
5/25/2016

1

Asynchronous Design Seminar at

University of Verona – Lecture Notes 1

Asynchronous Design Fundamentals

Lecture Notes 1

5/25/2016Asynchronous Control Circuit Design - L12

 Motivation for Asynchronous Design

 Challenges in Traditional Synchronous Design

 Benefits of Asynchronous Design

 Startup and other Industrial Efforts (Past and Current)

 Challenges and Opportunities Moving Forward

 Data Channels and Channel Based Design

 Handshaking and its impact

 Asynchronous Pipelines

 Data Token Movement and Control

 Characteristics and Performance

 Modelling using PTnets

 Latch Controller Design

5/25/2016

2

Motivation

5/25/2016Asynchronous Control Circuit Design - L13

P

P

A

Power

Performance

Area

Everything else:

Design cost,

complexity, risk,

time-to-market

VARIATIONS

COMPLEXITY

COST

NOC

SOC

REUSE

Sub-VT

Near-VT

Neuro-

morphic

CHALLENGES GOALS MEANS

Motivation I: Network on Chip

5/25/2016Asynchronous Control Circuit Design - L14

 Scale of chip / designs
increasing

 Design efficiency
demands network on
chip

 Synchronous NoCs
challenging
 Span large portion of

chips

 Hard to clock gate

 Synchronization penalties

 Impacted severely by
global PVT variations

 Buffering to reduce
contention is costly

Tilera’s TILE-Mx100

5/25/2016

3

Motivation II: Dynamic Variations

5/25/2016Asynchronous Control Circuit Design - L15

[De, Asian IIEEE ASSCC 2014]

 Dynamic variations force margins on clock frequency

5/25/2016Asynchronous Control Circuit Design - L16

[Dreslinksi et al., IEEE Proc. 2010]

[Borkar, et al. DAC 2012]

 NTV computing provides ~5X
energy efficiency

 But margins grow by ~5x forcing
constrained libraries and flows

Motivation III: Near Threshold Computing

5/25/2016

4

Motivation IV: Neuromorphic Computing

5/25/2016Asynchronous Control Circuit Design - L17

 Neuromorphic cores

 Large scale

 hard to route a global

clock everywhere

 Low activity

 Asynchronous becoming

default approach

Motivation V: Metastabilty

5/25/2016Asynchronous Control Circuit Design - L18

 Multiple clock domains, and dynamic

frequency scaling

 Crossings are hard, challenging, risky

 Subject to variations and modes of

use

 Understanding comes from theory of

asynchronous circuits

 Solutions

 Synchronizer design and verification

 Arbiters

 Encapsulate the issues

5/25/2016

5

Synchronization and communication between blocks

implemented with asynchronous channels that send and receive tokens

Synchronous System Asynchronous System

Asynchronous
channel

clock

5/25/2016Asynchronous Control Circuit Design - L19

The Asynchronous Alternative

5/25/2016Asynchronous Control Circuit Design - L110

Concurrent Communicating Hardware

 System is a collection of Processes linked by Channels

 Channels pass messages with guaranteed delivery

 Processes synchronize

 Processes can be decomposed into smaller processes

5/25/2016

6

1 of the N wires rises

(N-1 remains zero)

Req

Ack

Data

Data stable

1

2

3

4

1

2

3

4
Ack

1-of-N

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

Data

Ack

Dual-Rail (1-of-N) Channel

Sender Receiver

5/25/2016Asynchronous Control Circuit Design - L111

Asynchronous Channels

 Bundled-Data

 Delay line Matched to
Worst-Case Combinational
Logic Delay

 May be Post-silicon Tunable

 Uses Standard-Cell Libraries

 QDI

 Data and Completion integrated

 Relies on Completion Sensing Logic

 Uses Proprietary Cell Libraries

 Domino-Style Dynamic Logic

FF

delay line

CTRL

Comb

Logic

Lreq

Lack

Ldata

Rreq

Rack

Rdata

RCD

W
N N

Ldata

Lack

Rack

Rdata

5/25/2016Asynchronous Control Circuit Design - L112

Asynchronous Blocks

5/25/2016

7

5/25/2016Asynchronous Control Circuit Design - L113

Performance Advantages
 Freedom from global clock(s)

