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Signals as functions 

1.  Continuous functions of real independent variables 
–  1D: f=f(x) 
–  2D: f=f(x,y) x,y 
–  Real world signals (audio, ECG, images) 

2.  Real valued functions of discrete variables 
–  1D: f=f[k] 
–  2D: f=f[i,j] 
–  Sampled signals 

3.  Discrete functions of discrete variables 
–  1D: y=y[k] 
–  2D: y=y[i,j] 
–  Sampled and quantized signals 
–  For ease of notations, we will use the same notations for 2 and 3 
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Fourier Transform 

•  Different formulations for the different classes of signals 
–  Summary table: Fourier transforms with various combinations of continuous/

discrete time and frequency variables. 
–  Notations: 

•  CTFT: continuous time FT: t is real and f real (f=ω) (CT, CF) 
•  DTFT: Discrete Time FT: t is discrete (t=n), f is real (f=ω) (DT, CF) 
•  CTFS: CT Fourier Series (summation synthesis): t is real AND the function is periodic, f 

is discrete (f=k), (CT, DF) 
•  DTFS: DT Fourier Series (summation synthesis): t=n AND the function is periodic, f 

discrete (f=k), (DT, DF) 
•  P: periodical signals 
•  T: sampling period 
•  ωs: sampling frequency (ωs=2π/T) 
•  For DTFT: T=1 → ωs=2π 

•  This is a hint for those who are interested in a more exhaustive theoretical 
approach 
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Images as functions 

•  Gray scale images: 2D functions 
–  Domain of the functions: set of (x,y) values for which f(x,y) is defined : 2D lattice 

[i,j] defining the pixel locations 
–  Set of values taken by the function : gray levels 

•  Digital images can be seen as functions defined over a discrete domain {i,j: 
0<i<I, 0<j<J} 

–  I,J: number of rows (columns) of the matrix corresponding to the image 
–  f=f[i,j]: gray level in position [i,j] 

5 



Example 1: δ function 
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Example 2: Gaussian 
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Example 3: Natural image 
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Example 3: Natural image 
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Mathematical Background: 
Complex Numbers 

•  A complex number x is of the form:   

     

     

                       a: real part, b: imaginary part 

•  Addition 

        

•  Multiplication 

       

 



Mathematical Background: 
Complex Numbers (cont’d) 

•  Magnitude-Phase (i.e.,vector) representation 

                     

 

                                                  Magnitude: 

    

                                             Phase:  

 

φ 
Phase – Magnitude notation: 



Mathematical Background: 
Complex Numbers (cont’d) 

•  Multiplication using magnitude-phase representation 

•  Complex conjugate 

•  Properties 



Mathematical Background: 
Complex Numbers (cont’d) 

•  Euler’s formula 

•  Properties 
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Mathematical Background: 
Sine and Cosine Functions 

•  Periodic functions 

•  General form of sine and cosine functions: 



Mathematical Background: 
Sine and Cosine Functions 

Special case: A=1, b=0, α=1 

π 

π 



Mathematical Background: 
Sine and Cosine Functions (cont’d) 

Note: cosine is a shifted sine function: 

•  Shifting or translating the sine function by a const b 

cos( ) sin( )
2

t t π
= +



Mathematical Background: 
Sine and Cosine Functions (cont’d) 

•  Changing the amplitude A 



Mathematical Background: 
Sine and Cosine Functions (cont’d) 

•  Changing the period T=2π/|α| 
    consider A=1, b=0: y=cos(αt) 

period 2π/4=π/2 

    shorter period 
  higher frequency 
(i.e., oscillates faster) 

α =4 

Frequency is defined as  f=1/T 

Alternative notation: sin(αt)=sin(2πt/T)=sin(2πft) 
 



Fourier Series Theorem 

•  Any periodic function can be expressed as a weighted sum (infinite) of sine 
and cosine functions of varying frequency: 

is called the “fundamental frequency” 



Fourier Series (cont’d) 

α1 

α2 

α3 



Continuous Fourier Transform (FT) 

•  Transforms a signal (i.e., function) from the spatial domain to the frequency 
domain. 

where 

(IFT) 



Why is FT Useful? 

