27

Reachable Regions

26/01/2011 Systems 28

- x (i.e., the water level)

- y (i.e., the valve aperture)

Safety Problem (I)

• The safety problem in PHAVer can be seen as
a reachability problem over a set of bad states

• Once the set of bad states is defined, it is
possible to ask PHAVer to compute if such a
set of states is reachable from the set of initial
states

26/01/2011 Systems 29

Safety Problem (II)

• state_ident1 =
aut_ident.is_reachable(state_ident2);

– Computes the set of reachable states, but stops as
soon as a state in state_ident2 is found.

– Returns the states that were found to be
reachable at the time of termination

26/01/2011 Systems 30

Safety Problem (II)

• identifier1.intersection_assign(identifier2);

– Intersects identifier2 with identifier1 and puts the
result into identifier1

• identifier.is_empty;

– Writes whether the object identifier is empty to the
standard output

26/01/2011 Systems 31

Safety Problem (III)

26/01/2011 Systems 32

Safety Problem (IV)

26/01/2011 Systems 33

