Predicate
Logic
(first order logic)




formula

intuitive meanings

AxP (x) there is an x with property P
VyP(y) i
Vx3Iy(x = 2y) ?
ve(e>0—3an(1< €)) ?
X<y —=3Z(X<ZAZ<Y) >
vxay(x.y = 1) ?




formula intuitive meanings

AxP (x) there is an x with property P
VYyP(y) for all y P holds (all y have the property P)
Vx3y(x = 2y) for all x there is a y such that x is two times y
ve(e>0—3an(1< €)) for all positive € there is an n such that 1< ¢

X<y—3z(x<zaz<y)| ifx<y thenthereisazsuchthatx<zandz<y

vxay(x.y = 1) for each x there exists an inverse y




The semantics of predicate logics






Strupture

U=A(R,,...R)(FL..F), {clielh

A hon-empty set

v

relations on A

v

notation |U | =A

functions on A

N\

elements of A

(R, +,-~1,0, 1) — the field of real numbers,

(N, <) — the ordered set of natural numbers.



Definition 2.2.2 The similarity type of a structure A = (A, Ry, ..., Ry, F1,

o, Fo {eili € T} is a sequence, (ri,...,Tn;a1,...,0m;K), where R; C A",
F; : A% — A, k= |{c¢; |i € I}| (cardinality of I).




what is A9 ?

whatis f: AO—>A ?



what is A0 ?
what is f: AO—->A ?

what is An ?

whatisf: o A ?



Write down the similarity type for the following structures:

N,+,-,5,0,1,2,3,4,...,n,...),whereS(z) = x + 1,
P(N)a ga U7 m)c ) (Z)>7
Z/(5)7 _l_a Ty _7_1 707 ]-7 27374>7

Give structures with type (1,1; —;3), (4; —;0).




alphabet

(Myeeesln 3 Apyees@my KD, With 12 0,3, > 0.

1.Predicate symbols: sequence P1, ..., Pn, plus =
2.Function symbols: sequence f1,...,fm
3.Constant symbols ¢; for i € | with |l|=K
4.Variables: Xo,x;,X,,...(countably many)

5. Connectives: v,A,—,—,<>,1 V.3

6. auxiliary symbols: (,),

we write also (<P1, ..., Pn;f1,....fm,{Ci }ic to relate with

(ETVIN (- PRI S ‘9



Miyeeosln s @1y @K, With 12 0,3, > 0.

Definition TERM 1s the smallest set X with the properties
(Z) C; E)((iE[) and x; EX(iEN),
(13) t1,...,te, € X = fi(t1,...,tq,) € X, for 1 <i<m

TERM is our set of terms.

Definition FORDM 1s the smallest set X with the properties:
(Z) le X;Pe X ifr;=0; t1,...,t,, € TERM =
Pi(tl,...,tm) c X;t1,to € TEHRM = t1 =ty € X,
(i) o, € X = (oY) € X, where I € {A\,V,—, <},
(111) p € X = (—p) € X,
() o € X = ((Va;)p), (zi)p) € X.




proof by induction

Lemma Let A(t) be a property of terms. If A(t) holds fort a variable or
a constant, and if A(t1), A(te),..., A(t,) = A(f(t1,...,tn)), for all function
symbols f, then A(t) holds for allt € TERM.

Lemma Let A(p) be a property of formulas. If

(i) A(p) for atomic o,

(it) A(p), A(Y) = A(pLY),

(i11) A(p) = A(=yp),

(iv) A(p) = A((Vx;)p), A((Fx;)p) for all i, then A(p) holds for all
o € FORM.




Exampleoof a language of type <2;2,1;1).

predicate symbols: L, =
function symbols: p, 1
constant symbol: e



Definition by Recursion on TERM: Let Hy : Var U Const — A (i.e.Hy
is defined on variables and constants), H; : A% — A, then there is a unique
mapping H : TERM — A such that

{H (t) = Hy(t) for t a variable or a constant,
H(fi(t1,...,ta,)) = H;(H(t1),...,H(tg,))-

Definition by Recursion on FORM:
Let Hy : At — A (i.e.Hg; is defined on atoms),
Ho: A2 — A, (Oe{V,A —,<})
H_ :A— A,
Hy: Ax N — A,
Hg cAXx N — A.