•  Easier to remove undesirable frequencies. 

•  Faster perform certain operations in the frequency domain than in the 
spatial domain. 



Example: Removing undesirable frequencies 

remove high 
frequencies 

reconstructed 
signal 

frequencies noisy signal 

To remove certain 
frequencies, set their 
corresponding F(u) 
coefficients to zero! 



How do frequencies show up in an image? 

•  Low frequencies correspond to slowly varying information (e.g., continuous 
surface). 

•  High frequencies correspond to quickly varying information (e.g., edges) 

Original Image Low-passed 



Example of noise reduction using FT 



Frequency Filtering Steps 

1. Take the FT of f(x):  

2. Remove undesired frequencies: 

3. Convert back to a signal:   

We’ll talk more about this later ..... 



Definitions 

•  F(u) is a complex function: 

•  Magnitude of FT (spectrum): 

•  Phase of FT: 

•  Magnitude-Phase representation:  

•  Energy of f(x): P(u)=|F(u)|2  

  



Continuous Time Fourier Transform 
(CTFT) 

Time is a real variable (t) 

Frequency is a real variable (ω) 

Signals : 1D 
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The idea 
A signal can be interpreted as en 
electromagnetic wave. This 
consists of lights of different “color”, 
or frequency, that can be split apart 
usign an optic prism. Each 
component is a “monochromatic” 
light with sinusoidal shape. 

Following this analogy, each signal 
can be decomposed into its 
“sinusoidal” components which 
represent its “colors”. 

Of course these components in 
general do not correspond to visible 
monochromatic light. However, they 
give an idea of how fast are the 
changes of the signal. 
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CTFT: Concept 

■  A signal can be represented as a 
weighted sum of sinusoids.  

■  Fourier Transform is a change of 
basis, where the basis functions 
consist of sins and cosines (complex 
exponentials).  
 

[Gonzalez Chapter 4] 
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Continuous Time Fourier Transform 
(CTFT) 

T=1 
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Fourier Transform 

•  Cosine/sine signals are easy to define and 
interpret.  

•  Analysis and manipulation of sinusoidal 
signals is greatly simplified by dealing with 
related signals called complex exponential 
signals.  

•  A complex number has real and imaginary 
parts: z  =  x+j y 

•  The Eulero formula links complex 
exponential signals and trigonometric 
functions 

( )e cos sinjr r jα α α= +
cosα = e

iα + e−iα

2

sinα = e
iα − e−iα

2i
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CTFT 

•  Continuous Time Fourier Transform 

•  Continuous time a-periodic signal 

•  Both time (space) and frequency are continuous variables 
–  NON normalized frequency ω is used 

•  Fourier integral can be regarded as a Fourier series with fundamental 
frequency approaching zero 

•  Fourier spectra are continuous 
–  A signal is represented as a sum of sinusoids (or exponentials) of all 

frequencies over a continuous frequency interval 

( ) ( )

1( ) ( )
2

j t

t
j t

F f t e dt

f t F e d

ω

ω

ω

ω

ω ω
π

−=

=

∫

∫

analysis 

synthesis 

Fourier integral 
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CTFT of real signals 

•  Real signals: each signal sample is a real number 

•  Property: the CTFT is symmetric 

34 
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Sinusoids 

•  Frequency domain characterization of signals 

Frequency domain 
(spectrum, absolute 
value of the 
transform) 

Signal domain 

( ) ( ) j tF f t e dtωω
+∞

−

−∞

= ∫
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Gaussian 

Frequency domain 

Time domain 
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rect 

sinc function 

Frequency domain 

Time domain 
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Example 
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Example 
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Properties 
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CTFT 

•  Change of variables for simplified notations: ω=2πu 

•  More compact notations (same as in GW) 

2(2 ) ( ) ( ) j uxF u F u f x e dxππ
∞

−

−∞

= = =∫
( )2 21( ) ( ) 2 ( )

2
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∞ ∞
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π

∞
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=

∫

∫
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Images vs Signals 

1D 

•  Signals 

•  Frequency 
–  Temporal 
–  Spatial 

•  Time (space) frequency 
characterization of signals 

•  Reference space for 
–  Filtering 
–  Changing the sampling rate 
–  Signal analysis 
–  …. 

