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2-dec-2013 (2 hrs). The space L(E,F ) of bounded linear operators between two
Banach spaces E,F . Operator norm ||T ||L = sup{||Tv||F , ||v||E ≤ 1}. If T ∈ L(E)
is injective and surjective, then T−1 ∈ L(E) by the open mapping theorem). Various
notions of convergence for a sequence of operators Tn ∈ L(E,F ) to T ∈ L(E,F ):
uniform (||Tn − T ||L → 0), strong (Tnv → Tv in F ∀ v ∈ F ), weak (< φ, Tnv >→<
φ, Tv > ∀ v ∈ F , ∀φ ∈ F ′). The Weierstrass criterion for uniform convergence of series
of operators. Neumann series: for T ∈ L(E) and ||T ||L < 1, (I − T ) is invertible (and
(I − T )−1 ∈ L(E)). Moreover, (I − T )−1 =

∑+∞
n=0 T

n. It follows that the subset of
invertible operators is open in L(E): if T is invertible then for any S ∈ L(E) such that
||S|| < ||T−1||−1, the operator T + S is invertible. Adjoint operator T ∗ ∈ L(F ′, E ′).
It is defined by the identity < T ∗φ, v >=< φ, Tv > for any v ∈ F , φ ∈ F ′. It
holds ‖T ∗‖ = ‖T‖, as a consequence of Hahn-Banach. In case E = F = H a Hilbert
space, from the identification H ≡ H ′ given by the Riesz representation theorem, one
considers T, T ∗ ∈ L(H). If T = T ∗ the operator is called self-adjoint or symmetric.
Examples: Hilbert-Schmidt integral operators on L2(Ω), Fredholm integral operators
on C0([a, b]).

4-dec-2013 (2hrs). Elements of spectral theory for T ∈ L(E). Resolvent set ρ(T ) ⊂ C:
we have λ ∈ ρ(T ) if (λI − T )−1 ∈ L(E). The resolvent set is open in C. More-
over, if |λ| > ‖T‖ then {λ ∈ C , |λ| > ||T ||} ⊂ ρ(T ). Actually, denoting r(T ) =
lim supn(||T n||)1/n ≤ ||T || the spectral radius of T , we have {λ ∈ C , |λ| > r} ⊂ ρ(T ).
Spectrum σ(T ) = C \ ρ(T ) of T ∈ L(E): it is a closed set contained in B(0, ||T ||) ⊂ C.
Let λ ∈ σ(T ): If ker(T − λI) 6= 0 then λ is an eigenvalue of T , and belongs to the
point spectrum. Otherwise, λ belongs to the continuous spectrum (ker(T − λI) = 0
but (T − λI) is not surjective). In particular, the map (T − λI)−1 may be defined
either in a dense or in a proper closed subspace of E, and may be either bounded or
unbounded.

Examples: the right shift τr in `1 (or `2), or the diagonal operator Tα : {xn} 7→
{αnxn} where 0 6= αn → 0. In both cases 0 belongs to the continuous spectrum.
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Moreover, {αn} ⊂ σ(Tα) is the point spectrum of Tα, while the point spectrum of τr is
empty.

The multiplication operator Tu(x) = x · u(x) on C0([a, b]). For any λ ∈ R, ker(T −
λI) = 0, hence there are no eigenvalues. Moreover, for λ /∈ [a, b], (T − λI)−1v(x) =
(x−λ)−1v(x) is well-defined for any v ∈ C0([a, b]) and is bounded, i.e. λ ∈ ρ(T ), while
for a ≤ λ ≤ b (T − λI)−1 is defined on the dense subspace {v ∈ C0([a, b]), v(λ) = 0},
and it is unbounded. In particular, σ(T ) = [a, b] is the continuous spectrum of T .

The resolvent operator Rλ = (T − λI)−1 of T ∈ L(E), with λ ∈ ρ(T ). Resolvent
equation Rλ−Rµ = (λ−µ)RλRµ: it yields dRλ

dλ
= R2

λ, that is λ 7→ Rλ is a holomorphic
function, whose singularities are in σ(T ). In particular, the Cauchy integral formula
(and the calculus of residues) involving Rλ and a given holomorphic function f(z)
allows to consistently define f(T ) (in particular, if f(z) = ez, we obtain a formula for
exp(T ), while if f(z) = 1 we derive some information on the Jordan blocks of T ).

The space K(E,F ) ⊂ L(E,F ) of compact operators. Uniform limits of compact
operators in L(E,F ) are compact, i.e. K(E,F ) is closed in L(E,F ). Operators whose
range is finite dimensional are compact: they are called finite rank operators. Limits
of sequences of finite rank operators are compact.

Finite rank approximation for T ∈ K(E,H), withH a Hilbert space: given v1, ..., vN ∈
H a ε-net for T (BE), set VN =span〈v1, ..., vN〉 and TN = PN · T , where PN is the or-
thogonal projection on VN . We have that TN has finite rank and ||TN −T ||L(E,H) ≤ 2ε.

