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2-dec-2013 (2 hrs). The space L(E, F) of bounded linear operators between two
Banach spaces E, F'. Operator norm ||T||z = sup{||Tv||r, ||v|]|lg < 1}. I T € L(E)
is injective and surjective, then T~! € L(F) by the open mapping theorem). Various
notions of convergence for a sequence of operators T,, € L(E,F) to T € L(E,F):
uniform (||7,, — T||z — 0), strong (T,,v — Tv in F VY v € F), weak (< ¢, T,v >—<
¢, Tv>VveF V¢ e F'). The Weierstrass criterion for uniform convergence of series
of operators. Neumann series: for 7' € L(E) and ||T||z < 1, (I — T) is invertible (and
(I = T)™' € L(E)). Moreover, (I —T)~' = >0 1" Tt follows that the subset of
invertible operators is open in L(E): if T is invertible then for any S € L(E) such that
I|S]] < [|IT7Y|~", the operator T + S is invertible. Adjoint operator T* € L(F', E').
It is defined by the identity < T*¢,v >=< ¢,Tv > for any v € F, ¢ € F'. It
holds ||T™*|| = ||T'||, as a consequence of Hahn-Banach. In case E = F = H a Hilbert
space, from the identification H = H’ given by the Riesz representation theorem, one
considers T, T* € L(H). If T = T* the operator is called self-adjoint or symmetric.
Examples: Hilbert-Schmidt integral operators on L?*(§2), Fredholm integral operators
on C%Ja, b]).

4-dec-2013 (2hrs). Elements of spectral theory for T € L(E). Resolvent set p(T') C C:
we have A € p(T) if (\[ — T)™' € L(E). The resolvent set is open in C. More-
over, if |A| > ||T'|| then {\ € C, |A\| > ||T||} C p(T). Actually, denoting r(7) =
limsup,, (||7"||)¥/™ < ||T|| the spectral radius of T, we have {\ € C, |\| > r} C p(T).
Spectrum o(T") = C\ p(T") of T' € L(E): it is a closed set contained in B(0, ||T]|) C C.
Let A € o(T): If ker(T' — AI) # 0 then X is an eigenvalue of T', and belongs to the
point spectrum. Otherwise, A belongs to the continuous spectrum (ker(7"— \I) = 0
but (T — M) is not surjective). In particular, the map (7 — AI)~! may be defined
either in a dense or in a proper closed subspace of F, and may be either bounded or
unbounded.

Examples: the right shift 7, in ¢! (or £2), or the diagonal operator T, : {z,} —
{a,z,} where 0 # «,, — 0. In both cases 0 belongs to the continuous spectrum.



Moreover, {a,,} C o(T,) is the point spectrum of 7T, while the point spectrum of 7, is
empty.

The multiplication operator Tu(z) = z - u(x) on C°([a,b]). For any A € R, ker(T —
M) = 0, hence there are no eigenvalues. Moreover, for A\ & [a,b], (T — \)"'v(z) =
(x —A\)"lo(x) is well-defined for any v € C°([a, b]) and is bounded, i.e. A € p(T), while
for a <X\ < b (T — X)~! is defined on the dense subspace {v € C°([a,b]), v(\) = 0},
and it is unbounded. In particular, o(T') = [a, b] is the continuous spectrum of 7T

The resolvent operator Ry = (T'— X\ )™! of T € L(FE), with A\ € p(T). Resolvent
equation Ry — R, = (A—p)R\R,,: it yields dRA = R3, that is A — R, is a holomorphic
function, whose smgularltles are in o(7). In partlcular, the Cauchy integral formula
(and the calculus of residues) involving R, and a given holomorphic function f(z)
allows to consistently define f(7') (in particular, if f(z) = e*, we obtain a formula for
exp(T'), while if f(z) = 1 we derive some information on the Jordan blocks of T').

The space K(E,F) C L(E,F) of compact operators. Uniform limits of compact
operators in L(E, F') are compact, i.e. C(E, F) is closed in L(E, F'). Operators whose
range is finite dimensional are compact: they are called finite rank operators. Limits
of sequences of finite rank operators are compact.

