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Petri Nets

Definition: A Petri net is a six-tuple N = (P, T, A, w, zq), where

is a finite set of places

Is a finite set of transitions

is a set of arcs, A C (P xT)U (T x P)
is a weight function, w: A — N

is an initial marking vector, X € NP

St N

Definition: Let N = (P,T, A, w,Zy) be a petri net. The set I(t) =
{p € P|(p,t) € A} is the set of input places of transition ¢t. The set
O(t) = {p € P|(t,p) € A} is the set of output places of transition t.

A transition t is enabled in state 7 if

x(p) > w(p,t) Vp € 1(1).

A. Jantsch, KTH
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Petri Net Transition

Definition: Let N = (P,T,A,w,%;) be a petri net with P =
{po,---ypn_1} and & = [x(pg),...,z(pn_1)] be a marking for the n
places. The the transition function G : (N" x T') — N" is defined as

follows

S B @ if x(p) > w(p,t) Vp € 1(t)
G t) = { T otherW|se

with 7 =[x (po),--- 2" (pn_1)]
x'(p;) = ZE(pZ) —w(ps,t) +w(t,p;) for 0 << n

A. Jantsch, KTH
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Firing of a Transition
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Petri Net Dynamics Example - 1

Petrinet N = (P, T, A, w, () with

P = {p1,p2, p3, ps}
T = {tl,tg,tg}
A = {(p1,t1), (p1,13), (P2; t2), (p3, t2), (3, t3), (P4, t3),
(t1,p2), (1, p3), (t2, p2), (t2, p3), (t2, pa)}
w(a) = 1VaeA
Z, = [2,0,0,1],

A. Jantsch, KTH
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Petri Net Dynamics Example - 2

P1 ty P4 :gl — [1717171]
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Petri Net Dynamics Example - 3
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The Reachability Set

Definition: For a Petri net N = (P, T, A, w,¥y) and a
given state &, a state ¢y is immediately reachable from &
if there exists a transition ¢t € T such that G(Z,t) = v/.

The reachability set R(Z) is the smallest set of states
defined by

1. ¥ € R(7)
2. If ¥ € R(¥) and z = G(y,t) for some t € T, then
7 € R(Z).

A. Jantsch, KTH
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Reachability Set Example

R(Z) = RiURyURsUR,
Ry = {Zo}
Ry = {y|y=[1,1,1,n],n>1}
Ry = {§|7=100,22n],n>1)
Ry = {y|y=10,1,0,n],n >0}

A. Jantsch, KTH
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Firing Vector and Incidence Matrix

Definition: Let N = (P,T,A,w,%;) be a petri net with
P = {p1,...,pn} and T = {t1,...,t;}. A firing vector
u = [0,...,0,1,0,...,0] is a vector of length m where entry
J,1 > j > m, corresponds to transition t;. All entries of the
vector are 0 but one, where it has a value of 1. If entry 5 is 1,
transition ¢; fires.

The incidence matrix A is an m X n matrix whose (j,%) entry is

aji = w(tjapi> - ’w(pz', tj)

A state equation can be written as

A. Jantsch, KTH
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Incidence Matrix Example

P1 t1 P4
P3 ts
-1 1 1 0]
A = 0O 0 0 11|,
-1 0 -1 -1

A. Jantsch, KTH
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The Evaluation of State Equations

:Z:() = [Qa Oa 07 1]
t1
fl = [1a 1a 17 1]

P4

j)1 — fo—|—ﬂ1A
1 1 1 0]
= [2,0,0,1] + [1,0,0] 00 0 1
-1 0 -1 -1

= [2,0,0,1]+[-1404+0,1+0+0,14+040,0+0+ 0]
= [2,0,0, ].] -+ [_17 17 170] — [17 ]-7 ]-7 1]

A. Jantsch, KTH
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The Evaluation of State Equations - cont’d

j)2 — fl+ﬁ2A
1 1 1 0]
= [1,1,1,1] +[0,0,1] 00 0 1
-1 0 -1 -1

— [17 1,1, 1] + [_1707 —1, _1] — [07 17070]

A. Jantsch, KTH
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The Evaluation of a Transition Sequence

N = (P, T, A, w, %) is a Petri net;

T = (t1,t2,...,ti...,tn),t; € T a sequence of n transitions
with u; the transition vector for ¢.