Examples: T : (xn)n 7→ (anxn)n, where an → 0, is compact on `1 (resp. `2) as
uniform limit of the finite rank operators TN : (xn)n 7→ (σNanxn)n, where σN = 1 for
n ≤ N and σN = 0 for n > N .

5-dec-2013 (2hrs). Some further properties of compact operators: A compact operator
(right- or left-) composed with a bounded operator is compact. In particular, K(E) ≡
K(E,E) is a bilateral ideal of L(E). The identity map is compact if and only if E is
finite dimensional. Any injective T ∈ K(E) doesn’t admit a bounded inverse, unless
E is finite dimensional. If E is reflexive (e.g. a Hilbert space), T is compact if and
only if for any vn ⇀ v weakly in E it holds Tvn → Tv strongly in E. In particular,
T (BE) = T (BE). If T ∈ K(H) then T ∗ ∈ K(H) and conversely.

Some examples of compact operators: integral (kernel-based) operator of Fredholm-
Volterra type on C0([a, b]). More generally, operators based on integral kernels on a
compact metric measure space (Mercer kernels): they are used in the statistical learning
framework. Hilbert-Schmidt operators: if K ∈ L2([a, b] × [a, b]) then if (Tx)(s) =∫ b
a
K(s, t)x(t) dt we have ||T ||L ≤ ||K||L2 . Given a Hilbert basis (i.e. a complete

orthonormal system) {φn} of L2([a, b]), set ψnm(s, t) = φn(s)φm(t): the elements ψnm
are a Hilbert basis of L2([a, b]× [a, b]). Expanding K(s, t) =

∑∞
n=1

∑∞
m=1 knmψnm(s, t),

and setting respectively

KN(s, t) =
N∑
n=1

N∑
m=1

knmψnm(s, t) and (TNx)(s) =

∫ b

a

KN(s, t)x(t) dt,
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we have ||TN − T ||L ≤ ||KN −K||2 → 0, hence T ∈ K(L2([a, b])) as limit of finite rank
operators.

The compact embedding i : W 1,p([a, b]) → C0([a, b]), p > 1; given a family of
maps u ∈ W 1,p([a, b]) with equibounded norm, i.e. ‖u‖p + ‖u′‖p ≤ M , we show
that this family is equibounded in C0([a, b]) and (uniformly) equicontinuous, hence
by Ascoli-Arzela it is relatively compact in C0([a, b]): decompose u = v + c, where

c = 1
b−a

∫ b
a
u(x) dx. We have, by Hölder inequality,

|c| ≤ 1

|b− a|1/p
‖u‖p ≤

1

|b− a|1/p
M, |v(x)| ≤

∫ x

x0

|u′(t)| dt ≤ |b−a|1/p‖u′‖p ≤ |b−a|1/pM ,

where x0 ∈ [a, b] is such that v(x0) = 1
b−a

∫ b
a
v(x) dx = 0. We deduce the uniform

bound ‖u‖∞ ≤ CM , where C depends only on [a, b]. To prove equicontinuity, observe
that

|u(x)− u(y)| ≤
∫ y

x

|u′(t)| dt ≤ |x− y|α‖u′‖p ≤ |x− y|αM, where α = 1− 1

p
,

hence the maps u are equi-Hölder continuous.

Spectrum of a compact operator: 0 ∈ σ(T ) and σ(T ) \ {0}, if non empty, is made
of at most countably many eigenvalues λn, with λn → 0 as n → +∞ (the fact that
0 6= λn ∈ σ(T ) is an eigenvalue follows from the Fredholm Alternative, point 3.).
The corresponding eigenspaces ker(λnI − T ) 6= 0 are finite-dimensional (point 1. of
Fredholm Alternative). If the operator is self-adjoint on a Hilbert space, then the
eigenvalues are real, and max |λn| = ‖T‖L (see Hilbert-Schmidt Spectral Theorem).

11-dec-2013 (2 hrs). The Fredholm Alternative for operators of the type A = I − T ,
with T ∈ K(H), H a Hilbert space:

1. kerA is finite dimensional,
2. the range R(A) is closed, hence there holds the orthogonal direct sum decompo-

sition H = R(A)⊕ kerA∗ = R(A∗)⊕ kerA, where A∗ = I − T ∗.
3. kerA = 0 ⇔ R(A) = H,
4. dim kerA =dim kerA∗ < +∞.

We have proved point 1., 2. and 3., following essentially references [1] and [3].

The Fredholm alternative gives a procedure to solve equation of the type Au =
u − Tu = f , with T compact. First of all, solve the associated adjoint homogeneous
equation, i.e. the fixed point equation v = T ∗v. If the solution is trivial, then Au = f
admits a unique solution for any datum f ∈ H (that can be possibly found in an
iterative way via contraction mapping principle, as in the case of Volterra integral
operators). Otherwise, call v1, ...vk a basis of kerA∗ (i.e. a maximal independent set
of fixed points of T ∗); then there are solutions of Au = f provided f verifies the
orthogonality conditions < f, vi >= 0 for any i = 1, ..., k.
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The Fredholm Alternative holds more generally for operators of the type A = I−T
with T ∈ K(E), E a Banach space.