Finite rank approximation for T' € IC(E, H), with H a Hilbert space: given vy, ...,uy €
H a enet for T'(Bg), set Vy =span(vy, ...,vn) and Ty = Py - T, where Py is the or-
thogonal projection on V. We have that T has finite rank and ||Ty — T'||z(g,m) < 2e.

Examples: T : (z,)n — (anTp)n, where a, — 0, is compact on (' (resp. %) as
uniform limit of the finite rank operators T : (), — (6nanTy),, Where oy = 1 for
n<N and oy =0 for n > N.

5-dec-2013 (2hrs). Some further properties of compact operators: A compact operator
(right- or left-) composed with a bounded operator is compact. In particular, K(E) =
KC(E, E) is a bilateral ideal of £L(FE). The identity map is compact if and only if E is
finite dimensional. Any injective 7' € IC(E) doesn’t admit a bounded inverse, unless
E is finite dimensional. If F is reflexive (e.g. a Hilbert space), T' is compact if and
only if for any v, — v weakly in E it holds Twv, — Tv strongly in E. In particular,
T(Bg)=T(Bg). f T € K(H) then T* € K(H) and conversely.

Some examples of compact operators: integral (kernel-based) operator of Fredholm-
Volterra type on C%([a,b]). More generally, operators based on integral kernels on a
compact metric measure space (Mercer kernels): they are used in the statistical learning
framework. Hilbert-Schmidt operators: if K € L%*([a,b] x [a,b]) then if (T'z)(s) =
fabK(s,t)x(t) dt we have ||T||; < ||K]|z2. Given a Hilbert basis (i.e. a complete
orthonormal system) {¢,} of L?*([a,b]), set Ynm(s,t) = ¢n(s)Pn(t): the elements 1y,
are a Hilbert basis of L?([a, b] X [a, b]). Expanding K (s,t) = > 07 > | knm®um(s, ),
and setting respectively

N N
=3 kumtum(s.t)  and (Tyx)( / Ky (s, t)z(t) dt,

n=1 m=1




we have || Ty — Tz < ||Kxy — K||s — 0, hence T' € K(L?*([a,b])) as limit of finite rank
operators.

The compact embedding i : WP([a,b]) — C%[a,b]), p > 1; given a family of
maps v € W'P([a,b]) with equibounded norm, ie. |ul, + |||, < M, we show
that this family is equibounded in C°([a,b]) and (uniformly) equicontinuous, hence
by Ascoli-Arzela it is relatively compact in C°([a,b]): decompose u = v + ¢, where

c= ﬁ ff u(x) dz. We have, by Holder inequality,

1 1 ! / 1 / 1
e < m”qu =< mMa o(z)] < /x | (t)| dt < [b—a|'?||||, < |b—al'/PM
where zg € [a,b] is such that v(zy) = — f v(x)dr = 0. We deduce the uniform
bound ||u||.c < CM, where C' depends on 1 on [a, ] To prove equicontinuity, observe
that
v 1
lu(x) —u(y)] < / [/ ()| dt < |z —y|*||u], < o —y|* M, where o =1 — = |
z p

hence the maps u are equi-Hélder continuous.

Spectrum of a compact operator: 0 € ¢(7T) and o(T') \ {0}, if non empty, is made
of at most countably many eigenvalues \,, with A, — 0 as n — 400 (the fact that
0 # N\, € o(T) is an eigenvalue follows from the Fredholm Alternative, point 3.).
The corresponding eigenspaces ker(\,I — T') # 0 are finite-dimensional (point 1. of
Fredholm Alternative). If the operator is self-adjoint on a Hilbert space, then the
eigenvalues are real, and max |\,| = |||z (see Hilbert-Schmidt Spectral Theorem).

11-dec-2013 (2 hrs). The Fredholm Alternative for operators of the type A =1 —T,
with 7" € K(H), H a Hilbert space:

1. ker A is finite dimensional,

2. the range R(A) is closed, hence there holds the orthogonal direct sum decompo-
sition H = R(A) @ ker A* = R(A*) @ ker A, where A* =1 —T".

3. kerA=0«< R(A)=H,

4. dimker A =dim ker A* < +o0.

We have proved point 1., 2. and 3., following essentially references [1] and [3].

