Inferenza II

Test di ipotesi

- Definizioni
- Costruzione di un test
- Test sul valore atteso
- Test di aderenza alla distribuzione.
- Test di indipendenza.

l

Test di ipotesi: ipotesi nulla.

- Osservazione: Un test di ipotesi cerca di verificare se una asserzione è vera o falsa.
- · L'asserzione in esame:
 - Viene chiamata ipotesi nulla
 - Di norma è una ipotesi di uguaglianza
 - Si indica con la notazione H_0 .
 - Si esprime in linguaggio naturale o in simboli
- Esempi
 - $-H_a$: il valore atteso della popolazione è 2 $\rightarrow H_a$:E[P]=2
 - H_o : la popolazione è distribuita come una binomiale avente p=0.2 e n=3. $\rightarrow H_o: P \sim Bin(3; 0.2)$.

Inferenza: tipologie di approcci.

- <u>Teoria della stima</u>: Cerco di ottenere una stima numerica di una caratteristica (spesso un indice) della popolazione dai dati.
- <u>Test di ipotesi</u>: Faccio un ipotesi su di una proprietà (parametro, distribuzione, indipendenza) della distribuzione teorica della popolazione P e verifico se le osservazioni consentono di accettarla.
 - Possibili domande da test:
 - *E*[*P*] è maggiore di *15* ?
 - La variabile *P* è distribuita come una *Bin*(2; 0.5) ?
 - (se P è multi-variata) P_1 e P_2 sono indipendenti?
- Osservazione: la stima trae un parametro dai dati, il test fa un ipotesi sul parametro e usa i dati per confermare l'ipotesi.

Test di ipotesi: ipotesi alternativa.

- Se il test da esito "negativo" si usa dire che l'ipotesi nulla viene rifiutata e si accetta l'ipotesi alternativa.
- Ipotesi alternativa:
 - Descrive l'evento che si pensa sia plausibile.
 - Si indica con la notazione H₁.
 - Si esprime in linguaggio naturale o in simboli.
- Esempi

$$-H_0: E[P] = 2.$$
 $H_1: E[P] \neq 2.$
 $-H_0: Var[P] = 1.$ $H_1: Var[P] \leq 1.$

• Osservazione: ad una ipotesi nulla posso corrispondere diverse ipotesi alternative.

Test di ipotesi: esempio I.

- Una ditta che produce sferette di acciaio garantisce che la sua produzione ha valore atteso 8 mm e scarto quadratico medio di 0.2 mm.
- Per verificare la bontà della produzione si estrae un campione di 60 sfere (ottenendo $\bar{x} = 8.1 \text{ mm}$) e si vuole osservare se la produzione rispetta i canoni.

$$H_0: E[P] = 8 \text{ mm.}$$
 $H_1: E[P] \neq 8 \text{ mm.}$

• Osservazione: nel caso si ritenga vera H_o vuol dire che la differenza fra la media campionaria ed il valore atteso è dovuta al particolare realizzazione di P e non da un mutamento della d.d.p. di P.

Test di ipotesi: idea.

Come verificare se un'ipotesi è vera analizzando i dati di un campione *C* di dimensione *n*?

- Osservazione: l'ipotesi nulla si rifiuta se la differenza fra il valore stimato e quello teorico è "significativa".
- Idea: Suppongo H₀ vera e calcolo un intervallo di valori probabili per lo stimatore A. Se la stima ottenuta dal campione ricade in A, accetto l'ipotesi nulla.
- Osservazione: A può essere calcolato basandosi sulle considerazioni viste nella stima per intervallo ad un livello di confidenza 1 - α.

7

 Nel test di ipotesi α prende il nome di <u>livello di</u> significatività.

Test di ipotesi: esempio II.

- Un'azienda farmaceutica sostiene che il suo farmaco cura una particolare patologia nel 95 % dei casi.
- Un ricercatore ospedaliero sostiene che questa informazione non sia più attendibile e che il farmaco sia peggiorato. Pertanto, conduce una indagine su 120 pazienti è trova che solo 108 son guariti (il 90 %).

$$P \sim Ber(p)$$

$$H_o: p = E[P] = 0.95 \qquad \qquad H_i: p < 0.95$$

 Osservazione: nel caso in esame dal testo si evince un modello per la v.c. usata per descrivere la popolazione.