 Local versus global control supports higher frequencies
with less effort

 Flexible pipelining – block- to gate-level

 Efficient Support for Globally Asynchronous Locally Synchronous
(GALS) Design

 Average-case delay
 Architectural – Optimize Architecture for the Common Data Flow

 Micro-architectural – Optimize Blocks for Average-case Input Data

 Gate-level – Control Responds to Average Delays (e.g. Metastability)

 Process – Design Adapts to Process Variation (e.g. Tunable Delay Lines)

 Voltage – Design Adapts to Voltage (e.g. Dynamic Voltage Scaling)

 Temperature – Design Adapts to Temperature (e.g. Wide
Temperature range)

 Also leads to Power Advantages!

Power Advantages

5/25/2016Asynchronous Control Circuit Design - L114

 Automatically adapts to operating conditions and variations
 Combines: voltage/frequency scaling, clock-gating, tuning

 More power savings, than the sum of all these techniques

 Clock-gating inherent in most asynchronous designs
 Only expend energy in blocks when blocks are used

 Inherent in architectural level rather than as an after-thought

 Blocks can be designed at ideal throughput
 Rather than dictated by global clock period

 Less frequently used blocks can be designed at lower throughput

 Immediate start-up (no need to wait for clock to stabilize)
 Go quiet; Run fast; Go quiet again

5/25/2016

8

5/25/2016Asynchronous Control Circuit Design - L115

Other Advantages

 Reduced Electromagnetic Noise

 No global clock

 Frequency spread out much more

 Co-locate with sensitive analog

 Less noise - does not effect analog circuitry

 Ease of Modular Composition

 Reduces design complexity, cost, risk, iterations, time to market

 Supports GALS design for multi-frequency disparate SoC

designs

 Handshaking offers plug-and-play IP

5/25/2016Asynchronous Control Circuit Design - L116

Asynchronous Challenges (1 of 2)
 CAD tools

 Support from major EDA companies

 Cell/IP Core Libraries for Asynchronous Design
 Most design styles could benefit from at least a few asynchronous cells

 e.g., C-elements, Mutual Exclusion Elements

 Some design styles heavily rely on custom gates
 QDI PCHB, NCL

 High-performance asynchronous design
 Some blocks can be 2-5x larger due to dual-rail design

 May consume more peak power than desired

 Low-power asynchronous design
 Can be slower than desired, if control overhead not managed

5/25/2016

9

Asynchronous Challenges (2 of 2)

5/25/2016Asynchronous Control Circuit Design - L117

 Debug

 Circuit can’t be slowed via clock to aid in debugging

 …but the circuit can be single-stepped more easily!

 Asynchronous test

 Testers geared toward synchronous

 Standards do not exist and test methodologies still evolving

 Automatic test pattern generation in infancy

5/25/2016Asynchronous Control Circuit Design - L118

Asynchronous Commercialization Efforts

(1 of 2)

 Fulcrum Microsystems (www.fulcrummicro.com)
 High-performance computing and networking markets

 Founded out of Caltech in 2000, Sold to Intel in 2011

 Several asynchronous products shipping, Full-custom flow still in use
today

 TimeLess Design Automation
 High-Performance ASIC Flow for Asynchronous Design

 Founded out of USC in 2008

 Sold to Fulcrum Microsystems in 2010

 Semi-custom flow still in use today

 Achronix (www.achronix.com)
 High-performance async FPGA core with synchronous interfaces

 Founded out of Cornell research in 2006

 Speedster®22i HP is shipping and includes fine-grain asynchronous
pipelines

5/25/2016

10

5/25/2016Asynchronous Control Circuit Design - L119

Asynchronous Commercialization Efforts

(2 of 2)

 Tiempo (www.tiempo-ic.com)
 IP Cores and ASIC Flow (Power/Performance Tradeoff)

 Smartcards …

 vSync Circuits (www.vsyncc.com)
 EDA and IP for Multi-Clock Domain design integration and verification

 Reduced Energy Microsystems (remicro.systems)
 Low Power ASIC microprocessors using asynchronous resiliency

 Founded in 2015 – Newest kid on the block

 IBM
 Neuromorphic True North core based on QDI technology (EXPAND)