The Fredholm alternative gives a procedure to solve equation of the type Au =
u—Tu = f, with T compact. First of all, solve the associated adjoint homogeneous
equation, i.e. the fixed point equation v = T*v. If the solution is trivial, then Au = f
admits a unique solution for any datum f € H (that can be possibly found in an
iterative way via contraction mapping principle, as in the case of Volterra integral
operators). Otherwise, call vy, ...v; a basis of ker A* (i.e. a maximal independent set
of fixed points of 7*); then there are solutions of Au = f provided f verifies the
orthogonality conditions < f,v; >= 0 for any i =1, ..., k.



The Fredholm Alternative holds more generally for operators of the type A =1—-T
with T € K(F), E a Banach space.

Spectral theory for self-adjoint compact operators in Hilbert spaces: the eigenvalues
are real and there exists a Hilbert basis made of eigenvectors, which “diagonalizes”
the operator. In particular, for 7' € K(H), T* = T, and e, a orthonormal basis of
eigenvectors, i.e. Te, = Ape, (with A, — 0), we have the diagonal representation
Tv = T(3, cnen) = 3., AnCnen, i.e. the operator can be identified with 7' € K(¢?)
given by T(¢n) = (Ancy). Moreover, || Tz = max, [A,|.

12-dec-2013 (2 hrs). Proof of the spectral theorem: we consider a (iterated) contrained
optimization problem on the unit closed ball B = {||v|| < 1} of H for the quadratic form
Q(v) = (Tv,v) associated to T" € KC(H). Notice first that Q(v) is weakly continuous,
since v, — vg implies Tv, — Twvy, and moreover |v,|| < M (weakly convergent
sequences are bounded), whence

| (Tvy,, vn) — (T, vo) | < |Tvn — Tl - |vn| + | (To, vy, — vo) | — 0.

By Weierstrass Theorem, |Q(v)| reaches its maximum on the unit closed ball B,
which is weakly compact. Let e; be a maximum point. We have necessarily ||e;]] = 1
because Q(A\v) = A\?Q(v) for A € R. Moreover, for any e € H such that |e]| = 1
and (e,e;) = 0, one has (e,Te;) = 0, since by the Lagrange multipliers theorem e;
is a critical point of the function Q(v) + Aljv||* = ¥(«, 3, \), where v = ae; + [es
belongs to the 2-dimensional space spanned by e; and e. In particular, one deduces
Te; = (Tey,e1)-e1 = Aeq, i.e. ep is an eigenvector of T and |Q(e1)| = [(Ter, e1)| = | M),
i.e. the eigenvalue A\; has maximum modulus among the eigenvalues of T' (actually we
have || = |I7]lc).

Iterating this procedure, one obtains, for n > 1, an eigenvector e,, of T, with ||e,| =
1, and such that < e,,e,, >= 0 for any m < n, corresponding to the maximum point
of |Q(v)| on (span{ey, ...,e,_1})* N B, with A\, = Q(e,) the corresponding eigenvalue.
Moreover, it holds |A,_1| > [\,

If for some ny € N one has \,, = Q(en,) = 0, then (span{ey, ..., e,,_1})t = ker T'.
Indeed, Q(w) = 0 for any w € (spanfey, ..., en,_1})T, and if {(w,e;) = 0 Vi < ng, then
(Tw, e;) = (v, Te;) = 0, i.e. also Tw € (spanfey, ..., eny_1})>. The polarization identity
4Tv,u) = Q(u+v) — Q(u — v) hence implies that 4(Tw, Tw) = Q(w + Tw) — Q(w —
Tw) = 0 for any w € (span{ey, ..., ep,_1})*, i.e. Tw = 0.

We deduce in this case that the set {ey,...,e,,}, completed with a (complete) or-
thonormal system of ker T" yields a Hilbert basis of eigenvectors of T'.

Otherwise, we are left with a orthonormal sequence {e,},, so that in particular
en, — 0 by Bessel inequality (for any w € H, Y (en,w)? < [[w|]* = (en,w) — 0
as n — +00), and hence |\,| = |Q(e,)| . 0 by weak continuity of Q. Let N =
span{el,...,en,...}L. For any w € N one necessarily has |Q(w)| < |Q(e,)| for any
n € N, hence Q(w) =0 and N =kerT.