2D 

•  Images  

•  Frequency 
–  Spatial 

•  Space/frequency characterization of 
2D signals 

•  Reference space for 
–  Filtering 
–  Up/Down sampling 
–  Image analysis 
–  Feature extraction 
–  Compression 
–  …. 
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2D Continuous FT 
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2D Frequency domain 

ωx 

ωy 

Large vertical 
frequencies correspond 
to horizontal lines 

Large horizontal 
frequencies correspond 
to vertical lines 

Small horizontal and 
vertical frequencies 
correspond smooth 
grayscale changes in 
both directions 

Large horizontal and 
vertical frequencies 
correspond sharp 
grayscale changes in 
both directions 
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2D spatial frequencies 

•  2D spatial frequencies characterize the image spatial changes in the 
horizontal (x) and vertical (y) directions 

–  Smooth variations -> low frequencies 
–  Sharp variations -> high frequencies 

x 

y 

ωx=1 
ωy=0 ωx=0 

ωy=1 
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2D Continuous Fourier Transform 

•  2D Continuous Fourier Transform (notation 2) 

( ) ( ) ( )

( ) ( ) ( )

2

2

ˆ , ,

ˆ, ,

j ux vy

j ux vy

f u v f x y e dxdy

f x y f u v e dudv

π

π

+∞
− +

−∞

+∞
+

−∞

=

= =

∫

∫

22 ˆ( , ) ( , )f x y dxdy f u v dudv
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

=∫ ∫ ∫ ∫ Plancherel’s equality 
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Delta 

•  Sampling property of the 2D-delta function (Dirac’s delta) 

•  Transform of the delta function 

0 0 0 0( , ) ( , ) ( , )x x y y f x y dxdy f x yδ
∞

−∞

− − =∫

{ } 2 ( )( , ) ( , ) 1j ux vyF x y x y e dxdyπδ δ
∞ ∞

− +

−∞ −∞

= =∫ ∫

{ } 0 02 ( )2 ( )
0 0 0 0( , ) ( , ) j ux vyj ux vyF x x y y x x y y e dxdy e ππδ δ

∞ ∞
− +− +

−∞ −∞

− − = − − =∫ ∫ shifting 
property 
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Constant functions 

•  Inverse transform of the impulse function 

•  Fourier Transform of the constant (=1 for all x and y) 

( ) 2 ( )

( , ) 1 ,

, ( , )j ux vy

k x y x y

F u v e dxdy u vπ δ
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Trigonometric functions 

•  Cosine function oscillating along the x axis 
–  Constant along the y axis 

{ } 2 ( )

2 ( ) 2 ( )
2 ( )

( , ) cos(2 )

cos(2 ) cos(2 )

2
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j fx j fx
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e e e dxdy

π

π π
π

π

π π
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2
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Vertical grating 

ωx 

ωy 

0 
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Double grating 

ωx 

ωy 

0 
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Smooth rings 

ωx 

ωy 
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Vertical grating 

ωx 

ωy 

0 
-2πf 2πf 
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2D box 
2D sinc 
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CTFT properties 

■  Linearity 

■  Shifting 

■  Modulation 

■  Convolution 

■  Multiplication 

■  Separability 

( , ) ( , ) ( , ) ( , )af x y bg x y aF u v bG u v+ ⇔ +

( , )* ( , ) ( , ) ( , )f x y g x y F u v G u v⇔

( , ) ( , ) ( , )* ( , )f x y g x y F u v G u v⇔

( , ) ( ) ( ) ( , ) ( ) ( )f x y f x f y F u v F u F v= ⇔ =

0 02 ( )
0 0( , ) ( , )j ux vyf x x y x e F u vπ− +− − ⇔

0 02 ( )
0 0( , ) ( , )j u x v ye f x y F u u v vπ + ⇔ − −
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Separability 

