Def 5.3, Def 5.8, lemma 5.9, proposizione 5.10, teorema 5.11, corollario 5.13 Il Lettore interessato può consultare il libro di Van Dalen, Logic and Structure.

Definition 3.1.4 (i) A theory T is a collection of formulas with the property $T \vdash \varphi \Rightarrow \varphi \in T$ (a theory is closed under derivability).

- (ii) A set Γ such that T = {φ|Γ ⊢ φ} is called an axiom set of the theory T.
 The elements of Γ are called axioms.
- (iii) T is called a Henkin theory if for each sentence ∃xφ(x) there is a constant c such that ∃xφ(x) → φ(c) ∈ T (such a c is called a witness for ∃xφ(x)).

Note that $T = {\sigma | \Gamma \vdash \sigma}$ is a theory. For, if $T \vdash \varphi$, then $\sigma_1, \ldots, \sigma_k \vdash \varphi$ for certain σ_i with $\Gamma \vdash \sigma_i$.

 $\mathcal{D}_1 \mathcal{D}_2 \dots \mathcal{D}_k$ From the derivations $\mathcal{D}_1, \dots, \mathcal{D}_k$ of $\Gamma \vdash \sigma_1, \dots, \sigma_1 \sigma_2 \dots \sigma_k \Gamma \vdash \sigma_k$ and \mathcal{D} of $\sigma_1, \dots, \sigma_k \vdash \varphi$ a derivation $\underline{\mathcal{D}}$ of $\Gamma \vdash \varphi$ is obtained, as indicated.

Definition 3.1.5 Let T and T' be theories in the languages L and L'.

- (i) T' is an extension of T if T ⊆ T',
- (ii) T' is a conservative extension of T if T' ∩ L = T (i.e. all theorems of T' in the language L are already theorems of T).

Example of a conservative extension: Consider propositional logic P' in the language L with \rightarrow , \wedge , \bot , \leftrightarrow , \neg . Then exercise 2, section 1.6, tells us that P' is conservative over P.

Our first task is the construction of $Henkin\ extensions$ of a given theory T, that is to say: extensions of T which are Henkin theories.

Definition 3.1.6 Let T be a theory with language L. The language L^* is obtained from L by adding a constant c_{φ} for each sentence of the form $\exists x \varphi(x)$, a constant c_{φ} . T^* is the theory with axiom set $T \cup \{\exists x \varphi(x) \rightarrow \varphi(c_{\varphi}) | \exists x \varphi(x) \text{ in } L\}$.

Lemma 3.1.7 T^* is conservative over T.

Proof. (a) Let $\exists x \varphi(x) \rightarrow \varphi(c)$ be one of the new axioms. Suppose $\Gamma, \exists x \varphi(x) \rightarrow \varphi(c) \vdash \psi$, where ψ does not contain c and where Γ is a set of formulas — none of which contains the constant c. We show $\Gamma \vdash \psi$ in a number of steps.

Def 5.3, Def 5.8, lemma 5.9, proposizione 5.10, teorema 5.11, corollario 5.13 Il Lettore interessato può consultare il libro di Van Dalen, Logic and Structure.

- Γ ⊢ (∃xφ(x) → φ(c)) → ψ,
- Γ ⊢ (∃xφ(x) → φ(y)) → ψ, where y is a variable that does not occur in the associated derivation. 2 follows from 1 by Theorem 2.8.3.
- Γ ⊢ ∀y[(∃xφ(x) → φ(y)) → ψ]. This application of (∀I) is correct, since c did not occur in Γ.
- Γ ⊢ ∃y(∃xφ(x) → φ(y)) → ψ, (cf. example of section 2.9).
- Γ ⊢ (∃xφ(x) → ∃yφ(y)) → ψ, (section 2.9 exercise 7).
- 6. $\vdash \exists x \varphi(x) \rightarrow \exists y \varphi(y)$.
- Γ ⊢ ψ, (from 5,6).
 - (b) Let $T^* \vdash \psi$ for a $\psi \in L$. By the definition of derivability $T \cup \{\sigma_1, \ldots, \sigma_n\} \vdash \psi$, where the σ_i are the new axioms of the form $\exists x \varphi(x) \to \varphi(c)$. We show $T \vdash \psi$ by induction on n. For n = 0 we are done. Let $T \cup \{\sigma_1, \ldots, \sigma_{n+1}\} \vdash \psi$. Put $\Gamma' = T \cup \{\sigma_1, \ldots, \sigma_n\}$, then $T', \sigma_{n+1} \vdash \psi$ and we may apply (a). Hence $T \cup \{\sigma_1, \ldots, \sigma_n\} \vdash \psi$. Now by induction hypothesis $T \vdash \psi$.