6

Test di ipotesi: strategia.

- Come verificare se un'ipotesi è vera da un campione C?
- Possibile strategia:
 - Si suppone H_a vera.
 - Si calcola la distribuzione di uno stimatore
 - corretto per il parametro θ descritto in H_{α}
 - calcolato da un campione a dimensione ${\it N}.$
 - Si fissa un livello di significatività α .
 - Si trova una regione di accettazione (A).
 - Si stima puntualmente il parametro θ dal campione C
 - Se il valore è interno ad A accetto l'ipotesi H.
 - Se il valore è esterno ad A rifiuto l'ipotesi H.
- Osservazione: i dati si usano solo nell'ultimo passo

Test sul valore atteso - I.

Applico la strategia:

Si suppone H_a vera.

Suppongo $E[P] = \mu_o$

- Si calcola la distribuzione di uno stimatore
 - corretto per il parametro θ descritto in H_{α} .
 - calcolato da un campione a dimensione n.

Lo stimatore corretto è la media campionaria \bar{x} .

Si sa che per n "grande" si ha che

$$\overline{X} \sim N\left(E[P]; \frac{Var[P]}{n}\right) = N\left(\mu_0; \frac{Var[P]}{n}\right)$$
 standardizzando
$$\overline{X} - \mu_0 = \frac{\overline{X} - \mu_0}{\sqrt{\frac{Var[P]}{n}}} \sim Z \quad \text{altrimenti} \qquad \frac{\overline{X} - \mu_0}{\sqrt{\frac{S}{n}}} \sim Z$$

Test sul valore atteso - III

- Si stima puntualmente il parametro θ dal campione C
 - Se il valore è interno ad A accetto l'ipotesi $H_{_{\scriptscriptstyle 0}}$
 - Se il valore è esterno ad A rifiuto l'ipotesi H_a

11

Si procede al semplice calcolo della media campionaria E si applica il criterio.

- Osservazione: anche se non esplicitate si sono sottintese due ipotesi:
 - Campionamento bernoulliano
 - Distribuzione limite (n>30)

Test sul valore atteso - II.

- Si fissa un livello di significatività α .

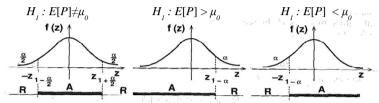
Valori tipici sono $\alpha=0.05$; $\alpha=0.02$; $\alpha=0.01$

- Si trova una regione di accettazione (A).

tre possibili scenari

Test bilaterale (a 2 code)

Test unilaterale (a 1 coda)



Osservazione: è H_i a determinare la regione di accettazione.

10

Test di ipotesi:esempio I -svolgimento.

- Una ditta che produce sferette di acciaio garantisce che la produzione ha valore atteso 8 mm e s.q.m. 0.2 mm.
- Campione di n = 60 sfere ottenendo $\overline{x} = 8.1 \text{ mm}$.

$$H_0: E[P] = 8 \text{ mm}.$$
 $H_1: E[P] \neq 8 \text{ mm}.$

Svolgimento:

$$-H_{o}^{+} + testo \rightarrow E[P] = 8; Var[P] = 0.04$$

$$-n = 60 \rightarrow \overline{X} \sim N(E[P]; \frac{Var[P]}{n}) = N(8; \frac{0.002}{3})$$

$$-H_{f}^{-} \rightarrow test \ a \ due \ code$$

$$-\alpha = 0.05 \rightarrow Valori \ Critici \ -1,96; \ 1.96 \rightarrow A = [-1,96; \ 1.96]$$

$$-Standardizzo \ \overline{x} \qquad z_{\overline{x}} = \frac{\overline{x} - 8}{\sqrt{\frac{0.002}{3}}} = 3.873$$

$$-z_{\overline{x}} \notin A \rightarrow Rifiuto \ H_{o}^{-}$$

Test sul valore atteso.

