
5/25/2016

1

Asynchronous Design Seminar at

University of Verona – Lecture Notes 1

Asynchronous Design Fundamentals

Lecture Notes 1

5/25/2016Asynchronous Control Circuit Design - L12

 Motivation for Asynchronous Design

 Challenges in Traditional Synchronous Design

 Benefits of Asynchronous Design

 Startup and other Industrial Efforts (Past and Current)

 Challenges and Opportunities Moving Forward

 Data Channels and Channel Based Design

 Handshaking and its impact

 Asynchronous Pipelines

 Data Token Movement and Control

 Characteristics and Performance

 Modelling using PTnets

 Latch Controller Design

5/25/2016

2

Motivation

5/25/2016Asynchronous Control Circuit Design - L13

P

P

A

Power

Performance

Area

Everything else:

Design cost,

complexity, risk,

time-to-market

VARIATIONS

COMPLEXITY

COST

NOC

SOC

REUSE

Sub-VT

Near-VT

Neuro-

morphic

CHALLENGES GOALS MEANS

Motivation I: Network on Chip

5/25/2016Asynchronous Control Circuit Design - L14

 Scale of chip / designs
increasing

 Design efficiency
demands network on
chip

 Synchronous NoCs
challenging
 Span large portion of

chips

 Hard to clock gate

 Synchronization penalties

 Impacted severely by
global PVT variations

 Buffering to reduce
contention is costly

Tilera’s TILE-Mx100

5/25/2016

3

Motivation II: Dynamic Variations

5/25/2016Asynchronous Control Circuit Design - L15

[De, Asian IIEEE ASSCC 2014]

 Dynamic variations force margins on clock frequency

5/25/2016Asynchronous Control Circuit Design - L16

[Dreslinksi et al., IEEE Proc. 2010]

[Borkar, et al. DAC 2012]

 NTV computing provides ~5X
energy efficiency

 But margins grow by ~5x forcing
constrained libraries and flows

Motivation III: Near Threshold Computing

5/25/2016

4

Motivation IV: Neuromorphic Computing

5/25/2016Asynchronous Control Circuit Design - L17

 Neuromorphic cores

 Large scale

 hard to route a global

clock everywhere

 Low activity

 Asynchronous becoming

default approach

Motivation V: Metastabilty

5/25/2016Asynchronous Control Circuit Design - L18

 Multiple clock domains, and dynamic

frequency scaling

 Crossings are hard, challenging, risky

 Subject to variations and modes of

use

 Understanding comes from theory of

asynchronous circuits

 Solutions

 Synchronizer design and verification

 Arbiters

 Encapsulate the issues

5/25/2016

5

Synchronization and communication between blocks

implemented with asynchronous channels that send and receive tokens

Synchronous System Asynchronous System

Asynchronous
channel

clock

5/25/2016Asynchronous Control Circuit Design - L19

The Asynchronous Alternative

5/25/2016Asynchronous Control Circuit Design - L110

Concurrent Communicating Hardware

 System is a collection of Processes linked by Channels

 Channels pass messages with guaranteed delivery

 Processes synchronize

 Processes can be decomposed into smaller processes

5/25/2016

6

1 of the N wires rises

(N-1 remains zero)

Req

Ack

Data

Data stable

1

2

3

4

1

2

3

4
Ack

1-of-N

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

Data

Ack

Dual-Rail (1-of-N) Channel

Sender Receiver

5/25/2016Asynchronous Control Circuit Design - L111

Asynchronous Channels

 Bundled-Data

 Delay line Matched to
Worst-Case Combinational
Logic Delay

 May be Post-silicon Tunable

 Uses Standard-Cell Libraries

 QDI

 Data and Completion integrated

 Relies on Completion Sensing Logic

 Uses Proprietary Cell Libraries

 Domino-Style Dynamic Logic

FF

delay line

CTRL

Comb

Logic

Lreq

Lack

Ldata

Rreq

Rack

Rdata

RCD

W
N N

Ldata

Lack

Rack

Rdata

5/25/2016Asynchronous Control Circuit Design - L112

Asynchronous Blocks

5/25/2016

7

5/25/2016Asynchronous Control Circuit Design - L113

Performance Advantages
 Freedom from global clock(s)