The state after firing of all transitions in T” is

Fo=To+ () i)A
teT’
provided that for all ¢t; € T’, ¢; is enabled in state

Fi=Fo+( Y @A

A. Jantsch, KTH
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/O Modeled as Places
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/O Modeled as Transitions
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A Server Modeled as Petri Net

P1 P1 P1
P2 P2 P2
to to to
P4 P4 yo
(a) (b) (c)

Customers arrive at input p; and depart at output py.

A. Jantsch, KTH
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Sequential Composition of two Servers

P1
t1 ts
D2 Ps
t2 t4
P4 D7

Customers arrive at input p; and depart at output pr.

A. Jantsch, KTH
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Parallel Composition of two Servers

5
_V
131 t3
Customers arrive at input p; and
depart at output pg.
b2 P4
t2 t4

Pe

A. Jantsch, KTH
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A Finite State Machine Modeled as Petri Net

FSM M = (X, A, X, xg,9, f) with mutually exclusive sets 3 and A.
An equivalent Petri net is N = (P, T, A, iy) with

e > are input places;

P = XUXUA
e A are output places;

I = {tx,a‘:l? € X,a€ E} e X are internal places;

A = I(tfc,a) U O(tw,a) Viga €T e Each (state,input) pair in M
I(tw,a) _ {:C, a} becomes a transition in IV;
O(tx,a) _ {g(:l:, a), f(:r;, a)} o Lnr:;cjlanlon}i:)k:l:;g represents state xg

y_b — [1,0,...,0]

A. Jantsch, KTH
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A FSM Modeled as Petri Net - Example

o

N

1/0

1

Computation of the two's complement of a binary number represented with the least
significant bit first.

A. Jantsch, KTH
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Sequence and Concurrency

(a)

A. Jantsch, KTH
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Fork and Join

Fork

5

zf“;%
%ﬁ A. Jantsch, KTH
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Conflict

p,
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The Mutual Exclusion Problem

read(x) ; read(x) ;
set x <- x + 1; set x <- x + 1;
write(x); write(x);

Process A Process B
x <- 0; x <- 0;
A.read(x); A.read(x);
A.set x <- x + 1; B.read(x);
A write(x); A.set x <- x + 1;
B.read(x); A.write(x);
B.set x <- x + 1; B.set x <- x + 1;
B.write(x); B.write(x);
X == 2 X ==

A. Jantsch, KTH
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Mutual Exclusion Modeled with a Petri Net

m,
critical critical
section section

Y %
Process 1 Process 2
b,
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The Mutual Exclusion Problem Solved

The TestSet instruction atomically tests a variable and, if successful, sets the variable.

while (not (TestSet(S==0,5<-1));
read (x) ;

set x <- x + 1;

write(x);

TestSet (True,S<-0);

while (not (TestSet(S==0,5<-1));
read(x) ;

set x <- x + 1;

write(x);

TestSet (True,S<-0);

Process A Process B
A.S<-1;

x <- 0; B.S<-1;

A.read(x); B.read(x);

B.TestSet (S==0,S<-1); B.se’F X <- x + 1;
A.set x <- x + 1; B.write(x);
A.write(x); B-?j—o;

A.S<-0; X ==

A. Jantsch, KTH



System Modeling, Jan-Feb 2008, Kista Petri Nets 28

Producer/Consumer Relation

P1 b2
produce B remove
from
buffer
consume
put in buffgr
Producer Consumer

A. Jantsch, KTH
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Producer/Consumer with Fixed Buffer Size

D1 P2
o o
4 produce remove Y% o
from
buffer

ut in
uffer

consume

Producer Consumer

A. Jantsch, KTH
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Dining Philosophers

C; : Chop sticks
M; : Philosopher meditating
E; : Philosopher eating

A. Jantsch, KTH
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Analysis Methods for Petri Nets

e Boundedness
e Conservation
e Liveness

e Coverability
e Persistence

e Coverability Tree

A. Jantsch, KTH
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Boundedness

Definition: A place p € P in a Petri net N =
(P,T,A,w,xy) is k-bounded or k-safe if for all
y € R(Ty) :y(p) < k.