- Popolazione P continua o discreta. Test per verificare se $E[P] = \hat{u}$.
- *n* osservazioni i.i.d. da cui ricavo la media campionaria \bar{x} .

$$H_1: E[P] \neq \hat{\mu}$$

$$-H_0$$
: $E[P] = \hat{\mu} \Rightarrow \hat{\bar{x}} = \hat{\mu}$ H_2 : $E[P] < \hat{\mu}$

$$E[P] < \hat{\mu}$$

$$H_3$$
: $E[P]$

 $H_3 \colon E[P] > \hat{\mu}$ – Verificare la convergenza in legge dello stimatore. $se n > 30 \Rightarrow \bar{x} \sim N(\hat{\mu}; \frac{Var[P]}{n})$ altrimenti aumentare n.

$$H_1: A = \left[z_{\frac{\alpha}{2}}; z_{1-\frac{\alpha}{2}}\right]$$

- Si fissa $\alpha \to trovo$ regione di accettazione $H_{\gamma}: A = [z_{\alpha}; \infty]$
- Standardizzo \bar{x} $z_{\bar{x}} = \frac{\bar{x} \hat{\mu}}{\sqrt{Var[P]}}$
- se $z_{\bar{x}} \in A$ accetto H_a altrimenti rifiuto H_a

Test sulla distribuzione

- Osservazione: spesso sarebbe utile poter fare ipotesi sulla distribuzione di frequenza di una v.c.
- · Esempio III:
 - Si ha il dubbio che un dado sia "truccato".
 - Lanciando il dado n = 150 volte si sono ottenuti gli esiti a lato
 - Come verificare l'asserzione?
- Per applicare la tecnica vista debbo
 - Definire un ipotesi
 - Scegliere uno stimatore
 - Calcolare la d.d.p. di riferimento dello stimatore

23 2 25 3 32 4 18 5 30 22

150

15

Test di ipotesi: esempio II-svolgimento.

- Un farmaco cura una particolare patologia nel 95 % dei casi.
- Campione di n = 120 pazienti con $\bar{x} = 90 \%$ di guarigioni.

$$H_0: E[P] = 0.95$$
 $H_1: E[P] < 0.95.$

Svolgimento:

$$-H_0 + testo \rightarrow P \sim Ber(p) \rightarrow E[P] = p = 0.95; Var[P] = p(1-p) = 0.0475$$

14

$$-n = 120 \rightarrow \overline{X} \sim N(E[P]; \frac{Var[P]}{n}) = N(0.95; \frac{0.0475}{120})$$

-H \rightarrow test a una coda, unilaterale sinistro

$$-\alpha = 0.01 \rightarrow Valore\ Critico\ -z_{0.01} = -2.33 \rightarrow A = [-2.33; +\infty[$$

- Standardizzo
$$\bar{x}$$
 $z_{\bar{x}} = \frac{\bar{x} - 0.95}{\sqrt{\frac{0.0475}{120}}} = -2.513$
- $z_{\bar{x}} \notin A \rightarrow Rifiuto H_0$

Test sulla distribuzione: ipotesi I.

- L'esperimento può essere descritto mediante n realizzazioni i.i.d. di una v.c. discreta D la cui d.d.p. viene descritta da:
 - 6 modalità {1, 2, 3, 4, 5, 6}.
 - 6 parametri: $P(D=1) = \hat{p}_1 P(D=2) = \hat{p}_2 \dots P(D=6) = \hat{p}_6$
- L'ipotesi nulla pertanto è che la d.d.p. sia constante ovvero

$$H_0: \hat{p}_i = \frac{1}{6} i = 1, 2, ..., 6$$

• L'ipotesi alternativa è quella data dall'evento complementare

$$H_1: \exists i: \hat{p}_i \neq \frac{1}{6}$$

• Osservazione: in una v.c. discreta ad M valori, la somma delle probabilità deve essere unitaria. Pertanto è possibile fissare in modo arbitrario sono M-1 valori.

Test sulla distribuzione: stimatore.

- Osservazione: l'ipotesi nulla coinvolge più parametri. Vorrei ottenere un solo valore per avere una v.c. mono-variata.
- Frequenze teoriche: frequenza attesa se H_a è vera:

$$\hat{n}_i = n \hat{p}_i$$

Contingenza: scarto fra frequenza rilevata e teorica:

$$c_i = n_i - \hat{n}_i$$

- Osservazione: se H_0 è vera è verosimile che tutte le contingenze (in valore assoluto) siano piccole.
- Osservazione: se H₁ è vera è verosimile che almeno una contingenza (in valore assoluto) sia elevata.