 Local versus global control supports higher frequencies
with less effort

 Flexible pipelining – block- to gate-level

 Efficient Support for Globally Asynchronous Locally Synchronous
(GALS) Design

 Average-case delay
 Architectural – Optimize Architecture for the Common Data Flow

 Micro-architectural – Optimize Blocks for Average-case Input Data

 Gate-level – Control Responds to Average Delays (e.g. Metastability)

 Process – Design Adapts to Process Variation (e.g. Tunable Delay Lines)

 Voltage – Design Adapts to Voltage (e.g. Dynamic Voltage Scaling)

 Temperature – Design Adapts to Temperature (e.g. Wide
Temperature range)

 Also leads to Power Advantages!

Power Advantages

5/25/2016Asynchronous Control Circuit Design - L114

 Automatically adapts to operating conditions and variations
 Combines: voltage/frequency scaling, clock-gating, tuning

 More power savings, than the sum of all these techniques

 Clock-gating inherent in most asynchronous designs
 Only expend energy in blocks when blocks are used

 Inherent in architectural level rather than as an after-thought

 Blocks can be designed at ideal throughput
 Rather than dictated by global clock period

 Less frequently used blocks can be designed at lower throughput

 Immediate start-up (no need to wait for clock to stabilize)
 Go quiet; Run fast; Go quiet again

5/25/2016

8

5/25/2016Asynchronous Control Circuit Design - L115

Other Advantages

 Reduced Electromagnetic Noise

 No global clock

 Frequency spread out much more

 Co-locate with sensitive analog

 Less noise - does not effect analog circuitry

 Ease of Modular Composition

 Reduces design complexity, cost, risk, iterations, time to market

 Supports GALS design for multi-frequency disparate SoC

designs

 Handshaking offers plug-and-play IP

5/25/2016Asynchronous Control Circuit Design - L116

Asynchronous Challenges (1 of 2)
 CAD tools

 Support from major EDA companies

 Cell/IP Core Libraries for Asynchronous Design
 Most design styles could benefit from at least a few asynchronous cells

 e.g., C-elements, Mutual Exclusion Elements

 Some design styles heavily rely on custom gates
 QDI PCHB, NCL

 High-performance asynchronous design
 Some blocks can be 2-5x larger due to dual-rail design

 May consume more peak power than desired

 Low-power asynchronous design
 Can be slower than desired, if control overhead not managed

5/25/2016

9

Asynchronous Challenges (2 of 2)

5/25/2016Asynchronous Control Circuit Design - L117

 Debug

 Circuit can’t be slowed via clock to aid in debugging

 …but the circuit can be single-stepped more easily!

 Asynchronous test

 Testers geared toward synchronous

 Standards do not exist and test methodologies still evolving

 Automatic test pattern generation in infancy

5/25/2016Asynchronous Control Circuit Design - L118

Asynchronous Commercialization Efforts

(1 of 2)

 Fulcrum Microsystems (www.fulcrummicro.com)
 High-performance computing and networking markets

 Founded out of Caltech in 2000, Sold to Intel in 2011

 Several asynchronous products shipping, Full-custom flow still in use
today

 TimeLess Design Automation
 High-Performance ASIC Flow for Asynchronous Design

 Founded out of USC in 2008

 Sold to Fulcrum Microsystems in 2010

 Semi-custom flow still in use today

 Achronix (www.achronix.com)
 High-performance async FPGA core with synchronous interfaces

 Founded out of Cornell research in 2006

 Speedster®22i HP is shipping and includes fine-grain asynchronous
pipelines

5/25/2016

10

5/25/2016Asynchronous Control Circuit Design - L119

Asynchronous Commercialization Efforts

(2 of 2)

 Tiempo (www.tiempo-ic.com)
 IP Cores and ASIC Flow (Power/Performance Tradeoff)

 Smartcards …

 vSync Circuits (www.vsyncc.com)
 EDA and IP for Multi-Clock Domain design integration and verification

 Reduced Energy Microsystems (remicro.systems)
 Low Power ASIC microprocessors using asynchronous resiliency

 Founded in 2015 – Newest kid on the block

 IBM
 Neuromorphic True North core based on QDI technology (EXPAND)

