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Week 4

1. More examples
2. Nondeterminism, equivalence, simulation (Ch 3)
3. Composition (Ch 4)

x = 0 0 1 1 0 …
s = 0 0 0 1 1 0  …
y = 0 0 0 1 1 0 …

InputSignals = OutputSignals = [Nats0→ {0,1, absent}]

∀x ∈ InputSignals, ∀n ∈ Nats0, Delay(x)(n)=0,         n=0;
= x(n-1), n > 0
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∀x ∈ InputSignals, ∀n ∈ Nats0, 
Delay2(x)(n) =  0,         n = 0,1;

= x(n-2),  n = 2,3,…
Implement Delay2 as state machine

We will see later that Delay2 ~ Delay1 ° Delay1
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Nondeterministic state machines

In deterministic machines guards from state
state are disjoint

In nondeterministic machines guards may not
be disjoint.  What does that mean?

Topics/determinism/example

The same input signal can lead to more than one
state response and output signal
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Set and function model

N = (States, Inputs, Outputs, possibleUpdates, initialState)

possibleUpdates: States x Inputs → P(States x Outputs)

where P(States x Outputs) is the set of all non-empty
subsets of States x Outputs

Topics/deterministic/possible updates

Always: possibleUpdate(s, absent) = {(s,absent)}

A deterministic machine determines a function

H: InputSignals → OutputSignals

A nondeterministic machine determines a relation
Behaviors = {(x,y) | y is a possible output signal

corresponding to x}
⊂ InputSignals x OutputSignals
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Why non-deterministic machines?

1. Topics/determinism/Abstraction

2. Topics/determinism/Equivalence

3. Topics/determinism/Simulation

The matching game

Two (nondeterministic) machines, 

A = (StatesA, Inputs, Outputs, possibleUpdatesA, sA(0))

B = (StatesB, Inputs, Outputs, possibleUpdatesB, sB(0))

Suppose input symbol x and
A moves from sA(0) to sA(1) and produces output y

Then for same input symbol x
B can select move from sB(0) to sB(1), to produce y 

and continue the game from states sA(1), sB(1)
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A

B

S = {(0A, 0B), (1A, 1B), (2A, more), … (60A, more)}

B simulates A if there is a subset 
S ⊂ StatesA x StatesB

such that 

1. (initialStateA, initialStateB) ∈ S, and

2. ∀(sA, sB) ∈ S, ∀x ∈ Inputs,
∀ (s’A, y) ∈ possibleUpdatesA(sA, x)

∃ (s’B, y) ∈ possibleUpdatesB(sB, x)
such that

(s’A, s’B) ∈ S
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sA s’A

sB s’B

{x}/y

{x}/y

initA

initB

S

Theorem   Suppose B simulates A.  Then,

BehaviorsA ⊂ BehaviorsB

i.e. if y is a possible output response to x by
machine A, y is also a possible output response to x
by machine B.

Question  Suppose B simulates A and C simulates
B.  Does C simulate A?
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Behaviors of A = Behaviors of B. Why?

But B does not simulate A.  Why?
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Topics/Composition/Synchrony

1. Each component reacts once for every input 
symbol

2. The following happens simultaneously for each 
component
•The input symbol is consumed
•A state update occurs leading to next state and 
producing current output

•If there is a feedback loop, the output appears at 
the input port
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Topics/Composition/Side-by-side

Fig 4.2, p. 127

Fig 4.4, p 131

States (0,1) 
and (1,0) of 
cascade 
machine are 
NOT reachable

Topics/Composition/Cascade
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Topics/Composition/Productform

from audio 
storage

from ASIC 
interface 
to line

from tape 
machine

Fig 4.6, p. 134  Answering machine

Topics/Composition/Composition

Fig 4.9, p. 136 
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Topics/Composition/Playback

Fig 4.8, p. 136  Playback system

Feedback Composition

Basic assumptions:
• OutputsA ⊂ InputsB
• OutputsB2 ⊂ InputsA2

A1

A2

B1

B2

States = StatesA x StatesB; Inputs = InputsA1; 
Outputs = OutputsB1

Update function found by “fixed point” iteration
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What is fixed point?

x f y

System: y = f(x)
Fdbk Connection: x = y
Must solve: x = f(x)

No solution
More than one solution
Unique solution—well-formed

x f y

g

Systems: f,g
Fdbk Connection: 
x = g(y),  Y = f(x)
Must solve: x = g f(x)o

Fixed point example

Take X = Y = Reals, and f given by
for all x,  f(x) = 2x -1

So fixed point equation is:

2x -1 = x

which has unique solution x = 1
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Feedback w/o external input

y = f, uniqueoutput(1, y) = y

y
1 2
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{t}/t

{f}/t{f}/f

output(2, y) = y y = t, unique
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{t,f,absent}
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{react}/t

{react}/f

{t,f,absent}{react,absent}

is equivalent to
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Feedback w/o input

y = f, s = 2, uniqueUpdate(1, y) = (s, y)

y
1 2

{t}/f

{t}/f

{f}/t{f}/f

Update(2, y) = (s, y) No solution

Feedback connection not well-formed

Feedback w/o input

y=f, y=t, non-uniqueoutput(1, y) = y

y
1 2

{t}/t

{t}/f

{f}/f{f}/f

output(2, y) = y y=f, unique

Feedback connection not well-formed
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State-determined output gives well-formed fdbk connection

s

{…}/y{…}/y

If output in current state is independent of input,

output(s, y) = y has unique solution

Delay machine has state-determined output
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In general start with unknown output y anywhere
• For each machine

• If output can be determined, produce it
• If state transition can be determined, take it

•Repeat until no progress can be made
•If all outputs are determined – well-formed
•If some signals are unknown– not well-formed

y

y2

y1

1. Start with state a and unknown y = (y1, y2) 
2. Y is not determined, but y2 = 1
3. Start with state a and y = (y1, 1), then must have 

update (a, 1) = (b, (1,1)).
4. Start with state b and unknown y = (y1, y2) 
5. Y is not determined, but y2 = 0
6. Start with state b and y = (y1, 0), then must have

update (b, 0) = (b, (0,0))
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{react,
absent}

a b
{react}/1

{react}/0

{0,1,absent}

is equivalent to

M N

If M has state-determined output, the feedback 
connection is well-formed, no matter what N is

State-determined output
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Feedback with input

Inputs1

Inputs2

Outputs1

Outputs2

Outputs2 ⊂ Inputs1

Start with state s
∀x1 ∈ Inputs1 solve:  outputM2 (s, (x1, y2)) = y2

If y2 is unique, take
nextState (s, x1) = (nextStateM(s, (x1, y2))
output(s, x1) = outputM1(x1, y2)

s

M

x1

y2