In this case, the set {e,}nen, completed with a (complete) orthonormal system of
ker T" yields a Hilbert basis of eigenvectors of T'. m

The Lax-Milgram Lemma: given a bilinear form a(u,v), continuous (a(u,v) <
M]||u||||v]]) and coercive (0 < a|jul|* < a(u,u) V u # 0) on a Hilbert space H, for any
bounded linear form ¢ € H* there exists a unique u € H such that a(u,v) = ¢(v) for
any v € H. In particular, |Ju]| < a™!||¢]|..

If moreover a is symmetric (i.e. a(u,v) = a(v,u)), we have the characterization
u = argmin{3a(v,v) — ¢(v), v € H}.

Proof: by Riesz representation theorem, the equation to be solved can be rewritten
as (Au,v) = (f,v) for any v € H, i.e. Au= f, where A € L(H) verifies the estimates
0 < aflul] < [[Aul| < Mljul| ¥ u # 0.

From aflu|| < |JAul| (which is called an a priori estimate) it follows that ker A = 0.
Moreover, a|u, — tn|| < ||Au, — Au,,|| implies that if y, = Au, — y in H, i.e. Au,
is a Cauchy sequence in H, then also u,, is a Cauchy sequence, hence u,, — u in H by
completeness, thus yielding y = Au. One concludes that A has a closed range R(A) in
H. Finally, if v LR(A), then (v, Au) = 0V w € H. In particular, choosing v = v, we
have 0 = (v, Av) > a|v||?, thus v = 0 and R(A) = H. We just proved that A is both
injective and surjective, and the conclusion of the Lemma follows.

In case of a symmetric a, since a||u|®* < a(u,u) < M|ul?, the scalar product
((u,v)) := a(u,v) is equivalent to (-,-), hence by Riesz representation theorem applied
to H endowed with ((-,-)), one has ¢(v) = a(g,v) for a certain ¢ € H, whence u
verifies a(u — g,v) = 0V v € H, i.e. u is the orthogonal projection (with respect to
the scalar product induced by @) of g on H, in other words u minimizes the (squared)
distance (induced by a) a(v—g,v—g), or, equivalently, the quadratic functional F'(v) =
ta(v,v) — ¢(v), for v € H, whose Euler-Lagrange equation 9,F(u) = (F'(u),v) = 0 for
any direction v € H is precisely given by a(u,v) = ¢(v) for any v € H.

[

A generalization of Lax-Milgram lemma is given by Stampacchia theorem.

16-dec-2013 (1 hr). The Galerkin approximation method: if Vj, C H, dim V}, < 400,
one considers the solution wuy, of the system a(u,v) = ¢(v) V v € V,,. We have the
uniform bound |[Juy,|| < a™t||¢]|., which gives weak compactness of the sequence {uy}.
Moreover, the Lemma of Céa guarantees that ||u—u|| < 2dist (u, V}) (in other words,
uy, is comparable to the orthogonal projection of u on V},): indeed, a(u — up, u —up) =
a(u — up,u —v) for any v € Vj, since a(u,v — up) = a(up, v — up) = ¢(v — uyp), whence
allu —up||* < M|ju — uyl|Ju — v|| for any v € Vj, and the conclusion follows.

Hence, considering a sequence of finite-dimensional spaces Vj, C Vj,1 such that
H = U,V,, one has the convergence u, — u in H as h — 4o00.

Remark that the approximating finite-dimensional problem is a linear system with a
positive definite coefficients matrix, called stiffness matriz, which is given by [a(f;, f;)],

with {f;} a basis for V.



The choice of the sequence Vj, invading H and of a basis {f;} for V}, is aimed to
efficiently solve the approximating linear system, and also to have the best possible
convergence rate for the error estimate ||u, — ul||. Here are some examples in case
H=1I1*Q), Q2 CcR™

1) if a is represented by a compact self-adjoint operator, then considering a Hilbert
basis {e, fnen of L*(2) made of eigenvectors, and setting V;, =span< ey, ..., e, >, the
corresponding system is diagonal.

2) considering a basis { f;} of V3, made of finite elements (piecewise linear or polyno-
mial function insisting on a fixed triangulation of the domain) yields a sparse stiffness
matrix. Finite elements are used in numerical fluid dynamics, material science, elas-
ticity,...

3) Haar basis, wavelets, radial basis functions: these Hilbert basis of L?*(() are
used in signal and image processing and statistical analysis, being not computation-
ally expensive, and also since they are able to take into account localized oscillation
phenomena at any scale in physical and in frequency space.