Stimatore di Pizzetti-Pearson : d.d.p.

- La strategia di test richiede la d.d.p. dello stimatore.
- Teorema: si dimostra che, al crescere della dimensione del campione (n) allora si ha che

$$\sum_{i=1}^{M} \frac{\left(n_{i} - \hat{n}_{i}\right)^{2}}{\hat{n}_{i}} \sim \chi^{2}(\upsilon)$$

dove v sono i parametri liberi della d.d.p. di P (M-I).

- Nota: il risultato si fonda sul limite centrale.
- Molti autori ritengono che si abbia una buona convergenza in legge quando tutte le frequenze teoriche son maggiori di 5.

19

• Osservazione: l'ipotesi $(\hat{n}_i > 5 \ \forall i)$, nota la d.d.p. (\hat{p}_i) può sempre venir rispettata aumentando la dimensione del campione n. $\hat{n}_i = n \ \hat{p}_i$

Stimatore di Pizzetti-Pearson.

- La contingenza è la base di uno stimatore per quantificare l'aderenza di una distribuzione teorica ad una reale (H_o).
- Stimatore di Pizzetti-Pearson: $\sum_{i=1}^{M} \frac{c_i^2}{\hat{n}_i} = \sum_{i=1}^{M} \frac{\left(n_i \hat{n}_i\right)^2}{\hat{n}_i}$
 - Il quadrato evita il segno e pesa molto i valori alti.
 - Il rapporto serve per scalare correttamente i contributi.
- · Calcolo in tabella
 - Esempio III

$$- \sum_{i=1}^{6} \frac{\left(n_{i} - \hat{n}_{i}\right)^{2}}{\hat{n}_{i}} = 5.8$$

i	n _i	\hat{n}_i	$n_i - \hat{n}_i$	$(n_i - \hat{n_i})^2$	$(n_i - \hat{n}_i)^2 / \hat{n}_i$	
1	23	25	-2	4	0.16	
2	25	25	0	0	0	
3	32	25	7	49	1,96	
4	18	25	-7	49	1,96	
5	30	25	5	25	1	
6	22	25	-3	9	0,36	1
	150				5,8	

Test sulla distribuzione: ipotesi II.

- Osservazione: l'ipotesi alternativa si basa sulla frequenza teorica. $H_1\colon \exists i\colon \hat{p}_i\neq \frac{1}{\zeta}$
- Osservazione: lo stimatore si basa sulla contingenza.

$$c_i = n_i - \hat{n}_i = n_i - n \ \hat{p}_i$$

Come fissare la regione di accettazione per lo stimatore di Pizzetti-Pearson ?

- Osservazione: se l'ipotesi nulla sulle frequenze teoriche è rispettata, la contingenza è bassa → il valore x²(v)=0 deve essere incluso nell'intervallo di accettazione.
- Conclusione: Il test richiesto deve essere unilaterale destro.

Esempio III: svolgimento.

- · Si vuole vedere se un dado è truccato.
- Si son effettuati n=120 lanci rilevando 6 frequenze n_1, n_2, \ldots, n_n .
- Svolgimento
 - $-H_0: \hat{p}_i = \frac{1}{6} \Rightarrow \hat{n}_i = 25 \qquad H_1: \exists i: \hat{p}_i \neq \frac{1}{6}$
 - Verificare la convergenza in legge

$$\hat{n}_i = 25 > 5 \Rightarrow \sum_{i=1}^{6} \frac{(n_i - \hat{n}_i)^2}{\hat{n}_i} \sim \chi^2(5)$$

- $-H_{1} \rightarrow test \ a \ una \ coda, \ unilaterale \ dx$
- α=0.01 → Valore Critico $\chi_{0.99}^{2}(5)=15.1$ → A=[0; 15.1]
- Calcolo lo stimatore = 5.8
- 5.8∈A → Accetto H_0 (il dado è "onesto" ad un livello del 1%)
- · Osservazione:il procedimento può essere generalizzato.

