Prova scritta per il Corso di Algebra 9 febbraio 2010

- 1. Anelli euclidei: si enunci la definizione e si diano almeno due esempi. (5 punti)
- 2. Si decida se sono veri o falsi i seguenti enunciati (motivando la risposta).
 - (a) $\mathbb{Z}/3\mathbb{Z}[x]/(x^3+x+1)$ è un campo di 27 elementi. (1 punto)
 - (b) $x^5 + 6x^3 + 4x^2 + 2$ è irriducibile su \mathbb{Q} . (1 punto)
 - (c) $\overline{1} + \overline{x}^2$ è un elemento invertibile in $\mathbb{Z}/2\mathbb{Z}[x]/(x^4 + x + 1)$. (1 punto)
- 3. Si scomponga in fattori irriducibili il polinomio $x^4 1 \in \mathbb{Z}/3\mathbb{Z}[x]$. (2 punti)

Risposte

- 2. (a) FALSO. Non si tratta di un campo, perché il polinomio $x^3 + x + 1$ ha lo zero x = 1 in $\mathbb{Z}/3\mathbb{Z}$ ed è riducibile.
 - (b) VERO, per il criterio di Eisenstein con p = 2.
 - (c) VERO. $\mathbb{Z}/2\mathbb{Z}[x]/(x^4+x+1)$ è un campo. Infatti x^4+x+1 è irriducibile perché non ha zeri in $\mathbb{Z}/2\mathbb{Z}$, né divisori di grado 2 in $\mathbb{Z}/2\mathbb{Z}[x]$ (l'unico polinomio irriducibile di grado 2 in $\mathbb{Z}/2\mathbb{Z}[x]$ è x^2+x+1 e non è un divisore di x^4+x+1). Inoltre $1+x^2 \not\in (x^4+x+1)$ perché altrimenti avrebbe grado ≥ 4 , quindi $\overline{1}+\overline{x}^2\neq \overline{0}$ è un elemento invertibile in $\mathbb{Z}/2\mathbb{Z}[x]/(x^4+x+1)$.
- 3. $x^4 1 = (x 1)(x + 1)(x^2 + 1)$ e i fattori sono tutti irriducibili: i primi in quanto sono polinomi di grado uno su un campo, il terzo in quanto è un polinomio di grado due che non ha zeri in $\mathbb{Z}/3\mathbb{Z}$.

Prova scritta per il Corso di Algebra 23 febbraio 2010

- 1. Si enunci il Teorema Fondamentale dell'Omomorfismo e lo si usi per dimostrare che $R[x]/(x) \cong R$ per ogni anello R. (5 punti)
- 2. Si decida se sono veri o falsi i seguenti enunciati (motivando la risposta).
 - (a) 3x + 6 è irriducibile su \mathbb{Z} . (1 punto)
 - (b) $\mathbb{Z}/2\mathbb{Z} \subset \mathbb{Z}/2\mathbb{Z}[x]/(x^4+x+1)$ è un'estensione di campi di grado 4.(1 punto)
 - (c) $\mathbb{Z}/4\mathbb{Z}[x]$ è un dominio. (1 punto)
- 3. Si scomponga in fattori irriducibili il polinomio $x^3 + x^2 + x + 1 \in \mathbb{Z}/3\mathbb{Z}[x]$. (2 punti)

Risposte

- 2. (a) FALSO. 3x + 6 = 3(x + 2) ed entrambi i fattori sono non invertibili.
 - (b) VERO. Basta dimostrare che $\mathbb{Z}/2\mathbb{Z}[x]/(x^4+x+1)$ è un campo; il grado dell'estensione è poi pari al grado di x^4+x+1 e quindi uguale a 4. $\mathbb{Z}/2\mathbb{Z}[x]/(x^4+x+1)$ è un campo perché x^4+x+1 è irriducibile. Infatti non ha zeri in $\mathbb{Z}/2\mathbb{Z}$, né divisori di grado 2 in $\mathbb{Z}/2\mathbb{Z}[x]$ (l'unico polinomio irriducibile di grado 2 in $\mathbb{Z}/2\mathbb{Z}[x]$ è x^2+x+1 e non è un divisore di x^4+x+1).
 - (c) FALSO perché ha divisori di zero. Ad esempio per $2, 2x \in \mathbb{Z}/4\mathbb{Z}[x] \setminus \{0\}$ si ha $2 \cdot 2x = 0$.
- 3. $x^3 + x^2 + x + 1 = (x+1)(x^2+1)$ e i fattori sono tutti irriducibili: il primo in quanto polinomio di grado uno su un campo, il secondo in quanto è un polinomio di grado due che non ha zeri in $\mathbb{Z}/3\mathbb{Z}$.