Follow-up about XPCR and Infogenomics

Dr Giuditta Franco

Department of Computer Science, University of Verona, Italy

<ロ> <同> <同> <同> <同> < 同>

Extraction algorithm Mutagenesis algorithm Library generation algorithm

DNA Extraction Problem

Given:

• input pool *P* of heterogeneous DNA strands, same length *n*, same prefix α , and suffix β : $|\alpha x\beta| = n$;

2 a string γ (shorter than *n*);

Provide:

• output pool of *all and only* the γ -superstrands from *P*:

$$P_{\gamma} = \{ lpha \mathbf{y} \gamma \mathbf{z} eta \mid lpha \mathbf{y} \gamma \mathbf{z} eta \in \mathbf{P}, \mathbf{y}, \mathbf{z} \in \mathbf{\Sigma}^* \}$$

(日) (同) (三) (三)

Extraction algorithm Mutagenesis algorithm Library generation algorithm

イロン 不得 とくほ とくほう 一日

One additional separation step

Given a string γ , we compute $XPCR_{\gamma}(\alpha, \overline{\beta})$.

Input pool: $P = \{ \alpha x \beta \mid |\alpha x \beta| = n \}.$

•
$$(P_1, P_2) := split(P);$$

- 2 $P_1 := PCR(\alpha, \overline{\gamma})(P_1);$
- 3 $P_2 := PCR(\gamma, \overline{\beta})(P_2);$
- P:= $Mix(P_1, P_2);$
- So $P: = \bigcup_{k < n} El_k(P);$ % what about skipping this step?
- P: = $PCR(\alpha, \overline{\beta})(P)$; % combinatorial amplification
- $\bigcirc P := El_n(P).$

XPCR based algorithms

Infogenomics

Extraction algorithm Mutagenesis algorithm Library generation algorithm

The main idea of XPCR Extraction

- 0. Given a Pool of strands of length n, beginning with α and ending with β
- 1. If a strand includes γ (of length L) then :
 - 1.2 copy its left part from γ to the beginning (backward), by PCR(α , h(γ))

1.1 copy its right part from γ to the end (forward), by PCR(γ , h(β))

- 2. Select short strands with "conjugate" lengths L_1 , L_2 (L_1 + L_2 L= n), by Gel Electrophoresis
- Concatenate strands of the previous step, by XPCR(α, h(β)).
- 4. Keep only strands of length n.

Slide courtesy of prof. Vincenzo Manca, Univ. Verona, IT

Extraction algorithm Mutagenesis algorithm Library generation algorithm

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

XPCR based $Extract(P, \gamma)$

• $P := infix(P, \alpha, \beta);$ 2 $L := length(P); S := \emptyset;$ **o** for each $n \in L$ do **1** $R_1 := \emptyset, R_2 := \emptyset, Q := \emptyset, P_1 := \emptyset, P_2 := \emptyset;$ P := separate(P, n);2 $(P_1, P_2) := split(P);$ 3 4 $P_1 := PCR(P_1, \alpha, \bar{\gamma});$ 6 for each m < n do $R_1 := mix(R_1, separate(P_1, m));$ 6 $P_2 := PCR(P_2, \gamma, \beta)$ 7 for each m < n do $R_2 := mix(R_2, separate(P_2, m));$ 8 $Q := mix(R_1, R_2);$ 9 $Q := PCR(Q, \alpha, \beta);$ 10 Q := separate(Q, n);S := mix(S, Q);1 output S^{1} . 12

¹Problem of the γ -chimeras/mermaids.

EXPCR = DNA Extraction by XPCR Experimental Check

Consider a pool P of α ... β -strands that are either γ -superstrands or γ' -superstrands ($\gamma \neq \gamma'$),

where all γ -superstrands are either

 γ 1-superstrands, or γ 2-superstrands, or

 γ 3-superstrands ... (γ 1 $\neq \gamma$ 2 $\neq \gamma$ 3 ...)

Slide courtesy of prof. Vincenzo Manca, Univ. Verona, IT

Extraction algorithm Mutagenesis algorithm Library generation algorithm

Experimental Check

Our extraction is correct and complete in the sense that:

1. XPCR-Extraction selected only

- γ-superstrands
- 2. XPCR-Extraction selected all kinds of

 $\gamma\text{-superstrands}$ ($\gamma1,\,\gamma2$, $\gamma3$...- superstrands).

