Compito di Logica 2 (m)

Esercizio 1: Specificare l'ambito di ciascuna occorrenza di connettivo nelle seguenti

1.1
$$P \land -Q \leftrightarrow P \rightarrow P \lor Q$$

1.2
$$(P \lor Q) \land -(P \leftrightarrow P \land Q)$$

Esercizio 2: Dimostrare le seguenti ricorrendo solo alle dieci regole primitive e alla definizione del bicondizionale:

2.1
$$P, -P \vdash -Q$$

2.2
$$\vdash -(Q \land (P \land Q \leftrightarrow -P))$$

$$2.3 \vdash -(P \leftrightarrow -P)$$

Esercizio 3: Offrire le tavole di verità delle seguenti:

3.1
$$(P \wedge Q) \vee P \rightarrow Q$$

$$\mathbf{3.2} \quad P \rightarrow Q \leftrightarrow -Q$$

Esercizio 4: Il valore di P è V, quello di Q è F, e quello di R è V. Determinare il valore di verità di $(P \land -Q \to R \leftrightarrow -P) \lor Q$

Esercizio 5: Dimostrare per induzione sulle ffbf che in tutte le ffbf del linguaggio della logica enunciativa occorre almeno una lettera enunciativa.

Esercizio 6: Presentate lo schema generale della dimostrazione del metateorema di coerenza.

Esercizio 7: Tradurre le seguenti nella notazione della logica predicativa (usando le lettere predicative 'F' e 'G', 'I' e il nome 'm')

- **7.1** Nessun francese è sia greco sia irlandese.
- 7.2 Qualche indiano non è greco.
- **7.3** Nessun francese è invidioso, tranne i guasconi.
- 7.4 Se Menelao è felice, allora tutti i greci lo invidiano.

In questo esercizio è utile esplicitare alcune delle parentesi lasciate convenzionalmente inespresse; ad es. scrivere $(P \wedge Q) \rightarrow P$ al posto di $P \wedge Q \rightarrow P$.

Soluzioni (possibili)

- **1.1** L'ambito (dell'unica occorrenza) di \wedge è $P \wedge -Q$; l'ambito di '-' è -Q, l'ambito di \leftrightarrow è l'intera fbf; l'ambito di \rightarrow è $P \rightarrow P \vee Q$; l'ambito di \vee è $P \vee Q$.
- **1.2** L'ambito di \vee è $P \vee Q$, l'ambito della prima occorrenza di \wedge è l'intera fbf, l'ambito di è $-(P \leftrightarrow P \land Q)$, l'ambito di \leftrightarrow è $P \leftrightarrow P \land Q$; l'ambito della seconda occorrenza di \wedge è $P \land Q$.
- **2.1** $P, -P \vdash -Q$
- (1) P1 Α 2 (2) -PΑ (3) QΑ 3 1, 2(4) $P \wedge -P$ 1,2 IA $(5) \quad (P \land -P) \land Q$ 3,4 I \wedge 1, 2, 3(6) $P \wedge -P$ $_5~\mathrm{E} \wedge$ 1, 2, 3(7)-Q3,6 RAA 1, 2
- **2.2** $\vdash -(Q \land (P \land Q \leftrightarrow -P))$
- (1) $Q \wedge (P \wedge Q \leftrightarrow -P)$ Α (2) Q $_1$ E \wedge 1 $(3) \qquad P \wedge Q \leftrightarrow -P$ 1 E∧ 1 (4) $(P \land Q \rightarrow -P) \land (-P \rightarrow P \land Q)$ $3 \text{ Def.} \leftrightarrow$ (5) $P \wedge Q \rightarrow -P$ 4 E∧ 6 (6) $P \wedge Q$ Α P6 (7)6 E∧ 1,6 (8) -P5,6 MPP $P \wedge -P$ 1,6 (9)7,8 I∧ (10) $-(P \wedge Q)$ 6,9 RAA (11) $-P \rightarrow P \land Q$ 4 E∧ (12) --P10, 11 MTT 1 (13) P 12 DN 1 (14) $P \wedge Q$ 2, 13 IA 1
- $\mathbf{2.3} \vdash -(P \leftrightarrow -P))$

1

(15) $(P \wedge Q) \wedge -(P \wedge Q)$

 $(16) \quad -(Q \wedge (P \wedge Q \leftrightarrow -P))$

La prima assunzione di entrambe le derivazioni che seguono è introdotta in vista di un'applicazione di RAA all'ultimo passo.

10, 14 IA

1, 15 RAA

- 5. Proviamo per induzione sulle ffbf che in ogni fbf occorre almeno una lettera enunciativa. (a) Consideriamo una qualunque lettera enunciativa A. In A ovviamente occorre una lettera enunciativa, ossia A stessa. (b) Ora assumiamo che in ciascuna delle ffbf A e B occorra almeno una lettera enunciativa, e mostriamo che anche in −A, (A ∧ B), (A ∨ B), (A → B) e (A ↔ B) occorre almeno una lettera enunciativa. In tutti i casi la dimostrazione è ovvia perché in −A, (A ∧ B), (A ∨ B) ecc. occorrono almeno tante lettere enunciative quante ne occorrono in A, e dunque almeno una. (c) Per il principio di induzione per il linguaggio, concludiamo che in tutte le ffbf occorre almeno una lettera enunciativa. Q.D.E
- 6. Innanzitutto si dimostra per induzione sulle sequenze che tutte le sequenze derivabili sono tautologiche. Si deve dimostrare che (a) tutte le sequenze A ⊢ A sono tautologiche e (b) che (i) se le sequenze X ⊢ A → B e Y ⊢ A sono tautologiche allora X, Y ⊢ B è tautologica (MPP); (ii) se le sequenze X ⊢ A → B e Y ⊢ −B sono tautologiche allora X, Y ⊢ −A è tautologica (MTT), e così via per tutte le regole del calcolo. Una volta dimostrato questo, si è anche dimostrato che i teoremi (ossia le sequenze con un insieme vuoto di premesse) sono sequenze tautologiche. Ma una sequenza tautologica con un insieme vuoto di premesse è una tautologia. Poiché nessuna tautologia è una contraddizione, si conclude che nessun teorema è una contraddizione, ossia che il calcolo è coerente.

7.1
$$(x)(Fx \rightarrow -(Gx \wedge Ix))$$
 [oppure: $-(\exists x)(Fx \wedge Gx \wedge Ix)$]¹

7.2
$$(\exists x)(Ix \land -Gx)$$

7.3
$$(x)((Fx \wedge -Gx) \rightarrow -Ix)$$
 [oppure: $-(\exists x)(Fx \wedge -Gx \wedge Ix)$]

7.4
$$Fm \rightarrow (x)(Gx \rightarrow Ixm)$$

 $^{^{1}\}mathrm{Qui}$ e in seguito, alcune parentesi sono state omesse per facilitare la lettura.