3) if the original problem admits a smooth solution (for example, u € C*(£2) as for
Laplace equation), it may be convenient to use spectral methods for its approximation,
i.e. to consider a Hilbert basis of L?(2) made of orthogonal polynomials (e.g. the
trigonometric system, the Legendre polynomials, the Hermite polynomials): since the
Lemma of Céa states that the error estimate ||u—wuy,|| is comparable to the distance of u
to its orthogonal projection on V}, hence the convergence rate will be better according
to the regularity of u (for instance, the more regular u, the more rapidly its Fourier
coefficients decay to 0).

18-dec-2013 (2 hrs). Weak / variational formulation of elliptic boundary value prob-
lems in dimension 1. Classical vs weak solutions. Homogeneous Dirichlet problem:
weak formulation in H}, existence, uniqueness, a priori estimates, variational charac-
terization of the weak solution as the minimizer of the Dirichlet energy. Analysis of
the (homogeneous) Sturm-Liouville problem, compactness and spectral decomposition
of Sturm-Liouville operators.

9-jan-2014 (2 hrs). Basic facts from the theory of distributions. Motivation: existence
theory for partial differential equations. For an open set {2 C R"™ define the space of
smooth test functions D(Q) = C=(Q). While the space of continuous (resp. C*) test
functions C2(2) (resp. C¥(2)) has a metric naturally induced by the norm ||@||co =
[l (resp. [|@llor = Y o<iai<r [D@llo), the space of smooth test function has a
metric built upon the family of semi-norms || D%®||«, for any multi-index « (such a
space is not a normed space, but it is called a Fréchét space), for instance consider

. ok o=Vl
dist (¢, 0) = 2k .
22 T o vl



Moreover, one says that ¢, — ¢ in C°(Q) if dist (¢, ¢) — 0 and spt ¢,, C K, with
K C Q a fixed compact set, independent of n. Remark that ¢, — ¢ in C°(Q) if and
only if ¢, and all their derivatives converge uniformly on K C ).

The space of distributions D'(Q2) = [C°(Q2)] is defined as the space of linear and
continuous functionals over the space of smooth test functions. In particular, for T €
D'(Q2), stating T'(¢n) — T'(¢) for any ¢, — ¢ in C°(£2) is equivalent to state that for
any K C € compact, there exists N € N and C' > 0 (both possibly depending on K)
such that

T <C sup [ D6l p~cr
0<|a|<N
Convergence in the sense of distributions: for T',T; € D’'(§2) we say that 7,, — T in
D'(Q) it T;(¢) — T(¢) for any ¢ € C(Q2) (it is thus defined as a weak convergence).

Dlstrlbutlon associated to a locally mtegrable function v € L] () (ie. w e L} QN
B) for any ball B): set T,(¢) = [, u(z)¢(x)dx. Let spt¢ = K. We have |T,(¢)| <
lulza ) - 6]l s0 that T, o)

Actually, if u € LY(Q), we have T,, € [CY(Q)]*, and || .||« = sup{T.(9), [|¢]lcc <
1} = Jlulls.

Moreover, if T,, = T,, for u,v € L;, () we have 0 = [, (u(x) — v(z))p(z) dz for any
$ € CX(Q),le. u=wvae infd The map u — T, gives thus an injection of L}, .(Q2)
in D'(2), (actually, in [C(Q)]* € D'(Q)).

Derivatives in the sense of distributions (distributional derivatives). For T' € D'(Q2)
we define DT(¢) = (—=1)T(D*¢), for ¢ € D(Q). If u € C*(Q) and |a| < k then
we have as expected D*(T,) = Tpa, by iteratively applying the integration by part

formula
/ Oiu(z)p(x) de = — / u(z)0ip(x) d
Q Q
Observe that if T; — T in D'(§2) then D*T; — DT in D'(Q2) for any multiindex «.

