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Asynchronous Design Fundamentals

Lecture Notes 1

» Motivation for Asynchronous Design
» Challenges in Traditional Synchronous Design
» Benefits of Asynchronous Design
» Startup and other Industrial Efforts (Past and Current)
» Challenges and Opportunities Moving Forward
» Data Channels and Channel Based Design
» Handshaking and its impact
» Asynchronous Pipelines
» Data Token Movement and Control
» Characteristics and Performance
» Modelling using PTnets
» Latch Controller Design
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Motivation
CHALLENGES GOALS
Power

Performance

Everything else:
Design cost,

complexity, risk,
time-to-market

>3
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Motivation I: Network on Chip

» Scale of chip / designs
increasing

» Design efficiency
demands network on
chip

» Synchronous NoCs
challenging
» Span large portion of

chips

» Hard to clock gate

» Impacted severely by
global PVT variations

» Buffering to reduce
contention is costly

» Synchronization penalties ; 1
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Motivation II: Dynamic Variations
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» Dynamic variations force margins on clock frequency
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Motivation III: Near Threshold Computing
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» NTV computing provides ~5X i
energy efficiency vdd (V)
» But margins grow by ~5x forcing
constrained libraries and flows [Dreslinksi et al., IEEE Proc. 2010]
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Motivation IV: Neuromorphic Computing
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» Neuromorphic cores
» Large scale

» hard to route a global
clock everywhere

» Low activity

» Asynchronous becoming
default approach
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Motivation V: Metastabilty

»

4
»

Multiple clock domains, and dynamic
frequency scaling

Crossings are hard, challenging, risky
Subject to variations and modes of

use
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Understanding comes from theory of \ % ﬂ

asynchronous circuits

Solutions

» Synchronizer design and verification

» Arbiters

» Encapsulate the issues
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The Asynchronous Alternative

Asynchronous

clock
channel

Synchronous System Asynchronous System

Synchronization and communication between blocks
implemented with asynchronous channels that send and receive tokens

» 9 Asynchronous Control Circuit Design - LI 5/25/2016

Concurrent Communicating Hardware

» System is a collection of Processes linked by Channels
» Channels pass messages with guaranteed delivery

» Processes synchronize

» Processes can be decomposed into smaller processes

ALU

BranchUnit |

YBus
i | .|

Interrupts|  Ports

SFR RegFile | Accumulator )

irupt external poris
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Asynchronous Channels

Ack [ 3
Sender Req Receiver Req _'_]/2_ 4
Ack :
et RE o —

Bundled-Data Channel L » Data stable

) AEmm— Ack 2 4
ender Receiver 1 3
- s
Data ;

1-of-N

Dual-Rail (1-of-N) Channel
| of the N wires rises
(N-1 remains zero)
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Asynchronous Blocks

delay line

Lre Lo =
qa:D—»@RL Rreq Ruc
Lack e Rack Q
Ldata Co”?b < FF J\ Rdata N N
::> Logic ﬂ/ Lgaa =74 W Raata
» Bundled-Data » QDI

» Delay line Matched to

o » Data and Completion integrated
Worst-Case Combinational

Logic Delay » Relies on Completion Sensing Logic
» May be Post-silicon Tunable » Uses Proprietary Cell Libraries
» Uses Standard-Cell Libraries » Domino-Style Dynamic Logic
b 12 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Performance Advantages

» Freedom from global clock(s)

» Local versus global control supports higher frequencies
with less effort

» Flexible pipelining — block- to gate-level

» Efficient Support for Globally Asynchronous Locally Synchronous

(GALS) Design

» Average-case delay

v v v v v v

Temperature — Design Adapts to Temperature (e.g. Wide
Temperature range)

» Also leads to Power Advantages!