Test di indipendenza: Esempio IV.

- Osservazione: In una bi-variata (x,y) il test di indipendenza mira a stabilire se i caratteri X ed Y son indipendenti.
- Esempio IV: (tratto da descrittiva III)
 - Caratteri:

X: trattamento antibiotico Y: stato dell'infezione

 $M_{y} = 2 \{ \text{Si; No} \}$

 $M_{v} = 3$ {Espansa, Stabile, Ridotta}

-n = 100 rilevazioni

		Espansa	Stabile	Ridotta	Totali
Tratta	Si	31	9	10	50
mento	No	9	15	26	50
	Totali	40	24	36	100

23

Test per la distribuzione empirica

- Popolazione P con M modalità. Test per verificare se $P(P=i)=\hat{p}_i$.
- n realizzazioni i.i.d. con n_{r} , n_{s} , ..., n_{s} osservazioni
- Svolgimento
 - $-H_0$: $P(P=i)=\hat{p}_i \Rightarrow \hat{n}_i=n p_i$ H_1 : $\exists i: P(P=i) \neq \hat{p}_i$
 - Verificare la convergenza in legge dello stimatore.

$$se \hat{n}_i > 5 \Rightarrow \sum_{i=1}^{M} \frac{\left(n_i - \hat{n}_i\right)^2}{\hat{n}_i} \sim \chi^2(M-1) \text{ altrimenti aumentare } n.$$

- $-H_{_{I}} \rightarrow test \ a \ una \ coda, \ unilaterale \ dx$
- $Si fissa \alpha \rightarrow A = [0; \chi^2_{1-\alpha}(M-a)]$
- Calcolo lo stimatore
 - se lo stimatore è interno ad $A \rightarrow accetto H_0$
 - se lo stimatore è esterno ad $A \rightarrow rifiuto \ H_0$

22

Test di indipendenza: idea - I.

- Supposizione: i caratteri X ed Y sono indipendenti.
- Conseguenza: le probabilità degli eventi della bivariata son dati dal prodotto degli eventi delle due monovariate.

$$P(X=Si \cap Y=Espansa) = P(X=Si) P(Y=Espansa)$$

 $P(X=x_i \cap Y=y_i) = P(X=x_i) P(Y=y_i)$

- Osservazione: P(X=x_i) e P(Y=y_i) possono essere stimate dalle frequenze relative marginali. (definizione classica)
- Conseguenza: nel caso di indipendenza è possibile ricavare una distribuzione teorica valida per la bivariata.

			Υ		Totali
		Espansa	Stabile	Ridotta	IOIAII
x	Si	20/100	12/100	18/100	50/100
^	No	20/100	12/100	18/100	50/100
To	tali	40/100	24/100	36/100	1

• Osservazione: Tabella ricavata dalle SOLE marginali.

Test di indipendenza: idea - II.

- Date le osservazioni di una bi-variata, la v.c. P avente:
 - $-M=M_{\odot}M_{\odot}$ modalità (indicate da m_{\odot}).

- d.d.p.
$$\hat{p}_{i,j} = \frac{n_{i,+}}{n} \frac{n_{+,j}}{n}$$
 $i = 1,2,...M_x, j = 1,2,...M_y$

descrive la bi-variata se e solo se vi è indipendenza.

- · Idea: L'indipendenza viene testata con un test di aderenza alla distribuzione teorica.
- Per poter applicare l'idea debbo:
 - Calcolare le frequenze teoriche $\hat{n}_{i,j} = n \, \hat{p}_{i,j} \quad \forall i, j$
 - Verificare la convergenza in legge dello stimatore di Pizzetti – Pearson. $(\hat{n}_{i,j} > 5 \ \forall i,j)$
 - Calcolare i parametri liberi di P.