1.  Separability of the 2D Fourier transform 
–  2D Fourier Transforms can be implemented as a sequence of 1D Fourier 

Transform operations performed independently along the two axis  

( )

2 ( )

2 2 2 2

2
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F u y e dy F u v

π

π π π π

π

∞ ∞
− +

−∞ −∞

∞ ∞ ∞ ∞
− − − −

−∞ −∞ −∞ −∞

∞
−

−∞

= =

= =

= =

∫ ∫

∫ ∫ ∫ ∫
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2D FT 1D FT along 
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1D FT along 
the cols 
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Separability 

•  Separable functions can be written as  

2.  The FT of a separable function is the product of the FTs of the two functions 

( ) ( )

( ) ( )

2 ( )

2 2 2 2

( , ) ( , )

( ) ( )

j ux vy

j ux j vy j vy j ux

F u v f x y e dxdy
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( ) ( ) ( ),f x y f x g y=
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Discrete Time Fourier Transform (DTFT) 

Applies to Discrete time (sampled) signals and time series 

1D 
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Fourier Transform: 2D Discrete Signals 

■  Fourier Transform of a 2D discrete signal is defined as 

where 

2 ( )( , ) [ , ] j um vn

m n
F u v f m n e π

∞ ∞
− +

=−∞ =−∞

= ∑ ∑

1 1,
2 2

u v−
≤ <

1/ 2 1/ 2
2 ( )

1/ 2 1/ 2

[ , ] ( , ) j um vnf m n F u v e dudvπ +

− −

= ∫ ∫

■  Inverse Fourier Transform 



Properties 

•  Periodicity: 2D Fourier Transform of a discrete a-periodic signal is periodic 
–  The period is 1 for the unitary frequency notations and 2π for normalized 

frequency notations.  
–  Proof (referring to the firsts case) 

( )2 ( ) ( )( , ) [ , ] j u k m v l n

m n
F u k v l f m n e π

∞ ∞
− + + +

=−∞ =−∞

+ + = ∑ ∑

( )2 2 2[ , ] j um vn j km j ln

m n
f m n e e eπ π π

∞ ∞
− + − −

=−∞ =−∞

= ∑ ∑

2 ( )[ , ] j um vn

m n
f m n e π

∞ ∞
− +

=−∞ =−∞
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1 1 

( , )F u v=

Arbitrary 
integers 
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Fourier Transform: Properties 

■  Periodicity: Fourier Transform of a discrete signal is periodic 
with period 1. 

( )2 ( ) ( )( , ) [ , ] j u k m v l n

m n
F u k v l f m n e π

∞ ∞
− + + +

=−∞ =−∞

+ + = ∑ ∑

( )2 2 2[ , ] j um vn j km j ln

m n
f m n e e eπ π π

∞ ∞
− + − −

=−∞ =−∞

= ∑ ∑

2 ( )[ , ] j um vn

m n
f m n e π

∞ ∞
− +

=−∞ =−∞
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1 1 

( , )F u v=

Arbitrary 
integers 
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Fourier Transform: Properties 

■  Linearity, shifting, modulation, convolution, multiplication, 
separability, energy conservation properties also exist for the 
2D Fourier Transform of discrete signals. 
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DTFT Properties 

■  Linearity 

■  Shifting 

■  Modulation 

■  Convolution 

■  Multiplication 

■  Separable functions 

■  Energy conservation 

[ , ] [ , ] ( , ) ( , )af m n bg m n aF u v bG u v+ ⇔ +

0 02 ( )
0 0[ , ] ( , )j um vnf m m n n e F u vπ− +− − ⇔

[ , ] [ , ] ( , )* ( , )f m n g m n F u v G u v⇔

[ , ]* [ , ] ( , ) ( , )f m n g m n F u v G u v⇔

0 02 ( )
0 0[ , ] ( , )j u m v ne f m n F u u v vπ + ⇔ − −

[ , ] [ ] [ ] ( , ) ( ) ( )f m n f m f n F u v F u F v= ⇔ =
2 2[ , ] ( , )

m n
f m n F u v dudv

∞ ∞∞ ∞

=−∞ =−∞ −∞ −∞

=∑ ∑ ∫ ∫
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Fourier Transform: Properties 

