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Asynchronous Design Seminar at 

University of Verona – Lecture Notes 1 

Asynchronous Design Fundamentals

Lecture Notes 1
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 Motivation for Asynchronous Design

 Challenges in Traditional Synchronous Design

 Benefits of Asynchronous Design

 Startup and other Industrial Efforts (Past and Current)

 Challenges and Opportunities Moving Forward

 Data Channels and Channel Based Design

 Handshaking and its impact

 Asynchronous Pipelines

 Data Token Movement and Control

 Characteristics and Performance

 Modelling using PTnets

 Latch Controller Design
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Motivation
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Motivation I: Network on Chip
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 Scale of chip / designs 
increasing

 Design efficiency 
demands network on 
chip

 Synchronous NoCs
challenging
 Span large portion of 

chips 

 Hard to clock gate

 Synchronization penalties

 Impacted severely by 
global PVT variations

 Buffering to reduce 
contention is costly

Tilera’s TILE-Mx100
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Motivation II: Dynamic Variations
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[De, Asian IIEEE ASSCC 2014]

 Dynamic variations force margins on clock frequency 
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[Dreslinksi et al., IEEE Proc. 2010]

[Borkar, et al. DAC 2012]

 NTV computing provides ~5X 
energy efficiency

 But margins grow by ~5x forcing 
constrained libraries and flows

Motivation III: Near Threshold Computing
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Motivation IV: Neuromorphic Computing
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 Neuromorphic cores

 Large scale

 hard to route a global 

clock everywhere

 Low activity

 Asynchronous becoming 

default approach

Motivation V: Metastabilty
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 Multiple clock domains, and dynamic 

frequency scaling

 Crossings are hard, challenging, risky

 Subject to variations and modes of 

use

 Understanding comes from theory of 

asynchronous circuits

 Solutions

 Synchronizer design and verification

 Arbiters

 Encapsulate the issues
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Synchronization and communication between blocks 

implemented with asynchronous channels that send and receive tokens

Synchronous System Asynchronous System

Asynchronous
channel

clock
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The Asynchronous Alternative
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Concurrent Communicating Hardware

 System is a collection of Processes linked by Channels

 Channels pass messages with guaranteed delivery

 Processes synchronize 

 Processes can be decomposed into smaller processes
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Asynchronous Channels

 Bundled-Data

 Delay line Matched to 
Worst-Case Combinational 
Logic Delay

 May be Post-silicon Tunable

 Uses Standard-Cell Libraries

 QDI

 Data and Completion integrated

 Relies on Completion Sensing Logic

 Uses Proprietary Cell Libraries

 Domino-Style Dynamic Logic

FF

delay line

CTRL

Comb

Logic

Lreq

Lack

Ldata

Rreq

Rack

Rdata

RCD

W
N N

Ldata

Lack

Rack

Rdata
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Asynchronous Blocks
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Performance Advantages
 Freedom from global clock(s)

 Local versus global control supports higher frequencies 
with less effort

 Flexible pipelining – block- to gate-level

 Efficient Support for Globally Asynchronous Locally Synchronous 
(GALS) Design

 Average-case delay 
 Architectural – Optimize Architecture for the Common Data Flow

 Micro-architectural – Optimize Blocks for Average-case Input Data

 Gate-level – Control Responds to Average Delays (e.g. Metastability)

 Process – Design Adapts to Process Variation (e.g. Tunable Delay Lines)

 Voltage – Design Adapts to Voltage (e.g. Dynamic Voltage Scaling)

 Temperature – Design Adapts to Temperature (e.g. Wide 
Temperature range)

 Also leads to Power Advantages!

Power Advantages
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 Automatically adapts to operating conditions and variations
 Combines: voltage/frequency scaling, clock-gating, tuning

 More power savings, than the sum of all these techniques

 Clock-gating inherent in most asynchronous designs
 Only expend energy in blocks when blocks are used

 Inherent in architectural level rather than as an after-thought

 Blocks can be designed at ideal throughput
 Rather than dictated by global clock period

 Less frequently used blocks can be designed at lower throughput 

 Immediate start-up (no need to wait for clock to stabilize)
 Go quiet; Run fast; Go quiet again
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Other Advantages

 Reduced Electromagnetic Noise

 No global clock

 Frequency spread out much more

 Co-locate with sensitive analog 

 Less noise - does not effect analog circuitry

 Ease of Modular Composition

 Reduces design complexity, cost, risk, iterations, time to market

 Supports GALS design for multi-frequency disparate SoC

designs

 Handshaking offers plug-and-play IP
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Asynchronous Challenges (1 of 2)
 CAD tools