then there is a unique mapping H : FORM — A such that

( H(p) = H,:(p) for atomice ¢,
H (o) —HD( (¢), H(¥)),
§ H(=p) H-(H(p)),
H(Vzip) = Hy(H(p),1),
| H(3zi(p) = H3(H(p), 1)




free variables

Definition The set FV(t) of free variables of t is defined by
(1) FV(x;) = {@i},
FV () = ()
(12) FV(f(t1,...,tn)) :FV(tl) U FV(t,).
Deﬁnitlon The set F'V () of free variables of v is defined by
(1) FV(P(t1, tp)) = FV(t1)U...UFV(),
(tl — ) L= FV(tl) UFV(tg),
(J_) = FV(P) := () for P a proposition symbol,
(i2) F'V(py) = FV(p) UFV (1),
FV (=) = FV(p),
(2i7) FV (Vx;0) := FV (3z;p) == FV(p) — {x;}.




t or ¢ is called closed if FV(t) = @, resp. FV(¢p) = @.

a closed formula is also called a sentence.
a formula without quantifiers is called open.
TERM. denotes the set of closed terms;

SENT denotes the set of sentences.

Exercise:
define the set BV(¢p) of bound variables of ¢

FV(p)nBV(p)=2 ?



Su
Su

Su
Su

The notion of SUBFORMULa

b(p) = {p} for atomic ¢
O(P:.0¢,) = Sub(P,) u Sub(P.) u {P.O0P.} foro e {A, v, 2}
0+(— ) = Sub(p) u {-P}

0-(QX.¢) = Sub(p) u {Qx.¢} for Q e {v, 3}

Free and Bound occurrences of variables

an occurrence of a variable x in d is BOUND, if x occurs in
PeSUB{d} and ¢p={Qx.0} for Q € {V, 3}

an occurrence of a variable x in d is FREE, if x does not occur in
any peSUB{0} with @={Qx.0} for Q € {V, 3}




(...... i .......
free
(...... ) G

SUBSTITUTION
Plt/x]?




SUBSTITUTION

Definition Let s and t be terms, then s|t/x| is defined by:
- _JyifyFEz
Q) ylt/s —{yiaz:
clt/x] = c

Definition plt/x] is defined by:
() L [t/x] =1,
Plt/x] .= P for propositions P,
P(ty,..., ty)t/x] == P(t1|t/z], ..., tylt/x]),
(tl :tQ)[t/iE] = tl[t/il?] :tz[t/af],
(i) (pLIP)[t/x] = lt/x]T[t/ ],
(mp)lt/x] = —plt/z]
(iid) (Vyp)lt/a] = § IO T8 FY
Guolt/e] 1= LT T e E

Define symultaneus substitution d[ty,...,tn/X1,...,Xn]



Ix(y < x)[x/y] = IX (X < X)

?



Ax(y < (X < X)

We must forbid dangerous substitutions

t=(...y...) &= (...(Fy...x...)...)

P[t/x]= ((EI(

y is now bound!




Definition

tis free for xin ¢ if

(1) ¢ is atomic,

(i) ® = p:OP(or d :=-d,) and tis free for x in d:and . (resp.P),

(in) ¢ :=3dyyY (or ¢ = Vyy) and if xeFV(p), then ygFV(t) and t is free for x
In .

tis NOT free for x in ¢




proposition

t is free for x in @ & the variables of t in ¢[t/x] are not
bound by a quantifier.

proof by induction (exercise!)



Check which terms are free in the following cases, and carry out the sub-
stitution:
(a) x for x in x = «x, (f) z +w for z in Yw(x + 2z = 0),

y for x in z = =z, (9) z+y for z in Vw(x + 2z =0) A

r +y for y in z = 0, Jy(z = x),

0+ y for y in Jz(y = z), (h) x +y for z in Vu(u = v) —
Vz(z = y).

Jw(w + x = 0),




NATURAL DEDUCTION

Notation
in the same context (x) and ¢ (t) denote respectively @ and [t/x]

hp?