Spectral theory for self-adjoint compact operators in Hilbert spaces: the eigenvalues
are real and there exists a Hilbert basis made of eigenvectors, which “diagonalizes”
the operator. In particular, for T ∈ K(H), T ∗ = T , and en a orthonormal basis of
eigenvectors, i.e. Ten = λnen (with λn → 0), we have the diagonal representation
Tv = T (

∑
n cnen) =

∑
n λncnen, i.e. the operator can be identified with T̃ ∈ K(`2)

given by T̃ (cn) = (λncn). Moreover, ‖T‖L = maxn |λn|.

12-dec-2013 (2 hrs). Proof of the spectral theorem: we consider a (iterated) contrained
optimization problem on the unit closed ball B = {‖v‖ ≤ 1} ofH for the quadratic form
Q(v) = 〈Tv, v〉 associated to T ∈ K(H). Notice first that Q(v) is weakly continuous,
since vn ⇀ v0 implies Tvn → Tv0, and moreover ‖vn‖ ≤ M (weakly convergent
sequences are bounded), whence

| 〈Tvn, vn〉 − 〈Tv0, v0〉 | ≤ |Tvn − Tv0| · |vn|+ | 〈Tv0, vn − v0〉 | → 0.

By Weierstrass Theorem, |Q(v)| reaches its maximum on the unit closed ball B,
which is weakly compact. Let e1 be a maximum point. We have necessarily ‖e1‖ = 1
because Q(λv) = λ2Q(v) for λ ∈ R. Moreover, for any e ∈ H such that ‖e‖ = 1
and 〈e, e1〉 = 0, one has 〈e, Te1〉 = 0, since by the Lagrange multipliers theorem e1

is a critical point of the function Q(v) + λ‖v‖2 = ψ(α, β, λ), where v = αe1 + βe2

belongs to the 2-dimensional space spanned by e1 and e. In particular, one deduces
Te1 = 〈Te1, e1〉·e1 = λ1e1, i.e. e1 is an eigenvector of T and |Q(e1)| = |〈Te1, e1〉| = |λ1|,
i.e. the eigenvalue λ1 has maximum modulus among the eigenvalues of T (actually we
have |λ1| = ‖T‖L).

Iterating this procedure, one obtains, for n ≥ 1, an eigenvector en of T , with ‖en‖ =
1, and such that < en, em >= 0 for any m < n, corresponding to the maximum point
of |Q(v)| on (span{e1, ..., en−1})⊥ ∩ B, with λn = Q(en) the corresponding eigenvalue.
Moreover, it holds |λn−1| ≥ |λn|.

If for some n0 ∈ N one has λn0 = Q(en0) = 0, then (span{e1, ..., en0−1})⊥ = kerT .
Indeed, Q(w) = 0 for any w ∈ (span{e1, ..., en0−1})⊥, and if 〈w, ei〉 = 0 ∀ i < n0, then
〈Tw, ei〉 = 〈v, Tei〉 = 0, i.e. also Tw ∈ (span{e1, ..., en0−1})⊥. The polarization identity
4〈Tv, u〉 = Q(u+ v)−Q(u− v) hence implies that 4〈Tw, Tw〉 = Q(w+ Tw)−Q(w−
Tw) = 0 for any w ∈ (span{e1, ..., en0−1})⊥, i.e. Tw = 0.

We deduce in this case that the set {e1, ..., en0}, completed with a (complete) or-
thonormal system of kerT yields a Hilbert basis of eigenvectors of T .

Otherwise, we are left with a orthonormal sequence {en}n, so that in particular
en ⇀ 0 by Bessel inequality (for any w ∈ H,

∑
n〈en, w〉2 ≤ ||w||2 ⇒ 〈en, w〉 → 0

as n → +∞), and hence |λn| = |Q(en)| ↘ 0 by weak continuity of Q. Let N =

span{e1, ..., en, ...}
⊥

. For any w ∈ N one necessarily has |Q(w)| ≤ |Q(en)| for any
n ∈ N, hence Q(w) = 0 and N = kerT .
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In this case, the set {en}n∈N, completed with a (complete) orthonormal system of
kerT yields a Hilbert basis of eigenvectors of T .

The Lax-Milgram Lemma: given a bilinear form a(u, v), continuous (a(u, v) ≤
M‖u‖‖v‖) and coercive (0 < α‖u‖2 ≤ a(u, u) ∀ u 6= 0) on a Hilbert space H, for any
bounded linear form φ ∈ H∗ there exists a unique u ∈ H such that a(u, v) = φ(v) for
any v ∈ H. In particular, ‖u‖ ≤ α−1‖φ‖∗.