 Several Past Start-ups
 Handshake Solutions,

 Silistix,

 Elastix, Nanochronous,

 Cogency

Channel-Based Design

Top-Level View of Asynchronous Circuits

5/25/2016Asynchronous Control Circuit Design - L120

5/25/2016

11

Hardware Abstraction

Asynchronous Control Circuit Design - L121

 System:

 Collection of “Processes” linked by Channels

 Channels pass messages with guaranteed delivery

 Processes synchronize

 Processes can be decomposed into smaller processes

5/25/2016

Synchronous Version

 In case of edge triggered stages

 During the cycle: Process

 At the edge of the clock: Pass to successor

clock

Process

clock

Pass to
successor

22 Asynchronous Control Circuit Design - L1 5/25/2016

5/25/2016

12

Synchronous Version

module ff(clk, left, right)

input clk;

input left;

output reg right;

always

begin

`SYNC(clk);

right = left;

end

endmodule

 Central synchronizer

 `SYNC(clk)

23 Asynchronous Control Circuit Design - L1 5/25/2016

Synchronous FF Stage

 Abstract synchronization

 `SYNC(clk)

module ff(clk, left, right)

input clk;

input left;

output reg right;

always @(posedge clk) begin

right = left;

end

endmodule

module ff(clk, left, right)

input clk;

input left;

output reg right;

always

begin

`SYNC(clk);

right = left;

end

endmodule

24 Asynchronous Control Circuit Design - L1 5/25/2016

5/25/2016

13

Asynchronous Version

module Sender(right)

output reg right;

output reg data;

always

begin

right = data;

`SYNC(right);

end

endmodule

module Receiver(left)

input left;

output reg data;

always

begin

`SYNC(left);

data= left;

end

endmodule

 Distributed
Synchronization

 Sender

 Provides data

 Synchronize

 Receiver

 Synchronize

 Samples data

Sender Receiver

25 Asynchronous Control Circuit Design - L1 5/25/2016

Asynchronous Channels

Asynchronous Control Circuit Design - L126

 Channel: A bundle of wires and a protocol for

communicating data/control called a token

 Data/control encoding: Dual-rail or Single-rail encoded

 tells what the data is, and when it is valid

 Communication protocol: Handshake over

request/acknowledgement wires

Sender Receiver

Abstract
ChannelFunctional

Block

5/25/2016

5/25/2016

14

Asynchronous Channel Types

Asynchronous Control Circuit Design - L127

1 of the N wires is risen

(N-1 remains zero)

Req

Ack

Data

Data stable

1

2

3

4

1

2

3

4
Ack

1-of-N

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

Data

Ack

Dual-Rail (1-of-N) Channel

Sender Receiver

5/25/2016

x.1

Asynchronous Channel Types

Asynchronous Control Circuit Design - L128

1 of the 2 wires rises

Req

Ack

Data

Data stable

1

2

3

4

1

2

3

4

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

Data

Ack

Dual-Rail (1-of-2) Channel

Sender Receiver

5/25/2016

Ack

x.0

5/25/2016

15

Asynchronous Design Levels of Abstraction

5/25/2016Asynchronous Control Circuit Design - L129

System-level
Optimization

Datapath
Circuits

Control
Circuits

 Control Circuits –
Implementing
Channel Protocols
 Latch Opening

and Closing

 Data Token

Processing

 Data,

control

interaction

 Throughput,
Latency
Optimization
 Hiding

handshake
overhead

 Retiming, etc.

Asynchronous Design Levels

5/25/2016Asynchronous Control Circuit Design - L130

 Block-Level Design – Micro-architectural Level
 Control Circuits – Implementing Channel Protocols

 Handshake-based Token Movement, i.e. H/S Protocol Implementation

 Latch Opening and Closing

 Synchronization of Multiple Requests and Acknowledgments, … etc.

 Datapath Circuits – Data Token Processing
 Asynchronous Implementation of Combinational Clouds and Interaction with the

H/S-based Control Circuits
 Bundled-data, i.e. delay-element based

 Data-Dependent Latency – Multiplexed Delay, based on Operands/Operation

 Dual-Rail/Indicating Logic (Encoded)

 System-level Optimization –Architecture Level
 Optimizing Token Cycle Time, Throughput (Tokens/sec)

 Trading-off Token Latency for Token Throughput

 Hiding Handshake Delays to achieve comparable cycle time to sync.