?) -
. pr) i LPAL |

X%FV(hp@) 5; t free for x in @




iz = 0]
Va(x = 0)

r=0— Vr(x=0)
Ve(x =0 — Va(x = 0))
0=0— Va(x = 0)




[z =0

|
Va(x = 0) NO!

r=0— Vr(x=0)
Ve(x =0 — Va(x = 0))
0=0— Va(x = 0)










Va-Vy(z = y)]

NO!
—Vy(y = y)

Vo-Vy(r = y) — =Vy(y = y)







VaVyp(z,y) — YyVoe(z, y)















VaVyo(z, y)]
Vyo(z,y)
P(z,y)
Vrp(z,y)

VyVa(p(z, y)

VE
VE
i
i

VaVyp(z,y) — YyVre(s,y)



Va(e(z) Ay(x)]  Va(e(z) Ay())]

o(z) A (x) o(z) A ()
o () o(x)
Vrp(x) Vi) (x)

Veo(x) AV (x)
V(o N Y) — Yeo AV




Let x € FV (o)

Va(e — ¥(x)) — (¢ — Va(y(z))



Let x € FV (p)

V(o — Y(x
Vz(p — (z))] E

p — () L
o)
Vay(e)
o — Vap(z)

V(e — P(x)) — (¢ — Va(p(z))



I'Fp(x)=TFYep(x)ifx & FV () for all p € I’

I' =Vxp(x) = I'F p(t) if t is free for x in .




1. Show: (i)F Vx(p(x) — (x)) — (Vap(x) — Vap(x)),
(ii)F Vzp(z) — ~Vae—p(z),

(iii)F Vxp(x) — Vzp(z) if z does not occur in o(x),




SEMANTICS




In describing a structure it is a great help to be able to refer
to all elements of |U]| individually, i.e. to have names for all

the elements of |U]|

extended language

The extended language, L(U), of U is obtained from the language
L, of the type of U, by adding constant symbols for all elements of
U. We denote each constant symbol, corresponding to ac|U]|, by
a.



an interpretation of the closed terms of L(U) in U, is a mapping
[-]u: TERMc— |U| satisfying:

(i)[clu= ¢

(i[aJu= a,

(i) [Fi(ty,..., ) Ju= Fi([t1]y,...,[tIx), with k=a;

an interpretation of the sentences ¢ of L(U) in U, is a mapping
[-Tu: SENT — {0,1}, satisfying:

i) [L]x =0

i) [Pi(t1,...,t)1x =1 < ([t1]y,...,[tIw)ePi (with k = i)

i) [ti=te]lu =1 <=

V) [pAO]y =1 < [¢pJu=1and [0Ju=1

V) [pVOoJu =1 < [plu=1or [0Ju=1

Vi) [0y =1 < [@Ju=0or [0Ju=1

vii) [vX.pJu = 1 < for all ac|U]| [p[x/a]lu=1

viii) [ax.pJuy = 1 < there exists ac|U]| s.t. [p[x/a]lu=1

when there is no ambiguity we write [-] instead of [-]u




Given a fixed similarity type and a sentence @:

UEQ stands for [pJu=1

=@ stands for for each U . U@

Let FV(p) = {z1...,2«}, then CI(¢p) := vz; ...zx@ is the universal
closure of ¢

(we assume the order of variables z; to be fixed in some way).

SUE @ (U isa model of p) & U = Cl(p),
& =¢ (@isvalid/true) & U= ¢ for all U (of the appropriate type),
& U= (Uisamodelof ') & U = y for all werl,

@ = (pisconsequenceof ) &

foreach (U =T = U = @), where ' u{(p} consists of sentences.




For the rest of the course let us suppose to fix an
enumeration (without repetitions) of variables {xi}ien*

(N*=N-{0})
When we write that FV(@) = {z4,...,2«} we means that

for each je[1,k] Zj=XiJ- and for each m,ne[1,k] m<n = im < in

If ¢ is a formula with FV(p) = {z4,...,z«}, then we say that
P is satisfied by ai,...,ax € |U]| if UE Q[ay,...,ak/Z1,...,ZK]

P is called satisfiable in U if there are aj,...,ax € |U| such
that ¢ is satisfied by ai,...,ak € |U|

¢ is called satisfiable if it is satisfiable in some U.

Note that ¢ is satisfiable in U iff U = Iz4,...,zk.P.



If we restrict ourselves to sentences, we have
(i) UEQpAp<UEE U and UEY,

(i) UEPvYeUEQ or UEY
(iii) U = = & UE @,

(iv) UEp-ype (UEP=>UEY),
(vi) UEVX(pe U = p[a/x], for each ac|U].

(vii) W = 3axp & U = p[a/x], for some ac|U].