 Several Past Start-ups
 Handshake Solutions,

 Silistix,

 Elastix, Nanochronous,

 Cogency

Channel-Based Design

Top-Level View of Asynchronous Circuits

5/25/2016Asynchronous Control Circuit Design - L120

5/25/2016

11

Hardware Abstraction

Asynchronous Control Circuit Design - L121

 System:

 Collection of “Processes” linked by Channels

 Channels pass messages with guaranteed delivery

 Processes synchronize

 Processes can be decomposed into smaller processes

5/25/2016

Synchronous Version

 In case of edge triggered stages

 During the cycle: Process

 At the edge of the clock: Pass to successor

clock

Process

clock

Pass to
successor

22 Asynchronous Control Circuit Design - L1 5/25/2016

5/25/2016

12

Synchronous Version

module ff(clk, left, right)

input clk;

input left;

output reg right;

always

begin

`SYNC(clk);

right = left;

end

endmodule

 Central synchronizer

 `SYNC(clk)

23 Asynchronous Control Circuit Design - L1 5/25/2016

Synchronous FF Stage

 Abstract synchronization

 `SYNC(clk)

module ff(clk, left, right)

input clk;

input left;

output reg right;

always @(posedge clk) begin

right = left;

end

endmodule

module ff(clk, left, right)

input clk;

input left;

output reg right;

always

begin

`SYNC(clk);

right = left;

end

endmodule

24 Asynchronous Control Circuit Design - L1 5/25/2016

5/25/2016

13

Asynchronous Version

module Sender(right)

output reg right;

output reg data;

always

begin

right = data;

`SYNC(right);

end

endmodule

module Receiver(left)

input left;

output reg data;

always

begin

`SYNC(left);

data= left;

end

endmodule

 Distributed
Synchronization

 Sender

 Provides data

 Synchronize

 Receiver

 Synchronize

 Samples data

Sender Receiver

25 Asynchronous Control Circuit Design - L1 5/25/2016

Asynchronous Channels

Asynchronous Control Circuit Design - L126

 Channel: A bundle of wires and a protocol for

communicating data/control called a token

 Data/control encoding: Dual-rail or Single-rail encoded

 tells what the data is, and when it is valid

 Communication protocol: Handshake over

request/acknowledgement wires

Sender Receiver

Abstract
ChannelFunctional

Block

5/25/2016

5/25/2016

14

Asynchronous Channel Types

Asynchronous Control Circuit Design - L127

1 of the N wires is risen

(N-1 remains zero)

Req

Ack

Data

Data stable

1

2

3

4

1

2

3

4
Ack

1-of-N

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

Data

Ack

Dual-Rail (1-of-N) Channel

Sender Receiver

5/25/2016

x.1

Asynchronous Channel Types

Asynchronous Control Circuit Design - L128

1 of the 2 wires rises

Req

Ack

Data

Data stable

1

2

3

4

1

2

3

4

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

Data

Ack

Dual-Rail (1-of-2) Channel

Sender Receiver

5/25/2016

Ack

x.0

5/25/2016

15

Asynchronous Design Levels of Abstraction

5/25/2016Asynchronous Control Circuit Design - L129

System-level
Optimization

Datapath
Circuits

Control
Circuits

 Control Circuits –
Implementing
Channel Protocols
 Latch Opening

and Closing

 Data Token

Processing

 Data,

control

interaction

 Throughput,
Latency
Optimization
 Hiding

handshake
overhead

 Retiming, etc.

Asynchronous Design Levels

5/25/2016Asynchronous Control Circuit Design - L130

 Block-Level Design – Micro-architectural Level
 Control Circuits – Implementing Channel Protocols

 Handshake-based Token Movement, i.e. H/S Protocol Implementation

 Latch Opening and Closing

 Synchronization of Multiple Requests and Acknowledgments, … etc.

 Datapath Circuits – Data Token Processing
 Asynchronous Implementation of Combinational Clouds and Interaction with the

H/S-based Control Circuits
 Bundled-data, i.e. delay-element based

 Data-Dependent Latency – Multiplexed Delay, based on Operands/Operation

 Dual-Rail/Indicating Logic (Encoded)

 System-level Optimization –Architecture Level
 Optimizing Token Cycle Time, Throughput (Tokens/sec)

 Trading-off Token Latency for Token Throughput

 Hiding Handshake Delays to achieve comparable cycle time to sync.