Examples: for u(x) = |z|, x € R, we have (7,) = T, where v(z) = 1 if x > 0 and
v(z) = —1if z < 0. Moreover, (T,) = 2-Tj,, where Tj,(¢) = ¢(0), for ¢ € C°(92),
is the distribution associated to the Dirac mass concentrated at the origin. In particular
Ts, € [CY)* and

1 T5]|- = sup{¢(0), ¢ € C¢. [|¢]l« < 1} = 1.

On R we have T5, = (Ty)’, where H(z) = 1if x > 0, H(z) = 0 if x < 0 is the
Heaviside function. consider the following approximating sequence for H, given by
ui(x) =1if o > j7 uj(z) =7 -z for 0 <2 < j ™t uj(z) =0 for z < 0. We have
(Ty,) = T, where U]( x) = j for 0 <z < j', and vj(z) = 0 elsewhere in R. Notice
that ||T5,[|. = [ v;(z dx = 1 for any j € N. We have T,,, — Ty in D’ since u; — H
in L', so that [T, (¢ ) o) < Jg luj(z) — H(x)| - |p(x )\ dz vanishes as j — +oo. In
particular we have T, = (Tuj)’ — (Ty) =Ts,.

Observe that the Heaviside function has a classical derivative a.e. (actually every-
where except in the origin), which is identically zero, while the distributional derivative
of H keeps the information on the unit jump of H at the origin.



13-jan-2014 (2 hrs). From the inclusions C>°(Q) C CH1(Q) C C*(Q) valid for any
k > 0 we have the continuous injections

[Co@) C[CHF C ... C[C2@]" C ... C[CZ(Q)) =D'(Q).

Distributions in [C*(2)]* are called distributions of order k. In particular, distri-
butions associated to locally integrable functions are of order zero.

The distribution T, u associated to a (possibly o-finite) Radon measure p on €
Tu(¢) = = Jo o

Example the Dirac dlstrlbutlon Ts,: we have (Ty,, ¢) = [, ¢(x)ddo(z) = ¢(0).

For any pn € M(Q) (the space of finite Radon measures on Q) it actually holds
T, € [CY(Q)]* and

|0l = sup{{T},, 6) , ¢ € C2(Q), [0l < 1} = [1l(X),

where || is the total variation measure of p and ||| = ||(2) is the total variation of
the measure p on €.

For u,u E M(Q) two Radon measures on Q, T, = T, implies [, ¢(x)du(z) =
Jq o( , for any ¢ € C°(Q2), so that by con51der1ng ¢; converging to the char-
acterlstlc functlon of an open subset A C €2 se obtain, by the dominated convergence
theorem, that u(A) = v(A) for any A C € open, hence y = v by the regularity of
Radon measures. Hence u — T, gives an injection M(2) — [C2(Q)]* C D'(2). Hence
(finite and o-finite) Radon measures in €2 are distribution of order zero.

Riesz representation theorem: p € M(Q) — T, € [C2(Q)]* is an isomorphism of
Banach spaces, where the norm of a measure p € M() is given by its total variation
|pll = [1](2). In particular, it holds |u|(2) = ||p]| = [|T,]|«. Weak™® compactness and
convergence in the sense of measures: by the Banach-Alaoglu theorem (bounded sets in
the dual of a Banach space are relatively compact with respect to the weak* topology),
a sequence of equibounded Radon measures p,, on Q (i.e. |u,|(©2) < C) is weakly*
compact, i.e. there exists a subsequence [n, and a measure i such that g, X in
M(Q), or in other words [, ¢(z) dpin, (x) — [, &( ) for any ¢ € C2(9).

The space of Radon measures is sulted to solve optlmlzatlon problems involving L*
or total variation norms. For example, for Y C M(Q) , Y closed convex and bounded,
consider the minimization problem

inf{|[ull = p() = [[Tull«; p €Y},

Then, since Y is closed and convex it is weakly™® closed by Hahn-Banach, and since it
is also bounded it is weakly™ compact by Banach-Alaogliu. The total variation norm
is weakly* lowersemicontinuous being characterized as a supremum, as a dual norm.
Hence the existence of a minimizer in Y is guaranteed by Weierstrass theorem (or
equivalently by the direct method of the calculus of variations).

