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Introduction Avernes

« Transaction-level modeling (TLM) is a high-level approach to
modeling digital systems where details of communication among
modules are separated from the details of the implementation of
functional units or of the communication architecture.
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port port

Modulel: :process () Module2: :process ()

{ {

port->write (42); x = port->readl();

} }
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Introduction

Functional Model
(TLM)

ransaction
level - function
call

write (address, data)

Pin accurate,
cycle accurate

Functional Model
(TLM)

Simulate every event 100-10,000 X faster simulation
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TLM: Modeling Comparison

+ More emphasis on the data transfer functionality
— less on their implementation details at the early design stage

RTL

process(clock)

IF (clock’event and clock = ‘1)
THEN

CASE fsm_state IS:

WHEN s0 =>
request_port <= ‘1’; E=)  write (data, addr);
fsm_state = s1;

WHEN s1 =>
IF (grant_port = ‘1)

THEN
fsm_state := s2;

WHEN s2 =>
data_port <= data;
addr_port <= addr;

TLM
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TLM-based design flow

Specifications
(UML, Matlab,

HW/SW partitioning —
and refinement
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TLM-based design flow
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Functionality vs communication

« TLM manages to keep distinct functionality and
communication in each module

« TLM 2.0 allows to model the communication part
(i.e. how each module interacts with the others)
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Transactions

 TLM relies on the notion of transaction

e A transaction consists of a data transfer from a
design module to another one

— Write and read operations are examples of
transactions

— It is usually represented by a generic payload object in

the code

* This object contains both data and control information (e.g. address
and type of command)

— It is exchanged between modules through primitive
calls
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Socket, initiator and target

Communication is achieved by exchanging packets
between an initiator module and a target module, through a

socket
— The initiator starts a transaction
— The targetis the end point of a transaction

— An interconnect component is an intermediate point in the path from the
initiator to the target

— A socket connects two modules, and allows them to communicate by
means of the available interfaces

— The forward path runs from the initiator to the target
— The backward path runs from the target to the initiator
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Socket, initiator and target
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Blocking interface

 Appropriate where an initiator wishes to complete a transaction with a
target in a single function call

« Two timing points

— Call to and return from the blocking transport function
* It only uses the forward path from initiator to target

Transaction type

template < typename TRANS = tlm_generic_payload >
class tlm_blocking transport_if : public virtual
sSc_core::sc_interface {
public:

evirtual void b_transport ( TRANS& trans ,sc_core::sc_time& t
) = 0;

Timing annotation
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