Architectural — Optimize Architecture for the Common Data Flow
Micro-architectural — Optimize Blocks for Average-case Input Data
Gate-level — Control Responds to Average Delays (e.g. Metastability)
Process — Design Adapts to Process Variation (e.g. Tunable Delay Lines)
Voltage — Design Adapts to Voltage (e.g. Dynamic Voltage Scaling)

p 13 Asynchronous Control Circuit Design - LI~ 5/25/2016

Power Advantages

» Automatically adapts to operating conditions and variations
» Combines: voltage/frequency scaling, clock-gating, tuning
» More power savings, than the sum of all these techniques

» Clock-gating inherent in most asynchronous designs
» Only expend energy in blocks when blocks are used
» Inherent in architectural level rather than as an after-thought

» Blocks can be designed at ideal throughput
» Rather than dictated by global clock period

» Less frequently used blocks can be designed at lower throughput

» Immediate start-up (no need to wait for clock to stabilize)
» Go quiet; Run fast; Go quiet again

) 14 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Other Advantages

» Reduced Electromagnetic Noise

» No global clock

» Frequency spread out much more

» Co-locate with sensitive analog

» Less noise - does not effect analog circuitry

Ease of Modular Composition
» Reduces design complexity, cost, risk, iterations, time to market

» Supports GALS design for multi-frequency disparate SoC
designs

» Handshaking offers plug-and-play IP

p 15 Asynchronous Control Circuit Design - LI~ 5/25/2016

Asynchronous Challenges (1 of 2)

»

CAD tools

» Support from major EDA companies

Cell/IP Core Libraries for Asynchronous Design

» Most design styles could benefit from at least a few asynchronous cells
» e.g., C-elements, Mutual Exclusion Elements

» Some design styles heavily rely on custom gates
» QDI PCHB, NCL

High-performance asynchronous design
» Some blocks can be 2-5x larger due to dual-rail design
» May consume more peak power than desired

Low-power asynchronous design
» Can be slower than desired, if control overhead not managed

p 16 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Asynchronous Challenges (2 of 2)

» Debug
» Circuit can’t be slowed via clock to aid in debugging

» ...but the circuit can be single-stepped more easily!

» Asynchronous test
» Testers geared toward synchronous
» Standards do not exist and test methodologies still evolving

» Automatic test pattern generation in infancy

p 17 Asynchronous Control Circuit Design - LI 5/25/2016

Asynchronous Commercialization Efforts

(1 of 2)

» Fulcrum Microsystems (www. fulcrummicro.com)

» High-performance computing and networking markets
» Founded out of Caltech in 2000, Sold to Intel in 201 |

» Several asynchronous products shipping, Full-custom flow still in use

today

» TimeLess Design Automation
» High-Performance ASIC Flow for Asynchronous Design
» Founded out of USC in 2008
» Sold to Fulcrum Microsystems in 2010
» Semi-custom flow still in use today

» Achronix (www.achronix.com)
» High-performance async FPGA core with synchronous interfaces
» Founded out of Cornell research in 2006

» Speedster®22i HP is shipping and includes fine-grain asynchronous
pipelines

p 18 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Asynchronous Commercialization Efforts
(2 of 2)

»

Tiempo (www.tiempo-ic.com)

» IP Cores and ASIC Flow (Power/Performance Tradeoff)

» Smartcards ...

vSync Circuits (www . vsyncc. com)

» EDA and IP for Multi-Clock Domain design integration and verification
Reduced Energy Microsystems (remicro.systems)

» Low Power ASIC microprocessors using asynchronous resiliency

» Founded in 2015 — Newest kid on the block

IBM

» Neuromorphic True North core based on QDI technology (EXPAND)
Several Past Start-ups

» Handshake Solutions,

» Silistix,
» Elastix, Nanochronous,
» Cogency
p 19 Asynchronous Control Circuit Design - LI 5/25/2016
Channel-Based Design
Top-Level View of Asynchronous Circuits
p 20 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Hardware Abstraction

» System:
» Collection of “Processes” linked by Channels
» Channels pass messages with guaranteed delivery
» Processes synchronize
» Processes can be decomposed into smaller processes

BranchUnit E 1

Interrupts|  Poris SFR RegFile | Accumulator

irupt external ports

) 21 Asynchronous Control Circuit Design - LI 5/25/2016

Synchronous Version

» In case of edge triggered stages
» During the cycle: Process
» At the edge of the clock: Pass to successor

- Edd

—_—
Process
Pass to
successor ‘ g
A
rlock ® © & o
p 22 Asynchronous Control Circuit Design - LI 5/25/2016
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Synchronous Version