Product distribution 1 - T', where ¢ € C*(Q): (¢ - T, ¢) = (T, ¢ - ¢). Convolution

of a distribution with a test function: it is a smooth function x +— T % ¢(x) defined by



Tx¢(x) = (T,¢(x —-)). It holds D¥(T x @) = (D*T) * ¢ = T * (D*p). Support of a
distribution T it is the complementary of the largest open set O such that T'(¢) = 0 for
any ¢ such that spt ¢ C O. In particular, if 7" has compact support, then 7' x ¢ € C2°.
Convolution of distributions: for T',.S € D'(Q2), with S with compact support, define
(T'x S, ¢) = (T,S * ¢). The Dirac distribution &y is the neutral element with respect
of the convolution product.

Distributional gradient: it is a vector distribution in [D’(Q2)]" given by (VT, ) =
—(T,div @) for F € [D(2)]". Remark that for distributions associated to functions of
class C! previous formula coincides with Green (or integration by parts) formula.

Analogously , the distributional divergence of a vector distribution T' = (T, ..., T},)
is defined as (div T, ¢) = —(VT, ¢). Distributional Laplacian —AT": we have (—AT, ¢) =
<T7 _A¢> .

Differential problems in the distributional sense. Fundamental solution of a linear
and continuous operator L on D’(R"™): it is a distribution G such that L(G) = dy. For
F € D'(R"™), the distribution U = G x F is a solution of the equation L(U) = F' in
D'(R™).

Example: the fundamental solution of the distributional Laplacian in R", which
satisfies —AG = §y in D'(R"), is the function G(z) = ¢,|z|*™" for n > 2, with ¢, > 0
a suitable constant (e.g. ¢3 = 1), and G(z) = —5- log |z for n = 2.

15-jan-2014 (2 hrs). Distributional definition of the spaces W'?(Q). Definition of
BV () (functions of bounded variation): u € BV (Q) if u € L'(Q) and the (distribu-
tional) gradient Du = (Dyu, ..., Dyu) is a (vector) Radon measure, which satisfies the
integration by part formula (Gauss-Green)

/udiv&z—/&dDu for any ¢ € [CO(Q)]".
Q Q

Total variation of a vector Radon measure: for fi = (p1,..., ) with u; € M(Q) =
(C?(Q)) we have the decomposition i = F|fi|, where |fi| is a positive measure (called
the total variation measure) and |7/(z)| = 1 for |f| a.e. x € Q. The total variation of
ii is defined as

1]l = Sup{/sﬁ-dﬁ: /Qd_f- v, ¢e[CH Nl < 1} =[] ($2).

Example: the characteristic function 1p of an open bounded set £ C R" with
OE N of class C* belongs to BV (), since by Gauss-Green formula

-,

D1E(¢):—/div$dx:— ¢ fdo,
E OF

where 7 is the unit outer normal to JF and do is the surface measure on JF, so
that |D1g(¢)| < ||¢||e - Area(0E N ), i.e. D1g is a vector Radon measure, and in



particular D1y = v|D1g|, where /(z) = —7i(z) is the inner unit normal to 0F N and
|D1g| = do. By a suitable choice of the test function ¢ in such a way that |¢(x)] <1
and ¢ = —7i on OE N Q one gets |[D1g|(2) = Area(0E N Q).

Equivalent definitions of W1# and BV norm. Some properties of W'?(Q): com-
pleteness, reflexivity, separability, according to the exponent p. The Hilbert space
H'(Q) = W2(Q). The space WH>(Q) coincides with the space of Lipschitz functions
on €2, when ( is a regular domain (with boudary of class C* or lipschitz). Leibniz rule
and chain rule n W12,

Characterization of maps in W1?(Q): weak derivatives as a bounded linear func-
tionals on L”, uniformly bounded differential quotients w.r.t the L? norm (this prop-
erty implies that the injection W1P(Q) — LP(2) is compact, according to Fréchét-
Kolmogorov theorem): in case p = 1 these properties characterize the space BV (£2) of
functions of bounded variation.

16-jan-2014 (2 hrs). (see [1], chapter 9) Density of smooth functions in W1P(Q):
extension of a function u € W'P(Q) to a function u € W'P(RY) and regularization
by convolution with a family of smoothing kernels p, € C>(RY) such that p, — do
in the sense of distributions. Proof of the compact injection of WP(Q) in LP(2) for
Q C RY bounded: if F is a bounded family of W'?(Q), and w CC €, then p,, * F, is
e-close to F|, for large n, and uniformly bounded in L*° and equi-uniformly continuous,
hence relatively compact with respect to the || - || norm by Ascoli-Arzela, so that in
particular it is relatively compact in LP(w). An e-net for p, * F|, in LP(w) is then
a 2e-net for F, and a 3e-net for F in LP(Q2) if w is sufficiently close in measure to
Q). The space I/VO1 (1), suited for homogeneous Dirichlet boundary value problems.
Poincaré inequality. Sobolev inequalities in R” and in domains € of class C*. Rellich-
Kondrachov compact embedding theorem.