 Support from major EDA companies

 Cell/IP Core Libraries for Asynchronous Design
 Most design styles could benefit from at least a few asynchronous cells

 e.g., C-elements, Mutual Exclusion Elements

 Some design styles heavily rely on custom gates
 QDI PCHB, NCL

 High-performance asynchronous design
 Some blocks can be 2-5x larger due to dual-rail design

 May consume more peak power than desired

 Low-power asynchronous design
 Can be slower than desired, if control overhead not managed
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Asynchronous Challenges (2 of 2)
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 Debug

 Circuit can’t be slowed via clock to aid in debugging

 …but the circuit can be single-stepped more easily!

 Asynchronous test

 Testers geared toward synchronous

 Standards do not exist and test methodologies still evolving

 Automatic test pattern generation in infancy

5/25/2016Asynchronous Control Circuit Design - L118

Asynchronous Commercialization Efforts 

(1 of 2)

 Fulcrum Microsystems (www.fulcrummicro.com)
 High-performance computing and networking markets

 Founded out of Caltech in 2000,  Sold to Intel in 2011

 Several asynchronous products shipping,  Full-custom flow still in use 
today

 TimeLess Design Automation
 High-Performance ASIC Flow for Asynchronous Design

 Founded out of USC in 2008

 Sold to Fulcrum Microsystems in 2010

 Semi-custom flow still in use today

 Achronix (www.achronix.com)
 High-performance async FPGA core with synchronous interfaces

 Founded out of Cornell research in 2006

 Speedster®22i HP is shipping and includes fine-grain asynchronous 
pipelines
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Asynchronous Commercialization Efforts 

(2 of 2)

 Tiempo (www.tiempo-ic.com)
 IP Cores and ASIC Flow (Power/Performance Tradeoff)

 Smartcards …

 vSync Circuits (www.vsyncc.com)
 EDA and IP for Multi-Clock Domain design integration and verification

 Reduced Energy Microsystems (remicro.systems)
 Low Power ASIC microprocessors using asynchronous resiliency

 Founded in 2015 – Newest kid on the block

 IBM
 Neuromorphic True North core based on QDI technology (EXPAND)

 Several Past Start-ups
 Handshake Solutions, 

 Silistix, 

 Elastix, Nanochronous, 

 Cogency

Channel-Based Design

Top-Level View of Asynchronous Circuits

5/25/2016Asynchronous Control Circuit Design - L120
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Hardware Abstraction
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 System: 

 Collection of “Processes” linked by Channels

 Channels pass messages with guaranteed delivery

 Processes synchronize 

 Processes can be decomposed into smaller processes

5/25/2016

Synchronous Version

 In case of edge triggered stages

 During the cycle: Process

 At the edge of the clock: Pass to successor

clock

Process

clock

Pass to 
successor

22 Asynchronous Control Circuit Design - L1 5/25/2016
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Synchronous Version

module  ff(clk, left, right)

input clk;

input left;

output reg right;

always

begin

`SYNC(clk); 

right = left;

end

endmodule

 Central synchronizer

 `SYNC(clk)

23 Asynchronous Control Circuit Design - L1 5/25/2016

Synchronous FF Stage

 Abstract synchronization

 `SYNC(clk)

module ff(clk, left, right)

input clk;

input left;

output reg right;

always @(posedge clk) begin

right = left;

end

endmodule

module  ff(clk, left, right)

input clk;

input left;

output reg right;

always

begin

`SYNC(clk); 

right = left;

end

endmodule

24 Asynchronous Control Circuit Design - L1 5/25/2016
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Asynchronous Version

module Sender(right)

output reg right;

output reg data;

always

begin

right = data;

`SYNC(right); 

end

endmodule

module Receiver(left)

input left;

output reg data;

always

begin

`SYNC(left); 

data= left;

end

endmodule

 Distributed 
Synchronization

 Sender

 Provides data

 Synchronize

 Receiver

 Synchronize

 Samples data

Sender Receiver

25 Asynchronous Control Circuit Design - L1 5/25/2016

Asynchronous Channels

Asynchronous Control Circuit Design - L126

 Channel:  A bundle of wires and a protocol for 

communicating data/control called a token

 Data/control encoding: Dual-rail or Single-rail encoded

 tells what the data is, and when it is valid

 Communication protocol: Handshake over 

request/acknowledgement wires

Sender Receiver

Abstract
ChannelFunctional

Block

5/25/2016
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Asynchronous Channel Types
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Asynchronous Channel Types
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5/25/2016

Ack

x.0
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Asynchronous Design Levels of Abstraction

5/25/2016Asynchronous Control Circuit Design - L129

System-level 
Optimization

Datapath
Circuits

Control 
Circuits

 Control Circuits –
Implementing 
Channel Protocols
 Latch Opening 

and Closing

 Data Token 

Processing

 Data,

control 

interaction

 Throughput, 
Latency 
Optimization
 Hiding 

handshake 
overhead

 Retiming, etc.