 Retiming, i.e. Splitting Combinational Logic, adding Token Buffers
(Latches)

5/25/2016

16

Logic Hazards (Glitches)

Asynchronous Control Circuit Design - L131

 Synchronous Circuits

 Glitches tolerated because outputs sampled only after signals settle

 Clocking constraints

 Clock edge occurs only after data

settles

 Limits clock frequency

 Asynchronous Circuits

 Control circuits

 Avoided completely

 Hazard-free logic synthesis techniques

 Datapath (Either)

 Outputs sampled after signal settles OR

 Avoided completely

5/25/2016

Asynchronous Circuits - Classes

5/25/2016Asynchronous Control Circuit Design - L132

 Timing Model (or Class) is used to define specific timing

assumptions with respect to correct circuit operation

 DI

 Arbitrary gate and wire delays (unbounded)

 QDI

 DI except for Isochronic Forks

 No need to acknowledge fanouts

 SI (Muller) circuits

 Arbitrary gate delay no wire delay

 Only applicable to small-scale control circuits

 Fundamental Mode (Huffman) circuits

 Outputs and Local State (internal) stabilize

 before a new input change from the circuit’s environment

QDI

SI

Fundamental
Mode

Timing Assumptions

Pyramid

5/25/2016

17

2-Phase Bundled-Data

Asynchronous Control Circuit Design - L133 5/25/2016

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

 Two-phase Bundled-Data Protocol
 Both rising and falling transitions on Req

 Means new data are available

 Both rising and falling transitions on Ack
 Means data have been acknowledged

 Sometimes called transition signaling
 It is the transition that is meaningful (stateful), not the level values

2nd data1st data

Req

Ack

Data

 Push Channels
 Pull Channels shortly

1-of-N Protocols

Asynchronous Control Circuit Design - L134

Data

Ack

Dual-Rail (1-of-N) Channel

Sender Receiver

5/25/2016

 Dual-Rail

 4 phase

 2 wires per bit

 1-of-4

 4 phase

 4 wires per 2 bits

Data_0

Data_1

Ack

 1
st
 token = 0 2

nd
 token = 1

Data_0

Data_3

Ack

 1
st
 token = 1 2

nd
 token = 3

Data_1

Data_2

(a)

(b)

5/25/2016

18

(a)

(c)

(b)

1
st
 data 2

nd

Req

Ack

Late

Req

Early 1
st
 data

Ack

2
nd

 data

0
th

1
st
 data 2

nd
Data

Ack

0
th

Req

Broad

Pull Channels

5/25/2016Asynchronous Control Circuit Design - L135

 Early:
 Data stable after Ack+

 Data stable until Req-

Sender

Request

Acknowledge

Single-Rail Data

Receiver

 Late:
 Data stable after Ack-

 Data stable until Req+

 Broad:
 Data stable after Ack+

 Data stable until Req-

Abstract Channel Diagrams

Asynchronous Control Circuit Design - L136

(a)

(b)

(c)

Handshaking details omitted

5/25/2016

 Synchronization channel –
no data attached/bundled
 No data – Control only

 Active on right side

 Pull Channel

 Push Channel

5/25/2016

19

 Enclosed Handshaking

 B completes handshake with C
before starting handshake with D

 Operation associated with C occurs before
operation associated with D

 B can enclose both handshakes in
handshake with A

 Completion of handshake with A is acknowledgement that
the tasks of C and D are done

 Pipelining Handshake

 B overlaps handshake with C and handshake with A

 Creates pipeline behavior

 Tokens flow on both channels

 Increases throughput

Sequencing and Concurrency

Asynchronous Control Circuit Design - L137

B
C
D

A

A B C

5/25/2016

A

B

C

D

Token Buffer Pipelines

Pipelining Data Tokens

5/25/2016Asynchronous Control Circuit Design - L138

5/25/2016

20

Pipelined Handshaking

Asynchronous Control Circuit Design - L139

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

5/25/2016

 Pipeline handshaking enables multiple tokens to exist in pipeline
 Each token represents intermediate result of different problem instance