20-jan-2014 (2 hrs). (see [1], chapter 9) Weak / variational formulation of elliptic
boundary value problems in dimension N (see [1], chapter. Classical vs weak solutions.
Homogeneous Dirichlet problem: weak formulation in Hj, existence, uniqueness, a
priori estimates, H2-regularity and higher regularity of the weak solution (analysis
carried out only in the easier case N = 1). Variational characterization of the weak
solution as the minimizer of the Dirichlet energy, and relationship with a discretization
in time of the gradient flow of the Dirichlet energy (in other words, a discretization in
time (Euler-type scheme) of the heat equation: denoting ¢, = nAt, u(t,, ) = v,(-) one
obtains v, 11 as the minimizer in of the Dirichlet energy functional F'(v) = % Jo V> +
i 1o — vnl22 (Q)). This gives also an example of Tychonoff regularization for signal (or
image) processing.

Solvability of a general second-order elliptic boundary value problem in divergence
form through the Fredholm Alternative (see [1], Theorem 9.23).
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22-jan-2014 (2 hrs). Homogeneous Neumann problem. Maximum principle for elliptic
equations, applications to uniqueness and stability of the Dirichlet problem. Spectral
theory of the Laplacian: existence of a Hilbert basis of L?(2) made by eigenfunctions of
the Laplacian in H} () guaranteed by compactness and self-adjointness of the solution
operator. Integral representation of the solution of the homogeneous Dirichlet problem
through the corresponding Green kernel. The linear heat equation and wave equation:
some hints about methods of resolution through finite-dimensional Galerkin approxi-
mation of the Laplace operator, corresponding to the so-called technique of separation
of variables.

An example of nonlinear partial differential equations arising from variational prob-
lems: the Rudin-Osher-Fatemi model F(u) = |Du|() + §|ju — fH2L2(Q), for u € BV (Q)
is suitable in image processing, since it has the ability to regularize (denoise) a given
image f (identified as its grey level function) by preserving at the same time edges and
boundaries.

An example of geometric variational problem: the isoperimetric and the isovolu-
metric problem within the class of finite perimeter sets.

Definition of finite perimeter (or Caccioppoli) sets in 2 C R™: they are Lebesgue
measurable sets £ C R” such that

Po(E) = |D14](9) zsup{ [ and st de [050(9)]”} < 4o,
E

neQ

in other words 15 € BV (Q2). Weak formulation of the isovolumetric problem in the
class of finite perimeter sets in R™: fix R > 1 (sufficiently large) and set

P = {E C Br(0), L*(E) = / 15dL" =1, 15 € BV(Byg(0)) } :

i.e. P contains sets £ C Bg(0) having unit volume and finite perimeter ||D1g| =
|D1g|(B2r(0)) in Bygr(0): observe that since £ C Bg(0), the perimeter of E in Byg(0)
coincides with the whole perimeter of E in R", i.e. with |D1g|(R"). Consider the
isovolumetric problem

min || D1g]|| .

EeP

If £, € P is a minimizing sequence, i.e. ||D1g, | — infpep [|[D1p||, we have
15, |V (B2r(0) = 1+ [[ D1, || < C,

so that, up to a subsequence, 15, — 1p in L'(Bsg(0)) by the compact embedding of
BV (Byr(0)) in L'(Byg(0)) (Rellich Theorem). We deduce E C Bg(0) and L™(E) = 1.

=

Moreover, we have D1g, (¢) — D1g(¢) for any ¢ € [C°(R™)]" (i.e. convergence in the
sense of distributions) and

IV1g| < liminf|[V1g, | = inf |[V1g]
n—+00 FeP
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by lower semicontinuity of the total variation norm. Hence E has minimum perimeter
in the class P.

The regularity theory (based for example on Steiner symmetrization) allows to
conclude that the optimal set F is the unit volume round ball in R™.
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