 Retiming, i.e. Splitting Combinational Logic, adding Token Buffers
(Latches)

5/25/2016

16

Logic Hazards (Glitches)

Asynchronous Control Circuit Design - L131

 Synchronous Circuits

 Glitches tolerated because outputs sampled only after signals settle

 Clocking constraints

 Clock edge occurs only after data

settles

 Limits clock frequency

 Asynchronous Circuits

 Control circuits

 Avoided completely

 Hazard-free logic synthesis techniques

 Datapath (Either)

 Outputs sampled after signal settles OR

 Avoided completely

5/25/2016

Asynchronous Circuits - Classes

5/25/2016Asynchronous Control Circuit Design - L132

 Timing Model (or Class) is used to define specific timing

assumptions with respect to correct circuit operation

 DI

 Arbitrary gate and wire delays (unbounded)

 QDI

 DI except for Isochronic Forks

 No need to acknowledge fanouts

 SI (Muller) circuits

 Arbitrary gate delay no wire delay

 Only applicable to small-scale control circuits

 Fundamental Mode (Huffman) circuits

 Outputs and Local State (internal) stabilize

 before a new input change from the circuit’s environment

QDI

SI

Fundamental
Mode

Timing Assumptions

Pyramid

5/25/2016

17

2-Phase Bundled-Data

Asynchronous Control Circuit Design - L133 5/25/2016

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

 Two-phase Bundled-Data Protocol
 Both rising and falling transitions on Req

 Means new data are available

 Both rising and falling transitions on Ack
 Means data have been acknowledged

 Sometimes called transition signaling
 It is the transition that is meaningful (stateful), not the level values

2nd data1st data

Req

Ack

Data

 Push Channels
 Pull Channels shortly

1-of-N Protocols

Asynchronous Control Circuit Design - L134

Data

Ack

Dual-Rail (1-of-N) Channel

Sender Receiver

5/25/2016

 Dual-Rail

 4 phase

 2 wires per bit

 1-of-4

 4 phase

 4 wires per 2 bits

Data_0

Data_1

Ack

 1
st
 token = 0 2

nd
 token = 1

Data_0

Data_3

Ack

 1
st
 token = 1 2

nd
 token = 3

Data_1

Data_2

(a)

(b)

5/25/2016

18

(a)

(c)

(b)

1
st
 data 2

nd

Req

Ack

Late

Req

Early 1
st
 data

Ack

2
nd

 data

0
th

1
st
 data 2

nd
Data

Ack

0
th

Req

Broad

Pull Channels

5/25/2016Asynchronous Control Circuit Design - L135

 Early:
 Data stable after Ack+

 Data stable until Req-

Sender

Request

Acknowledge

Single-Rail Data

Receiver

 Late:
 Data stable after Ack-

 Data stable until Req+

 Broad:
 Data stable after Ack+

 Data stable until Req-

Abstract Channel Diagrams

Asynchronous Control Circuit Design - L136

(a)

(b)

(c)

Handshaking details omitted

5/25/2016

 Synchronization channel –
no data attached/bundled
 No data – Control only

 Active on right side

 Pull Channel

 Push Channel

5/25/2016

19

 Enclosed Handshaking

 B completes handshake with C
before starting handshake with D

 Operation associated with C occurs before
operation associated with D

 B can enclose both handshakes in
handshake with A

 Completion of handshake with A is acknowledgement that
the tasks of C and D are done

 Pipelining Handshake

 B overlaps handshake with C and handshake with A

 Creates pipeline behavior

 Tokens flow on both channels

 Increases throughput

Sequencing and Concurrency

Asynchronous Control Circuit Design - L137

B
C
D

A

A B C

5/25/2016

A

B

C

D

Token Buffer Pipelines

Pipelining Data Tokens

5/25/2016Asynchronous Control Circuit Design - L138

5/25/2016

20

Pipelined Handshaking

Asynchronous Control Circuit Design - L139

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

5/25/2016

 Pipeline handshaking enables multiple tokens to exist in pipeline
 Each token represents intermediate result of different problem instance

 Increases throughput of system

 No tokens lost despite relative speed of stages – has implicit
flow control

 Two types
 Full buffers can support distinct tokens on inputs/output channels

 Half buffers cannot support distinct tokens on inputs/outputs
 N-stage pipeline of half-buffers can support a maximum of N/2 tokens