 Increases throughput of system

 No tokens lost despite relative speed of stages – has implicit
flow control

 Two types
 Full buffers can support distinct tokens on inputs/output channels

 Half buffers cannot support distinct tokens on inputs/outputs
 N-stage pipeline of half-buffers can support a maximum of N/2 tokens

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

Full-Buffer Handshaking

Asynchronous Control Circuit Design - L140

Handshaking assuming Bit Bucket is Stalled

5/25/2016

 Pipeline

can store

tokens at

every

buffer

T1 T2 T3 T4

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1 T2

T1

T3

T1

T2

5/25/2016

21

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1

T1

T1

T1

T2

T2

Handshaking assuming Bit

Bucket is Stalled

 Constraint that leads

to a half-buffer:

 output channel must

be acknowledged

before input channel

completes handshake

 e.g., c1ack+

before c0ack-

 Pipeline can store

tokens at every other

buffer

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

Half-Buffer Handshaking

Asynchronous Control Circuit Design - L141 5/25/2016

Conditional and Non-Linear Pipeines

Asynchronous Control Circuit Design - L142

 MERGE
 Wait for token on S.

 Depending on value,
wait for token on either A or B and send onto O

 SPLIT
 Wait for token on S and A.

 Dependent upon value of S,
send copy of token on A to O1 or O2

(a) (b)

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

5/25/2016

5/25/2016

22

Areq

Aack

Breq

Back

S0

Sack

S1

Oreq

Oack

Timing Diagram of Merge

Asynchronous Control Circuit Design - L143 5/25/2016

 Assumptions (in this example)
 Full-buffer Two-phase Handshaking

 dual-rail select signal

 Functionality – Handshake MUX
 Token on A consumed first

 After token on S = 0

 i.e., S0 changes

 Token on B stalled until consumed
second
 After token on S = 1

 i.e., Once S1 changes

 Result: two tokens on O
 First = Oreq+

 Second = Oreq-

Send and Receive Cells

 SEND

 Always receive on L and E.

 Conditionally send on R if E==1.

 RECV

 Always receive on E and send on R.

 Conditionally receive on L if E==1.

5/25/2016Asynchronous Control Circuit Design - L144

R
EC

VL R

E

SEN
DL R

E

5/25/2016

23

Asynchronous Pipelines

Dynamic behavior is very different from synchronous design

5/25/2016Asynchronous Control Circuit Design - L145

Synchronous vs. Asynchronous Pipelines

5/25/2016Asynchronous Control Circuit Design - L146

 Intuitive Understanding of the Differences

5/25/2016

24

Datapath

Example

5/25/2016Asynchronous Control Circuit Design - L147

FF Datapath: each

FF is 2 Latches

5/25/2016Asynchronous Control Circuit Design - L148

5/25/2016

25

Synchronous vs. Asynchronous

5/25/2016Asynchronous Control Circuit Design - L149

 Tokens represent Data

 Data Tokens

 We now compare the Synchronous and Asynchronous

Data Flows in the simplest version of this datapath

 Synchronous version first…

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L150

5/25/2016

26

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L151

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L152

5/25/2016

27

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L153

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L154

5/25/2016

28

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L155

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L156

5/25/2016

29

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L157

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L158

5/25/2016

30

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L159

Synchronous Token Movement

5/25/2016Asynchronous Control Circuit Design - L160

 Tokens are always separated by empty latches

 Aka “Bubbles”

 Latency in strongly dependent on # of clock cycles

 Pipeline delays result in cycle-based Latency increase

 Now, let’s look at the Asynchronous version…

5/25/2016

31

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L161

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L162

+

5/25/2016

32

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L163

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L164

5/25/2016

33

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L165

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L166

5/25/2016

34

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L167

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L168

5/25/2016

35

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L169

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L170

5/25/2016

36

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L171

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L172

5/25/2016

37

Asynchronous Token Movement

5/25/2016Asynchronous Control Circuit Design - L173

 Latency depends on combinational cloud delays

 Not multiple of a clock, data-dependent

 Token Speed depends on available space in pipeline stages

 Contention reduces performance!