Asynchronous Design Levels
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 Block-Level Design – Micro-architectural Level
 Control Circuits – Implementing Channel Protocols

 Handshake-based Token Movement, i.e. H/S Protocol Implementation

 Latch Opening and Closing

 Synchronization of Multiple Requests and Acknowledgments, … etc.

 Datapath Circuits – Data Token Processing
 Asynchronous Implementation of Combinational Clouds and Interaction with the 

H/S-based Control Circuits
 Bundled-data, i.e. delay-element based

 Data-Dependent Latency – Multiplexed Delay, based on Operands/Operation

 Dual-Rail/Indicating Logic (Encoded)

 System-level Optimization –Architecture Level
 Optimizing Token Cycle Time, Throughput (Tokens/sec)

 Trading-off Token Latency for Token Throughput

 Hiding Handshake Delays to achieve comparable cycle time to sync.

 Retiming, i.e. Splitting Combinational Logic, adding Token Buffers 
(Latches)
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Logic Hazards (Glitches)
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 Synchronous Circuits

 Glitches tolerated because outputs sampled only after signals settle

 Clocking constraints

 Clock edge occurs only after data 

settles

 Limits clock frequency

 Asynchronous Circuits

 Control circuits

 Avoided completely

 Hazard-free logic synthesis techniques

 Datapath (Either)

 Outputs sampled after signal settles OR 

 Avoided completely

5/25/2016

Asynchronous Circuits - Classes

5/25/2016Asynchronous Control Circuit Design - L132

 Timing Model (or Class) is used to define specific timing 

assumptions with respect to correct circuit operation

 DI

 Arbitrary gate and wire delays (unbounded)

 QDI

 DI except for Isochronic Forks

 No need to acknowledge fanouts

 SI (Muller) circuits

 Arbitrary gate delay no wire delay

 Only applicable to small-scale control circuits

 Fundamental Mode (Huffman) circuits

 Outputs and Local State (internal) stabilize

 before a new input change from the circuit’s environment

QDI

SI

Fundamental 
Mode

Timing Assumptions 

Pyramid
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2-Phase Bundled-Data 
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Data

Req

Ack

Bundled-Data Channel

Sender Receiver

 Two-phase Bundled-Data Protocol
 Both rising and falling transitions on Req

 Means new data are available

 Both rising and falling transitions on Ack
 Means data have been acknowledged

 Sometimes called transition signaling
 It is the transition that is meaningful (stateful), not the level values

2nd data1st data

Req

Ack

Data

 Push Channels
 Pull Channels shortly

1-of-N Protocols

Asynchronous Control Circuit Design - L134

Data

Ack

Dual-Rail (1-of-N) Channel

Sender Receiver

5/25/2016

 Dual-Rail

 4 phase

 2 wires per bit

 1-of-4

 4 phase

 4 wires per 2 bits

Data_0

Data_1

Ack

 1
st
 token = 0 2

nd
 token = 1

Data_0

Data_3

Ack

 1
st
 token = 1 2

nd
 token = 3

Data_1

Data_2

(a)

(b)
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(a)

(c)

(b)

1
st
 data 2

nd

Req

Ack

Late

Req

Early 1
st
 data

Ack

2
nd

 data

0
th

1
st
 data 2

nd 
Data

Ack

0
th

Req

Broad

Pull Channels

5/25/2016Asynchronous Control Circuit Design - L135

 Early: 
 Data stable after Ack+

 Data stable until Req-

Sender

Request

Acknowledge

Single-Rail Data

Receiver

 Late: 
 Data stable after Ack-

 Data stable until Req+

 Broad: 
 Data stable after Ack+

 Data stable until Req-

Abstract Channel Diagrams

Asynchronous Control Circuit Design - L136

(a)

(b)

(c)