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

Full-Buffer Handshaking

Asynchronous Control Circuit Design - L140

Handshaking assuming Bit Bucket is Stalled

5/25/2016

 Pipeline

can store

tokens at

every

buffer

T1 T2 T3 T4

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1 T2

T1

T3

T1

T2

5/25/2016

21

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1

T1

T1

T1

T2

T2

Handshaking assuming Bit

Bucket is Stalled

 Constraint that leads

to a half-buffer:

 output channel must

be acknowledged

before input channel

completes handshake

 e.g., c1ack+

before c0ack-

 Pipeline can store

tokens at every other

buffer

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

Half-Buffer Handshaking

Asynchronous Control Circuit Design - L141 5/25/2016

Conditional and Non-Linear Pipeines

Asynchronous Control Circuit Design - L142

 MERGE
 Wait for token on S.

 Depending on value,
wait for token on either A or B and send onto O

 SPLIT
 Wait for token on S and A.

 Dependent upon value of S,
send copy of token on A to O1 or O2

(a) (b)

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

5/25/2016

5/25/2016

22

Areq

Aack

Breq

Back

S0

Sack

S1

Oreq

Oack

Timing Diagram of Merge

Asynchronous Control Circuit Design - L143 5/25/2016

 Assumptions (in this example)
 Full-buffer Two-phase Handshaking

 dual-rail select signal

 Functionality – Handshake MUX
 Token on A consumed first

 After token on S = 0

 i.e., S0 changes

 Token on B stalled until consumed
second
 After token on S = 1

 i.e., Once S1 changes

 Result: two tokens on O
 First = Oreq+

 Second = Oreq-

Send and Receive Cells

 SEND

 Always receive on L and E.

 Conditionally send on R if E==1.

 RECV

 Always receive on E and send on R.

 Conditionally receive on L if E==1.

5/25/2016Asynchronous Control Circuit Design - L144

R
EC

VL R

E

SEN
DL R

E

5/25/2016

23

Asynchronous Pipelines

Dynamic behavior is very different from synchronous design

5/25/2016Asynchronous Control Circuit Design - L145

Synchronous vs. Asynchronous Pipelines

5/25/2016Asynchronous Control Circuit Design - L146

 Intuitive Understanding of the Differences

5/25/2016

24

Datapath

Example

5/25/2016Asynchronous Control Circuit Design - L147

FF Datapath: each

FF is 2 Latches

5/25/2016Asynchronous Control Circuit Design - L148

5/25/2016

25

Synchronous vs. Asynchronous

5/25/2016Asynchronous Control Circuit Design - L149

 Tokens represent Data

 Data Tokens

 We now compare the Synchronous and Asynchronous

Data Flows in the simplest version of this datapath

 Synchronous version first…

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L150

5/25/2016

26

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L151

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L152

5/25/2016

27

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L153

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L154

5/25/2016

28

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L155

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L156

5/25/2016

29

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L157

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L158

5/25/2016

30

Synchronous Token

Movement

5/25/2016Asynchronous Control Circuit Design - L159

Synchronous Token Movement

5/25/2016Asynchronous Control Circuit Design - L160

 Tokens are always separated by empty latches

 Aka “Bubbles”

 Latency in strongly dependent on # of clock cycles

 Pipeline delays result in cycle-based Latency increase

 Now, let’s look at the Asynchronous version…

5/25/2016

31

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L161

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L162

+

5/25/2016

32

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L163

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L164

5/25/2016

33

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L165

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L166

5/25/2016

34

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L167

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L168

5/25/2016

35

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L169

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L170

5/25/2016

36

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L171

Clockless Token

Movement

5/25/2016Asynchronous Control Circuit Design - L172

5/25/2016

37

Asynchronous Token Movement

5/25/2016Asynchronous Control Circuit Design - L173

 Latency depends on combinational cloud delays

 Not multiple of a clock, data-dependent

 Token Speed depends on available space in pipeline stages

 Contention reduces performance!