If moreover a is symmetric (i.e. a(u, v) = a(v, u)), we have the characterization
u = arg min{1

2
a(v, v)− φ(v) , v ∈ H}.

Proof: by Riesz representation theorem, the equation to be solved can be rewritten
as 〈Au, v〉 = 〈f, v〉 for any v ∈ H, i.e. Au = f , where A ∈ L(H) verifies the estimates
0 < α‖u‖ ≤ ‖Au‖ ≤M‖u‖ ∀ u 6= 0.

From α‖u‖ ≤ ‖Au‖ (which is called an a priori estimate) it follows that kerA = 0.
Moreover, α‖un − um‖ ≤ ‖Aun − Aum‖ implies that if yn = Aun → y in H, i.e. Aun
is a Cauchy sequence in H, then also un is a Cauchy sequence, hence un → u in H by
completeness, thus yielding y = Au. One concludes that A has a closed range R(A) in
H. Finally, if v⊥R(A), then 〈v, Au〉 = 0 ∀ u ∈ H. In particular, choosing u = v, we
have 0 = 〈v, Av〉 ≥ α‖v‖2, thus v = 0 and R(A) = H. We just proved that A is both
injective and surjective, and the conclusion of the Lemma follows.

In case of a symmetric a, since α‖u‖2 ≤ a(u, u) ≤ M‖u‖2, the scalar product
((u, v)) := a(u, v) is equivalent to 〈·, ·〉, hence by Riesz representation theorem applied
to H endowed with ((·, ·)), one has φ(v) = a(g, v) for a certain g ∈ H, whence u
verifies a(u − g, v) = 0 ∀ v ∈ H, i.e. u is the orthogonal projection (with respect to
the scalar product induced by a) of g on H, in other words u minimizes the (squared)
distance (induced by a) a(v−g, v−g), or, equivalently, the quadratic functional F (v) =
1
2
a(v, v)−φ(v), for v ∈ H, whose Euler-Lagrange equation ∂vF (u) ≡ 〈F ′(u), v〉 = 0 for

any direction v ∈ H is precisely given by a(u, v) = φ(v) for any v ∈ H.

A generalization of Lax-Milgram lemma is given by Stampacchia theorem.

16-dec-2013 (1 hr). The Galerkin approximation method: if Vh ⊂ H, dimVh < +∞,
one considers the solution uh of the system a(u, v) = φ(v) ∀ v ∈ Vh. We have the
uniform bound ‖uh‖ ≤ α−1‖φ‖∗, which gives weak compactness of the sequence {uh}.
Moreover, the Lemma of Céa guarantees that ‖u−uh‖ ≤ M

α
dist (u, Vh) (in other words,

uh is comparable to the orthogonal projection of u on Vh): indeed, a(u− uh, u− uh) =
a(u− uh, u− v) for any v ∈ Vh since a(u, v − uh) = a(uh, v − uh) = φ(v − uh), whence
α‖u− uh‖2 ≤M‖u− uh‖‖u− v‖ for any v ∈ Vh and the conclusion follows.

Hence, considering a sequence of finite-dimensional spaces Vh ⊂ Vh+1 such that
H = ∪hVh, one has the convergence uh → u in H as h→ +∞.

Remark that the approximating finite-dimensional problem is a linear system with a
positive definite coefficients matrix, called stiffness matrix, which is given by [a(fi, fj)],
with {fi} a basis for Vh.
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The choice of the sequence Vh invading H and of a basis {fi} for Vh is aimed to
efficiently solve the approximating linear system, and also to have the best possible
convergence rate for the error estimate ||uh − u||. Here are some examples in case
H = L2(Ω), Ω ⊂ Rn:

1) if a is represented by a compact self-adjoint operator, then considering a Hilbert
basis {en}n∈N of L2(Ω) made of eigenvectors, and setting Vh =span< e1, ..., eh >, the
corresponding system is diagonal.

2) considering a basis {fi} of Vh made of finite elements (piecewise linear or polyno-
mial function insisting on a fixed triangulation of the domain) yields a sparse stiffness
matrix. Finite elements are used in numerical fluid dynamics, material science, elas-
ticity,...

3) Haar basis, wavelets, radial basis functions: these Hilbert basis of L2(Ω) are
used in signal and image processing and statistical analysis, being not computation-
ally expensive, and also since they are able to take into account localized oscillation
phenomena at any scale in physical and in frequency space.

3) if the original problem admits a smooth solution (for example, u ∈ C∞(Ω) as for
Laplace equation), it may be convenient to use spectral methods for its approximation,
i.e. to consider a Hilbert basis of L2(Ω) made of orthogonal polynomials (e.g. the
trigonometric system, the Legendre polynomials, the Hermite polynomials): since the
Lemma of Céa states that the error estimate ‖u−uh‖ is comparable to the distance of u
to its orthogonal projection on Vh, hence the convergence rate will be better according
to the regularity of u (for instance, the more regular u, the more rapidly its Fourier
coefficients decay to 0).