Handshaking details omitted

5/25/2016

 Synchronization channel –
no data attached/bundled
 No data – Control only

 Active on right side

 Pull Channel

 Push Channel
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 Enclosed Handshaking

 B completes handshake with C 
before starting handshake with D 

 Operation associated with C occurs before 
operation associated with D

 B can enclose both handshakes in 
handshake with A

 Completion of handshake with A is acknowledgement that 
the tasks of C and D are done

 Pipelining Handshake

 B overlaps handshake with C and handshake with A

 Creates pipeline behavior

 Tokens flow on both channels

 Increases throughput

Sequencing and Concurrency

Asynchronous Control Circuit Design - L137

B
C
D

A

A B C

5/25/2016

A

B

C

D

Token Buffer Pipelines

Pipelining Data Tokens

5/25/2016Asynchronous Control Circuit Design - L138
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Pipelined Handshaking

Asynchronous Control Circuit Design - L139

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

5/25/2016

 Pipeline handshaking enables multiple tokens to exist in pipeline
 Each token represents intermediate result of different problem instance

 Increases throughput of system

 No tokens lost despite relative speed of stages – has implicit  
flow control

 Two types
 Full buffers can support distinct tokens on inputs/output channels

 Half buffers cannot support distinct tokens on inputs/outputs
 N-stage pipeline of half-buffers can support a maximum of N/2 tokens

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

Full-Buffer Handshaking

Asynchronous Control Circuit Design - L140

Handshaking assuming Bit Bucket is Stalled

5/25/2016

 Pipeline 

can store 

tokens at 

every 

buffer

T1 T2 T3 T4

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1 T2

T1

T3

T1

T2
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C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1

T1

T1

T1

T2

T2

Handshaking assuming Bit 

Bucket is Stalled

 Constraint that leads 

to a half-buffer:

 output channel must 

be acknowledged 

before input channel 

completes handshake

 e.g., c1ack+

before c0ack-

 Pipeline can store 

tokens at every other 

buffer

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

Half-Buffer Handshaking

Asynchronous Control Circuit Design - L141 5/25/2016

Conditional and Non-Linear Pipeines

Asynchronous Control Circuit Design - L142

 MERGE
 Wait for token on S.

 Depending on value, 
wait for token on either A or B and send onto O

 SPLIT
 Wait for token on S and A.

 Dependent upon value of S, 
send copy of token on A to O1 or O2

(a) (b)

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

5/25/2016
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Areq

Aack

Breq

Back

S0

Sack

S1

Oreq

Oack

Timing Diagram of Merge

Asynchronous Control Circuit Design - L143 5/25/2016

 Assumptions (in this example)
 Full-buffer Two-phase Handshaking 

 dual-rail select signal

 Functionality – Handshake MUX
 Token on A consumed first 

 After token on S = 0

 i.e., S0 changes

 Token on B stalled until consumed 
second 
 After token on S = 1

 i.e., Once S1 changes

 Result: two tokens on O
 First = Oreq+

 Second = Oreq-

Send and Receive Cells

 SEND

 Always receive on L and E. 

 Conditionally send on R if E==1.

 RECV

 Always receive on E and send on R. 

 Conditionally receive on L if E==1.

5/25/2016Asynchronous Control Circuit Design - L144

R
EC

VL R

E

SEN
DL R

E
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Asynchronous Pipelines

Dynamic behavior is very different from synchronous design

5/25/2016Asynchronous Control Circuit Design - L145

Synchronous vs. Asynchronous Pipelines

5/25/2016Asynchronous Control Circuit Design - L146

 Intuitive Understanding of the Differences
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Datapath

Example

5/25/2016Asynchronous Control Circuit Design - L147

FF Datapath: each 

FF is 2 Latches

5/25/2016Asynchronous Control Circuit Design - L148
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Synchronous vs. Asynchronous

5/25/2016Asynchronous Control Circuit Design - L149

 Tokens represent Data

 Data Tokens

 We now compare the Synchronous and Asynchronous

Data Flows in the simplest version of this datapath

 Synchronous version first…

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L150



5/25/2016

26

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L151

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L152
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Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L153

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L154
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Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L155

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L156
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Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L157

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L158
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Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L159

Synchronous Token Movement

5/25/2016Asynchronous Control Circuit Design - L160

 Tokens are always separated by empty latches

 Aka “Bubbles”

 Latency in strongly dependent on # of clock cycles

 Pipeline delays result in cycle-based Latency increase

 Now,  let’s look at the Asynchronous version…
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Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L161

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L162

+
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Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L163

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L164
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Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L165

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L166
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Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L167

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L168
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Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L169

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L170
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Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L171

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L172
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Asynchronous Token Movement

5/25/2016Asynchronous Control Circuit Design - L173

 Latency depends on combinational cloud delays

 Not multiple of a clock, data-dependent

 Token Speed depends on available space in pipeline stages

 Contention reduces performance!