Slide courtesy of prof. Vincenzo Manca, Univ. Verona, IT

XPCR based algorithms

Infogenomics

Extraction algorithm Mutagenesis algorithm Library generation algorithm

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □

э

Chimeras/Mermaids

Extraction algorithm Mutagenesis algorithm Library generation algorithm

・ロット (雪) (日) (日)

XPCR – PureExtract(P, γ)

- L := length(P);
- **2** for each $n \in L$ do
- (P, Q) := split(P);
- $0 \quad Q := infix(Q, \lambda, \beta);$

- $P := separate(P, n + |\alpha| + |\beta|);$

output P

Extraction algorithm Mutagenesis algorithm Library generation algorithm

Extraction with no chimeras

amplification

no amplification

・ロ・・ (日・・ モ・・ ・ モ・

ъ

$XPCR - Mutagenesis(P, \gamma, \delta)$

let
$$P = \{ < \alpha \gamma \beta > \}$$
, and $Q = \{ < \alpha [-18, -1] \delta \beta [1, 20] > \}$;

•
$$(P_1, P_2) := split(P);$$

- **2** $P_1 := PCR(P_1, \alpha[1, 18], mir(\alpha[-18, -1]));$
- **3** $P_2 := PCR(P_2, \beta[1, 20], mir(\beta[-20, -1]));$
- $P_1 := separate(P_1, |\alpha|); P_2 := separate(P_2, |\beta|);$

5
$$P_1 := mix(P_1, Q);$$

- $P_1 := PCR(P_1, \alpha[1, 18], mir(\beta[1, 20]));$
- $P_1 := separate(P_1, |\alpha| + |\delta| + 20);$
- **3** $P := mix(P_1, P_2);$
- **9** $P := PCR(P, \alpha[1, 18], mir(\beta[-20, -1]));$

Output: P.

Quaternary Recombination Algorithm

This method starts from α -prefixed and β -suffixed I_1 , I_2 , I_3 , I_4 , works in linear time, by using polymerase extension.

Let P_1 and P_2 be two copies of the pool

 $\{\alpha I_1\beta, \alpha I_2\beta, \alpha I_3\beta, \alpha I_4\beta\}$

for i = 2, 3, 4, 5 do

- perform $XPCR_{X_i}$ on P_1 and $XPCR_{Y_i}$ on P_2 ²
- mix the two pools into one P := P₁ ∪ P₂, then split P randomly in two new pools P₁ and P₂

²Run together (no intermediate electrophoresis) have a worse efficiency and complexity

Extraction algorithm Mutagenesis algorithm Library generation algorithm

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Splicing Examples

Initial sequences: $I_1 = X_1 X_2 X_3 X_4 X_5 X_6$, $I_2 = Y_1 Y_2 Y_3 Y_4 Y_5 Y_6$, $I_3 = X_1 Y_2 X_3 Y_4 X_5 Y_6$, $I_4 = Y_1 X_2 Y_3 X_4 Y_5 X_6$.

$$I_1, I_4 \xrightarrow{r_{X_2}} X_1 X_2 Y_3 X_4 Y_5 X_6, Y_1 X_2 X_3 X_4 X_5 X_6, I_2, X_1 X_2 Y_3 X_4 Y_5 X_6 \xrightarrow{r_{Y_5}} Y_1 Y_2 Y_3 Y_4 Y_5 X_6, \mathbf{X_1 X_2 Y_3 X_4 Y_5 Y_6}.$$

$$\begin{array}{c} \mathbf{2} \quad I_2, \ I_4 \stackrel{r_{Y_3}}{\longrightarrow} \quad Y_1 Y_2 Y_3 X_4 Y_5 X_6, \ Y_1 X_2 Y_3 Y_4 Y_5 Y_6, \\ I_1, \ Y_1 Y_2 Y_3 X_4 Y_5 X_6 \stackrel{r_{X_4}}{\longrightarrow} \quad X_1 X_2 X_3 X_4 Y_5 X_6, \ \mathbf{Y_1 Y_2 Y_3 X_4 X_5 X_6}. \end{array}$$

イロト イポト イヨト イヨト

Correctness/completeness of recomb. algorithm

The *n*-dimensional library { $\alpha_1 \cdots \alpha_n \mid \alpha_i \in \{X_i, Y_i\}, i = 1, \dots, n$ } is the null context splicing language generated by the system $\mathcal{N} = (\Sigma, A, R)$, where $\Sigma = \{A, T, C, G\}, A = \{I_1, I_2, I_3, I_4\}$, and $R = \{r_{X_2}, r_{Y_2}, \dots, r_{X_{n-1}}, r_{Y_{n-1}}\}$.

The recombination algorithm, by construction, generates the null context splicing language. Any null context splicing rule (over axioms and products) generates an element of the library. We have to show that it generates the whole *n*-dimensional library, that is, **each element of the library is generated by a sequence of null context splicing rules**.

イロト 不得 とくほと くほとう

Algorithm Correctness Proof (1/2)

Proof. For any recombination $\alpha_1 \alpha_2 \dots \alpha_n$ there exists the subset of rules $\{r_{\alpha_2}, r_{\alpha_3}, \dots, r_{\alpha_{n-1}}\}$ that generates it by means of the following computation starting from the initial sequences.