18-dec-2013 (2 hrs). Weak / variational formulation of elliptic boundary value prob-
lems in dimension 1. Classical vs weak solutions. Homogeneous Dirichlet problem:
weak formulation in H1

0 , existence, uniqueness, a priori estimates, variational charac-
terization of the weak solution as the minimizer of the Dirichlet energy. Analysis of
the (homogeneous) Sturm-Liouville problem, compactness and spectral decomposition
of Sturm-Liouville operators.

9-jan-2014 (2 hrs). Basic facts from the theory of distributions. Motivation: existence
theory for partial differential equations. For an open set Ω ⊂ Rn define the space of
smooth test functions D(Ω) = C∞c (Ω). While the space of continuous (resp. Ck) test
functions C0

c (Ω) (resp. Ck
c (Ω)) has a metric naturally induced by the norm ‖φ‖C0 ≡

‖φ‖∞ (resp. ‖φ‖Ck ≡
∑

0≤|α|≤k ‖Dαφ‖∞), the space of smooth test function has a

metric built upon the family of semi-norms ‖Dαφ‖∞, for any multi-index α (such a
space is not a normed space, but it is called a Fréchét space), for instance consider

dist (φ, ψ) =
∞∑
k=0

2−k
‖φ− ψ‖Ck

1 + ‖φ− ψ‖Ck
.
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Moreover, one says that φn → φ in C∞c (Ω) if dist (φn, φ) → 0 and sptφn ⊂ K, with
K ⊂ Ω a fixed compact set, independent of n. Remark that φn → φ in C∞c (Ω) if and
only if φn and all their derivatives converge uniformly on K ⊂ Ω.

The space of distributions D′(Ω) ≡ [C∞c (Ω)]′ is defined as the space of linear and
continuous functionals over the space of smooth test functions. In particular, for T ∈
D′(Ω), stating T (φn)→ T (φ) for any φn → φ in C∞c (Ω) is equivalent to state that for
any K ⊂ Ω compact, there exists N ∈ N and C > 0 (both possibly depending on K)
such that

|T (φ)| ≤ C sup
0≤|α|≤N

‖Dαφ‖L∞(K).

Convergence in the sense of distributions: for T, Tj ∈ D′(Ω) we say that Tn ⇀ T in
D′(Ω) if Tj(φ)→ T (φ) for any φ ∈ C∞c (Ω) (it is thus defined as a weak convergence).

Distribution associated to a locally integrable function u ∈ L1
loc(Ω) (i.e. u ∈ L1(Ω∩

B) for any ball B): set Tu(φ) =
∫

Ω
u(x)φ(x) dx. Let sptφ = K. We have |Tu(φ)| ≤

‖u‖L1(K) · ‖φ‖∞, so that Tu ∈ D′(Ω).
Actually, if u ∈ L1(Ω), we have Tu ∈ [C0

c (Ω)]∗, and ‖Tu‖∗ = sup{Tu(φ), ‖φ‖∞ ≤
1} = ‖u‖1.

Moreover, if Tu = Tv for u, v ∈ L1
loc(Ω) we have 0 =

∫
Ω

(u(x)− v(x))φ(x) dx for any
φ ∈ C∞c (Ω), i.e. u = v a.e. in Ω. The map u 7→ Tu gives thus an injection of L1

loc(Ω)
in D′(Ω), (actually, in [C0

c (Ω)]∗ ⊂ D′(Ω)).
Derivatives in the sense of distributions (distributional derivatives). For T ∈ D′(Ω)

we define DαT (φ) = (−1)|α|T (Dαφ), for φ ∈ D(Ω). If u ∈ Ck(Ω) and |α| ≤ k then
we have as expected Dα(Tu) = TDαu by iteratively applying the integration by part
formula ∫

Ω

∂iu(x)φ(x) dx = −
∫

Ω

u(x)∂iφ(x) dx .

Observe that if Tj ⇀ T in D′(Ω) then DαTj ⇀ DαT in D′(Ω) for any multiindex α.

Examples: for u(x) = |x|, x ∈ R, we have (Tu)
′ = Tv where v(x) = 1 if x > 0 and

v(x) = −1 if x < 0. Moreover, (Tv)
′ = 2 ·Tδ0 , where Tδ0(φ) = φ(0), for φ ∈ C∞c (Ω),

is the distribution associated to the Dirac mass concentrated at the origin. In particular
Tδ0 ∈ [C0

c ]∗ and
‖Tδ0‖∗ = sup{φ(0), φ ∈ C0

c , ‖φ‖∞ ≤ 1} = 1.