UEIXp & U= p[a/x], for some a € |U].



UEIXp & U= p[a/x], for some a € |U].

1) [Ix.pJu = 1 < there exists ac|U]| s.t. [p[x/a]lu=1



exercises

(i) F ~Vap < Jzmg
(77) = —dxp < V-

(111) = Vxp < —dz—p
(tv) = dzp «— V-




(i77)

(i) Let FV (Vxp) ={21,...,
AE=Vzr...2x("Veo(x, 21, ...,
So we have to show 2l
bitrary a,...,a; € |2|. We apply the properties of

2.4.5:

A = ~Vrp(z,ar,...
b e ‘Qu A = gp(b,al,...
Ek) =

A = ﬁgp(g,al,...,

exercises

Q

— Va:go — dxr—yp

@

— —drp \V/QZ_ISD
Va:gp — —dxr—p

(iv)

7516)

= —Vxp(x,a,. ..

— dxp <« Vr—p

2k }, then we must show
2r) < dx—p(x, 21,. ..,
,ag) < dx—o(z,aq,...,a,) for ar-
— as listed in Lemma

s A FE Vep(x,ag,...,
,ay) < there is a b € |2| such that

= dz—p(x,a1,...,0,).

2r)), for all 2.

ar) < not for all




X

— VaVyp «— YyVzop,

ye

YL,

) FE Vo < o if e & FV(p),

rp — @ if x & FV(p).

L <C L <C

S 8 8 3

Jxp

rw V dx,

(x) Vo if & FV(9),
(®) Np if o & FV (1)),




Vr(p(x) Vi(x)) — Vaep(x) V Vey(z), and
- z(x) — dz(p(x) A(x)) are not true.

=
pSY
\ap

>

1]



Vx(p(x) v P(x)) = VxPp(x) v Vxp(x),

similarity type: <1,1;;0> alphabet:<p,q;;>

structure: U=<{a,b}, PQ>

P={a}, Q=1{b}
VX(P(X) v q(x)) = VXp(X) v VXq(X),

UEVX(p(X) v (X)) = VXp(X) v VXg(X)



Let x and y be distinct variables such that xgFV(r),
then (t[s/x])[r/y] = (tlr/yDIs[r/yl/x]

(classroom exercise)

let X and y be distinct variables such that xgFV (s)
and let t and s be free for x and y in ¢, then (p[t/x])

[s/y] = (@[s/y]DItl[s/yl/x],



Let x and y be distinct variables such that xgFV(r),
then (t[s/x])[r/y] = (tlr/yDIs[r/yl/x]

(classroom exercise)

let X and y be distinct variables such that x¢FV (s)
and let t and s be free for x and y in ¢, then (p[t/x])
[s/y] = (®[s/yDItls/yl/x],

By induction on the length of t

t = ¢, trivial.

t = x. Then t[s/x] = s and (t[s/x])[r/y] = slr/y]; (t[r/yDIs[r/y]l/x] =
X[s[r/yl/x] = s[r/y].

t =y. Then (t[s/x])[r/y] = y[r/yl=r and (t[r/y])[slr/y]/x]=r(s[r/y]/x]=r,
since xg F V (r).

t = z, where z+X,y, trivial.

t = f(t,...,t.). Then (t[s/x])[r/y] = (f(t.[s/x],...)[r/y] = (by IH)
=f((t.[s/xDIr/y], - - ) = f((t[r/yDIslr/yl/x], . . ) = f(tlr/y],...))[s[r/y]/X]
=(tlr/yDIslr/yl/x].




(i) If zeFV(t), then t[a/x] = (t[z/x])[a/z],

(ii)If z¢FV(¢p)and z free for x in ¢, then

¢pla/z]=(p[z/x])[a/z]




Change of Bound Variables
If X, y are free for zin ¢ and Xx,y¢ FV(¢p)),

(or simply: if x and y does not occur in ¢) then
= ax(p[x/z]) < 3y(ely/z]),

= VX(@[x/z]) < vy(Qly/z]).

Every formula is equivalent to one in which no variable
occurs both free and bound.