 Similarly to people in a queue (line)

 Increasing pipe stages can:

 Increase Tokens/sec, i.e. Performance

 Reduce Latency, if Local Delays are Improved,

 e.g. wire buffering

 Notion of total (or max/min) Tokens in the system, and

total (or max/min) empty token buffers (bubbles)

 System-Level optimization issue

Petri Nets (PN) in a Nutshell

5/25/2016Asynchronous Control Circuit Design - L174

 A PN is a graph of Places and Transitions
 Allowed connections

 Places are connected to Transitions

 Transitions are connected to Places

 Places
 Places hold a token (in general can be more than 1)

 A place with a token in active (marked)

 Transitions
 A transition is activated (fires)

 when tokens are available on all of its input places

 When it fires
 it creates new tokens on all of its output places

 PN can model both
 Choice, Return from Choice

 Fork and Join

5/25/2016

38

High-Level Asynchronous Pipeline:

PTnet Models

5/25/2016Asynchronous Control Circuit Design - L175

 Full Buffer High-Level Model

 Used to analyze and optimize Throughput and Latency:

High-Level Asynchronous Pipeline

PTnet Models

5/25/2016Asynchronous Control Circuit Design - L176

 Full Buffer and Half Buffer High-Level Models

 Used to analyze and optimize Throughput and Latency:

5/25/2016

39

Dynamic Pipeline Behavior

Asynchronous Control Circuit Design - L1

 Cycle Time
 T = FL + BL (simplest case)

 Latency
 input to output delay = N * FL

 Throughput
 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy
 Maximum token capacity of the pipeline

 Spread
 distance between successive tokens in an optimally-filled pipeline

 token distance travelled for 1 T = (FL + BL)/FL

 Dynamic Slack or Dynamic Occupancy
 Average token capacity in the pipeline at optimal throughput

 N*1/Spread = (N*FL)/(FL + BL)

5/25/201677

Dynamic Pipeline Behavior

Asynchronous Control Circuit Design - L1

 Cycle Time

 T = FL + BL (simplest case)

 Latency

 input to output delay = N * FL

 Throughput

 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy

 Maximum token capacity of the pipeline

 Dynamic Slack or Dynamic Occupancy

 Average token capacity in the pipeline at optimal throughput

 N*1/Spread = (N*FL)/(FL + BL)

5/25/201678

5/25/2016

40

Dynamic Occupancy, Throughput

 Dynamic Slack or Dynamic Occupancy
Formula for N buffers:

 Assumptions:

 Tokens not stalled by buffers or
Bit Bucket resetting

 Tokens inserted at rate of local cycle time
(FL + BL)

 Tokens consumed at rate of local cycle
time

peak

throughput

bubble

limited

region

token

limited

region

dynamic

slack

static

slack

tokens

throughput

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

FL

BL

N

BLFL

FLN






1

*

Asynchronous Control Circuit Design - L1

(average)

Peak Throughput

= 1/(FL + BL)

5/25/201679

Throughput vs. Tokens Graph

 Throughput is zero
 When no tokens in pipe

 When pipeline is full of
tokens

 Peak throughput in-
between
 Token limited region

 Faster Bit Gen
improves throughput

 Bubble limited region

 Faster Bit Bucket
improves performance

peak

throughput

bubble

limited

region

token

limited

region

dynamic

slack

static

slack

tokens

throughput

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

Asynchronous Control Circuit Design - L1 5/25/201680


N

FL

1


N

BL

1

5/25/2016

41

Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C31

t=0t=2t=8t=4t=6t=18t=10

2

t=12t=14t=16

34

t=20t=22t=24

5

t=0: Token 1 generated

t=6: Token 2 generated

t=12: Token 3 generated

t=18: Token 4 generated

t=24: Token 5 generated

Asynchronous Control Circuit Design - L1 5/25/201681

 Slow left environment

 Bit Gen: LCT = 6

 Buffer: FL=2, BL=2

 Bit Bucket: LCT = 2

Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C31

t=0t=6t=2t=4t=8t=10t=12t=14

23

t=16

45

t=18t=20

t=6: Token 1 consumed

t=12: Token 2 consumed

t=18: Token 3 consumed

t=24

t=24: Token 4 consumed

t=22

Asynchronous Control Circuit Design - L1 5/25/201682

 Slow right environment

 Bit Gen: LCT = 2

 Buffer: FL=2, BL=2

 Bit Bucket: LCT = 6

5/25/2016

42

Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

tokens

throughput

Buffer: FL=2, BL=2

Asynchronous Control Circuit Design - L1 5/25/201683

More Complex Example: Pipeline

Performance

5/25/2016Asynchronous Control Circuit Design - L184

 What is the impact of fork/join on asynchronous

pipelines?