On R we have Tδ0 = (TH)′, where H(x) = 1 if x ≥ 0, H(x) = 0 if x < 0 is the
Heaviside function. consider the following approximating sequence for H, given by
uj(x) = 1 if x ≥ j−1, uj(x) = j · x for 0 ≤ x ≤ j−1, uj(x) = 0 for x < 0. We have
(Tuj)

′ = Tvj where vj(x) = j for 0 ≤ x ≤ j−1, and vj(x) = 0 elsewhere in R. Notice
that ‖Tvj‖∗ =

∫
R vj(x) dx = 1 for any j ∈ N. We have Tuj ⇀ TH in D′ since uj → H

in L1, so that |Tuj(φ)− TH(φ)| ≤
∫

R |uj(x)−H(x)| · |φ(x)| dx vanishes as j → +∞. In
particular we have Tvj = (Tuj)

′ ⇀ (TH)′ = Tδ0 .
Observe that the Heaviside function has a classical derivative a.e. (actually every-

where except in the origin), which is identically zero, while the distributional derivative
of H keeps the information on the unit jump of H at the origin.
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13-jan-2014 (2 hrs). From the inclusions C∞c (Ω) ⊂ Ck+1
c (Ω) ⊂ Ck

c (Ω) valid for any
k ≥ 0 we have the continuous injections

[C0
c (Ω)]∗ ⊂ [C1

c (Ω)]∗ ⊂ ... ⊂ [Ck
c (Ω)]∗ ⊂ ... ⊂ [C∞c (Ω)]′ = D′(Ω).

Distributions in [Ck
c (Ω)]∗ are called distributions of order k. In particular, distri-

butions associated to locally integrable functions are of order zero.
The distribution Tµ associated to a (possibly σ-finite) Radon measure µ on Ω:

Tµ(φ) ≡ 〈Tµ, φ〉 =
∫

Ω
φ(x)dµ(x).

Example: the Dirac distribution Tδ0 : we have 〈Tδ0 , φ〉 =
∫

Ω
φ(x)dδ0(x) = ϕ(0).

For any µ ∈ M(Ω) (the space of finite Radon measures on Ω) it actually holds
Tµ ∈ [C0

c (Ω)]∗ and

‖Tµ‖∗ = sup{〈Tµ, φ〉 , φ ∈ C0
c (Ω) , ‖φ‖∞ ≤ 1} = |µ|(Ω),

where |µ| is the total variation measure of µ and ‖µ‖ = |µ|(Ω) is the total variation of
the measure µ on Ω.

For µ, ν ∈ M(Ω) two Radon measures on Ω, Tµ = Tν implies
∫

Ω
φ(x) dµ(x) =∫

Ω
φ(x) dν(x), for any φ ∈ C∞c (Ω), so that by considering φj converging to the char-

acteristic function of an open subset A ⊂ Ω se obtain, by the dominated convergence
theorem, that µ(A) = ν(A) for any A ⊂ Ω open, hence µ = ν by the regularity of
Radon measures. Hence µ 7→ Tµ gives an injection M(Ω)→ [C0

c (Ω)]∗ ⊂ D′(Ω). Hence
(finite and σ-finite) Radon measures in Ω are distribution of order zero.

Riesz representation theorem: µ ∈ M(Ω) 7→ Tµ ∈ [C0
c (Ω)]∗ is an isomorphism of

Banach spaces, where the norm of a measure µ ∈M(Ω) is given by its total variation
‖µ‖ = |µ|(Ω). In particular, it holds |µ|(Ω) = ‖µ‖ = ‖Tµ‖∗. Weak* compactness and
convergence in the sense of measures: by the Banach-Alaoglu theorem (bounded sets in
the dual of a Banach space are relatively compact with respect to the weak* topology),
a sequence of equibounded Radon measures µn on Ω (i.e. |µn|(Ω) ≤ C) is weakly*

compact, i.e. there exists a subsequence µnk and a measure µ such that µnk
∗
⇀ µ in

M(Ω), or in other words
∫

Ω
φ(x) dµnk(x)→

∫
Ω
φ(x) dµ(x) for any φ ∈ C0

c (Ω).
The space of Radon measures is suited to solve optimization problems involving L1

or total variation norms. For example, for Y ⊂M(Ω) , Y closed convex and bounded,
consider the minimization problem

inf{‖µ‖ = µ(Ω) = ‖Tµ‖∗, µ ∈ Y } .

Then, since Y is closed and convex it is weakly* closed by Hahn-Banach, and since it
is also bounded it is weakly* compact by Banach-Alaogliu. The total variation norm
is weakly* lowersemicontinuous being characterized as a supremum, as a dual norm.
Hence the existence of a minimizer in Y is guaranteed by Weierstrass theorem (or
equivalently by the direct method of the calculus of variations).

Product distribution ψ · T , where ψ ∈ C∞(Ω): 〈ψ · T, φ〉 = 〈T, ψ · φ〉. Convolution
of a distribution with a test function: it is a smooth function x 7→ T ∗ φ(x) defined by
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T ∗ φ(x) = 〈T, φ(x− ·)〉. It holds Dα(T ∗ ϕ) = (DαT ) ∗ ϕ = T ∗ (Dαϕ). Support of a
distribution T : it is the complementary of the largest open set O such that T (φ) = 0 for
any φ such that sptφ ⊂ O. In particular, if T has compact support, then T ∗ φ ∈ C∞c .
Convolution of distributions: for T, S ∈ D′(Ω), with S with compact support, define
〈T ∗ S, φ〉 = 〈T, S ∗ φ〉. The Dirac distribution δ0 is the neutral element with respect
of the convolution product.