Substitution Theorem
(i)=t'=t"—> s[t'/x] = s[t"/X]
(i) = t=t— @[t'/x] « @[t"/x])

[t] is the constant corresponding to [t]

[s[t/x]1=[s[[t)/x]]
[O[t/x]1=[D[[t)/x]T



IDENTITY

. VX(X = X),
. VXY(X=y—y=X),

. VXYZ(X=YyAYy=Z—X=2Z),
. VX1 . XnY1 yn( m i=,n Xi=Y; — t(Xl,...,Xn) = t(y19"'9Yn))

VX XYYl R\ im0 Xi = Vi = (O(X 1 X) = O(Y 1Y)

exercise:

= Vxdy(x =y)



[ a set of formulas

let X={x1, x2, ...} be the injective (and surjective) enumeration
of all the variables)

p=(ai, az, . . .)a denumerable sequence of elements in || i.e
P:N'—|Uu| (we do not require injectivity)

[(p) is obtained by replacing simultaneously in all formulas of I" all
the free occurrences of the x;-s by the corresponding aj-s (for each

jz1)
F(p)={w(p): w(p)el}={wl[a1, az,../X;1 , X5,...]: Wel}
(i) UEM(p) if UEyw for all wel(p)

(ii)[ =o if for all U,p. UET(p)=UE0(p)

If T=0, we write = 0

p[i~a] is the sequence obtained by replacing in p the i-th element with a




Soundness

[Fo=IlEO



hp? c I x¢gFV(hp?) and x=Xxk in the enumeration D
by Induction hypothesis
Y Yp p(T)

[ =@ i.e. for each U and for each p,. U =hpD(p) = U = d(p) V:I:‘ga(x)
vp,a (UrhpD(plk—a]) = UFP(plk-a])) =

= vp, (va UrhpD(p[k~a]))= (va UEP(p[k~a]))=

(because UE hpD(plk~a]) & UE hpD(p))
vp (UEhpD(p))= UEVX.((p) =
UEhpD(p) = UEVvX.P(p) =

UEMp) =UEVVX.Q(p) =

[ = VX.



[t] is the constant corresponding to [t]

(VE) D [S[tx]T=IS[IEl/X]]
Vzp(z) (o[t T=T[[t/X]]
p(t)

let x=xk In the enumeration
by IH: I EVX.P

i.e. for each U and for each p,. UET(p) = U = VX.P(p)
U = VX.p(p) = va UEP(p[k~a])e va U=(p[a/x])(p) =

vt UE(Q[[t(p)I/x])(p) & vt UE(P[t/X])(p)
and therefore vt(U & YX.p(p) = UE(P[t/X])(p))




Adding the Existential Quantifier

o(t)
Jz ¢(x)

1

t free for x in @ xgFV(Chp2-{Q})uFV (1))







Jz(p(x) V(z)) — Fzp(z) V Iz (z)




()] ¥ ()]
Jzp(z) Jzip(x)
o(z) V(o)]*  Fzp(z)VIzy(z)  3ze(r) vV Izp(z) v

Bz (p(z) V (@) Jzp(z) V Iz (z)
Jxp(x) V Jzp(x)

Jz(p(x) V(z)) — Fzp(z) V Iz (z)

=V

—>I3
















VX.¢
oLt/x] =ulu/y]




VX.¢ VJ?(HZ — $)
o[t/x] =[u/y]

(x=x)[x/x] =(x=y)[x/y]







© 00 N DU W N

ye

(7)) = (

Y

L,

Jrp(z) — Veop(z),
Jz(p(z) — ¢) < (

drp — pif o & FV(p).




Natural Deduction and Identity



RI5
y=x
rT=vy Y=2
RI;
r =z
'ZCl:yl) -pxn:yn — n — Yn
RI4 L1 Y1, y L Y
t(x1,. ) = Y1, -, Yn) tlx1,...,xn/21,. ., 20| = tly1, ..., yn/21, ..., 2n]
T1=Y1,.-Tn =Yn (71, “’xn)RI T =Yl,ee s Tn =Yn @T1,...,Tn/21,. .., 2n]
4
oY1, Yn) OlY1, . Yn/Z1y- -y 2Zn)

r=y x°4+y°>12x
2y° > 12x

r=vy z*+y*> 122

? 4y > 12y

T =1 332—|—y2>12:1:

2y% > 12y




Lemma 2.10.2 Let L be of type (r1,...,mn;a1,...,am; k). If the rules

L1 =Ylyeo oy Lyr; = Yp, Pi(fEl,...,.’Em)

for allt <n
Pi (y17°°°7y’l"1:)

T1 = Y1, Ta; = Ya,

— L forallj<m
fj(xlwﬂaxaj) — fj(y17°°°7yaj)

are giwen, then the rules RI, are deritvable.