The Petri net is called k-bounded or k-safe if all places
p € P are k-bounded.

A. Jantsch, KTH
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Conservation

Definition: A Petri net N = (P, T, A, w, Zy) is strictly conservative if for

all 7 € R(&o),
> ylp) = zolp).

peEP peP

A Petrinet N = (P, T, A, w, ¥y) with n places is conservative with respect
to a weighting vector ¥ = [v1,7¥2, ---, Yn), Vs € N, if

Z%x(p) = constant for all p € P and & € R(Z)).
i=1

The Petri net is conservative if it is conservative with respect to a
weighting vector which has a positive non zero weight for all places.

A. Jantsch, KTH
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Deadlock

Ps

Ps

b

Y2 Ds
Process A Process B

p,

zf“;%
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Liveness

Definition: Let N = (P, T, A,w,Zy) be a Petri net and ¥ a state
reachable from .

LO-live: A transition ¢ is live at level O in state & if it cannot fire in any
state reachable from &, i.e. it is deadlocked. .

Ll-live: A transition ¢ is live at level 1 in state ¥ if it is potentially
fire-able, i.e. if there exists a i € R(Z) such that ¢ is enabled in .

L2-live: A transition ¢ is live at level 2 in state & if for every integer n
there exists a firing sequence in which t occurs at least n times.

L3-live: A transition ¢ is live at level 3 in state £ if there is an infinite
firing sequence in which t occurs infinitely often.

L4-live: A transition t is live at level 4 in state £ if it is L1-live in every

iy € R(Z).

A Petri net is live at level ¢ if every transition is live at level 1.

A. Jantsch, KTH
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Liveness Example

P4
=C—]
— t4
Pk(:::> e tp is dead;

o t1is L1-live;

e to is L2-live;

e {3 is L3-live;

o tyis L4 live.

A. Jantsch, KTH
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Persistence

Definition: Two transitions are persistent with respect
to each other if, when both are enabled the firing of one

does not disable the other.

A Petri net is persistent if any two transitions are
persistent with respect to each other.

A. Jantsch, KTH
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Coverability

Definition: N = (P,T, A, w, ) is a Petri net; Z and
y are arbitrary states;

State & covers state ¢/ if in & at least all transitions are
enabled which are enabled in y:

z(p) > y(p)Vp € P.

State & strictly covers state 3 if £ covers y and, in
addition,
dp e P:a(p) >ybp).

Let ¥ € R(%y). A state i is coverable by 7 iff there
exists a state ' € R(Z) such that z'(p) > y(p) for all
p e P.

A. Jantsch, KTH
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Coverability Tree for a Finite State Space

P1 D2
@ ® <5 [17 1,0, 0] =T TTTT —:
/ \ ’
|
|
t t1 [1, 0,0, 1] !
3 :
ty :
|
|
0,0, 1, 0] |
b3 ty4 P4 47152 |
|
to 1,1,0,0) ------- -

A. Jantsch, KTH
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Coverability Tree for an Infinite State Space

1@ P2
/ /9}\ 1,1,0,0] [1,1,0,0] <+
£ t i
[0{0,1,0] :> 0,0,1,0] i
Q to to i

t1
ps3 |
[1,1,0,1] 1,1,0,w] -~
to
p

4
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Coverability Tree Definition

Definition: Let N = (P, T, A, w, ¥y) be a Petri.

A coverability tree is a tree where the arcs denote
transitions ¢ € T' and the nodes represent w-enhanced
states of the Petri net.

The root node of the tree is Zy.

A terminal node is an w-enhanced state in which no
transition is enabled.