Distributional gradient: it is a vector distribution in [D′(Ω)]n given by 〈∇T, ~ϕ〉 =
−〈T, div ~ϕ〉 for ~ϕ ∈ [D(Ω)]n. Remark that for distributions associated to functions of
class C1 previous formula coincides with Green (or integration by parts) formula.

Analogously , the distributional divergence of a vector distribution ~T = (T1, ..., Tn)

is defined as 〈 div ~T , φ〉 = −〈∇T, φ〉. Distributional Laplacian−∆T : we have 〈−∆T, φ〉 =
〈T,−∆φ〉.

Differential problems in the distributional sense. Fundamental solution of a linear
and continuous operator L on D′(Rn): it is a distribution G such that L(G) = δ0. For
F ∈ D′(Rn), the distribution U = G ∗ F is a solution of the equation L(U) = F in
D′(Rn).

Example: the fundamental solution of the distributional Laplacian in Rn, which
satisfies −∆G = δ0 in D′(Rn), is the function G(x) = cn|x|2−n for n > 2, with cn > 0
a suitable constant (e.g. c3 = 1

4π
), and G(x) = − 1

2π
log |x| for n = 2.

15-jan-2014 (2 hrs). Distributional definition of the spaces W 1,p(Ω). Definition of
BV (Ω) (functions of bounded variation): u ∈ BV (Ω) if u ∈ L1(Ω) and the (distribu-
tional) gradient Du = (D1u, ..., Dnu) is a (vector) Radon measure, which satisfies the
integration by part formula (Gauss-Green)∫

Ω

u div ~φ = −
∫

Ω

~φ · dDu for any ~φ ∈ [C0
c (Ω)]n .

Total variation of a vector Radon measure: for ~µ = (µ1, ..., µn) with µi ∈ M(Ω) =
(C0

c (Ω))′ we have the decomposition ~µ = ~ν|~µ|, where |~µ| is a positive measure (called
the total variation measure) and |~ν(x)| = 1 for |~µ| a.e. x ∈ Ω. The total variation of
~µ is defined as

‖~µ‖ = sup

{∫
Ω

~φ · d~µ =

∫
Ω

~φ · ~ν d|~µ| , ~φ ∈ [C0
c (Ω)]n, ‖~φ‖∞ ≤ 1

}
= |~µ|(Ω).

Example: the characteristic function 1E of an open bounded set E ⊂ Rn with
∂E ∩ Ω of class C1 belongs to BV (Ω), since by Gauss-Green formula

D1E(~φ) = −
∫
E

div ~φ dx = −
∫
∂E

~φ · ~n dσ ,

where ~n is the unit outer normal to ∂E and dσ is the surface measure on ∂E, so
that |D1E(~φ)| ≤ ‖~φ‖∞ · Area(∂E ∩ Ω), i.e. D1E is a vector Radon measure, and in
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particular D1E = ~ν|D1E|, where ~ν(x) = −~n(x) is the inner unit normal to ∂E∩Ω and

|D1E| = dσ. By a suitable choice of the test function ~φ in such a way that |~φ(x)| ≤ 1

and ~φ = −~n on ∂E ∩ Ω one gets |D1E|(Ω) = Area(∂E ∩ Ω).

Equivalent definitions of W 1,p and BV norm. Some properties of W 1,p(Ω): com-
pleteness, reflexivity, separability, according to the exponent p. The Hilbert space
H1(Ω) = W 1,2(Ω). The space W 1,∞(Ω) coincides with the space of Lipschitz functions
on Ω, when Ω is a regular domain (with boudary of class C1 or lipschitz). Leibniz rule
and chain rule n W 1,p.

Characterization of maps in W 1,p(Ω): weak derivatives as a bounded linear func-
tionals on Lp

′
, uniformly bounded differential quotients w.r.t the Lp norm (this prop-

erty implies that the injection W 1,p(Ω) → Lp(Ω) is compact, according to Fréchét-
Kolmogorov theorem): in case p = 1 these properties characterize the space BV (Ω) of
functions of bounded variation.

16-jan-2014 (2 hrs). (see [1], chapter 9) Density of smooth functions in W 1,p(Ω):
extension of a function u ∈ W 1,p(Ω) to a function ū ∈ W 1,p(RN) and regularization
by convolution with a family of smoothing kernels ρn ∈ C∞c (RN) such that ρn ⇀ δ0

in the sense of distributions. Proof of the compact injection of W 1,p(Ω) in Lp(Ω) for
Ω ⊂ RN bounded: if F is a bounded family of W 1,p(Ω), and ω ⊂⊂ Ω, then ρn ∗ F|ω is
ε-close to F|ω for large n, and uniformly bounded in L∞ and equi-uniformly continuous,
hence relatively compact with respect to the ‖ · ‖∞ norm by Ascoli-Arzelà, so that in
particular it is relatively compact in Lp(ω). An ε-net for ρn ∗ F|ω in Lp(ω) is then
a 2ε-net for F|ω and a 3ε-net for F in Lp(Ω) if ω is sufficiently close in measure to

Ω. The space W 1,p
0 (Ω), suited for homogeneous Dirichlet boundary value problems.