Completeness



(Model Existence Lemma)
If [ Is a consistent set of sentences, then [ has a model.

Let L be a language of cardinality k. If [ is a consistent set of
sentences in L, then I has a model of cardinality < k




Definition
(i) A theory T is a collection of sentences s.t. for each sentence ¢, T+ @ = ¢ €
T (a theory is closed under derivability).

(ii) Given a theory T, a set I (of sentences) such that T ={¢: '@ and ¢ is a

sentence} is called an axiom set of the theory T. The elements of I are called
axioms.

(iii) T is called a Henkin theory if for each sentence ix@g(x) there is a
constant c such that axgp(x) — ¢(c) € T (such a c is called a witness for

IxXQP(x)).

Definition

Let T and T’ be theories in the languages L and L.
(i) T is an extension of Tif T cT,

(ii) T  is a conservative extension of Tif T 'n L = T (i.e. all theorems of

T’ in the language L are already theorems of T).




Definition

Let T be a theory with language L.

The language L* is obtained from L by adding a constant Cop for each sentence of
the form Ixp(x).

T* is the theory with axiom set
T u {IxP(x) — cp(c(P)l dx@(x) closed, with withess C(P}

Theorem|[const-var]
Let x be a variable not occurringinlFor . (i)'~ ¢ =TI [X/c] - @[x/c].

(ii) If c does not occur in I, then I' F@(c)=T —vxp(X).




Lemma T* is conservative over T

(a) Let Ix(x) — @(c) be one of the new axioms.

Suppose I, Axe(x)->@(c)-yw, where @ does not contain c and where I is a set of
sentences, none of which contains the constant ¢c. We show I - @ in a number of
steps.

1. T+ (axp(x) = ¢(c)) » v,

2. T+ (axp(x) = ¢(y)) @ @, where y is a variable that does not occur in the
associated derivation. 2 follows from 1 by Theorem [const-var].

3. T+~ vy[(axp(x) @ ®(y)) — wl. This application of (vI) is correct, since ¢ did not
occurin .

4. T+ ay(axp(x) = @(y)) > @
5. T+ (axp(x) = 3yp(y)) > v,

6. - ax@(x) = 3yPp(y).
7. Ty, (from 5,6).

(b) Let T*~wp for a w € L. By the definition of derivability Tu{o1,...,0,}~¥, Where the o;
are new axioms of the form ax@(x)—¢(c). We show Ty by induction on n.

For n=0 we are done.

Let us suppose that Tu{o1,...,0n}-W = T—W we prove that Tu{o1,...,0n+1}+WY = THY

Let Tu{G1,::.,On+1 +-W. Put I'=Tu{o1,...,0n}, then T ,on+1~y and we may apply (a).
Hence Tu{o1l,...,0n}~WY. By induction hypothesis T—y.




Lemma

Let To :=T; Tns1 1= (To)*; Tw := [J{Tn:n = 03.

Then Tw is a Henkin theory and it is conservative over T .

Proof.

Call the language of T (resp. Tw) Ln (resp. Lw).
(i) Tn is conservative over T . Induction on n.
(ii)Tw Is a theory.

Suppose Tw + o, then @q,...,¢n + 0 for certain @Qg,...,Pn €Tw.
Visn Im; @ieTm;. m= max{mi:i < n}.

Since VK TyCTk+1, we have Tm; € T (i < n).
Therefore Tm+0. Tm is (by definition) a theory, so 0 eThcTw.
(iii) Tw is a Henkin theory.

Let Axp(X) € Lw, then IXP(X) € L, for some n.

By definition Ix¢p(x) — ¢(c) € Th+1 for a certain c.

So IXP(X)—p(c)eTw.

(iv)Tw is conservative over T .

Observe that Tw + o if Th — 0 for some n and apply (i).




corollary
if T is consistent then T is consistent.

proof:

For suppose Tw inconsistent, then Tw 1. As Tw is
conservative over T (and Le L) T L. Contradiction.



XORN’S LEMMA

If <P,<> is PO set, and each chain C (C ¢ P and C totally ordered by <) has an
upper bound in P. Then the set P contains at least one maximal element.

Lindenbaum Lemma
Each consistent theory is contained in a maximally consistent theory.