25

Test di indipendenza (di Pearson)

- Popolazione bi-variata (x,y) dove X ed Y son indipendenti.
- n prove i.i.d. con n_{ii} osservazioni delle $M = M_{..}M_{..}$ modalità.
- Svolgimento
 - H_o: X ed Y indipendenti H_.: X ed Y dipendenti
 - Calcolo le frequenze teoriche $\hat{n}_{i,j} = n \hat{p}_{i,j} = \frac{n_{i,+} n_{+,j}}{n} \quad \forall i, j$
 - Verificare la convergenza in legge dello stimatore. $\hat{n}_{i,j} > 5 \forall i, j$
 - Si fissa $\alpha \rightarrow A = \left[0; \chi_{1-\alpha}^2((M_x-1)(M_y-1))\right]$
 - Calcolo lo stimatore di Pizzetti-Pearson
 - se lo stimatore è interno ad $A \rightarrow accetto H_{\alpha}$
- Osservazione: $\hat{n}_{i,j}$ si calcola dalle osservazioni.
- Conseguenza: se la convergenza non è verificata non è detto che lo sia aumentando n!

Test di indipendenza: parametri liberi.

- La d.d.p. di P possiede $M = M M \mod A$
- · Vi sono dei vincoli dati dalle marginali.

 $\begin{array}{lll} - & M_{_X} \, \text{vincoli} & \sum_{j=1}^{M_{_Y}} \hat{n}_{i,\,j} \! = \! n_{i,\,+} & i \! = \! 1,\! 2, ... M_{_X} \\ - & M_{_Y} \, \text{vincoli} & \sum_{i=1}^{M_{_X}} \hat{n}_{i,\,j} \! = \! n_{+,\,j} & j \! = \! 1,\! 2, ... M_{_Y} \end{array}$

- 1 vincolo doppio
 - Verde: libero
 - · Rosso: vincolato

		а	b	С	d	
	1					n _{1,+} /n
Х	2					n _{2,+} /n
	3		///			n _{3,+} /n
		n _{+,1} /n	n _{+,2} /n	n _{+,3} /n	n _{+,4} /n	1

- I parametri liberi risultano essere (*M*_-1)(*M*_-1)
- se $\hat{n}_{i,j} > 5 \ \forall i, j$ si ha che: $\sum_{i=1}^{M_x} \sum_{j=1}^{M_y} \frac{\left(n_{i,j} \hat{n}_{i,j}\right)^2}{\hat{n}_{i,j}} \sim \chi^2 \left((M_x 1)(M_y 4)\right)$

Esempio IV - svolgimento I.

X: trattamento antibiotico

Y: stato dell'infezione

 $M_{y} = 2$ $M_{y} = 3$ n = 100

U					
		Espansa	Stabile	Ridotta	Totali
Tratta	Si	31	9	10	50
mento	No	9	15	26	50
	Totali	40	24	36	100

• Calcolo frequenze teoriche

			Υ		Totali
		Espansa	Stabile	Ridotta	Totali
Х	Si	20/100	12/100	18/100	50/100
^	No	20/100	12/100	18/100	50/100
То	tali	40/100	24/100	36/100	1

			Υ	
		Espansa	Stabile	Ridotta
V	Si	20	12	18
^	No	20	12	18

Convergenza verificata

$$\sum_{i=1}^{2} \sum_{j=1}^{3} \frac{\left(n_{i,j} - \hat{n}_{i,j}\right)^{2}}{\hat{n}_{i,j}} \sim \chi^{2}(2)$$

• $\alpha = 0.01 \rightarrow A = [0; 9.21]$

Esempio IV - svolgimento II.

• Calcolo contingenza e stimatore di Pizzetti - Pearson

			Infezione						Υ	
		Espansa	Stabile	Ridotta	Totali			Espansa	Stabile	Ridotta
Tratta	Si	31	9	10	50	_	Si	20	12	18
mento	No	9	15	26	50	X	No	20	12	18
	Totali	40	24	36	100			•		•

$$\sum_{i=1}^{2} \sum_{i=1}^{3} \frac{\left(n_{i,j} - \hat{n}_{i,j}\right)^{2}}{\hat{n}_{i,j}} = 20,71$$

- Lo stimatore è esterno ad $A \rightarrow rifiuto H_0 \rightarrow le variabili sono dipendenti.$
- Osservazione: il test asserisce che la conoscenza di un carattere (es. ha fatto il trattamento) modifica la proprietà dell'altra (es. lo stato dell'infezione).
- Osservazione: il trattamento è però pessimo. Si è provato che esso aumenta la probabilità espandere l'infezione $m_{_{I,I}} > m_{_{2,I}}$. 29

Test di ipotesi: tipo di errori

• In quanti modi posso sbagliare a fornire un risultato?