Let us call L_i the initial sequence containing $\alpha_{i-1}\alpha_i$ as subsequence, for i = 2, ..., n, and let c, s_1, s_2 be string variables.

By construction, for each value of *i* there exists only one of such an initial sequence.

Extraction algorithm Mutagenesis algorithm Library generation algorithm

・ロト ・ 同ト ・ ヨト ・ ヨト

Algorithm Correctness Proof (2/2)

 $c := L_2$

output: c

The string *c* contains the substrand $\alpha_1 \alpha_2$ before the for cycle, and $\alpha_1 \alpha_2 \dots \alpha_i$ after the cycle corresponding to j = i - 1. Since its length remains constant during the computation, after the for cycle the string *c* is equal to $\alpha_1 \alpha_2 \dots \alpha_n$. Infogenomics introduced a method

- to represent and compare genomes (genomic profiles, dictionary intersections): Zipf diagrams
- ...
- to (automatically) find tandem repeats, and good genomic dictionaries.

イロト イポト イヨト イヨト

3

Genomic profiles and Zipf curves

Zipf curves measure word frequencies in natural languages

Genomic Dictionaries

- D(G) = {G[i,j] |1 ≤ i ≤ j ≤ |G|} (square dim. w.r.t. |G|)
- D_k(G) = D(G) ∩ Γ^k
- L included in D(G) is a dictionary of G
- A position p of G is m-covered in D if there are m words G[i,j] of D with i ≤ p ≤ j (positional coverage)
- D covers G if every position of G is k-covered with k ≥ 1 by D (lexical coverage)
- D minimally covers G if D covers G and no D' included in D covers G
- G is D-segmentable if G belongs to D*

Slide courtesy of prof. Vincenzo Manca, Univ. Verona, IT

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A Word Selection Algorithm based on EXP/KL

- Word Recurrence distance distribution RDD(α)
- $RDD(\alpha) \rightarrow RDD^*(\alpha)$ (norm. removing peaks and holes)
- Best Exponential Distr. approx. to RDD*(α), NED(α)
- Entropic "distance" between distributions RDD and NED (symmetric Kullback-Leibler) KL_(RDD||NED)
- Extraction of words by elongation stability (starting from different seeds < 10)
- Union of the maximal elongations
- · Word filtering by different tests

(length, multiplicity, sequence coverage, positional coverage, ...)

Extraction of Genomic Dictionaries Vincenzo Bonnici, University of Verona, Italy

A novel word recurrence based approach

Approach

- · Characterize words by the divergence between their RDD and a theoretical distribution
- · The divergence is used as a measure of the information content of a word
- Elongate low expressive words until they acquire a reasonable level of significance

+ Random deviation of a word $\,\alpha$

- 1) **Extract** the RDD of α in G, R_a
- 2) Remove distribution noise (peaks)
- 3) Force \mathbf{R}_{α} to be a probability distribution
- 4) Estimate an exponential distribution E, from R,
- 5) Force E, to be a probability distribution
- 6) Calculate the random deviation as

r(α) = max(KL(R_α, E_α), KL(E_α, R_α))

where KL is the entropic divergence (namely the Kullback-Leibler divergence)

Slide courtesy of Dr. Vincenzo Bonnici, Univ. Verona, IT 💷 🖉 🧟 🔊 🔍

Extraction of Genomic Dictionaries Vincenzo Bonnici, University of Verona, Italy

Elongation procedure Words, factors and roots

Basic elongation strategy

Elongate a seed until $r(\alpha)$ increases

Elongation strategy is inversely inclusive w.r.t. seeds

Elongation from large seeds include what smaller seed elongate

Slide courtesy of Dr. Vincenzo Bonnici, Univ. Verona, IT 💷 🔌 🚊 🔗 🔍

Extraction of Genomic Dictionaries Vincenzo Bonnici, University of Verona, Italy

Elongation procedure Preferred word lengths in WLD

Hg19, chromosome 1

		seed length								
		1	2	3	4	5	6	7	8	
	4		5	5						
	5	17	54	108	179					
	6	41	305	666	1,306	1,666				
	7	92	337	616	1,478	2,310	2,925			
	8	79	178	280	468	593	1,474	4,151		
Ę.	9	43	142	248	562	811	3,879	14,614	39,347	
5	10	8	221	542	1,325	2,140	9,106	48,112	144,355	
5	11	13	197	479	1,284	2,115	6,986	50,442	224,644	
2	12		122	297	838	1,363	2,201	24,687	303,163	
5	13	2	53	119	327	579	774	6,403	136,135	
ž	14	2	19	36	80	145	194	1,094	20,805	
3	15	2	7	9	21	33	50	291	4,193	
Ϋ́ μ	16		5	7	12	17	24	99	1,196	
	17		2	3	5	6	9	27	327	
	18		1	1	1	1	4	12	128	
	19							2	43	
	20							2	15	
	21								6	
	23								1	
	24								1	