Proof. We give a straightforward application of Zorn’s Lemma. Let T be consis-
tent.

Consider the PO <A,C> with A={T": T constant extension of T}

Claim: A has a maximal element.

1. Let {Ti}iEI be a chain. Then T'=Ui€ITi IS a consistent extension of T

containing all Ti's (Exercise!). So T  is an upper bound.

2. by means of (1) and Zorn’s lemma A has a maximal element Tm.

3. Tm is @ maximally consistent extension of T (i.e. if Tm ¢ T’ and T’€A, then
Tm =T7)



http://en.wikipedia.org/wiki/Total_order

Lemma An extension of a Henkin theory with the same language is again a Henkin
theory.

Proof

For, the language remains fixed, so if for an existential statement ax¢p(x) there is a
witness ¢ such that axp(x) = ¢@(c) € T, then trivially, axp(x) = ¢(c) € Tm

Model Existence Lemma
If " is consistent, then ' has a model.



Model Existence Lemma

If I is consistent set of sentences, then I has a
model.



Proof of Model Existence Lemma
Let T ={0o:l' o} be the theory given by I.

Any model of T is, of course, a model of I .

Let Tm be a maximally consistent Henkin extension of T (which exists by the
preceding lemmas), with language Lm.

We will construct a model of Tm using Tm itself.

1. A={teLm : t is closed}.

2. For each k-ary function symbol f we define a function f*:Ak = A by
f(t1,...,tk) =f(t1,...,tk).

3. For each p-ary predicate symbol P we define a relation P*cAP by

t1,..,tp) eP* & Ty = P(t1,...,tp) .

4. For each constant symbol ¢ we define a constant
c*=c.




I Vx(x = x),
Iy Vey(e =y — y = x),
IsVaeyz(xr=yNy=2 —x = 2),

Iy V£C1---$ny1---yn(/>(\ Ly = Y; —>t($1,---,33n) Zt(y1,.--,yn)),

1<n
VITi...ZTpy1 .- -yn(/X\ i =y — (@1, 2n) = @Y1, .-, Yn)))-
<n
B 11, H12, HI3, 14,
REMARK =’ is not interpreted as the real equality.
We can only assert that:

(a)The relation ~ cTERMXTERM defined by

tvs © Tmrt=s for t,seA

is an equivalence relation.
Tm + VX(X = x), and hence Tm + t=t, namely tnt.

Symmetry and transitivity follow in the same way (use I, and I3)
(b) ti~vsi (i < p) and <ty,...,tpeP™ = (sy,...,5p)eP”

tivsi(i < k) = £7(t1,...,tk) ~ f*(s1,...,5k) for all symbols P and f. (use 14)



[t] is the equivalence class of t under ~
Define
u=<A/~,P1~,...,PnN,f1~,...,fm~ ,{CiN:iEI}>,

where
PiN .= {<[t1]11[tr|]>|<t1,,tr|> S Pl*}
fJN([tl]/,[trJ]) = [fl*(tllltaJ)]

G : =[ci']

tU=[t]u
claim: ti=[t] | |
base: t=c,then t¥=c~=[c*]=[c]=[t],
t=f(t4,...,tx), then
t=Ff~ (¥, ) =" ([, .. [t])= [f1™(tq,...,t) I=[f(t1,...,tk)]
claim: U =p(t) @ U = @([t]) (exercise)



Claim. U = ¢(t) & Tm + @(t) for all sentences in the language Lm of Tm

(which, by the way, is also L(U), since each element of A/~ has a name in Lm)

by induction on @:

(i) @ is atomic. UEP(t1¥ ,...,tpY) « 14 ..., tp" YeP~e ([t1],...,[tpDeP” &

Let ' be maximally consistent;

t1,...,tpeP* & Tm + P(t1,...,tp). a) V¢ either ¢cr, or ~per,
The case ¢ =1 is trivial. 7 Db) Vo.u. o pele(gel=yer).
(ii) p=0o—r.

Tm Fo—=te(Tm o = Tm + t) (by maximally consistence of Tm).

U=p—t «(UEo=UET) © (by IH) (TM 0 =Tm +t)eTm —o—r.




(iii) @ = vXY(Xx). U = vXY(X) & U ¥ IxyYy(x) &
U -y(a)forallae |U| & forall a e |U|. Uryw(a)

Assuming UE vxy(x), we get in particular UE w(c) for the witness ¢ belonging to
IX—YP(x).