	Realtà				
Risultato test	$H_{_{\scriptscriptstyle{0}}}$ Vera	$H_{_{\scriptscriptstyle{0}}}$ Falsa			
Accettare H ₀	OK	Errore			
Rifiutare $H_{_{\scriptscriptstyle{0}}}$	Errore	OK			

- Errore di l°tipo: rifiutare un'ipotesi valida (fal so positivo)
- Errore di II° tipo: accettare un'ipotesi falsa (fal so negativo)

31

- Osservazione: le probabilità dei due errori son dipendenti.
- Osservazione: la probabilità di un falso positivo è espressa dal livello di significatività
- Osservazione: la probabilità di un falso negativo difficilmente è calcolabile.

Livello di significatività: considerazioni

• Osservazione: α corrisponde ad una probabilità, quale?

Probabilità corrispondente alla regione di rifiuto nella distribuzione di riferimento

- Pertanto:
 - Distribuzione di riferimento $\rightarrow H_0$ vera
 - Regione di rifiuto → rifiuto l'ipotesi
- Conclusione: Il livello di significatività descrive la probabilità di rifiutare l'ipotesi nulla quando questa è vera.

$$P(rifiutare H_0|H_0 vera) = \alpha$$

30

Ricapitolando - I

- Ipotesi: nulla (H₀) e alternativa (H₁).
 - $-H_0$: stato normale. Sempre ipotesi di uguaglianza.
 - H₁: descrive il motivo per cui faccio il test.
- · Strategia di progetto del test
 - Suppongo valida l'ipotesi nulla.
 - Noto stimatore T che confermi H_a e ne trovo la d.d.p.
 - Fisso un livello di significatività α .
 - Fisso la regione di accettazione A tale $P(T \in A) = 1 \alpha$

- Se lo stimatore calcolato nel campione è in A accetto H_0 .

Ricapitolando - II

- Test sul valore atteso $H_0: E[P] = \hat{\mu}$
 - Stimatore media standardizzata $z_{\pi} = \frac{\overline{x} \hat{\mu}}{\sqrt{\frac{Var[P]}{n}}}$ Convergenza $n > 30 \Rightarrow z_{\pi} \sim Z$ $H_1: E[P] \neq \hat{\mu} \Rightarrow A = \begin{bmatrix} z_{\alpha} : z_{1-\frac{\alpha}{2}} \end{bmatrix}$

$$H_2: E[P] < \hat{\mu} \Rightarrow A = \begin{bmatrix} z_{\alpha}; \infty \end{bmatrix}$$

$$H_3: E[P] > \hat{\mu} \Rightarrow A = \begin{bmatrix} -\infty; z_{1-\alpha} \end{bmatrix}$$

- Se Var[P] ignota si stima con la varianza campionaria s^2 .
- Test di aderenza H_0 : $P(P=i) = \hat{p}_i \Rightarrow \hat{n}_i = n p_i H_1$: $\exists i : P(P=i) \neq \hat{p}_i$
 - Stimatore di Pizzetti-Pearson
 - Stimatore di Pizzetti-Pearson Condizione di convergenza $\hat{n}_i > 5 \Rightarrow \sum_{i=1}^{M} \frac{\left(n_i \hat{n}_i\right)^2}{\hat{n}_i} \sim \chi^2(M-1)$

$$A = [0; \chi^{2}_{1-\alpha}(M-1)]$$

Ricapitolando - III

- Test di indipendenza
 - H_o: X ed Y indipendenti

H_.: X ed Y dipendenti

- Stimatore di Pizzetti-Pearson
- Condizione di convergenza

$$\hat{n}_{i,j} > 5 \Rightarrow \sum_{i=1}^{M} \frac{(n_{i,j} - \hat{n}_{i,j})^2}{\hat{n}_{i,j}} \sim \chi^2((M_x - 1)(M_y - 1)).$$

$$A = [0; \chi^{2}_{1-\alpha}((M_{x}-1)(M_{y}-1))]$$