» Central synchronizer
b "SYNC(clk)

input clk;
input left;
output reg right;

always
begin
"SYNC(clk);

right = left;
end
endmodule

module ff(clk, left, right)

p 23 Asynchronous Control Circuit Design - LI 5/25/2016

Synchronous FF Stage

» Abstract synchronization

b “SYNC(clk)

module ff(clk, left, right)

module ff(clk, left, right)

input  clk; input clk;
input left; input left;
output reg right; output reg right;
always @(posedge clk) begin always
right = left; begin
end "SYNC(clk);
endmodule right = left;
end
endmodule
p 24 Asynchronous Control Circuit Design - LI 5/25/2016
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Asynchronous Version

» Distributed
Synchronization
» Sender
» Provides data
» Synchronize
» Receiver
» Synchronize
» Samples data

module Sender(right)
output reg right;
output reg data;

always

begin

right = data;
"SYNC(right);
end
endmodule

module Receiver(left)
input left;
output reg data;

always

begin
"SYNC(left);
data= left;

end

endmodule

Receiver

Asynchronous Control Circuit Design - LI
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Asynchronous Channels

» Channel: A bundle of wires and a protocol for
communicating data/control called a token

»  Data/control encoding: Dual-rail or Single-rail encoded

3 tells what the data is, and when it is valid

»  Communication protocol: Handshake over
request/acknowledgement wires

Sender

Functional
Block

Abstract
Channel

Receiver

Asynchronous Control Circuit Design - LI

5/25/2016

5/25/2016

13



Asynchronous Channel Types

« Ak [ /3
Sender Req Receiver Req ) 2
Ack :
Data Data —y¢
XX

Bundled-Data Channel { » Data stable

e N Ack 2 4
Sender Receiver 1 3
- s
Data 1-of-N i

Dual-Rail (1-of-N) Channel
1 of the N wires is risen
(N-1 remains zero)
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Asynchronous Channel Types

« Ak & /3
Sender Req Receiver Req 9 2
Ack :
Data H
S S——

Bundled-Data Channel Ly Data stable

Ak | Ack 2 4
Sender Recei
eceiver o 1 3
Data
x.1

Dual-Rail (1-of-2) Channel 1 of the 2 wires rises
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Asynchronous Design Levels of Abstraction

System-level
Optimization

» Throughput,

Latency
» Data Token Optimization

Processing Datapath » Hiding

» Data handshake
) . . overhead
control C I rC u Its » Retiming, etc.
interaction

» Control Circuits —
Implementing
Channel Protocols

» Latch Opening
and Closing

p 29 Asynchronous Control Circuit Design - LI 5/25/2016

Asynchronous Design Levels

» Block-Level Design — Micro-architectural Level
» Control Circuits — Implementing Channel Protocols
» Handshake-based Token Movement, i.e. H/S Protocol Implementation
» Latch Opening and Closing
» Synchronization of Multiple Requests and Acknowledgments, ... etc.
» Datapath Circuits — Data Token Processing

» Asynchronous Implementation of Combinational Clouds and Interaction with the
H/S-based Control Circuits

Bundled-data, i.e. delay-element based
Data-Dependent Latency — Multiplexed Delay, based on Operands/Operation
Dual-Rail/Indicating Logic (Encoded)

» System-level Optimization — Architecture Level
>
3
>
>

Optimizing Token Cycle Time, Throughput (Tokens/sec)
Trading-off Token Latency for Token Throughput
Hiding Handshake Delays to achieve comparable cycle time to sync.

Retiming, i.e. Splitting Combinational Logic, adding Token Buffers
(Latches)

p 30 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Logic Hazards (Glitches)

» Synchronous Circuits

» Glitches tolerated because outputs sampled only after signals settle
» Clocking constraints

» Clock edge occurs only after data
settles

» Limits clock frequency
» Asynchronous Circuits

» Control circuits

» Avoided completely
» Hazard-free logic synthesis techniques

» Datapath (Either)
» Outputs sampled after signal settles OR
» Avoided completely

p 31 Asynchronous Control Circuit Design - LI 5/25/2016

Asynchronous Circuits - Classes

» Timing Model (or Class) is used to define specific timing
assumptions with respect to correct circuit operation
» DI
» Arbitrary gate and wire delays (unbounded) Timing Assumptions
» QDI Pyramid
» DI except for Isochronic Forks

No need to acknowledge fanouts
» SI (Muller) circuits

» Arbitrary gate delay no wire delay

» Only applicable to small-scale control circuits
» Fundamental Mode (Huffman) circuits