Elongation procedure

Preferred word lengths and their sequence coverage

Hg19, chromosome 1 Sequence coverage

	seed length									
		1	2	3	4	5	6	7	8	
extracted word length	4		0.0291	0.0291						
	5	0.0309	0.0790	0.1362	0.1681					
	6	0.0269	0.3149	0.5504	0.7767	0.8426				
	7	0.0742	0.2479	0.3878	0.6430	0.7691	0.8141			
	8	0.0285	0.0616	0.0899	0.1187	0.1384	0.1643	0.2634		
	9	0.0115	0.0209	0.0303	0.0499	0.0615	0.0714	0.1593	0.6315	
	10	0.0008	0.0054	0.0071	0.0128	0.0206	0.0329	0.0974	0.5388	
	11	0.0025	0.0077	0.0088	0.0108	0.0127	0.0174	0.0602	0.3509	
	12		0.0028	0.0031	0.0081	0.0089	0.0101	0.0342	0.2858	
	13	0.0000	0.0006	0.0013	0.0054	0.0065	0.0070	0.0155	0.1209	
	14	0.0035	0.0048	0.0049	0.0056	0.0065	0.0066	0.0101	0.0451	
	15	0.0026	0.0036	0.0036	0.0050	0.0052	0.0052	0.0065	0.0214	
	16		0.0016	0.0017	0.0017	0.0017	0.0028	0.0032	0.0090	
	17		0.0011	0.0011	0.0012	0.0013	0.0013	0.0014	0.0031	
	18		0.0006	0.0006	0.0006	0.0006	0.0012	0.0012	0.0020	
	19							0.0000	0.0003	
	20							0.0000	0.0002	
	21								0.0001	
	23								0.0000	
	24								0.0000	

Elongation procedure Preferred word lengths and their positional coverage

Hg19, chromosome 1 Positional coverage

	seed length								
		1	2	3	4	5	6	7	8
extracted word length	4		1.0078	1.0078					
	5	1.0807	1.1690	1.2411	1.4198				
	6	1.1539	1.3022	1.6590	2.3201	2.7715			
	7	1.0934	1.2876	1.4587	1.9817	2.5877	2.9160		
	8	1.1569	1.2590	1.3125	1.4228	1.5184	1.5836	1.5572	
	9	1.4480	1.5411	1.5211	1.7039	1.8791	1.8661	1.5470	1.7484
	10	1.0006	1.1090	1.1033	1.1697	1.1926	1.2632	1.2580	1.5457
	11	4.0810	2.1729	2.0809	1.9100	1.7829	1.6131	1.3009	1.3658
	12		1.0654	1.0624	1.1926	1.1809	1.1716	1.1507	1.3455
	13	1.0000	1.0000	1.0000	1.1355	1.3769	1.3530	1.2340	1.3709
	14	1.0000	1.0000	1.0000	1.0551	1.2244	1.2235	1.1687	1.3807
	15	1.0000	1.1446	1.1445	1.1065	1.1739	1.1725	1.1444	1.2559
	16		1.2684	1.2636	1.2588	1.2539	1.1544	1.1447	1.1148
	17		1.0000	1.0000	1.3982	1.3957	1.3948	1.3608	1.3440
	18		1.0000	1.0000	1.0000	1.0000	1.0000	1.0015	1.0187
	19							1.0000	1.0000
	20							1.0000	1.0000
	21								1.0000
	23								1.0000
	24								1.0000

Slide courtesy of Dr. Vincenzo Bonnici, Univ. Verona, IT => (=>)

Extraction of Genomic Dictionaries Vincenzo Bonnici, University of Verona, Italy

Informational Analysis Pipeline k-selectivity Selection of salient word Dictionaries Seeds Elongation D₁(G) L2R Word count R2L Sequence coverage Positional coverage $D_{g}(G)$ Dictionary selection 🥌 Chromosome Partitioning Word length similarity & Autonomous selection clustering Non-autonomous,

Slide courtesy of Dr. Vincenzo Bonnici, Univ. Verona, IT 💷 🔍 🔍

Dictionary Validation

Words extracted by informational methods are informationally relevant, but what about their biological meaning? (Infogenomics is analogous to ENCODE)

Words are pieces on which genomes were built. Which categories emerge?

Words are, in this perspective, iper-dense information units

How defining and discovering biological significance? Can information tell us deep biological mechanisms?