 Assume FL = 1, BL = 1 4, 3 Fork Join

5/25/2016

43

More Complex Example: Pipeline

Performance

5/25/2016Asynchronous Control Circuit Design - L185

 What is the impact of fork/join on asynchronous

pipelines?

 Assume FL = 1, BL = 1 4, 2 Fork Join

More Complex Example: Pipeline

Performance

5/25/2016Asynchronous Control Circuit Design - L186

 What is the impact of fork/join on asynchronous

pipelines?

 Assume FL = 1, BL = 1 4, 1 Fork Join

5/25/2016

44

D
E
M
U
XA,B

op

Add/Sub

Mult

M
U
XD

+

0

+ +

D

Stalled!

P. A. Beerel et. al. , “Slack matching asynchronous designs,” ASYNC’06

D

Stalled!

Represents up to 30% of area and power

5/25/2016Asynchronous Control Circuit Design - L187

Key to High Performance –

Slack Matching

 The Slack Matching Problem:
 Add minimum number of pipeline buffers to the circuit to meet a target T

 This problem is unique to Asynchronous Design
 Unfortunately, often yields significant Area and Power Overhead!

Latch Control Circuits

Basic Example of Latch Control

5/25/2016Asynchronous Control Circuit Design - L188

5/25/2016

45

Bundled-Data Control Circuits –

Basic Latch Control

5/25/2016Asynchronous Control Circuit Design - L189

Latch

Controller

Left Hand Side

Channel (H/S)

Right Hand Side

Channel (H/S)

Latch

 provide latch EN

enable signal

 Latch Open/Close

Logic

 LHS/RHS Handshakes

indicate Channel State

C Gate – PN to STG Conversion

5/25/2016Asynchronous Control Circuit Design - L190

a+ b+

c+

a- b-

c-

a+ b+

c+

a- b-

c-

 keep transitions

 keep tokens

 hide places

5/25/2016

46

Condition 1: Latch Should Not Open until

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L191

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Condition 1: Latch Should Not Open until

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L192

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

47

Condition 1: Latch Should Not Open until

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L193

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Condition 1: Latch Should Not Open until

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L194

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

48

Latch Control Signal Dependencies

Imposed by Condition 1

5/25/2016Asynchronous Control Circuit Design - L195

A B C D

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

0 0 0 0

Latch Control Signal Dependencies

Imposed by Condition 1

5/25/2016Asynchronous Control Circuit Design - L196

A B C D

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

0 0 0 0

5/25/2016

49

Latch Control Signal Dependencies

Imposed by Condition 1

5/25/2016Asynchronous Control Circuit Design - L197

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Condition 2: Latch Should Not Close until

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L198

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

50

Condition 2: Latch Should Not Close until

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L199

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Condition 2: Latch Should Not Close until

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L1100

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

51

Condition 2: Latch Should Not Close until

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L1101

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Latch Control Signal Dependencies

Imposed by Conditions 1 and 2

5/25/2016Asynchronous Control Circuit Design - L1102

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

52

Folded Latch Control Signal Dependencies

Imposed by Conditions 1 and 2

5/25/2016Asynchronous Control Circuit Design - L1103

A B C D

 Latch Control Signal

Graph Dependencies

can also be visualized

in the Time Domain

A

B

A+ B+ C+ D+

A- B- C- D-

Formal Models For Asynchronous Control

Circuit Design

5/25/2016Asynchronous Control Circuit Design - L1104

 The graph model examples are really simplified PN

 PN is Place, Transition Net (invented by Petri)

 Represent Dependencies between signal transitions

 Causality

 Can Represent Choice

 Multiple Signals (Places really) are active at one time

 Represent Concurrency

 A PN is really a set of Multiple, Interacting FSMs all

integrated and hidden within a single Graph!

 Compact and Convenient

 Ideal for Static Verification