Fundamental
Mode

» Outputs and Local State (internal) stabilize

before a new input change from the circuit’s environment

p 32 Asynchronous Control Circuit Design - LI 5/25/2016
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Ack

—

Sender —Rea [ Receiver|

Data
2—Phase Bundled_Data Bundled-Data Channel

» Two-phase Bundled-Data Protocol » Push Channels

» Both rising and falling transitions on Req » Pull Channels shortly
» Means new data are available

» Both rising and falling transitions on Ack
» Means data have been acknowledged
» Sometimes called transition signaling
» It is the transition that is meaningful (stateful), not the level values

p 33 Asynchronous Control Circuit Design - LI 5/25/2016
Ack |
Sender Receiver
I
Data
1 ‘Of‘N PI'OtOCOlS Dual-Rail (1-of-N) Channel
«— 1% token = 0—> ¢«—2"' token = 1—>
Data_0 .
s » Dual-Rail
Data_1 » 4 phase
Ak \ » 2 wires per bit

(@)

<— 1% token = 1—> ¢«—2" token = 3—>

Data_0
Data_1
o » |-of-4
bata 2 » 4 phase
Data_3 » 4 wires per 2 bits
Ack \
(b)
p 34 Asynchronous Control Circuit Design - LI 5/25/2016
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Pull Channels

_Request

Acknowledge,

Sender N| Receiver
Single-Rail Data

T

)
Early fE50X 1° data X 2 data

@

iy

2""Data

» Early:
» Data stable after Ack+
» Data stable until Reg-

» Late:
» Data stable after Ack-
» Data stable until Req+

» Broad:
» Data stable after Ack+
» Data stable until Reg-

p 35 Asynchronous Control Circuit Design - LI 5/25/2016

Abstract Channel Diagrams

@

(b)

(©

» Push Channel

» Pull Channel

» Synchronization channel —
no data attached/bundled
» No data — Control only
» Active on right side

Handshaking details omitted

p 36 Asynchronous Control Circuit Design - LI 5/25/2016
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Sequencing and Concurrency

» Enclosed Handshaking

» B completes handshake with C c
before starting handshake with D B
» Operation associated with C occurs before D
operation associated with D .
» B can enclose both handshakes in B/ -
handshake with A c A -

D
» Comepletion of handshake with A is acknowledgement that
the tasks of C and D are done

» Pipelining Handshake

» B overlaps handshake with C and handshake with A
» Creates pipeline behavior

» Tokens flow on both channels m
» Increases throughput

p 37 Asynchronous Control Circuit Design - LI 5/25/2016

Token Buffer Pipelines

Pipelining Data Tokens

p 38 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Pipelined Handshaking

Bit Bit
Gen ®c» BUF @-c» BUF @-c>» BUF @-csp Bucket

» Pipeline handshaking enables multiple tokens to exist in pipeline
» Each token represents intermediate result of different problem instance
» Increases throughput of system

» No tokens lost despite relative speed of stages — has implicit
flow control

» Two types
» Full buffers can support distinct tokens on inputs/output channels
» Half buffers cannot support distinct tokens on inputs/outputs

» N-stage pipeline of half-buffers can support a maximum of N/2 tokens

p 39 Asynchronous Control Circuit Design - LI 5/25/2016

Bit Bit
Gen Bucket

Full-Buffer Handshaking

Coreq

» Pipeline
can store
tokens at
every o=
buffer ciack
Coreq
C2ack
Careq
m—
C3ack
Handshaking assuming Bit Bucket is Stalled
p 40 Asynchronous Control Circuit Design - LI 5/25/2016
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Bit Bit
Gen Bucket

Half-Buffer Handshaking

Coreq

» Constraint that leads

to a half-buffer: ok T
» output channel must [
be acknowledged cren
before input channel —

Clack

completes handshake

» eg,clack+
before cOack-

Careg

» Pipeline can store crak

tokens at every other T
buffer 4&(_\

Handshaking assuming Bit U\

Bucket is Stalled Caack

p 41 Asynchronous Control Circuit Design - LI 5/25/2016

Conditional and Non-Linear Pipeines

—A Z v O
m
T o A E
—p{B rGr)1 o2
s S
() ? (b) ?