 Similarly to people in a queue (line)

 Increasing pipe stages can:

 Increase Tokens/sec, i.e. Performance

 Reduce Latency, if Local Delays are Improved,

 e.g. wire buffering

 Notion of total (or max/min) Tokens in the system, and

total (or max/min) empty token buffers (bubbles)

 System-Level optimization issue

Petri Nets (PN) in a Nutshell

5/25/2016Asynchronous Control Circuit Design - L174

 A PN is a graph of Places and Transitions
 Allowed connections

 Places are connected to Transitions

 Transitions are connected to Places

 Places
 Places hold a token (in general can be more than 1)

 A place with a token in active (marked)

 Transitions
 A transition is activated (fires)

 when tokens are available on all of its input places

 When it fires
 it creates new tokens on all of its output places

 PN can model both
 Choice, Return from Choice

 Fork and Join

5/25/2016

38

High-Level Asynchronous Pipeline:

PTnet Models

5/25/2016Asynchronous Control Circuit Design - L175

 Full Buffer High-Level Model

 Used to analyze and optimize Throughput and Latency:

High-Level Asynchronous Pipeline

PTnet Models

5/25/2016Asynchronous Control Circuit Design - L176

 Full Buffer and Half Buffer High-Level Models

 Used to analyze and optimize Throughput and Latency:

5/25/2016

39

Dynamic Pipeline Behavior

Asynchronous Control Circuit Design - L1

 Cycle Time
 T = FL + BL (simplest case)

 Latency
 input to output delay = N * FL

 Throughput
 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy
 Maximum token capacity of the pipeline

 Spread
 distance between successive tokens in an optimally-filled pipeline

 token distance travelled for 1 T = (FL + BL)/FL

 Dynamic Slack or Dynamic Occupancy
 Average token capacity in the pipeline at optimal throughput

 N*1/Spread = (N*FL)/(FL + BL)

5/25/201677

Dynamic Pipeline Behavior

Asynchronous Control Circuit Design - L1

 Cycle Time

 T = FL + BL (simplest case)

 Latency

 input to output delay = N * FL

 Throughput

 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy

 Maximum token capacity of the pipeline

 Dynamic Slack or Dynamic Occupancy

 Average token capacity in the pipeline at optimal throughput

 N*1/Spread = (N*FL)/(FL + BL)

5/25/201678

5/25/2016

40

Dynamic Occupancy, Throughput

 Dynamic Slack or Dynamic Occupancy
Formula for N buffers:

 Assumptions:

 Tokens not stalled by buffers or
Bit Bucket resetting

 Tokens inserted at rate of local cycle time
(FL + BL)

 Tokens consumed at rate of local cycle
time

peak

throughput

bubble

limited

region

token

limited

region

dynamic

slack

static

slack

tokens

throughput

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

FL

BL

N

BLFL

FLN

1

*

Asynchronous Control Circuit Design - L1

(average)

Peak Throughput

= 1/(FL + BL)

5/25/201679

Throughput vs. Tokens Graph

 Throughput is zero
 When no tokens in pipe

 When pipeline is full of
tokens

 Peak throughput in-
between
 Token limited region

 Faster Bit Gen
improves throughput

 Bubble limited region

 Faster Bit Bucket
improves performance

peak

throughput

bubble

limited

region

token

limited

region

dynamic

slack

static

slack

tokens

throughput

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

Asynchronous Control Circuit Design - L1 5/25/201680

N

FL

1

N

BL

1

5/25/2016

41

Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C31

t=0t=2t=8t=4t=6t=18t=10

2

t=12t=14t=16

34

t=20t=22t=24

5

t=0: Token 1 generated

t=6: Token 2 generated

t=12: Token 3 generated

t=18: Token 4 generated

t=24: Token 5 generated

Asynchronous Control Circuit Design - L1 5/25/201681

 Slow left environment

 Bit Gen: LCT = 6

 Buffer: FL=2, BL=2

 Bit Bucket: LCT = 2

Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C31

t=0t=6t=2t=4t=8t=10t=12t=14

23

t=16

45

t=18t=20

t=6: Token 1 consumed

t=12: Token 2 consumed

t=18: Token 3 consumed

t=24

t=24: Token 4 consumed

t=22

Asynchronous Control Circuit Design - L1 5/25/201682

 Slow right environment

 Bit Gen: LCT = 2

 Buffer: FL=2, BL=2

 Bit Bucket: LCT = 6

5/25/2016

42

Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

tokens

throughput

Buffer: FL=2, BL=2

Asynchronous Control Circuit Design - L1 5/25/201683

More Complex Example: Pipeline

Performance

5/25/2016Asynchronous Control Circuit Design - L184

 What is the impact of fork/join on asynchronous

pipelines?

