Cenni sugli operatori vettoriali: ∇ , ∇ , ∇ , ∇ , e $\nabla^2 = \nabla \cdot \nabla$.

• Operatore vettoriale ∇ (leggesi: nabla)

L'operatore ∇ è uno <u>pseudo-vettore</u> di componenti $(\delta/\delta x; \delta/\delta y, \delta/\delta z)$, cioè:

$$\nabla = (\delta/\delta x)\mathbf{i} + (\delta/\delta y)\mathbf{j} + (\delta/\delta z)\mathbf{k}$$

L'operatore ∇^2 (nabla quadro): $\nabla^2 = \nabla^{\bullet} \nabla$ è un operatore scalare dato da:

$$(\delta/\delta x)^2 + /(\delta/\delta y)^2 + (\delta/\delta z)^2 = \delta^2/\delta x^2 + \delta^2/\delta y^2 + \delta^2/\delta z^2$$

dove $\delta/\delta x$, etc. indicano la derivata parziale rispetto alla variabile x, etc.

- L'applicazione dell'operatore ∇ ad una funzione scalare di più variabili U (x,y,z) dà una grandezza vettoriale $\mathbf{F}(\mathbf{r})$ detta *gradiente* della funzione U:

$$\mathbf{F}(\mathbf{r}) = \nabla \mathbf{U}(\mathbf{r})$$

$$\mathbf{F}(\mathbf{r}) = \mathbf{F}_{x}(\mathbf{r}) \mathbf{i} + \mathbf{F}_{y}(\mathbf{r}) \mathbf{j} + \mathbf{F}_{z}(\mathbf{r}) \mathbf{k}$$

con:
$$F_x(\mathbf{r}) = \delta U(\mathbf{r})/\delta x$$
; $F_v(\mathbf{r}) = \delta U(\mathbf{r})/\delta$; $F_z(\mathbf{r}) = \delta U(\mathbf{r})/\delta z$.

= L'applicazione dell'operatore ∇ tramite l'operazione di <u>prodotto scalare</u> (*) ad una grandezza vettoriale $\mathbf{G}(\mathbf{r})$ di più variabili (ne è un esempio il campo gravitazionale $\mathbf{G}(\mathbf{r}) = \mathbf{F}_G(\mathbf{r})/m = -\gamma (M/r^2) \mathbf{u}_r$] genera una grandezza scalare Φ , nota come la <u>divergenza</u> del vettore $\mathbf{G}(\mathbf{r})$:

$$\Phi = \nabla \cdot \mathbf{G}(\mathbf{r}).$$

cioè: $\Phi = (\delta/\delta x) G_x(r) + (\delta/\delta y) G_y(r) + (\delta/\delta z) G_z(r)$, ed è detto flusso di G(r)

 \equiv Infine l'applicazione dell'operatore ∇ tramite l'operazione di <u>prodotto</u> <u>vettore</u> (∧) ad una grandezza vettoriale **W**(r) di più variabili definisce una nuova grandezza vettoriale **R**, nota come il <u>rotore</u> del vettore **W**(r):

$$\nabla \wedge \mathbf{W}(\mathbf{r}) = \mathbf{R}.$$

dove: $\mathbf{R} = [(\delta/\delta y)W_z(r) - (\delta/\delta z)W_y(r)]\mathbf{i} - [(\delta/\delta z)W_x(r) - (\delta/\delta x)W_z(r)]\mathbf{j} + [(\delta/\delta x)W_v(r) - (\delta/\delta y)W_x(r)]\mathbf{k}$

Infine, va ricordato che vale la relazione: $\nabla \wedge \nabla \wedge = \nabla (\nabla \cdot) - \nabla^2$.