» MERGE
» Wait for token on S.

» Depending on value,
wait for token on either A or B and send onto O

» SPLIT
» Wait for token on S and A.

» Dependent upon value of S,
send copy of token on A to Ol or O2

p 42 Asynchronous Control Circuit Design - LI 5/25/2016
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Timing Diagram of Merge

Areq » Assumptions (in this example)

; i » Full-buffer Two-phase Handshaking
Aack _| » dual-rail select signal
Breq _/L

P » Functionality — Handshake MUX
\ \ » Token on A consumed first

» After tokenonS=0

» ie., SO changes

Back

SO

s1 » Token on B stalled until consumed

second

Sack » After tokenon S = |
» ie.,Once S| changes

Oreq » Result: two tokens on O
» First = Oreq+

Oack » Second = Oreg-

p 43 Asynchronous Control Circuit Design - LI 5/25/2016

Send and Receive Cells

L —

PR L —>

anN3s

m—  AJ

» SEND E
» Always receive on L and E.
» Conditionally send on R if E==1.
» RECV
» Always receive on E and send on R.
» Conditionally receive on L if E==1.

p 44 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Asynchronous Pipelines

Dynamic behavior is very different from synchronous design

p 45 Asynchronous Control Circuit Design - LI 5/25/2016

Synchronous vs. Asynchronous Pipelines

» Intuitive Understanding of the Differences

p 46 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Datapath
Example

FF Datapath: each
FF is 2 Latches —%.-—-

Asynchronous Control Circuit Design
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Synchronous vs. Asynchronous

» Tokens represent Data
» Data Tokens

» We now compare the Synchronous and Asynchronous
Data Flows in the simplest version of this datapath

» Synchronous version first...

p 49 Asynchronous Control Circuit Design - LI~ 5/25/2016

Synchronous Token
Movement '

_?"

p 50 Asynchronous Control Circuit Design 16
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Synchronous Token
Movement

Asynchronous Control Circuit Design

Synchronous Token
Movement

Asynchronous Control Circuit Design
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Synchronous Token
Movement

Asynchronous Control Circuit Design

Synchronous Token
Movement

Asynchronous Control Circuit Design
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Synchronous Token
Movement

Asynchronous Control Circuit Design

Synchronous Token
Movement

Asynchronous Control Circuit Design
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Synchronous Token
Movement

Asynchronous Control Circuit Design

Synchronous Token
Movement

Asynchronous Control Circuit Design
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Synchronous Token
Movement " ‘

-

Asynchronous Control Circuit Design

Synchronous Token Movement

» Tokens are always separated by empty latches
» Aka “Bubbles”

» Latency in strongly dependent on # of clock cycles

» Pipeline delays result in cycle-based Latency increase

» Now, let’s look at the Asynchronous version...

p 60 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Clockless Token
Movement

= =

iH " i‘ ’ )‘
¢ Y ", ‘
RO

| Asynchronous Control Circuit Design! ’a 6

Clockless Token
Movement

"- D

5
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Clockless Token
Movement

Clockless Token
Movement

v -0

" , i )‘ “ “’ ‘! )
;
¥ ¥

Asynchronous Control Circuit Design!
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Clockless Token
Movement

Clockless Token
Movement — \F

% a2 o
by

)
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Clockless Token
Movement

» 67

Clockless Token
Movement — \F

% a2 o
by

)

5/25/2016
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Clockless Token
Movement

» 69

Clockless Token
Movement

v -0

" , i )‘ “ “’ ‘! )
;
¥ ¥
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Clockless Token
Movement

Clockless Token
Movement
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Asynchronous Token Movement

» Latency depends on combinational cloud delays

» Not multiple of a clock, data-dependent

» Token Speed depends on available space in pipeline stages
» Contention reduces performance!
» Similarly to people in a queue (line)
» Increasing pipe stages can:
» Increase Tokens/sec, i.e. Performance
» Reduce Latency, if Local Delays are Improved,
e.g. wire buffering
» Notion of total (or max/min) Tokens in the system, and
total (or max/min) empty token buffers (bubbles)