■  Define Kronecker delta function 

■  Fourier Transform of the Kronecker delta function 

1,   for 0 and 0
[ , ]

0,  otherwise
m n

m nδ
= =⎧ ⎫

= ⎨ ⎬
⎩ ⎭

( ) ( )2 2 0 0( , ) [ , ] 1j um vn j u v

m n
F u v m n e eπ πδ

∞ ∞
− + − +

=−∞ =−∞

⎡ ⎤= = =⎣ ⎦∑ ∑
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DTFT Properties 

■  Fourier Transform of 1 

To prove: Take the inverse Fourier Transform of the Dirac 
delta function and use the fact that the Fourier Transform has 
to be periodic with period 1.  

( )2( , ) 1 ( , ) 1 ( , )j um vn

m n k l
f m n F u v e u k v lπ δ

∞ ∞ ∞ ∞
− +

=−∞ =−∞ =−∞ =−∞

⎡ ⎤= ⇔ = = − −⎣ ⎦∑ ∑ ∑ ∑
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Impulse Train 

■  Define a comb function (impulse train) as follows 

, [ , ] [ , ]M N
k l

comb m n m kM n lNδ
∞ ∞

=−∞ =−∞

= − −∑ ∑

 where M and N are integers 

2[ ]comb n

n

1
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Impulse Train 

combM ,N [m,n]  δ[m− kM ,n− lN ]
l=−∞

∞

∑
k=−∞

∞

∑

[ ] 1, ,
k l k l

k lm kM n lN u v
MN M N

δ δ
∞ ∞ ∞ ∞

=−∞ =−∞ =−∞ =−∞

⎛ ⎞− − ⇔ − −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

1 1,
( , )

M N

comb u v, [ , ]M Ncomb m n

combM ,N (x, y)  δ x − kM , y − lN( )
l=−∞

∞

∑
k=−∞

∞

∑

•  Fourier Transform of an impulse train is also an impulse train: 
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Impulse Train 
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Impulse Train 

( ) 1, ,
k l k l

k lx kM y lN u v
MN M N

δ δ
∞ ∞ ∞ ∞
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•  In the case of continuous signals: 
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Impulse Train 

2( )comb x

x u

1 1
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1
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1 ( )
2
comb u

1
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2D DTFT: constant 

■  Fourier Transform of 1 

To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that 
the Fourier Transform has to be periodic with period 1.  

( )2

[ , ] 1, ,

[ , ] 1

( , )

j uk vl

k l

k l

f k l k l

F u v e

u k v l

π

δ

∞ ∞
− +

=−∞ =−∞

∞ ∞

=−∞ =−∞

= ∀

⎡ ⎤= =⎣ ⎦

= − −

∑ ∑

∑ ∑ periodic with period 1 
along u and v 
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Consequences 

Sampling (Nyquist) theorem 
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Sampling 

x

x
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( )Mcomb x
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( )F u
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F u comb u

u
1
M
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( ) ( )Mf x comb x
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Sampling 

x
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u

( )F u

u

1( )* ( )
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F u comb u

x

( ) ( )Mf x comb x

WW−

M
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1
M1 2W

M
>Nyquist theorem: No aliasing if 



Bahadir 
K. 

Gunturk 

77 

Sampling 

u

1( )* ( )
M

F u comb u

x

( ) ( )Mf x comb x

M

W

1
M

If there is no aliasing, the original signal 
can be recovered from its samples by 
low-pass filtering. 

1
2M
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Sampling 
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Sampling 
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Anti-aliasing 
filter 

u
WW−

( )* ( )f x h x
1
2M



Bahadir 
K. 

