Electronic
Systems
Design

i Paw

SystemC/TLM

Emad Ebeid Davide Quaglia
PhD Student Assistant Professor
Department of Computer Science Department of Computer Science
University of Verona University of Verona

Italy Italy

outline

Introduction
— Reasons for using TLM
— TLM-based design flows

Transaction

Socket
Initiator

Target

5/2/2012

Introduction Avernes

« Transaction-level modeling (TLM) is a high-level approach to
modeling digital systems where details of communication among
modules are separated from the details of the implementation of
functional units or of the communication architecture.

Module2

o Lcnamat O rsess)
port port

Modulel: :process () Module2: :process ()

{ {

port->write (42); x = port->readl();

} }

Module1 ‘

5/2/2012

Introduction

Functional Model
(TLM)

ransaction
level - function
call

write (address, data)

Pin accurate,
cycle accurate

Functional Model
(TLM)

Simulate every event 100-10,000 X faster simulation

5/2/2012

TLM: Modeling Comparison

+ More emphasis on the data transfer functionality
— less on their implementation details at the early design stage

RTL

process(clock)

IF (clock’event and clock = ‘1)
THEN

CASE fsm_state IS:

WHEN s0 =>
request_port <= ‘1’; E=) write (data, addr);
fsm_state = s1;

WHEN s1 =>
IF (grant_port = ‘1)

THEN
fsm_state := s2;

WHEN s2 =>
data_port <= data;
addr_port <= addr;

TLM

5/2/2012

TLM-based design flow

Specifications
(UML, Matlab,

HW/SW partitioning —
and refinement

5/2/2012

Untimed functional
verification

Timed functional
verification:
Performance analysis

Cycle accurate
verification:
Performance analysis

TLM-based design flow

Cross-comp.

CPU SRAM DRAM

FPGA ASIC System_gn_
Chip (SoC)

AR W

Synthesis

5/2/2012

Functionality vs communication

« TLM manages to keep distinct functionality and
communication in each module

« TLM 2.0 allows to model the communication part
(i.e. how each module interacts with the others)

Initiator

*Functio {+C
nality A\

5/2/2012

Transactions

 TLM relies on the notion of transaction

e A transaction consists of a data transfer from a
design module to another one

— Write and read operations are examples of
transactions

— It is usually represented by a generic payload object in

the code

* This object contains both data and control information (e.g. address
and type of command)

— It is exchanged between modules through primitive
calls

5/2/2012

Socket, initiator and target

Communication is achieved by exchanging packets
between an initiator module and a target module, through a

socket
— The initiator starts a transaction
— The targetis the end point of a transaction

— An interconnect component is an intermediate point in the path from the
initiator to the target

— A socket connects two modules, and allows them to communicate by
means of the available interfaces

— The forward path runs from the initiator to the target
— The backward path runs from the target to the initiator

5/2/2012

Socket, initiator and target

Initiator Target Initiator Target
socket socket socket socket
™) 1 Forward l - ~ 1 Forward [
A path N B path N C
1 - v 1) | -
Backward Backward
(0 or more)
path path

5/2/2012

Blocking interface

 Appropriate where an initiator wishes to complete a transaction with a
target in a single function call

« Two timing points

— Call to and return from the blocking transport function
* It only uses the forward path from initiator to target

Transaction type

template < typename TRANS = tlm_generic_payload >
class tlm_blocking transport_if : public virtual
sSc_core::sc_interface {
public:

evirtual void b_transport (TRANS& trans ,sc_core::sc_time& t
) = 0;

Timing annotation

5/2/2012