 Similarly to people in a queue (line)

 Increasing pipe stages can:

 Increase Tokens/sec, i.e. Performance

 Reduce Latency, if Local Delays are Improved, 

 e.g. wire buffering

 Notion of total (or max/min) Tokens in the system, and 

total (or max/min) empty token buffers (bubbles)

 System-Level optimization issue

Petri Nets (PN) in a Nutshell

5/25/2016Asynchronous Control Circuit Design - L174

 A PN is a graph of Places and Transitions
 Allowed connections

 Places are connected to Transitions

 Transitions are connected to Places

 Places
 Places hold a token (in general can be more than 1)

 A place with a token in active (marked)

 Transitions
 A transition is activated (fires) 

 when tokens are available on all of its input places

 When it fires
 it creates new tokens on all of its output places

 PN can model both
 Choice, Return from Choice

 Fork and Join
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High-Level Asynchronous Pipeline:

PTnet Models

5/25/2016Asynchronous Control Circuit Design - L175

 Full Buffer High-Level Model

 Used to analyze and optimize Throughput and Latency:

High-Level Asynchronous Pipeline 

PTnet Models

5/25/2016Asynchronous Control Circuit Design - L176

 Full Buffer and Half Buffer High-Level Models

 Used to analyze and optimize Throughput and Latency:



5/25/2016

39

Dynamic Pipeline Behavior

Asynchronous Control Circuit Design - L1

 Cycle Time
 T = FL + BL (simplest case)

 Latency
 input to output delay = N * FL

 Throughput
 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy
 Maximum token capacity of the pipeline 

 Spread
 distance between successive tokens in an optimally-filled pipeline

 token distance travelled for 1 T = (FL + BL)/FL

 Dynamic Slack or Dynamic Occupancy
 Average token capacity in the pipeline at optimal throughput

 N*1/Spread = (N*FL)/(FL + BL)

5/25/201677

Dynamic Pipeline Behavior

Asynchronous Control Circuit Design - L1

 Cycle Time

 T = FL + BL (simplest case)

 Latency

 input to output delay = N * FL

 Throughput

 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy

 Maximum token capacity of the pipeline 

 Dynamic Slack or Dynamic Occupancy

 Average token capacity in the pipeline at optimal throughput

 N*1/Spread = (N*FL)/(FL + BL)

5/25/201678
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Dynamic Occupancy, Throughput

 Dynamic Slack or Dynamic Occupancy 
Formula for N buffers:

 Assumptions: 

 Tokens not stalled by buffers or 
Bit Bucket resetting 

 Tokens inserted at rate of local cycle time 
(FL + BL)

 Tokens consumed at rate of local cycle 
time

peak

throughput

bubble

limited 

region

token

limited 

region

dynamic 

slack

static 

slack

# tokens

throughput

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

FL

BL

N

BLFL

FLN






1

*

Asynchronous Control Circuit Design - L1

(average)

Peak Throughput 

= 1/(FL + BL)

5/25/201679

Throughput vs. Tokens Graph

 Throughput is zero
 When no tokens in pipe

 When pipeline is full of 
tokens

 Peak throughput in-
between
 Token limited region

 Faster Bit Gen 
improves throughput

 Bubble limited region

 Faster Bit Bucket 
improves performance

peak

throughput

bubble

limited 

region

token

limited 

region

dynamic 

slack

static 

slack

# tokens

throughput

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

Asynchronous Control Circuit Design - L1 5/25/201680


N

FL

1


N

BL

1
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Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C31

t=0t=2t=8t=4t=6t=18t=10

2

t=12t=14t=16

34

t=20t=22t=24

5

t=0: Token 1 generated

t=6: Token 2 generated

t=12: Token 3 generated

t=18: Token 4 generated

t=24: Token 5 generated

Asynchronous Control Circuit Design - L1 5/25/201681

 Slow left environment

 Bit Gen: LCT  = 6

 Buffer: FL=2, BL=2

 Bit Bucket: LCT = 2

Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C31

t=0t=6t=2t=4t=8t=10t=12t=14

23

t=16

45

t=18t=20

t=6: Token 1 consumed

t=12: Token 2 consumed

t=18: Token 3 consumed

t=24

t=24: Token 4 consumed

t=22

Asynchronous Control Circuit Design - L1 5/25/201682

 Slow right environment

 Bit Gen: LCT = 2

 Buffer: FL=2, BL=2

 Bit Bucket: LCT = 6
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Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

# tokens

throughput

Buffer: FL=2, BL=2

Asynchronous Control Circuit Design - L1 5/25/201683

More Complex Example: Pipeline 

Performance

5/25/2016Asynchronous Control Circuit Design - L184

 What is the impact of fork/join on asynchronous 

pipelines?