Gunturk 

80 

Sampling 

u
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■  Without anti-aliasing filter:  

■  With anti-aliasing filter:  
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Sampling in 2D (images) 
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Sampling 
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Interpolation (low pass filtering) 

u

v

1
M

1
N

1 1,  for  and v
( , ) 2 2

0,  otherwise

MN u
H u v M N

⎧ ≤ ≤⎪
= ⎨
⎪⎩

1
2N

1
2M

Ideal reconstruction  
filter: 
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Anti-Aliasing 

a=imread(‘barbara.tif’); 
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Anti-Aliasing 

a=imread(‘barbara.tif’); 
b=imresize(a,0.25); 
c=imresize(b,4); 
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Anti-Aliasing 

a=imread(‘barbara.tif’); 
b=imresize(a,0.25); 
c=imresize(b,4); 
 
H=zeros(512,512); 
H(256-64:256+64, 256-64:256+64)=1; 
 
Da=fft2(a); 
Da=fftshift(Da); 
Dd=Da.*H; 
Dd=fftshift(Dd); 
d=real(ifft2(Dd)); 



Discrete Fourier Transform (DFT) 

Applies to finite length discrete time (sampled) signals and 
time series 

The easiest way to get to it 

Time is a discrete variable (t=n) 

Frequency is a discrete variable (f=k) 
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DFT 

•  The DFT can be considered as a generalization of the CTFT to discrete 
series 

•  It is the FT of a discrete (sampled) function of one variable 

–  The 1/N factor is put either in the analysis formula or in the synthesis one, or the 
1/sqrt(N) is put in front of both. 

•  Calculating the DFT takes about N2 calculations 
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In practice.. 

•  In order to calculate the DFT we start with k=0, calculate F(0) as in the 
formula below, then we change to u=1 etc 

•  F[0] is the average value of the function f[n] in k=0 
–  This is also the case for the CTFT 

•  The transformed function F[k] has the same number of terms as f[n] and 
always exists 

•  The transform is always reversible by construction so that we can always 
recover f given F 

1 1
2 0 /

0 0

1 1[0] [ ] [ ]
N N
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n n
F f n e f n f

N N
π

− −
−

= =

= = =∑ ∑
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Highlights on DFT properties 

time 

amplitude 

0 

Frequency (k) 

|F[k]| 
F[0] low-pass 

characteristic 
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The DFT of a real signal is symmetric 
The DFT of a real symmetric signal 
(even like the cosine) is real and 
symmetric 
The DFT is N-periodic  
Hence 
The DFT of a real symmetric signal only 
needs to be specified in [0, N/2] 

0 N/2 N 



Visualization of the basic repetition 

•  To show a full period, we need to translate the origin of the transform at u=N/2 (or 
at (N/2,N/2) in 2D) 

|F(u-N/2)| 

|F(u)| 

f n[ ]e2πu0n → f k −u0[ ]

u0 =
N
2

f n[ ]e
2π N

2
n
= f n[ ]eπNn = −1( )n f n[ ]→ f k − N

2
#

$%
&

'(



DFT 

•  About N2 multiplications are needed to calculate the DFT 

•  The transform F[k] has the same number of components of f[n], that is N 

•  The DFT always exists for signals that do not go to infinity at any point 

•  Using the Eulero’s formula 

( ) ( )( )
1 1
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frequency component k discrete trigonometric functions 
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2D example 

no translation after translation 



Going back to the intuition 

•  The FT decomposed the signal over its harmonic components and thus 
represents it as a sum of linearly independent complex exponential 
functions 

•  Thus, it can be interpreted as a “mathematical prism” 
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DFT 

•  Each term of the DFT, namely each value of F[k], results of the 
contributions of all the samples in the signal (f[n] for n=1,..,N) 

•  The samples of f[n] are multiplied by trigonometric functions of different 
frequencies 

•  The domain over which F[k] lives is called frequency domain 

•  Each term of the summation which gives F[k] is called frequency component 
of harmonic component 
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DFT is a complex number 