» System-Level optimization issue

p 73 Asynchronous Control Circuit Design - LI~ 5/25/2016

Petri Nets (PN) in a Nutshell

» A PN is a graph of Places and Transitions
» Allowed connections
» Places are connected to Transitions
» Transitions are connected to Places
» Places
» Places hold a token (in general can be more than )
» A place with a token in active (marked)
» Transitions
» A transition is activated (fires)
» when tokens are available on all of its input places
» When it fires
» it creates new tokens on all of its output places
» PN can model both
» Choice, Return from Choice
» Fork and Join

p 74 Asynchronous Control Circuit Design - LI~ 5/25/2016
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High-Level Asynchronous Pipeline:
PTnet Models

» Full Buffer High-Level Model
» Used to analyze and optimize Throughput and Latency:

Source Sink

p 75 Asynchronous Control Circuit Design - LI 5/25/2016

High-Level Asynchronous Pipeline
PTnet Models

» Full Buffer and Half Buffer High-Level Models
» Used to analyze and optimize Throughput and Latency:

m

i m”“” i
OO0 O O OO0
To ™ T2 hel T4
! :

p 76 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Dynamic Pipeline Behavior

»

Cycle Time

» T =FL + BL (simplest case)
Latency

» input to output delay = N * FL
Throughput

» # of tokens flowing per unit time, generally = I/T = I/(FL + BL)
» Depends on throughput of sender/receiver

Static Slack or Static Token Occupancy

» Maximum token capacity of the pipeline

Spread

» distance between successive tokens in an optimally-filled pipeline
» token distance travelled for | T = (FL + BL)/FL

Dynamic Slack or Dynamic Occupancy

» Average token capacity in the pipeline at optimal throughput
» N*I/Spread = (N*FL)/(FL + BL)

p 77 Asynchronous Control Circuit Design - LI 5/25/2016

Dynamic Pipeline Behavior

4

Cycle Time

» T=FL + BL (simplest case)
Latency

» input to output delay = N * FL
Throughput

» # of tokens flowing per unit time, generally = I/T = I/(FL + BL)
» Depends on throughput of sender/receiver

Static Slack or Static Token Occupancy

» Maximum token capacity of the pipeline

Dynamic Slack or Dynamic Occupancy

» Average token capacity in the pipeline at optimal throughput
» N*1/Spread = (N*FL)/(FL + BL)

p 78 Asynchronous Control Circuit Design - LI 5/25/2016
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» When no tokens in pipe ZFL

» When pipeline is full of throughput
tokens
» Peak throughput in- peak
between throughput

» Token limited region

» Faster Bit Gen
improves throughput

» Bubble limited region

» Faster Bit Bucket
improves performance

dynamic

slack

» 20

Asynchronous Control Circuit Design - LI

Dynamic Occupancy, Throughput
_ E—
(f;tn cowl BUF [-c»{ BUF @-cos| BUF fcoml povo
» Dynamic Slack or Dynamic Occupancy
Formula for N buffers: Peak Throughput
throughput = |/(FL + BL)
N *FL N A
FL+BL 1+ % peak token ’/- bubble :
SR s met
|
» Assumptions: |
» Tokens not stalled by buffers or |
Bit Bucket resetting |
» Tokens inserted at rate of local cycle time |
(FL + BL) ' (average)
» Tokens consumed at rate of local cycle — # tokens|
time ,‘
dynamic static
SR
p 79 Asynchronous Control Circuit Design - LI 5/25/2016
Throughput vs. Tokens Graph
— -
St sl BUF @cs BUF @-o» BUF fgcon Bkt
. 1 1
» Throughput is zero NS

5/25/2016

# tokens
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slack
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Example: Pipeline Performance

» Slow left environment

. . _ t=0:Token | generated
» Bit Gen:LCT =6 t=6:Token 2 generated
» Buffer: FL=2,BL=2 t=12:Token 3 generated
» Bit Bucket: LCT =2 t=18:Token 4 generated
t=24:Token 5 generated
t=04
C‘ —co BUF f—ci-» BUF {—ce-» BUF | —cap Bu?:ilt(et
p 81 Asynchronous Control Circuit Design - LI 5/25/2016
Example: Pipeline Performance
» Slow right environment
. _ t=6:Token | consumed
» Bit Gen:LCT =2 t=12:Token 2 consumed
» Buffer: FL=2, BL=2 t=18:Token 3 consumed
» Bit Bucket: LCT = 6 t=24:Token 4 consumed
t=00
@ | BUF ol BUF sl BUF [ caf O
I Bucket
p 82 Asynchronous Control Circuit Design - LI 5/25/2016
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Concrete Example: 3-stage Pipeline