 Assume FL = 1, BL = 1 4, 3 Fork Join
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More Complex Example: Pipeline 

Performance

5/25/2016Asynchronous Control Circuit Design - L185

 What is the impact of fork/join on asynchronous 

pipelines?

 Assume FL = 1, BL = 1 4, 2 Fork Join

More Complex Example: Pipeline 

Performance

5/25/2016Asynchronous Control Circuit Design - L186

 What is the impact of fork/join on asynchronous 

pipelines?

 Assume FL = 1, BL = 1 4, 1 Fork Join
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D
E
M
U
XA,B

op

Add/Sub

Mult

M
U
XD

+

0

+ +

D

Stalled!

P. A. Beerel et. al. , “Slack matching asynchronous designs,” ASYNC’06

D

Stalled!

Represents up to 30% of area and power

5/25/2016Asynchronous Control Circuit Design - L187

Key to High Performance –

Slack Matching

 The Slack Matching Problem:
 Add minimum number of pipeline buffers to the circuit to meet a target T

 This problem is unique to Asynchronous Design
 Unfortunately, often yields significant Area and Power Overhead!

Latch Control Circuits

Basic Example of Latch Control

5/25/2016Asynchronous Control Circuit Design - L188
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Bundled-Data Control Circuits –

Basic Latch Control

5/25/2016Asynchronous Control Circuit Design - L189

Latch

Controller

Left Hand Side 

Channel (H/S)

Right Hand Side 

Channel (H/S)

Latch

 provide latch EN 

enable signal

 Latch Open/Close 

Logic

 LHS/RHS Handshakes 

indicate Channel State

C Gate – PN to STG Conversion

5/25/2016Asynchronous Control Circuit Design - L190

a+ b+

c+

a- b-

c-

a+ b+

c+

a- b-

c-

 keep transitions

 keep tokens

 hide places
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Condition 1: Latch Should Not Open until 

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L191

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

Condition 1: Latch Should Not Open until 

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L192

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-
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Condition 1: Latch Should Not Open until 

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L193

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

Condition 1: Latch Should Not Open until 

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L194

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-
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Latch Control Signal Dependencies 

Imposed by Condition 1

5/25/2016Asynchronous Control Circuit Design - L195

A B C D

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

0 0 0 0

Latch Control Signal Dependencies 

Imposed by Condition 1

5/25/2016Asynchronous Control Circuit Design - L196

A B C D

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

0 0 0 0
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Latch Control Signal Dependencies 

Imposed by Condition 1

5/25/2016Asynchronous Control Circuit Design - L197

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

Condition 2: Latch Should Not Close until 

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L198

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-
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Condition 2: Latch Should Not Close until 

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L199

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

Condition 2: Latch Should Not Close until 

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L1100

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-
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Condition 2: Latch Should Not Close until 

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L1101

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

Latch Control Signal Dependencies 

Imposed by Conditions 1 and 2

5/25/2016Asynchronous Control Circuit Design - L1102

A B C D0 0 0 0

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-

A- B+                   C- D+

A+                   B- C+                   D-
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Folded Latch Control Signal Dependencies 

Imposed by Conditions 1 and 2

5/25/2016Asynchronous Control Circuit Design - L1103

A B C D

 Latch Control Signal 

Graph Dependencies 

can also be visualized 

in the Time Domain

A

B

A+                   B+                   C+                  D+

A- B- C- D-

Formal Models For Asynchronous Control 

Circuit Design

5/25/2016Asynchronous Control Circuit Design - L1104

 The graph model examples are really simplified PN

 PN is Place, Transition Net (invented by Petri)

 Represent Dependencies between signal transitions

 Causality

 Can Represent Choice

 Multiple Signals (Places really) are active at one time

 Represent Concurrency

 A PN is really a set of Multiple, Interacting FSMs all 

integrated and hidden within a single Graph!

 Compact and Convenient

 Ideal for Static Verification