•  F[k] in general are complex numbers 
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Stretching vs shrinking 
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stretched shrinked 



Periodization vs discretization 

•  DT (discrete time) signals can be seen as sampled versions of CT 
(continuous time) signals 

•  Both CT and DT signals can be of finite duration or periodic 

•  There is a duality between periodicity and discretization 
–  Periodic signals have discrete frequency (sampled) transform  
–  Discrete time signals have periodic transform  
–  DT periodic signals have discrete (sampled) periodic transforms 
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Linking continuous and discrete domains 



Increasing the resolution by Zero Padding 

•  Consider the analysis formula 

•  If f[n] consists of n samples than F[k] consists of N samples as well, it is 
discrete (k is an integer) and it is periodic (because the signal f[n] is discrete 
time, namely n is an integer) 

•  The value of each F[k], for all k, is given by a weighted sum of the values of 
f[n], for n=1,..,N-1 

•  Key point: if we artificially increase the length of the signal adding M zeros 
on the right, we get a signal f1[m] for which m=1,…,N+M-1. Since 
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Increasing the resolution through ZP 

•  Then the value of each F[k] is obtained by a weighted sum of the “real” 
values of f[n] for 0≤k≤N-1, which are the only ones different from zero, but 
they happen at different “normalized frequencies” since the frequency axis 
has been rescaled. In consequence, F[k] is more “densely sampled” and 
thus features a higher resolution. 
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Increasing the resolution by Zero Padding 

n 

zero padding 

0 N0 

k 0 2π 

F(Ω) (DTFT) in shade 
F[k]: “sampled version” 

4π 
2π/N0 
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Zero padding 

n 

zero padding 

0 
N0 

k 0 2π 

F(Ω) 

4π 
2π/N0 

Increasing the number of zeros 
augments the “resolution” of 
the transform since the samples 
of the DFT get “closer”  
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Summary of dualities 

FOURIER DOMAIN SIGNAL DOMAIN 

Sampling Periodicity 

Sampling Periodicity 

DTFT 

CTFS 

Sampling+Periodicity Sampling +Periodicity DTFS/DFT 
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Discrete Cosine Transform (DCT) 

Applies to digital (sampled) finite length signals AND uses 
only cosines.  

The DCT coefficients are all real numbers 
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Discrete Cosine Transform (DCT) 

•  Operate on finite discrete sequences (as DFT) 

•  A discrete cosine transform (DCT) expresses a sequence of finitely many 
data points in terms of a sum of cosine functions oscillating at different 
frequencies 

•  DCT is a Fourier-related transform similar to the DFT but using only real 
numbers 

•  DCT is equivalent to DFT of roughly twice the length, operating on real data 
with even symmetry (since the Fourier transform of a real and even function 
is real and even), where in some variants the input and/or output data are 
shifted by half a sample  

•  There are eight standard DCT variants, out of which four are common 

•  Strong connection with the Karunen-Loeven transform 
–  VERY important for signal compression  
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DCT 

•  DCT implies different boundary conditions than the DFT or other related 
transforms  

•  A DCT, like a cosine transform, implies an even periodic extension of the 
original function  

•  Tricky part 
–  First, one has to specify whether the function is even or odd at both the left and 

right boundaries of the domain  
–  Second, one has to specify around what point the function is even or odd 

•  In particular, consider a sequence abcd of four equally spaced data points, and say that 
we specify an even left boundary. There are two sensible possibilities: either the data is 
even about the sample a, in which case the even extension is dcbabcd, or the data is 
even about the point halfway between a and the previous point, in which case the even 
extension is dcbaabcd (a is repeated).  
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Symmetries 
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DCT 
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•  Warning: the normalization factor in front of these transform definitions is merely a 
convention and differs between treatments. 

–  Some authors multiply the transforms by (2/N0)1/2  so that the inverse does not require any 
additional multiplicative factor. 

•  Combined with appropriate factors of √2 (see above), this can be used to make the transform matrix 
orthogonal.  
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