By induction hypothesis: Tm + p(c). Tm + ax=yp(x) = =yw(c), so

Tm + y(c) = =3axayw(x).

Hence Tm + vx@(X).

Conversely: Tm + vxp(x) = Tm + w(t), so Tm + w(t) for all closed t, and therefore

by induction hypothesis, U = y(t) for all closed t. Hence U = vxy(X).

Now we see that U is a model of ,as I cTm.




Model Existence Lemma
If I is consistent set of sentences, then I has a model.

Corollary
[ =THO.

proof
[+ O =T u{-¢}#L=3Usuchthat UET u{-P} = TED

Theorem Let x be a variable not occurringinlor . () I = ¢ =T [x/c] — P[x/c].

[ =0 if for all U,p. UET(p)=UFo(p) =
for all p. ['(p)=o(p) = for all p ['(p)~o(p) = +o

[ Foel =P




From the Model Existence Lemma we get the following:
Theorem (Compactness Theorem)
I has a model & each finite subset A of I' has a model.

An equivalent formulation is:
I' has nho modelesome finite ACl has no model.

Proof. We consider the second version.
< Trivial.

= Suppose [ has no model, then by the Model Existence

Lemma [ is inconsistent, i.e. [ 1. Therefore there are
O4,....0n € [ such that oi,....00.—L1L. This shows that A =
{04,...,0,} has no model.



Lemma If ' has arbitrarily large finite models, then I' has an infinite model.
Proof. Put [*=T" u{An|n > 1}, where Anexpresses the sentence “there are at least n distinct

elements” (exercise) Apply the Compactness Theorem. Let A € [*be finite, and let Ambe
the sentence Anin A with the largest index n. Verify that Mod(A) 2 Mod(I"U{Am}).

Now [ has arbitrarily large finite models, so I has a model U with at least m elements, i.e.
U e Mod(I" u {Am}). SO Mod(A)= .

By compactness Mod(l *)= @, but in virtue of the axioms A,, a model of ["is infinite. Hence
[*, and therefore I, has an infinite model.



Mod(l') ={U | U=oforalloel}.
For convenience we will often write U = o for U € Mod(I).

We write Mod(®-,...,d.) instead of Mod({®s,...,dn}).

In general Mod(I" ) is not a set (in the technical sense of set theory:
Mod(l" ) is most of the time a proper class).

Conversely, let & be a class of structures (we have fixed the similarity
type), then Th(#') = {o | U = o for all U € F}.

Mod(VXY(XSYASYSXeX=Y), VXYZ(XSYAYSZ—X<LZ))

IS the class of posets.



Lemma
[ is consistent & [ has a model of cardinality at most the cardinality of the language.

& If L has finitely many constants, then L is countable. —
& If L has k=Ko constants, then |L|=k.

Theorem (Downward Skolem-Lowenheim Theorem) Let [ be a set of
sentences in a language of cardinality Kk, and let k < A. If [ has a model of
cardinality A, then [ has a model of cardinality K, with K < K' < A.

Examples.
1. The theory of real numbers, Th(R), in the language of fields, has a
countable model.



Upward Skolem-Lowenheim Theorem
Let [ have a language L of cardinality k, and U € Mod(l') with cardinality A > K.

For each u > A [ has a model of cardinality p.



THEORIES

Let @ a Recursively Enumerable (RE) set of formulas (not necessarily

sentences)
the natural deduction system with axioms ® is obtained by adding to
the standard natural deduction system, for each ce O, a O-ary rule

(namely a rule without premises)

O

such a new rules are called axioms
Derivability in the natural deduction system with axioms @ is denoted with

e

Let @ a Recursively Enumerable (RE) set of formulas (not necessarily sentences)

Cl(®d), [ + « @I_|6C1




In the following we will use both the concepts

C(®),l ma and IE a

A theory T is called axiomatizable if:

there is a Recursively Enumerable (RE) set of formulas, called postulates or axioms, ® s.t.
T={a| IE a and ais a sentence }

or equivalently

there is a Recursively Enumerable (RE) set of sentences 2 |, called postulates or axioms, s.t.
T={a|Z +~aandais a sentence }

If the set of postulates for a theory T is actually given, we say that T is axiomatic



