Week 4

1. More examples
2. Nondeterminism, equivalence, simulation (Ch 3)
3. Composition (Ch 4)

{1}/0 Delay
{0}/0 ° \/ {1}1
J {0311
InputSignals = OutputSignals = [Natsy,— {0,1, absent}]
x=00110..
s=000110 ..
y=000110..
Vx e InputSignals, Vn € Nats,, Delay(x)(n)=0, n=0;

= x(n-1),n>0




Vx e InputSignals, Vn € Nats,,
Delay,(x)(n) = O, n=0,1;
=x(n-2), n=2,3,..

Implement Delay, as state machine
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We will see later that Delay, ~ Delay, . Delay,

Nondeterministic state machines

In deterministic machines guards from state
state are disjoint

In nondeterministic machines guards may not
be disjoint. What does that mean?

Topics/determinism/example

The same input signal can lead to more than one
state response and output signal




Set and function model

N = (States, Inputs, Outputs, possibleUpdates, initialState)

possibleUpdates: States x Inputs — P(States x Outputs)

where P(States x Outputs) is the set of all non-empty
subsets of States x Outputs

Topics/deterministic/possible updates

Always: possibleUpdate(s, absent) = {(s,absent)}

A deterministic machine determines a function

H: InputSignals — OutputSignals

A nondeterministic machine determines a relation
Behaviors = {(x,y) | y is a possible output signal
corresponding o x}
< InputSignals x OutputSignals




Why non-deterministic machines?

1. Topics/determinism/Abstraction

2. Topics/determinism/Equivalence

3. Topics/determinism/Simulation

The matching game

Two (nondeterministic) machines,
A = (States,, Inputs, Outputs, possibleUpdates,, s,(0))
B = (Statesg, Inputs, Outputs, possibleUpdatesy, s;(0))
Suppose input symbol x and
A moves from s,(0) to s,(1) and produces output y

Then for same input symbol x
B can select move from sz(0) to sp(1), to produce y

and continue the game from states s,(1), sp(1)




{coin25} / safe {coin25} f safe

{coinS} feqins, coin2s)
/ safe {safe

{tick}/expired {tick}/safe

S ={(0,4, 0p), (14, 1p), (24, more), ... (604, more)}

B simulates A if there is a subset
S c States, x States,
such that

1. (initialState,, initialStatey) € S, and

2. V(s4, Sg) € S, Vx € Inputs,
V (s's, ¥) € possibleUpdates,(s,, X)

3 (s, Y) € possibleUpdatesg(sg, x)
such that

(s'a.SB) €S




Theorem Suppose B simulates A. Then,

Behaviors, — Behaviorsy

i.e. if y is a possible output response to x by
machine A,y is also a possible output response to x
by machine B.

Question Suppose B simulates A and C simulates
B. Does C simulate A?
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Behaviors of A = Behaviors of B. Why?

But B does not simulate A. Why?

Topics/Composition/Synchrony

. Each component reacts once for every input

symbol

. The following happens simultaneously for each

component

*The input symbol is consumed

*A state update occurs leading to next state and
producing current output

*If there is a feedback loop, the output appears at
the input port




Topics/Composition/Side-by-side
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Fig 4.2, p. 127

Topics/Composition/Cascade
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States (0,1)
and (1,0) of
cascade

machine are
NOT reachable




Topics/Composition/Productform

— stutter
g
fr'om GUle ‘i [(absens, ring, absenr)} X
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storage E se
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Fig 4.6, p. 134 Answering machine

Topics/Composition/Composition
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Fig 4.9, p. 136
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Topics/Composition/Playback

{recorde d,dbsr‘:f} - else {Zight on, light off, absent}
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Fig 4.8, p. 136 Playback system

Feedback Composition

«|E ] -

Basic assumptions:
* Outputs, < Inputsg
» Outputsg, < Inputs,,

States = States, x Statesy; Inputs = Inputs,;:
Outputs = Outputsg,

Update function found by “fixed point” iteration
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What is fixed point?

) f Y ., f

g
System: y = f(x) Systems: f g
Fdbk Connection: x = y Fdbk Connection:
Must solve: x = f(x) x=g(y), Y =f(x)

Must solve: x = gof(x)

No solution
More than one solution
Unique solution—well-formed

Fixed point example
Take X = Y = Reals, and f given by
forall x, f(x)=2x-1
So fixed point equation is:
2x -1=x

which has unique solution x = 1
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Feedback w/o external input

{ty/f /{f}/f\ )/t
Cy )
{t}/t
output(l,y) =y y = f, unique
output(2,y) =y y = t, unique

e {fYf /
E}jf 7~ O\ z fj} ! {t.f absent}

is equivalent to

{react}/f

{react,absent} /_\ @ {t.f.absent}
; \/

{react}/+
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Feedback w/o input

(/£ {fy/f )/t
- G0
\_/
i

Update(1, y) = (s, y) y = f,s = 2, unique

Update(2, y) = (s, y) No solution

Feedback connection not well-formed

Feedback w/o input

{ty/t /{f}_/f\. )/
1 G ol
{t/f
output(l,y) =y y=f, y=t, non-unique
output(2,y) =y y=f, unique

Feedback connection not well-formed
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State-determined output gives well-formed fdbk connection

{..}Vy {.Vy

RO

If output in current state is independent of input,

output(s, y) = y has unique solution

Delay machine has state-determined output

{1}/0 Delay

{0}/0 °° {1}1
) {0}1
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In general start with unknown output y anywhere

* For each machine

« If output can be determined, produce it
» If state transition can be determined, take it

*Repeat until no progress can be made

*If all outputs are determined — well-formed
*If some signals are unknown- not well-formed

wn e

{0} /0,1) {1141,1) {01 A0,0)

h 4
~

{ react, absenr} a b
-

{131/41,0)

10,1, absen}

v

Y2

. Y is not determined, buty, = 1
update (a, 1) = (b, (1,1)).
. Y is not determined, but y, =0

update (b, 0) = (b, (0,0))

{0, 1, absent}

-

Start with state a and unknown y = (y;, y,)
Start with state aand y = (y;, 1), then must have
Start with state b and unknown y = (y;, y,)

Start with state b and y = (y;, 0), then must have
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{0} /0,1) {1141,1) {01 A0,0)

h | -
-
> a b {0, 1, absent}

{ react, absenr}
- -

{11410

10,1, absen}

is equivalent to

{react \QM {0,1,absent}
“absent}

{react}/0

State-determined output

() ()

-/ M — N

If M has state-determined output, the feedback
connection is well-formed, no matter what N is




Feedback with input

Tnputs,| x; Outputs,
Inputs, Outputs,
Y2
M

Outputs, c Inputs,
Start with state s

vx; € Inputs; solve: outputy, (s, (X1, ¥2)) = Y>

If y, is unique, take

nextState (s, x;) = (nextStatey(s, (x, ¥2))

output(s, x;) = outputy(xy, Y,)
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