Poincaré inequality. Sobolev inequalities in Rn and in domains Ω of class C1. Rellich-
Kondrachov compact embedding theorem.

20-jan-2014 (2 hrs). (see [1], chapter 9) Weak / variational formulation of elliptic
boundary value problems in dimension N (see [1], chapter. Classical vs weak solutions.
Homogeneous Dirichlet problem: weak formulation in H1

0 , existence, uniqueness, a
priori estimates, H2-regularity and higher regularity of the weak solution (analysis
carried out only in the easier case N = 1). Variational characterization of the weak
solution as the minimizer of the Dirichlet energy, and relationship with a discretization
in time of the gradient flow of the Dirichlet energy (in other words, a discretization in
time (Euler-type scheme) of the heat equation: denoting tn = n∆t, u(tn, ·) = vn(·) one
obtains vn+1 as the minimizer in of the Dirichlet energy functional F (v) = 1

2

∫
Ω
|∇v|2 +

1
2∆t
‖v− vn‖2

L2(Ω)). This gives also an example of Tychonoff regularization for signal (or

image) processing.
Solvability of a general second-order elliptic boundary value problem in divergence

form through the Fredholm Alternative (see [1], Theorem 9.23).
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22-jan-2014 (2 hrs). Homogeneous Neumann problem. Maximum principle for elliptic
equations, applications to uniqueness and stability of the Dirichlet problem. Spectral
theory of the Laplacian: existence of a Hilbert basis of L2(Ω) made by eigenfunctions of
the Laplacian in H1

0 (Ω) guaranteed by compactness and self-adjointness of the solution
operator. Integral representation of the solution of the homogeneous Dirichlet problem
through the corresponding Green kernel. The linear heat equation and wave equation:
some hints about methods of resolution through finite-dimensional Galerkin approxi-
mation of the Laplace operator, corresponding to the so-called technique of separation
of variables.

An example of nonlinear partial differential equations arising from variational prob-
lems: the Rudin-Osher-Fatemi model F (u) = |Du|(Ω) + 1

2
‖u− f‖2

L2(Ω), for u ∈ BV (Ω)

is suitable in image processing, since it has the ability to regularize (denoise) a given
image f (identified as its grey level function) by preserving at the same time edges and
boundaries.

An example of geometric variational problem: the isoperimetric and the isovolu-
metric problem within the class of finite perimeter sets.

Definition of finite perimeter (or Caccioppoli) sets in Ω ⊂ Rn: they are Lebesgue
measurable sets E ⊂ Rn such that

PΩ(E) ≡ |D1E|(Ω) ≡ sup

{∫
E∩Ω

div~φ , ‖~φ‖∞ ≤ 1, ~φ ∈ [C∞c (Ω)]n
}
< +∞,

in other words 1E ∈ BV (Ω). Weak formulation of the isovolumetric problem in the
class of finite perimeter sets in Rn: fix R > 1 (sufficiently large) and set

P =

{
E ⊂ BR(0), Ln(E) =

∫
Rn

1E dLn = 1, 1E ∈ BV (B2R(0))

}
,

i.e. P contains sets E ⊂ BR(0) having unit volume and finite perimeter ‖D1E‖ ≡
|D1E|(B2R(0)) in B2R(0): observe that since E ⊂ BR(0), the perimeter of E in B2R(0)
coincides with the whole perimeter of E in Rn, i.e. with |D1E|(Rn). Consider the
isovolumetric problem

min
E∈P
‖D1E‖ .

If En ∈ P is a minimizing sequence, i.e. ‖D1En‖ → infF∈P ‖D1F‖, we have

‖1En‖BV (B2R(0)) = 1 + ‖D1En‖ ≤ C,

so that, up to a subsequence, 1En → 1E in L1(B2R(0)) by the compact embedding of
BV (B2R(0)) in L1(B2R(0)) (Rellich Theorem). We deduce E ⊂ BR(0) and Ln(E) = 1.

Moreover, we have D1En(~φ)→ D1E(~φ) for any ~φ ∈ [C∞c (Rn)]n (i.e. convergence in the
sense of distributions) and

‖∇1E‖ ≤ lim inf
n→+∞

‖∇1En‖ = inf
F∈P
‖∇1F‖
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by lower semicontinuity of the total variation norm. Hence E has minimum perimeter
in the class P .

The regularity theory (based for example on Steiner symmetrization) allows to
conclude that the optimal set E is the unit volume round ball in Rn.
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