Although we have added a large number of witnesses to T, there is no evidence that T^* is a Henkin theory, since by enriching the language we also add new existential statements $\exists x\tau(x)$ which may not have witnesses. In order to overcome this difficulty we iterate the above process countably many times.

Lemma 3.1.8 Define $T_0 := T; T_{n+1} := (T_n)^*; T_\omega := \cup \{T_n | n \ge 0\}$. Then T_ω is a Henkin theory and it is conservative over T.

Proof. Call the language of T_n (resp. T_ω) L_n (resp. L_ω).

- T_n is conservative over T. Induction on n.
- (ii) T_ω is a theory. Suppose T_ω ⊢ σ, then φ₀,..., φ_n ⊢ σ for certain φ₀,..., φ_n ∈ T_ω. For each i ≤ n φ_i ∈ T_{mi} for some m_i. Let m = max{m_i|i ≤ n}. Since T_k ⊆ T_{k+1} for all k, we have T_{mi} ⊆ T_m(i ≤ n). Therefore T_m ⊢ σ. T_m is (by definition) a theory, so σ ∈ T_m ⊆ T_ω.
- (iii) T_{ω} is a Henkin theory. Let $\exists x \varphi(x) \in L_{\omega}$, then $\exists x \varphi(x) \in L_n$ for some n. By definition $\exists x \varphi(x) \to \varphi(c) \in T_{n+1}$ for a certain c. So $\exists x \varphi(x) \to \varphi(c) \in T_{\omega}$.
- (iv) T_ω is conservative over T. Observe that T_ω ⊢ σ if T_n ⊢ σ for some n and apply (i).

As a corollary we get: T_{ω} is consistent if T is so. For suppose T_{ω} inconsistent, then $T_{\omega} \vdash \bot$. As T_{ω} is conservative over T (and $\bot \in L$) $T \vdash \bot$. Contradiction.

Our next step is to extend T_{ω} as far as possible, just as we did in propositional logic (1.5.7). We state a general principle:

Def 5.3, Def 5.8, lemma 5.9, proposizione 5.10, teorema 5.11, corollario 5.13 Il Lettore interessato può consultare il libro di Van Dalen, Logic and Structure.

Lemma 3.1.9 (Lindenbaum) Each consistent theory is contained in a maximally consistent theory.

Proof. We give a straightforward application of Zorn's Lemma. Let T be consistent. Consider the set A of all consistent extensions T' of T, partially ordered by inclusion. Claim: A has a maximal element.

- Each chain in A has an upper bound. Let {T_i|i ∈ I} be a chain. Then
 T' = ∪T_i is a consistent extension of T containing all T_i's (Exercise 2).
 So T' is an upper bound.
- Therefore A has a maximal element T_m (Zorn's lemma).
- 3. T_m is a maximally consistent extension of T. We only have to show: T_m ⊆ T' and T' ∈ A, then T_m = T'. But this is trivial as T_m is maximal in the sense of ⊆. Conclusion: T is contained in the maximally consistent theory T_m.

Note that in general T has many maximally consistent extensions. The above existence is far from unique (as a matter of fact the proof of its existence essentially uses the axiom of choice). Note, however, that if the language is countable, one can mimick the proof of 1.5.7 and dispense with Zorn's Lemma.

We now combine the construction of a Henkin extension with a maximally consistent extension. Fortunately the property of being a Henkin theory is preserved under taking a maximally consistent extension. For, the language remains fixed, so if for an existential statement $\exists x \varphi(x)$ there is a witness csuch that $\exists x \varphi(x) \rightarrow \varphi(c) \in T$, then trivially, $\exists x \varphi(x) \rightarrow \varphi(c) \in T_m$. Hence

Lemma 3.1.10 An extension of a Henkin theory with the same language is again a Henkin theory.

Def 5.3, Def 5.8, lemma 5.9, proposizione 5.10, teorema 5.11, corollario 5.13 Il Lettore interessato può consultare il libro di Van Dalen, Logic and Structure.