 Assume FL = 1, BL = 1 4, 3 Fork Join

5/25/2016

43

More Complex Example: Pipeline

Performance

5/25/2016Asynchronous Control Circuit Design - L185

 What is the impact of fork/join on asynchronous

pipelines?

 Assume FL = 1, BL = 1 4, 2 Fork Join

More Complex Example: Pipeline

Performance

5/25/2016Asynchronous Control Circuit Design - L186

 What is the impact of fork/join on asynchronous

pipelines?

 Assume FL = 1, BL = 1 4, 1 Fork Join

5/25/2016

44

D
E
M
U
XA,B

op

Add/Sub

Mult

M
U
XD

+

0

+ +

D

Stalled!

P. A. Beerel et. al. , “Slack matching asynchronous designs,” ASYNC’06

D

Stalled!

Represents up to 30% of area and power

5/25/2016Asynchronous Control Circuit Design - L187

Key to High Performance –

Slack Matching

 The Slack Matching Problem:
 Add minimum number of pipeline buffers to the circuit to meet a target T

 This problem is unique to Asynchronous Design
 Unfortunately, often yields significant Area and Power Overhead!

Latch Control Circuits

Basic Example of Latch Control

5/25/2016Asynchronous Control Circuit Design - L188

5/25/2016

45

Bundled-Data Control Circuits –

Basic Latch Control

5/25/2016Asynchronous Control Circuit Design - L189

Latch

Controller

Left Hand Side

Channel (H/S)

Right Hand Side

Channel (H/S)

Latch

 provide latch EN

enable signal

 Latch Open/Close

Logic

 LHS/RHS Handshakes

indicate Channel State

C Gate – PN to STG Conversion

5/25/2016Asynchronous Control Circuit Design - L190

a+ b+

c+

a- b-

c-

a+ b+

c+

a- b-

c-

 keep transitions

 keep tokens

 hide places

5/25/2016

46

Condition 1: Latch Should Not Open until

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L191

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Condition 1: Latch Should Not Open until

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L192

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

47

Condition 1: Latch Should Not Open until

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L193

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Condition 1: Latch Should Not Open until

Successor Latch has Captured Data

5/25/2016Asynchronous Control Circuit Design - L194

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

48

Latch Control Signal Dependencies

Imposed by Condition 1

5/25/2016Asynchronous Control Circuit Design - L195

A B C D

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

0 0 0 0

Latch Control Signal Dependencies

Imposed by Condition 1

5/25/2016Asynchronous Control Circuit Design - L196

A B C D

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

0 0 0 0

5/25/2016

49

Latch Control Signal Dependencies

Imposed by Condition 1

5/25/2016Asynchronous Control Circuit Design - L197

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Condition 2: Latch Should Not Close until

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L198

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

50

Condition 2: Latch Should Not Close until

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L199

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Condition 2: Latch Should Not Close until

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L1100

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

51

Condition 2: Latch Should Not Close until

Captured Data from Predecessor

5/25/2016Asynchronous Control Circuit Design - L1101

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

Latch Control Signal Dependencies

Imposed by Conditions 1 and 2

5/25/2016Asynchronous Control Circuit Design - L1102

A B C D0 0 0 0

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

A- B+ C- D+

A+ B- C+ D-

5/25/2016

52

Folded Latch Control Signal Dependencies

Imposed by Conditions 1 and 2

5/25/2016Asynchronous Control Circuit Design - L1103

A B C D

 Latch Control Signal

Graph Dependencies

can also be visualized

in the Time Domain

A

B

A+ B+ C+ D+

A- B- C- D-

Formal Models For Asynchronous Control

Circuit Design

5/25/2016Asynchronous Control Circuit Design - L1104

 The graph model examples are really simplified PN

 PN is Place, Transition Net (invented by Petri)

 Represent Dependencies between signal transitions

 Causality

 Can Represent Choice

 Multiple Signals (Places really) are active at one time

 Represent Concurrency

 A PN is really a set of Multiple, Interacting FSMs all

integrated and hidden within a single Graph!

 Compact and Convenient

 Ideal for Static Verification