A duplicate node is an w-enhanced state which already
exists somewhere else in the coverability tree.

An arc t connects two nodes X and ¥ in the tree, iff
firing of ¢ in state & leads to state .

A. Jantsch, KTH
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Coverability Tree Algorithm

Given is the Petri net N = (P, T, A, w, Ty).

Algorithm:

Step 1. Set L, the list of open nodes, to L := {Z}.
Step 2. Take one node from L, named &, and remove it from L:
Step 2.1. if G(Z,t) =4 VteT
then ¥ is a terminal node goto Step 3;
Step 2.2. for all ¥’ € G(&,t),te T, # &
Step 2.2.1. do if x(p) = w then set z'(p) := w;
Step 2.2.2. if there is a node ¥ already in the tree, such that &' covers ¢
and there is a path from ¢ to Z’,

then set z’(p) := w for all p for which z’(p)
Step 2.2.3. if I is not a duplicate node then L := L U
Step 3. if L is not empty then goto Step 2.

A. Jantsch, KTH
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Coverability Tree Example

/pg 2 Ty = [2, 0, 0, 1]
b t
1

. -
p1 t b 1,1,1, 1]
/Ql h to ts
Ps3 ts 0,2,2,1] [1,1,1,w] [0,1,0,0]
to s
0,2,2, w] 0,1,0, w]

A. Jantsch, KTH
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Coverability Tree: Safeness and Boundedness

e A Petri net can be k-bounded if the w symbol never appears
in its coverability tree.

e |f the coverability tree contains an w, a transition cycle to
exceed a given k-bound can be identified.

e The coverability tree does not inform about the number of
cycles required.

A. Jantsch, KTH
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Coverability Tree: Conservation

e Recall: > | v;z(p) = constant for all p € P and & € R(&y).

e If there is an w the corresponding ~; must be 0.

e We evaluate the the weighted sum for every node in the coverability tree.
The net is conservative iff the result is the same for all nodes.

Zo =12,0,0,1]
151
1,1,1,1]
t . N
b tLtQ\ conservative for ¥ = [2,3,1,0] ?
ts 0,2,2,1] [1,1,1,w] [0,1,0,0]
t ts
0,2, 2, w] [0,1,0, w]

A. Jantsch, KTH
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Computing the Conservation Vector

e Set v; = 0 for every unbounded place p;.

e For b bounded places and r nodes in the coverability tree
we set up r equations with b + 1 unknown variables

T

Z Yix(pi) = C.

1=1

A. Jantsch, KTH
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Computing the Conservation Vector - Example

[1,1,1,1]

to ts

[1,1,1,w] [0,1,0,0]

I3

[0, 1,0, w]

V4
271+ 0y2 + 073
Ly1 + 1ye + 13
0y1 + 2792 + 273
Ov1 + 12 + Ov3

Only non-negative solution is
7 =10,0,0,0] and
C =0.

QaQaQQa-<e

A. Jantsch, KTH
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Coverability Tree: Coverability and Reachability

e The coverability problem can be solved by inspection of the
coverability tree.

e The shortest transition sequence leading to a covering state
can be found efficiently.

e The reachability problem cannot be solved in general.

A. Jantsch, KTH
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Distinct Petri Nets with ldentical Coverability Tree - 1

P1 P1

AN AN
B Q\Q ola Q\Q

A. Jantsch, KTH
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Distinct Petri Nets with Identical Coverability Tree - 2

[1,0,0]
g
ty
[1,0,W] A
to
0,1, w]
ts ty
j s 0,1, w] 1,0, w] Cv> s
D2 P2
Can deadlock after tq, to, t5. Cannot deadlock.

A. Jantsch, KTH
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Summary

e Petri Net Dynamics _
e Analysis Problems

e Reachability Set
* Boundedness

e Model Patterns _
* Conservation

* Server _
*x Liveness

* Composition N
P *x Coverability

*x Fork-Join .
* Persistence
* Conflict
*x Dead-lock
* Mutual Exclusion .
e Coverability Tree
* Consumer-Producer

A. Jantsch, KTH