Bit Bit
Gen BUF C1: BUF c{ BUF | —capml Bucket
throughput
1/4 —
Buffer: FL=2, BL=2
1/6 —
P> 4 tokens
3/2 3
LI 5/25/2016

Asynchronous Control Circuit Design -

More Complex Example: Pipeline
Performance

pipelines?
» Assume FL = |,BL = |

» What is the impact of fork/join on asynchronous

4, 3 Fork Join

Token
Source

t=57.9.12 ..

Token
Sink

p 84

Asynchronous Control Circuit Design - LI
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More Complex Example: Pipeline
Performance

» What is the impact of fork/join on asynchronous
pipelines?

» Assume FL=I,BL = | 4,2 Fork Join

t=571113 17

Token Token
Source Sink

p 85 Asynchronous Control Circuit Design - LI 5/25/2016

More Complex Example: Pipeline
Performance

» What is the impact of fork/join on asynchronous
pipelines?

» Assume FL=|,BL = | 4, | Fork Join

Token
Source

Token
Sink

t=4510.15

) 86 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Key to High Performance —
Slack Matching

P. A. Beerel et. al. , “Slack matching asynchronous designs,” ASYNC’'06

» The Slack Matching Problem:

» Add minimum number of pipeline buffers to the circuit to meet a target T
» This problem is unique to Asynchronous Design

» Unfortunately, often yields significant Area and Power Overhead!

) 87 Asynchronous Control Circuit Design - LI 5/25/2016

Latch Control Circuits

Basic Example of Latch Control

) 88 Asynchronous Control Circuit Design - LI 5/25/2016
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5/25/2016

Bundled-Data Control Circuits —
Basic Latch Control

» provide latch EN

enable signal
» Latch Open/Close Ater
LC
LOgiC alv

» LHS/RHS Handshakes
indicate Channel State

Right Hand Side
Left Hand Side Channel (H/S)

Channel (H/S)

p 89 Asynchronous Control Circuit Design - LI~ 5/25/2016

C Gate — PN to STG Conversion

>

» keep transitions /\

» keep tokens

» hide places \/

p 90 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Condition 1: Latch Should Not Open until
Successor Latch has Captured Data

! V l l
g > > @ >

I 1 1 1
1 1t 1 1
A0 BO Co DO
A+ B- C+ D-
| ¢ | ¢
A- B+ C- D+
¢ | ¢ |
A+ +———— B- C+ D-
| | | |
A- B+ C- D+
| | ] |
A+ B- C+ D-

} 91 Asynchronous Control Circuit Design - LI 5/25/2016

Condition 1: Latch Should Not Open until
Successor Latch has Captured Data

f 'I l F
» > 2 ) >

i

1 i

t 1
A0 BO Co DO
A+ B- C+ D-

} } } ¢
A- B+ C- D+

¢ ? ¢ |
A+ +— B- C+ D-

| | | |
A- B+ C- D+

| | | |
A+ B- C+ D-

b 92 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Condition 1: Latch Should Not Open until
Successor Latch has Captured Data

| | : y.l : ’.] : | |
1 t 1 1
A0 BO Co DO
A+ B- C+ D-
} | | ¢
A- B+ C- D+
¢ | ¢ }
A+<+—e—— B- C+ D-
} ¢ | |
A- B+ C- D+
| | } |
A+ B- C+ D-

p 3 Asynchronous Control Circuit Design - LI~ 5/25/2016

Condition 1: Latch Should Not Open until
Successor Latch has Captured Data

:. > y.‘ > ’.‘ > ’
1 t

|
,
A0 BO Co DO
A+ B- C+ D-
} } } ¢
A- B+ C- D+
| | ¢ |
A++—e— B. C+ D-
¢ ¢ | |
A- B+ C- D+
| | | |
A+ B- C+ D-
p 94 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Latch Control Signal Dependencies
Imposed by Condition 1

! l ! l
[ | B |
1 t t t
A0 BO Cco DO
A+ B- C+ D-
} ¢ | ¢
A- B+ ~—e——C- D+
¢ | ¢ |
A+ «—B- C+ «——D-
| | | |
A- B+ «—C- D+
| | ) |
A B- ]

@)
+
W)

+
> |

<

nchronous Control Circuit Design - LI 5/25/2016

Latch Control Signal Dependencies
Imposed by Condition 1

? l Y
X ) > > >
1 | |
1 1 1
A B

0 0 CoO DO

A+ B- C+ «——D-
} ¢ | )
A- B+ «—e——C- D+
¢ | ¢ ¢
A+ «—B- C+ «——D-
| | | |
A- B+ «—C- D+
| | | |
A+ «——B- C+ «——D-

p 9 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Latch Control Signal Dependencies
ImPosed by Condition 1
! l ! l
[ | | ¥
t t t t
A0 BO Co DO
A+ B- C+ D-
} ¢ } )
A- B+ «—e—C- D+
¢ | ¢ |
A+ «—B- C+ «—eo—D-
} | | !
A- B+ «——C- D+
| | | |
A+ «——— B- C+ «—D-
p 97 Asynchronous Control Circuit Design - LI 5/25/2016

Condition 2: Latch Should Not Close until
Captured Data from Predecessor

:’.‘ > ’ ‘ :. > ’.‘
1 1 1
A0 BO Co DO
A+ B- C+ D-
! ¢ ! !
A- B+ «—&——C- D+
¢ 1\ ¢ !
A+ «——B- C+ «—e—D-
! ! ! ¢
A- B+ «—C- D+
| | | |
A+ «—— B- C+ &———D-

> 98 Asynchronous Control Circuit Design - LI 5/25/2016
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Condition 2: Latch Should Not Close until
Captured Data from Predecessor

J“ :. :. > ’.‘
t 1
A0 BO Cco DO
A+ «—B- C+ D-
} ) } }
A- B+ «———C- D+
¢ } ¢ |
A+ «———B- C+ «—e—D-
| | | !
A- B+ «—C- D+
| | | |
A+ «———B- C+ «——D

ynchronous Control Circuit Design - LI 5/25/2016

Condition 2: Latch Should Not Close until
Captured Data from Predecessor

o
O
o

>=

o
~
o—- @

o

Ue—TVeo-e—TWe—gm T
— De—() o) —
! +

+
'O

+ +
IU<—9<—U

+

— U<
i +

O
+
O

T :!><—):<-0—]|><—j>
> ‘ {

p 100 synchronous Control Circuit Design - LI 5/25/2016
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Condition 2: Latch Should Not Close until
Captured Data from Predecessor

v
[
-
[
-

>
"|___"——
!

O—

Ue—TVeo-te—We—xm @
«o-Oe— (O e—) «—
+

@)
+
W)

+ o
o
O
o

T o

|

lo<—?<—o

|

— Oeo-
i +

+

>— ?4—):4-0-:? —)>
> | {

» 10l
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<

Latch Control Signal Dependencies
Imposed by Conditions 1 and 2

J.‘ J ‘ J.‘ J ‘
1t 1t t 1
AQ BO Co DO
A+ B- C+ D-
} \\ ¢ } \ ¢
A- B+ «—e——C- D+
i | \t |
A+ «— B- C+ e——D-
| \ | 1 \ 1
A- B+ «—C- D+
| | | !
A+ — B- C+ «——D-

p 102 Asynchronous Control Circuit Design - LI~ 5/25/2016
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Folded Latch Control Signal Dependencies
Imposed by Conditions 1 and 2

| l ! !

X ) > o ) > >
l I l l

1 1 T

A B

A+ B+

» Latch Control Signal
Graph Dependencies
can also be visualized

in the Time Domain B I

INININ
\J

p 103 Asynchronous Control Circuit Design - LI 5/25/2016

Formal Models For Asynchronous Control
Circuit Design

» The graph model examples are really simplified PN
» PN is Place, Transition Net (invented by Petri)

» Represent Dependencies between signal transitions
» Causality

» Can Represent Choice
» Multiple Signals (Places really) are active at one time
» Represent Concurrency
» A PN is really a set of Multiple, Interacting FSMs all
integrated and hidden within a single Graph!
» Compact and Convenient
» Ideal for Static Verification

D 104 Asynchronous Control Circuit Design - LI~ 5/25/2016
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